Neena Picardo – COMSOL 博客 - //www.denkrieger.com/blogs 发布博客 Tue, 09 Apr 2024 08:52:24 +0000 en-US hourly 1 https://wordpress.org/?v=5.7 使用 COMSOL Multiphysics® 开发燃料电池的 4 个仿真案例 //www.denkrieger.com/blogs/4-examples-of-fuel-cell-modeling-in-comsol-multiphysics //www.denkrieger.com/blogs/4-examples-of-fuel-cell-modeling-in-comsol-multiphysics#comments Tue, 10 Jan 2023 02:53:08 +0000 http://cn.staging.comsol.com/blogs?p=324731 燃料电池是清洁能源领域最受关注的新技术之一。燃料电池通过涉及氢氧化和氧还原的电化学反应产生电能。简单来说,如果能够为燃料电池稳定供给氢气和氧气,它就能发电。此外,这个过程中产生的副产物是水,因此它是一种不会产生二氧化碳或有毒副产物的“清洁燃料”。

探索不同的燃料电池设计

燃料电池的整体性能受到其电流密度分布、反应物的进给量以及温度变化等因素的影响。借助多物理场仿真可以研究这些因素,以及由热膨胀引起的可能的结构形变。通过COMSOL Multiphysics® 软件的一个附加产品燃料电池和电解槽模块,工程人员可以在同一个模型中对所有这些因素进行分析,用于设计和模拟不同的燃料电池。软件提供不同类型的多物理场耦合功能,如反应流、非等温流等,通过耦合模拟这些相互作用的物理现象可以清楚地了解电池在实际应用中的运行状态,还可以将模拟扩展到整个燃料电池堆。

接下来,让我们通过 4 个仿真案例来说明如何使用 COMSOL Multiphysics 评估燃料电池设计中的不同影响因素。

1.固体氧化物燃料电池

固体氧化物燃料电池中的电解质和电极由金属氧化物(硬陶瓷材料)制成。这种电池中的电极为多孔气体扩散电极(GDE),两个电极之间包含一层固体电解质,形成三明治结构。本节,我们将通过 固体氧化物燃料电池中的电流密度分布教程模型,来探究固体氧化物燃料电池的内部运行。

这个教程可用于模拟含逆流的平行通道固体氧化物燃料电池的一个基本单元中的电流密度分布。电池的燃料为湿氢气(氢气和水蒸气)和湿空气(水蒸气、氧气和氮气),分别从阳极侧和阴极侧供给。

标记了双极板、空气出口和氢气入口的固体氧化物燃料电池的几何结构。
标记了空气流道、氢气流道、空气进口和氢气进口的平行流道固体氧化物燃料电池的基本单元的几何结构。

图1. 一个电池堆中的固体氧化物燃料电池单元的几何结构,包含双极板(左)。一个基本单元的模型几何,包含一个空气流道和一个氢气流道(右)。假设双极板处于恒定电势,并且不包括在模型中,而是将电势设置为多孔气体扩散电极(GDE)和双极板之间的接触表面的边界条件。

该模型涵盖以下过程的全耦合:

  • 阳极和阴极的质量守恒
  • 气体流道中的流动
  • 多孔电极中的气体流动
  • 氧离子贡献的离子电流守恒
  • 电子电流守恒
  • 阳极和阴极的电荷转移反应(电化学反应)

作为一个真正的多物理场问题,该模型使用了描述电池内部发生的过程和现象的多个物理场接口。使用 氢燃料电池 接口求解用于描述气相中的物质传递的 Maxwell-Stefan 扩散和对流方程。使用可压缩的 Navier–Stokes 方程定义通过自由流动区域的流道,使用 Brinkman 方程描述多孔电极内的流速。使用多孔电极理论定义电解质、孔隙电解质和电极中的电流守恒,通过耦合多孔气体扩散电极中的局部浓度与热力学的 Nernst 方程和电荷转移反应动力学(电极动力学)的 Butler–Volmer 方程。

该模型中值得研究的参数为以下各项之间的关系:

  • 流道宽度
  • 电极厚度
  • 电解质(包括多孔电解质)的电导率
  • 电极的电导率
  • 单元的长度
  • 气体成分和气体进料速率

这些设计和运行参数决定了电池在不同负载下的性能。这个模型是完全参数化的,也就是说你可以对上述参数的不同数值进行模拟,来了解和研究电池单元的行为。接下来,我们将给出该模型的仿真结果,你还可以在 COMSOL 案例库中查看其相关的 MPH 文件和 PDF 说明,深入理解如何构建这个模型。

仿真结果

从左到右,图 2 显示了阳极中的氢摩尔分数,阴极中的氧摩尔分数以及电解质上的电流密度。模拟结果显示,空气的馈入限制了电池的性能,导致进气口的电流密度很高,出口处的电流密度很低。此外,还可以看到,通道中间的电流密度略高于边缘的,这是因为集流体和气体通道的接触面阻碍了气体输送。

用彩色标尺显示阳极的氢气摩尔分数的图,模型的最左边是红色,中间是白色,最右边是蓝色。
用彩虹色标显示阴极的氧气摩尔分数的图,其中最左边是蓝色,中间是浅蓝色,最右边是红色。
用彩虹色标显示电解液中的电流密度分布图,其中最左边是蓝色,中间是浅蓝色,最右边是红色。

图2. 在 0.6 V 的电池电压下,阳极的氢摩尔分数(左)和阴极的氧摩尔分数(中间),气体通道和气体扩散电极显示了各物质组成。电解液中的电流密度分布(右)表明,空气馈入限制了电池的性能,导致进气口位置的电流密度很高。

图 3 显示,在图 2 的工作条件下,最大功率的电流密度略低于 1800 A/m2(下左图),因此最大功率略低于 1150 W/m2。当气流速率增大时,最大功率密度可上升到 1300 W/m2(下右图)。如果绘制电解质中的电流密度分布,会看到它更加均匀。然而,这种性能的提高必须与气泵所需的功率相平衡,即气泵必须提供高出 50% 的压力。

显示进气压力为6 bar时的极化和功率密度曲线的图表。
显示进气压力为9bar时的极化和功率密度曲线的图表。

图3.进气压力为 6 bar 时的极化和功率密度曲线(左),显示了电流密度在 1800 A/m2 左右时最大功率略低于 1150 W/m2。通过将入口压力增加到 9 bar(右)来提高气流速率,从而将电流密度和功率密度的最大值分别提升至 2200 A/m2 和 1300 W/m2

2. 低温质子交换膜燃料电池

质子交换膜(PEM)燃料电池中有一层聚合物膜电解质。通常,质子交换膜在运行过程中具有相对较高的含水量。在具有蛇形流场的低温质子交换膜燃料电池教程模型中,由膜和气体扩散电极(GDE)组成的膜电极组件(MEA)被夹在含蛇形气体流道的双极板之间。在下图的几何结构中,空气通道及其入口位于膜电极组件上方,氢气通道及其入口位于膜电极组件下方。

标有空气进口、空气出口、氢气出口和氢气进口的 PEM 燃料电池的几何结构。
图4. 质子交换膜燃料电池模型的几何结构

由于阳极(负极)的氢氧化反应和阴极(正极)的氧还原反应,质子交换膜燃料电池在阴极产生水。产生的水通过膜渗透到阳极侧。假设阴极气体扩散电极产生的水不能有效被去除,这种情况下,电极的孔将被水淹没,从而阻碍氧气的供给,导致电池性能大幅下降。相反,如果膜和孔隙电解质太干燥,将导致电解质中的欧姆电导率降低。因此,质子交换膜燃料电池运行的一个关键因素是水管理。

这个模型可以求解:

  • 气体扩散电极和膜电解质中的电荷守恒和质量传递方程
  • 膜两侧气相中的流动方程
  • 水通过扩散(渗透)和迁移(电渗阻力)在膜中传输的方程
  • 电极上的电荷转移反应方程(电化学反应)

这个模型中值得关注的方面是:

  • 蛇形图案的影响
  • 流道横截面的尺寸
  • 双极板和电极之间接触面的宽度
  • 膜电极组件的尺寸
  • 电池所有组件的材料属性

所有这些方面都可以在不同的运行条件(气体进料速率和载荷)下进行研究。这个模型还可以用于优化给定气体供给和负载的电池设计。你可以在下一节查看此模型的模拟结果。如果你想直接跳转到建模的详细分步说明,可以点击此处下载。

仿真结果

该模型计算了各种气体扩散电极和气体流道中气体的成分,如图5所示。图中显示氧气的消耗量比氢气大得多。氧气的消耗发生在沿气体扩散电极厚度方向上,主要是由于氧气具有较小的扩散率。因为空气和氢气在通道中的流动是逆向的,所以两种反应气体在双极板的两端被耗尽。

用棱镜色标显示氧气摩尔分数的图,模型的最左边是深红紫的颜色,中间是红橙色,最右边是黄绿色。
用棱镜色标显示氢气摩尔分数的图,模型的最左边是浅紫蓝色,中间是橘红色,最右边是深红紫色。

图5.氧摩尔分数(左)和氢摩尔分数(右)模拟图。

如果观察氢气流道和膜中的水活度,可以看到水活度在靠近进气口的地方更大。在这个位置的气相中氧含量很高,由于氧气传输限制了反应速率,导致局部电流密度更高。还可以看到,膜电导率在水活度大的位置更为明显,从而影响电池中的电流密度分布。氧气和水含量使电流密度增加,直到阴极气体扩散电极中的液态水含量开始阻碍气体传输。

用棱镜色标显示流道的相对湿度的图,模型的最左边是紫色、红色和橙色;中间是浅蓝紫色;最右边是浅紫色。
用棱镜色标显示膜中水活度的图,模型的最左边是红色;中间是黄色、浅蓝色和蓝色;最右边是蓝色。

图6. 流道中的相对湿度(左)和膜中的水活度(右)。

3. 非等温质子交换膜燃料电池

使用非等温质子交换膜燃料电池教程模型,我们可以对质子交换膜燃料电池中的电化学反应、流体流动、传热以及电荷和物质传递进行多物理场仿真。这个教程中的电池包括两个膜电解质组件电极,以及二者中间的气体扩散层(GDL)。电极的活性层被建模为表面,也就是说忽略了它们的几何厚度。活性层厚度是一个参数,但它不会反映为模型几何体中的厚度,也就是说气体成分和电势在沿活性层的厚度方向上是恒定的。氢气通道由波纹板形成,波纹板也用作与阳极接触的电流气体通道。充满液态水的冷却通道在氢气通道的另一侧运行。气室由一个扩展的网状集流体组成,该集流体将阴极与金属平板分开。位于扩展网格顶部的金属板用作双极板,将阴极室与下一个电池的冷却通道隔开。该冷却通道将在当前电池上方重复堆叠。

请注意,图7的宽度为两个单位,它包含两个氢气流道。由于沿宽度对称,我们只需要对该几何结构的 1/4 进行建模。但是,这种结果很难解释,而且模型方程可以在几分钟内求解,因此可以使用比所需要的模型大的几何结构。

一个非等温 PEM 燃料电池的几何结构,标注了扩张网状集流器、双极金属板、空气入口、氢气入口、冷却水、波纹板电流馈入器、阳极 GDL、膜和阴极 GDL。
图7. 非等温质子交换膜燃料电池教程模型的几何结构。

图中几何结构的右侧显示了湿空气和氢气流的入口以及液体冷却液。

使用 单相流 接口的层流纳维-斯托克斯方程描述冷却液态水,使用 传热 接口定义和求解电池温度。使用模型中的 反应流电化学加热非等温流 多物理场节点定义理解电池整个运行(包括流动、化学物质传递、电化学反应和通过电池的传热)过程中涉及的各种多物理场现象。

这里要研究的是空气流道中使用的扩展网状结构的影响。设计此结构是为了创建一个垂直于膜电极组件的流场分量,以确保氧气供应和水排出。燃料电池的性能可能会随着控制扩展网格几何结构的参数而异。这些参数可能会影响集流体与电极接触之间的关系,以及用于质量传输(包括去除水)的区域。该模型允许在给定的运行条件和负载下优化结构。你可以在下一节查看该模型的仿真结果图,还可以通过 COMSOL 案例库下载该模型的 PDF 文档和 MPH 文件,尝试自己构建这个模型。

仿真结果

下图左显示了朝向出口侧增加的膜电解质电流密度。由于水的形成,膜的导电性随膜的含水量的增加而升高。如果查看膜的含水量,可以看到水积聚在集流体和阴极之间的接触区域下方,那里的电流密度也很大。如果水淹没阴极,阻碍氧气的运输,这最终可能会成为一个问题。假设我们在保持工作条件不变的情况下,通过将氢流道的长度增加一倍来拉长电池的长度。那么,最终会看到沿流道长度方向的电流密度急剧降低,因为质量传输限制导致氧还原反应减慢。

用彩虹色标显示膜的电解液电流密度的图,模型的最左边是红色、黄色和浅绿色,最右边是浅蓝绿色。
用棱镜色标显示膜的相对湿度的图,其中模型的最左边是紫色、红色和橙色;中间是黄色、绿色、橙色和蓝色;最右边是蓝色。

图8.电池电压为 0.5V 时,膜的通平面电解质电流密度(左)和膜的相对湿度(右)。

使用这个模型,我们还可以观察阴极气体混合物中的氧摩尔分数和水蒸气摩尔分数。朝出口方向的氧气水平降低,水含量增加。

用彩虹色标显示氧气摩尔分数的图,模型的最左边是黄绿色,中间是橘红色,最右边是暗红色。
用彩虹色标显示氢气摩尔分数的图,模型的最左边是蓝色;中间是浅蓝色、黄色和橙色;最右边是红色。

图9. 氧摩尔分数(左)和氢摩尔分数(右)仿真图。

此外,还可以看到整个电池和冷却流道的温度曲线。在膜电极组件中观察到最高温度,这很合理,因为热源是通过焦耳热和活化损失产生的。

用 HeatCamera 颜色表显示 PEM 燃料电池中的温度分布图,模型的底部是紫色,中间是黄色,顶部是紫色。
图10. 电池内的温度分布。

电池的功耗如图11所示。该仿真图显示了电池中热量的分布。可以看到,最明显的热源在膜内部,这是由于膜的导电性差所致。此外,还可以看到在扩展网格与阴极接触的位置产生了大量的热。在这个位置,电极的导电性相对较差(与集流体相比),而电流密度很高。

用彩色标尺显示的MEA、馈电和集流体中热源图,其中模型的底部是浅蓝色和深蓝色,中间大部分是黄色,顶部大部分是浅蓝色。
图11. 膜电极组件、馈电和集流体中热源的对数图。

最后,我们可以生成电池的极化曲线,显示电池电压与平均电流密度(每单位膜面积上的电流)的函数关系。在低电流密度下,电池电压的显著下降主要是由于阴极的活化过电位造成的。同时,在电流密度稍高的情况下,随之出现一个以欧姆损耗为主的线性区域。我们看到在高电流密度下的损耗略有增加,其中由于质量运输阻力而导致曲线略微向下弯曲。

显示电池电压与平均电流密度关系的图。
图12. 极化曲线显示电池电压与平均电流密度的函数关系。

4. 燃料电池堆冷却

COMSOL Multiphysics 6.1 版本新增了燃料电池堆冷却教程模型,可用于评估由 5 个电池、5 个膜电极组件和 2 个端板组成的质子交换膜燃料电池堆的热管理。这类分析很重要,因为燃料电池堆电池内的温度分布不均匀会导致水蒸气冷凝不均匀,以及电池间性能的不必要变化。

在本例中,电堆与含液体冷却液的双极板交叠在一起。左侧图片显示了用于构建模型几何结构的重复单元。中间和右侧的图片显示了最终的模型几何结构,由两个金属端块夹着 5 个堆叠的单元构成。

标有冷却水出口、氢气出口、空气进口、冷却水进口、氢气进口、MEA和空气出口的重复单元单元的几何结构。
含 5 个基本单元的电池堆的空气流道示意图,标记了终端板、进气口、双极板和流形、MEA和出气口。

含 5 个基本单元的电池堆的氢气通道模式图,标记了终端板、氢气出口、双极板和流形、氢气进口和 MEA。

图13. 在图中,我们可以看到重复的基本单元(左)以及含 5 个电池单元的电池堆,显示了氧气流道模式(中)和氢气流道模式(右)。包含空气和氢气流道的金属板(左图中以粉红色和蓝色显示)在电池堆中背靠背焊接。流道的模式使焊缝之间有空隙,形成了冷却水的流动通道。端板用于固定结构并施加压力,以保持双极板与膜电极组件之间的最佳接触。

该模型定义了以下方程:

  • 温度
  • 电极和电解质相电位
  • 反应物质在每个单独气室中的质量传输
  • 气体和液体流动室中的流体压力和流场
  • 膜电极组件活性层中的电极动力学

在这个模型中,值得研究的方面是电池堆中可能发生的组成、温度和电流密度分布的变化。这些因素取决于双极板和膜电极组件的几何结构,还可能取决于电池堆中包含的基本单元数量。该模型允许我们使用具有反映气体流道结构的各向异性特性的多孔介质方法处理气体流道的几何结构。通过将这种方法与气体流道的完整描述进行比较,我们可以验证其准确性。这种方法提供了良好的准确性(取决于目的),同时大大降低了计算成本(CPU 时间和内存要求)。

下节,我们将展示这个模型的仿真结果,你可以在 COMSOL 案例库中下载此模型的 PDF 说明和 MPH 文件,尝试自己模拟。

仿真结果

图14 显示了电极之间膜中的电流密度分布。空气的供应似乎决定了电荷转移速率,导致进气口处的电流密度较高,出口处的电流密度较低。此外,电池堆顶部、中部和底部的电流密度分布几乎相同。

用棱镜色标显示顶部电池中膜上电极之间的电流密度的图,其中PEM燃料电池堆模型的最左边是浅紫蓝色,中间是水蓝色和浅绿色;最右边由绿色、黄色、橙色和红色组成。
用棱镜色标显示电池中部的膜上电极之间的电流密度的图,其中PEM燃料电池堆模型的最左边是浅紫蓝色,中间是水蓝色和浅绿色;最右边由绿色、黄色、橙色和红色组成。
用棱镜色标显示底部电池膜中电极之间的电流密度的图,其中PEM燃料电池堆模型的最左边是浅紫蓝色,中间是水蓝色和浅绿色;最右边由绿色、黄色、橙色和红色组成。

图14. 顶部(左)、中间(中)和底部(右)电池膜中电极之间的电流密度。

图15 显示了气体流道和多孔电极中顶部电池中的氢和氧摩尔分数。与预期的一样,顶部的电流密度分布反映了氧摩尔分数的分布。请注意,氧气的消耗程度比氢气大得多。此外,氧气沿阴极厚度方向耗尽,而氢摩尔分数沿阳极厚度方向几乎不变。

显示氢气摩尔分数与彩虹色标的图,其中模型的最左边是浅蓝色和深蓝色;中间是黄橙色;最右边是浅红色、橙色和黄色。
显示氧气摩尔分数与彩虹色标的图,其中模型的最左边是浅蓝色和黄色;中间是黄色、红色和橙色;最右边是深红色。

图15.电池堆顶部电池中的氢摩尔分数(左)和氧摩尔分数(右)。

图16 显示了阴极气体流道和电极、膜以及阳极流道和电极中电堆顶部电池中的温度,在颜色图例中从右到左表示。膜中的温度较高,这是意料之中的,因为膜具有较低的导电性和导热性。此外,温度沿着冷却水的方向升高,这也是意料之中的。

用 HeatCamera 的颜色表显示顶部单元的温度的图,其中模型的最左边是黄色,中间是粉红色和紫色,最右边是深紫色。
图16. 电池堆顶部单元的温度。

图17 显示了电池堆中的温度。最高温度出现在中间单元膜中。这个位置离有助于冷却的端板最远。双极板中的冷却通道也提供冷却功能。此外,还可以看到两个端板的温度分布相同。

用 HeatCamera 颜色表显示电池堆中温度的图,其中模型的最左边是黄色、橙色和浅粉色、紫色;中间是紫色和粉色;最右边是深紫色。
图17.电池堆中的温度。右侧和中间的颜色图例对应端板,左侧颜色图例对应电池单元。

该模型显示了沿电池堆高度方向温度的轻微变化。如果要堆叠更多的电池单元,这种情况将会改变。堆叠更多单元将导致沿电池单元高度方向的氧气或氢气被耗尽,歧管中的气体流道也会发生变化。

下一步

文中仅介绍了几个如何使用仿真开发燃料电池的案例,COMSOL 案例库中还有更多其他案例。工程师通过仿真能够更深入地理解燃料电池的运行,不断提高电池的整体效率、功率和可靠性。

请注意,文中显示的所有案例都是使用燃料电池和电解槽模块开发的。单击下面的按钮,了解有关此模块的更多信息(可用于模拟氢燃料电池和工业电解槽等)!

下载教程模型

单击下面的链接,进入 COMSOL 案例库,下载随附的 MPH 文件,尝试自己构建文中提到的教程模型。

  1. 固体氧化物燃料电池中的电流密度分布
  2. 具有蛇形流场的低温质子交换膜燃料电池
  3. 非等温质子交换膜燃料电池
  4. 燃料电池堆冷却
]]>
//www.denkrieger.com/blogs/4-examples-of-fuel-cell-modeling-in-comsol-multiphysics/feed/ 46
锂离子电池组中的热分布分析 //www.denkrieger.com/blogs/analyzing-thermal-distribution-in-a-li-ion-battery-pack //www.denkrieger.com/blogs/analyzing-thermal-distribution-in-a-li-ion-battery-pack#comments Wed, 11 May 2022 03:14:40 +0000 http://cn.staging.comsol.com/blogs?p=303441 小到玩具、无人机、手机和笔记本电脑,大到医疗设备和电动汽车,锂离子 (Li-ion) 电池被用于为各种各样的设备供电。为了有效地为这类设备供电,需要控制工作时的锂离子电池内部的温度分布,因为偏离最佳运行温度可能会导致其性能下降或失效。分析锂离子电池温度分布的一种方法是使用多物理场仿真。

在这篇博文中,我们将探讨如何对锂离子电池组中的热分布进行建模,并讨论基于该模型的仿真 App。

模拟电池中的热分布

电池的热建模通常使用两种方法完成:

  1. 高保真建模
  2. 集总建模

高保真建模可以详细了解电池的性能和行为。高保真建模可以深入了解电池,例如:电池单元内的电流和电势分布、电池内锂离子的浓度和传输、由于电池退化导致的容量衰减以及失效机制。虽然详细的模型可以深入了解单个电池单元,但计算成本太高,无法用于预测大型电池组的性能。此外,对于可能从电池制造商处购买电池的汽车制造商来说,很难测量或获取构建高保真模型所需的电池单元级模型输入参数。

对于完整的电池组建模,集总模型可以提供可接受的精度、较低的计算成本和较少的输入参数。集总模型需要输入参数,例如:

  • 电池容量
  • 初始荷电状态 (SOC)
  • 开路电压 (OCV) 与 电池荷电状态
  • 表征电压或容量损失的参数

对于电池组的设计者和制造商来说,这些参数很容易获得。我们在之前的博文中已经讨论过了如何使用参数估计来获得这些参数。

具有 200 个电池的电池模块的 3D 渲染显示温度分布。
锂电池组设计器仿真 App 中呈现的由 200 个电池组成的电池模块的图示,文末我们将对其进一步讨论。

在下一节中,我们将分享一个使用集总建模方法构建的电池组热模型示例。电池组的几何形状设置为 3D,集总电池 接口用于定义单个电池的热特性。

请注意:如果你想一步一步地构建这个模型,可以随时点击此处链接下载:“圆柱电池组的热分布”。

COMSOL Multiphysics® 中的集总建模方法

让我们看看如何建立电池组模型,并进行 4C 放电电流下温度分布的仿真。

我们要建模的电池组(或模块)由 6 对圆柱形电池组成,它们连接在一起形成 6 节串联、2 节并联 (6s2p) 配置,这种电池在玩具和医疗设备等便携式设备中很常见。请注意,相同的程序可用于对数百个电池进行建模,例如在汽车的电池模块中,详见上面的电池模组图。

使用两个对称平面可以确保只需要为三个单独的电池单元计算温度分布。我们添加了三个 集总电池 接口实例用于定义各自的热源,然后将它们耦合到一个传热 接口。

显示 3 个独立电池及其测量值的模型。
模型的几何结构。

电池组中电池的位置会影响其工作温度。在该模型中,三个 21700 圆柱电芯(直径 21 mm,高 70 mm)彼此相邻放置。根据 6s2p 配置,小的铝连接条位于气缸的顶部和底部。假设整个电池组用塑料包裹,形成一个充满空气的区域。假设每个电池的标称容量为 4 Ah,标称电压为 3.7 V,则该电池组的总标称容量约为 178 Wh。

用于对单个电池圆柱体进行建模的每个集总电池接口都具有与温度相关的欧姆、交换电流和扩散时间常数参数。温度曲线使用传热接口建模,其中源自电池模型的热源使用电化学加热多物理场节点添加;因此,每个单元都有一个单独的集总模型。

在这个模型中,我们选择忽略包围电池的空气域中的对流,假设处于静止状态。电池组的外边界采用对流冷却条件进行冷却。对于面向电池组其他部分的内部平面对称边界,使用对称(无通量)条件。

每个电池单元的热导率是各向异性的,通过圆柱坐标系定义每个电池圆柱体,遵循电池内部的果冻卷结构,该结构由电池内部的金属箔、电极和隔膜组成。与角度和z方向相比,果冻卷在径向上的导热率较低,这是果冻卷中螺旋缠绕的金属箔的结果。

电池组在 4C 放电倍率下持续 12 分钟,从 100% 放电到 20% SOC 。温度和电池电位的探针被添加到不同的电池中,以便在求解时直观地表示结果。

 

12 分钟后电池组的表面温度。

可以观察到,电池组最里面的温度比最外面的温度高出大约 2ºC,在更大的电池模组中,温度会升高到几十度。

如下左图中所示,最外层电池(电池 1)的放电电压略低,这是由于欧姆损耗和交换电流略低,在较低的温度下,扩散时间常数略高。对应的温度如下右图所示。

xy 图表上的三条彩色曲线显示细胞电位随时间的降低,蓝色细胞 1、绿色细胞 2 和红色细胞 3。
xy 图表上的三条曲线彩色绘图线显示了电池温度随时间的增加,蓝色电池 1、绿色电池 2 和红色电池 3。

放电期间的单个电池电压(左)和一段时间内的平均电池温度(右)。

对含有 200 个电池单元的电池组建模

如前所述,上述电池组型号为 6s2p 配置;但是,下一节讨论的锂电池组设计器仿真App可用于对具有数百个电池的电池组进行建模。使用该仿真 App,在给定的工作电流下解决问题也只需要不到一分钟的时间!

由 Lithium Battery Pack Designer 反正 App 渲染的具有 200 个电池的电池组 3D 模型。
由 200 个电池单元组成的电池组模型,由仿真 App 构建。

使用仿真 App 优化电池设计过程

非仿真专家也可以使用 COMSOL® 软件强大的计算功能。COMSOL Multiphysics 中的 App 开发器 允许仿真专家创建用户界面友好的仿真 App,仿真 App 省去了与构建模型相关的细节,只关注用户希望控制的参数。

一个用户友好的仿真 App 示例是锂电池组设计器 App,你可在 COMSOL App 库中找到。用户可以首先使用实验数据估算出电芯的欧姆过电位、扩散时间常数、无量纲交换电流等参数。然后,可以选择电池组设计参数(电池组类型、电池数量、配置和几何形状)、电池材料属性和运行条件。最后,使用所选电池组设计中的参数化电池单元模型,可以整体模拟电池组的动态电压和热行为。

锂电池组设计器仿真 App 的 UI 屏幕截图,其中电池组模型显示在图形窗口中。
锂电池组设计器仿真 App。

下一步

下载模型文件和仿真 App ,尝试对锂离子电池的热性能进行建模:

拓展阅读

想了解更多关于锂离子电池建模的信息吗?您可以查看下列相关资源:

]]>
//www.denkrieger.com/blogs/analyzing-thermal-distribution-in-a-li-ion-battery-pack/feed/ 6
计算三相电力变压器中的损耗 //www.denkrieger.com/blogs/computing-losses-in-a-three-phase-power-transformer //www.denkrieger.com/blogs/computing-losses-in-a-three-phase-power-transformer#respond Thu, 04 Feb 2021 06:18:01 +0000 http://cn.staging.comsol.com/blogs?p=247421 三相电力变压器被广泛应用于世界各地的电网中进行高效电力传输。就电容、负载平衡和效率而言,三相电力变压器比单相变压器具有明显的优势,但对其损耗的计算却并不像单相变压器一样简单。使用 COMSOL Multiphysics® 软件,我们可以正确地计算铁芯、线圈和支撑结构的损耗,以及重要的集总参数(例如初级和次级电感)。变压器的安全性和可靠性在很大程度上取决于设计,好的设计能够很好地消除损耗。如果存在设计失误可能会导致重大事故。

电力变压器

从源(例如发电厂)到目的地(例如用户)的电力传输效率是通过比较产生的功率和接收的功率来计算的。为了使传输效率最大,需要使传输期间的能量损失最小。当长距离传输功率时,通常通过在传输之前增加电压,在接收端降低电压,以减少流经传输网络的电流,从而降低能量损耗。这个过程一般是在变电站中完成的。

A photograph of an outdoor power station with that includes three-phase transformers.
德国布鲁赫萨尔(Bruchsal)含三相变压器的电站。图片来自 Ikar.us— Karlsruhe:Datei:KändelwegNE.jpg 自己的作品。通过维基百科公共领域CC BY 3.0 DE下获得许可。

对于交流电,这种“升压”和“降压”过程可以基于一个简单的原理(法拉第定律),通过使用一个由两个线圈和一个铁磁材料以最简单的形式组成的变压器设备来实现。这种使用单相交流电并且需要单相交流电压的变压器,被称为单相变压器E-磁芯变压器是一种常见的单相变压器。

三相变压器如何工作?

将三对线圈以多种不同配置缠绕到单个铁磁芯上可以构造成三相变压器。COMSOL Multiphysics 中的内置 线圈 特征允许用户灵活更改线圈配置。

A schematic showing a three-phase waveform, with the different phases denoted in black, red, and blue.
三相波形。通过维基百科在公共领域中的图像。

三相系统具有更大的传输容量,因此比单相系统更有效率。另外,导体之间的相位差,导致每个导体中的电压在其中一个导体之后的 1/3 周期处,以及另一个导体之前的 1/3 周期处达到峰值,从而确保了负载平衡。

A schematic showing a delta-wye transformer configuration, with the different components denoted in blue labels.
一个三角型配置的变压器。图片由 Gargoyle888 提供自己的作品。通过维基百科在 CC BY-SA 3.0下获得许可。

但是,对于大型配电网络,需要进一步优化变压器使效率最大,从而避免可能由于损耗而导致的高温故障。考虑到这一点,我们需要优化设变压器计以使其能够处理损耗,这是制造高效、可靠的变压器的最关键步骤之一。在不同的工作条件下,变压器的任何一个不同部分都可能发生损耗。使用多物理场仿真,我们可以分别计算变压器的线圈、铁芯和支撑结构中的损耗,从而利用这些推论改进设计并将损耗降至最低。

电力变压器损耗是如何产生的?为什么会产生损耗?

在三相变压器中,我们可以将不同部分的损耗进行分类:

  • 铁芯损耗发生在变压器的铁磁芯中。
    • 铁芯损耗通常称为铁损耗,与铜损耗(线圈绕组的损耗)不同。
    • 在大多数情况下,铁芯损耗是由磁滞控制的。即,磁化对施加磁场的滞后。磁滞损耗是任何磁铁的固有特性,其微观机理可以用磁畴的摩擦来解释:磁场越高,磁滞损耗就越高,并且与频率呈线性关系。在开路状态下,磁滞损耗最大,因为铁芯感应的磁场最大。
    • 有时,磁芯也可能会由于涡流而产生损耗。使用叠片铁芯,可以最大程度地减小涡流。尽管如此,铁芯中的涡流损耗仍然可能发生在外表面、尖角或某些裸露的零件(如夹板)中。这主要是由于短路或快速脉冲导致的。通常可以通过像处理支撑结构一样对铁芯的那部分进行处理来计算铁芯的涡流损耗。
  • 线圈损耗,也称为铜损耗或I2R损耗,是由于导体的电阻导致线圈中的焦耳热而产生的。
    • 对于直流电流,可以使用欧姆定律简单地计算这些损耗。然而,当涉及交流电时,由于集肤效应邻近效应,损耗急剧增加。
  • 支撑结构损耗是支撑变压器的金属结构中的损耗。
    • 这些损耗是由于感应到支撑结构中的杂散电流(涡流)而发生的。

接下来,我们看看如何通过模拟将这些组件可视化,并通过数值仿真计算这些损耗。我们将模拟两个最有趣的场景,这两种情况通常都会成为预测损失的限制因素。我们将在 COMSOL Multiphysics 中使用二维(2D)轴对称和三维(3D)模型进行计算。我们将通过使高压绕组保持开路并将低压施加到低压端来执行开路测试;通过短路低压绕组将电压施加到高压端以确保流过电路的额定电流来模拟短路测试。

建立三相变压器模型

几何、材料和研究

对于 3D 分析,我们使用均质线圈对变压器的整个几何结构进行建模,包括整个铁芯和支撑结构。另一方面,2D 轴对称等效于一个单相线圈,其中每个线圈匝数都经过准确建模。

我们可以使用 COMSOL 软件中内置的线圈 特征轻松对三个线圈进行建模,并进行相应定制以适合特定的设计。

A 3D model geometry of a power transformer with carpentry included.
A 3D transformer model geometry on a blue gradient background.

含支撑和不含支撑结构的变压器 3D 模型几何。

选择无损耗铁(电导率为 0.1)作为芯材,铜作为线圈。使用 阻抗 边界条件对支撑结构进行建模。在 2D 轴对称模型中,我们通过合并各个导体域来了解导体的电流密度。

开路测试仅在 3D 模式下执行,因为开路主要计算铁芯中的磁场,而短路测试则在2D轴对称和 3D 模式下执行,以分析存在的大量线圈,并分别分析2D计算中没有出现的机械效应。

3D 模型

对于开路测试,在初级线圈中引入标称相电压,而次级线圈保持断开状态(I=0)。计算的铁芯损耗如下表所示:

频率(Hz) 铁芯损耗(kW) 铁芯损耗(mur”)(kW) 铁芯损耗,Steinmetz 方程(kW)
50.00 1.5971 1.4918 1.5663

如表中所示,我们将模拟值与使用数学公式(例如 Steinmetz 方程)计算出的值进行比较。

以下是磁芯的磁通密度和磁化强度(饱和)仿真图。如上所述,这两种现象都会影响铁芯的损耗。

Simulation results for a power transformer model in which the left half of the core shows the saturation in a red color gradient and the right half shows the magnetic flux density in rainbow.
磁芯的饱和磁化强度(左半部分)和磁通密度(右半部分)。

要在 3D 模型中执行短路测试,需要更改 12 个线圈馈电;也就是说,需要在初级线圈和次级线圈之间切换线圈激励值。为了能够在这些配置之间快速切换,我们利用 COMSOL Multiphysics 中的方法功能来自动执行这个过程。使用 3D 短路测试,我们得出了支撑结构的损耗。在 50Hz 时,支撑结构的损耗为 120W。

2D 轴对称模型

在两项单独的研究中,我们在初级线圈和次级线圈上进行了短路测试,以评估铜损耗以及次级电感。为了在进行每项研究时都能有效地切换线圈的馈源,我们使用了方法功能,这样只需要单击一下就可以更改线圈激励了。这两项研究均在频域中进行。

结果

我们可以在下面的图中查看测试结果:

A line graph plotting the copper loss in the power transformer at 50 Hz.
在 50Hz 时,铜损耗计算值为 5.5kW。

Simulation results showing the current density pattern in a power transformer, with both red-blue gradient and rainbow color tables.
Simulation results for the current density in a power transformer demonstrating the formation of the skin effect.

电流密度。我们看到导体中出现趋肤效应,表明电流密度存在很大差异。

A three-phase transformer model with a red-blue color gradient and white streamlines visualizing the electromagnetic losses, modeled in COMSOL Multiphysics.
在 COMSOL Multiphysics 中建立的三相变压器模型。

使用多物理场仿真,我们可以准确地计算出三相电力变压器各个组件的损耗。这对于研发测试阶段非常有益。根据仿真结果,我们可以试验几何参数以及其他变量,例如线圈厚度和铁芯叠片,并设计具有最佳性能和最小损耗的变压器。

利用多物理场仿真优化真实世界中的变压器设计

对于交流变压器的制造商来说,改进设计的研发涉及许多不同的物理现象以及它们之间的相互作用。从这个意义上讲,设计高效的变压器是一个真正的多物理场问题。

影响变压器设计的主要多物理场因素之一是它的散热。根据热性能评估变压器有助于开发高效的冷却系统。其他需要分析的因素与静态和动态激励下的机械完整性和材料变形有关。关于这些分析,我们的网站中有大量的资源可以供您参考,欢迎浏览。

变压器产生的噪声是由周期性激励引起的特殊结构现象的一个示例,也称为变压器嗡嗡声。这种声音是变压器内部不同来源(例如变压器铁芯、冷却系统中使用的辅助风扇和泵)振动的结果。这些源中最重要的是由铁芯的磁致伸缩和洛伦兹力引起的线圈振动。我们可以在 COMSOL® 软件中很容易地将这两种效应整合到变压器模型中。

在解决这个问题时,瑞典 Vasteras 的 ABB 公司研究中心的研究人员创建了一系列仿真和计算应用程序,用于计算各种变压器组件中的许多参数,您可以在我们的案例库中查看相关案例模型。

后续操作

点击下面的按钮下载模型文件,然后自己尝试建立变压器模型:

]]>
//www.denkrieger.com/blogs/computing-losses-in-a-three-phase-power-transformer/feed/ 0