Rachel Keatley – COMSOL 博客 - //www.denkrieger.com/blogs 发布博客 Thu, 05 Sep 2024 07:38:32 +0000 en-US hourly 1 https://wordpress.org/?v=5.7 悬浮桌的张力完整性模拟 //www.denkrieger.com/blogs/modeling-tensegrity-with-a-floating-table //www.denkrieger.com/blogs/modeling-tensegrity-with-a-floating-table#respond Tue, 28 May 2024 08:07:44 +0000 http://cn.staging.comsol.com/blogs?p=368041 一张桌子可以在不接触地面的情况下保持站立吗?答案是肯定的,张力完整性就可以实现!悬浮桌及其“悬浮的”桌面通过物理的力量,使我们对眼前所看到画面不再怀疑。为了揭示悬浮桌的工作原理,我们先来了解一些其他张拉整体结构,然后再对一个悬浮桌模型展开深入研究。

张力完整性的应用

关于谁最先将张力完整性作为一种结构技术的话题,目前还存在争议,但 “张力完整性”一词由工程师兼建筑师巴克敏斯特·富勒(Buckminster Fuller)在 20 世纪 60 年代首次提出,是“张力的完整性”的简称。张力完整性是基于单个刚性构件(如管或梁)和柔性构件(如电线或电缆)组成的系统建立的结构原理。刚性构件处于持续压缩状态,它们不是通过互相接触连接,而是被处于持续拉伸状态的柔性构件固定在一起,形成一种能够自我支撑的内部稳定性结构,从而无需预期的必要条件,如地基、连接件或支柱。由于张力完整性具有相互关联的性质,因此每一部分对更大的整体功能都至关重要。

在土木工程人员利用张力完整性建造像多面穹顶这样的建筑结构之前,这一原理可以在自行车轮胎这样的简单结构,甚至自然界(如蜘蛛网)中看到。

一只蜘蛛在绿色树叶上结了一张网。

张拉整体结构使用的材料少,因此质量轻、适应性强,在环境友好型建筑设计中有应用潜力。尽管如此,工程师们暂时还没有将张拉整体结构用于住宅等民用建筑,因为张拉结构难以抵抗地震破坏等。如今,张拉整体结构通常作为一种辅助手段使用,例如德国慕尼黑奥林匹克体育场,它本身并没有采用张拉整体结构,但屋顶采用了这种技术。钢缆和丙烯酸玻璃通过张力完整性被固定在一起,形成了美观的网状结构,可以抵御风雪。

体育场的鸟瞰图,内有足球场,足球场周围有跑道,上面有网状屋顶。

德国慕尼黑奥林匹克体育场,屋顶采用了张力完整性技术。获 Creative Commons Attribution-Share Alike 3.0 Unported 许可,通过 Wikimedia Commons 共享

为了进一步展示张拉整体结构的功能,我们再来看两个例子。

塔楼和机器人

在华盛顿特区的赫希洪博物馆(Hirshhorn Museum)外,有一座 60 英尺(约 18 m)高的钢铝雕塑,与地面只有 14 英寸的接触(约 35 cm),艺术家肯尼思·斯内尔森(Kenneth Snelson,富勒的学生)将其命名为“针塔”,由于它能够利用张力保持直立,斯内尔森称之为 “悬浮压缩”(Floating Compression)。

在蓝色多云的天空衬托下,用电线连接成几何形状的管子。
华盛顿特区赫希洪博物馆外肯尼思·斯内尔森的针塔(1968 年)。获 Creative Commons Attribution 3.0 Unported 许可,通过 Wikimedia Commons 共享

从美国国家航空航天博物馆出来的游客会经过一座“针塔”,在那里他们可能会了解到另一种已建成的张拉整体结构:NASA 超级球机器人。

超级球机器人是美国国家航空航天局(NASA)为行星着陆和探索设计的机器人原型,它基于张力完整性原理工作。该机器人由缆线和杆组成,通过改变缆线的长度和拉力,机器人可以向任何方向移动,从而拉动杆使机器人可以穿越不可预知的地形。这种结构的弹性可以吸收撞击力,使其无需安全气囊就能掉落在地面上。

由长零件通过电线连接而成的科幻机器人。
NASA的超级球机器人。获 Creative Commons Attribution-Share Alike 4.0 International许可,通过Wikimedia Commons共享

虽然这些例子都令人赞叹,但张拉整体结构并不一定要涉及 60 英尺高的雕塑和星际探索机器人。张力完整性的基本原理简单易懂,您甚至可以在自己家里做一个张拉整体结构的实例!张力桌,或称为 “悬浮桌”,是张力完整性原理最基本的应用:一个固定部件在张力的作用下被一个柔性部件托起。为了展示悬浮桌的工作原理,我们使用 COMSOL Multiphysics® 软件制作了一个模型,该软件可以分析作用在保持张力的导线上的应力。接下来,让我们来看看是什么让这张桌子浮起来的!

悬浮桌的构成

最简单的悬浮桌由两块刚体组成:上半部分(桌面和一条向下延伸的弯曲桌腿)和下半部分(桌底和一条向上延伸的桌腿)。两条腿之间用一根金属丝连接,这样当重力将上半部分向下拉时,金属丝的张力可以防止上半部分掉落地面。

悬浮桌的模型,一个箭头表示重量向下,另一个双箭头表示张力。
悬浮桌中的张力可以抵消重力。

虽然一根中心线就可以将上半部分悬挂在桌子的下半部分,但为了防止桌面倾倒,还需要有几条支撑线将桌面边缘与底座边缘连接起来。当桌面的重量均匀分布时,这些支撑线的张力通常很小。如果在桌面的一边放置一个物体,就会对该区域施加了较大的向下力,对面桌边的钢丝就会承受较大的拉力,来保持桌面水平。

一个悬浮桌的模型,上面放了一个笔记本和 comsol品咖啡杯,重量和负载箭头指向下方,两个双箭头表示张力。
用于稳定悬浮桌的外部钢丝线。

一个悬浮桌的模型,上面放了一个笔记本和 comsol品咖啡杯,重量和负载箭头指向下方,两个双箭头表示张力。
用于平衡上部分的所有力都已标出。

有趣的事实:悬浮桌(如上图所示)的设计通常是对称的,因此可以将其翻转过来用,其工作原理仍然相同。

模拟张力完整性

示例模型中的悬浮桌由密度为 500 kg/m3 的木材制成。该材料被视为刚性材料。单根中心线和四根外线由钢丝制成。本例中的桌腿相互交错,但并不接触,仅由穿过中心的金属丝固定在一起。

一个枫叶木纹表面的悬浮桌模型几何。
悬浮桌的几何结构。

除了桌子本身的自重载荷外,该模型还分析了两种载荷情况。第一种情况是在桌面上施加不同大小的垂直向下的载荷。第二种情况是施加一个扭转力矩,就好比使桌面像瓶盖一样旋转而在导线中产生拉力。这两种情况都是使用 线缆 接口对施加的载荷和桌面重量进行模拟,该接口提供了分析线缆系统的功能,既可以单独分析,也可以与其他类型的结构耦合分析。

垂直载荷

第一个载荷为一个垂直向下的压缩力,大小在 0 到 500 N 之间,均匀地被施加在桌面上。中心导线承受载荷,而外侧导线的受力水平为零。除非桌面发生某种倾斜,否则周围的导线将继续保持几乎没有张力的状态。

一个蓝绿色,非常深的红色,黄色和茄子色悬浮桌模型,许多红色箭头指向桌面下。
悬浮桌上的垂直荷载。

扭矩

第二种情况,施加一个 10 N/m 的扭矩。与上一种情况一样,所施加的载荷以及桌子的重量由中心线支撑。由于增加了扭转力矩,而不是直接向下的力,因此外侧弦线也处于拉伸状态,尽管拉伸程度很低。

一个蓝绿色、暗红色、黄色和茄子色的悬浮桌模型,两个红色箭头从桌面中心指向上方。
悬浮桌上的扭矩。

张力完整性的未来应用

既然我们已经看到了张力完整性的最简单形式之一,并理解了其基本原理,就有可能模拟更复杂的结构。张力完整性的复杂应用存在于各种事物中,如体育场、雕塑,甚至是行星探测机器人。展望未来,建筑师和工程师们正在寻找更新、更大的张力完整性应用,例如张力摩天大楼。他们希望张力完整性能提供一种适应性强、坚固耐用、同时使用更少轻质材料的建筑技术,从而提出一种生态友好型建筑方案。在这个愿望实现之前,你可以在自己家客厅里摆上一张个人悬浮桌,享受张力完整性技术带来的乐趣!

下一步

]]>
//www.denkrieger.com/blogs/modeling-tensegrity-with-a-floating-table/feed/ 0
借助仿真 App 进行超导体教学 //www.denkrieger.com/blogs/solving-the-superconductor-teaching-challenge-with-apps //www.denkrieger.com/blogs/solving-the-superconductor-teaching-challenge-with-apps#comments Mon, 13 Mar 2023 07:50:35 +0000 http://cn.staging.comsol.com/blogs?p=331971 为什么超导体和超导体应用是一个具有挑战性的教学课题?来自 Karlsruhe Institute of Technology(KIT)的研究员 Francesco Grilli 教授分析了其中的原因,并提出了一个解决办法。通过建立一个能在网络浏览器中使用的仿真 App,Grilli 以一种有吸引力的方式来介绍这个主题,鼓励学生保持专注并对学习更多的超导知识感兴趣。(你也可以通过文章末尾的链接访问这些仿真 App!)

一个古老的发现推动了现代技术的发展

1911 年,荷兰物理学家 Heike Kamerlingh Onnes 首次发现了超导体。在一些现代高科技设备的开发和改进中,超导体发挥了关键作用。例如,世界上最大和最强的粒子加速器,大型强子对撞机(LHC)经过 10 年的发展,已于 2008 年投入运行。创造这台机器的目标是回答未解决的物理学相关问题,特别是与希格斯玻色子、亚原子粒子和暗物质有关的问题。你可能已经猜到,这台机器运行背后的一个重要组成部分就是超导体,更具体的说,是一个长 27 公里的超导磁铁环。

提示:在我们的博客《模拟超导磁体中的电热瞬变》中,您可以看到如何利用建模和仿真来分析如 LHC 等用于粒子加速器的超导磁体。

An image of a section of the Large Hadron Collider's tunnel.
大型强子对撞机隧道的一个部分。照片由 Maximilien Brice(CERN)拍摄,在 CC BY-SA 4.0 许可下,通过 CERN 共享。

在世界各地医院中,超导体还被用作一种拯救生命的医疗诊断工具:磁共振成像(MRI)系统。超导体能够使核磁共振成像系统产生非常强大和稳定的磁场,反过来,这些磁场又使系统能够以极高的精度和准确度运行,安全地用于病病诊断。

由于新的发明经常源于并建立在过去的思想领袖的想法之上,因此,一个超过 100 年的发现正在帮助推动现代技术的进步,这并不惊讶。令人惊讶的是,超导的作用以及这项技术对世界产生的多学科影响在课程教学中被忽略了。

为了了解更多关于超导的知识,我们采访了 KIT 的研究员Francesco Grilli教授。

超导体的演变

“汞是第一个被发现的超导体元素,这些材料在某些条件下可以携带电能而不发生耗散”。Grilli 解释道。他在 KIT 带领了一个团队,专门研究超导体的数值建模,从材料和大尺度应用。在过去 20 年里,Grilli 一直在模拟超导体的电磁和热行为以及它们的特性。

第一个超导体的发现是在 Onnes 将一根由固体汞制成的导线浸入液态氦的时候。他发现当电线浸泡在液体中并承受 4.2K 的温度(或绝对零度以上)时,电线的电阻消失了。由此,他发现了“超导性”,即某些材料暴露在非常低的温度时,能够在不损失能量的情况下导电并排斥磁场。

1911 年的一张绘图,显示了对超导性的首次测量。
显示冷却到临界温度以下的汞样品中的电阻突然消失的原始图片。图片在公共领域,通过 Wikimedia Commons 共享。

除了汞之外,元素周期表上还有许多包括但不限于铝、锡和铅的其他元素,如果它们被充分冷却也可以成为超导体,其中大多数被称为I型超导体。然而,根据 Grilli 的说法,这些简单的元素不能用在实际的设备中,因为即使是一个非常小的磁场(小于几十毫特斯拉)也会破坏它们的超导性。作为比对我们经常在冰箱门上发现的玩具磁铁所产生的磁场在几毫特斯拉的范围内。这清楚地表明,I 型超导体不适合用在大电流应用中,更不用说制造强大的磁铁了。

如果是这样的话,那么今天的技术是如何使用超导体的呢?这就是 II 型超导体的来历。这类材料的性能不同并且更加复杂,例如合金和陶瓷化合物。它们通常被工业化生产,可以从各种零售商那里以电线的形式购买。与 I 型超导体不同,II 型超导体经常被用在实际应用中。例如,铌-钛,一种 II 型超导体,是使核磁共振正常运行的材料。

尽管如此,即使是由合金制成的超导体也有局限性。“如果你想让超导体在更高的温度下工作并产生更大的磁场,这些材料就不够好了。” Grilli 说道。1986 年,物理学家 Johannes Georg BednorzKarl Alexander Müller 的突破性发现——高温超导体(HTS)帮助解决了这个问题。“这些不是金属合金,而是更复杂的东西”,Grilli 补充道。

与以前只在 -270℃ 至 -250℃ 左右工作的超导体相比,HTS 可以在 -200℃ 左右的较高温度下发挥作用。“这个温度仍然很低,但可以使用液氮来实现。液氮是一种非常便宜和容易处理的低温液体。”Grilli 解释说。高温超导体更加实惠和实用,因此成为商业化核聚变技术、小型医疗设备和电动飞机等未来创新技术的首选。

超导教学的挑战

超导教学面临的两个挑战是超导体的材料特性和某些电线和电缆几何形状的复杂性。超导体区别于传统材料的一个特殊性是它的电磁性能。超导体的电磁性能非常特殊,与铜等传统导体不同。“主要的区别是,与传统导体不同,超导体的电阻率显著取决于通过的电流,并且呈明显的非线性。” Grilli 解释说。这使得理解超导应用的性能具有相当大的挑战性,特别是那些对应用超导技术的背景知识了解有限的学生。仿真可以提供很大的帮助,但适用于传统材料的现有模型需要适当调整或完全重新思考。像 Grilli 这样的讲师所面临着更繁琐的挑战,包括使学生保持学习兴趣、参与度,以及最重要的是保持好奇心。

他说:“在我的课程中,我喜欢让我的学生探索实际情况,而仿真是提供这种经验的一个好方法。然而,这种课堂练习的时间是有限的。”而且 Grilli 发现,即使是建立一个简单模型的实践活动也往往会比预期的时间长。他解释说,在建立模型的过程中,学生面临的主要挑战是被较小的工作流程任务分散注意力。我想使用一些东西,让学生可以专注于理解物理场和结果,以及我们所描述的现象的重要性,而不是通过菜单、命名变量、使用计算机语言的正确语法等形式方面的内容”。

于是,Grilli 开始思考:是否有更好的方法将仿真引入课堂教学?

使用仿真 App 寻找解决方案

最终,Grilli 选择使用仿真 App 作为教学工具。为了帮助实现他的设想,Grilli 与 Nicolò Riva 和 Bertrand Dutoit 合作,这两个人在超导和超导建模方面都有大量的研究。他们一起建立了 AURORA,这是一个开放的网络服务器,包含各种仿真 App,用于解决涉及 I 型和 II 型超导体的问题。

AURORA 通过先使用 COMSOL Multiphysics® 软件中的 App 开发器开发仿真App,然后使用 COMSOL Server ™ 来管理这些 App。他们在瑞士洛桑联邦理工学院(EPFL)安装了 AURORA。Riva 和 Dutoit 与 EPFL 有着密切的联系,前者拥有 EPFL 应用超导的电子工程博士学位,Dutoit 则担任 Riva 的高级科学家。

A screenshot of the AURORA server and its 11 simulation apps.
AURORA 服务器上有大量仿真 App。

Grilli 说:“COMSOL 仿真 App 很有用,因为我可以对学生看到的东西进行限制,让他们只用某些参数进行测试。”仿真 App 的定制用户界面可以让学生专注于感兴趣的参数和数量,创造一个生动的学习体验,不需要先学习如何使用仿真软件。

此外,学生们还能受益于 AURORA 及其仿真 App 库提供的便利性,因为任何人都可以在任何地方通过手机、电脑或平板电脑的网络浏览器访问它。这种可及性也使 Grilli 可以向 KIT 以外的人教授超导体概念。“我不仅在我的大学教书,而且还被邀请在其他大学做一些客座讲座。我想要的是能以一种简单的方式进行移植的东西”。现在,Grilli 有了自己的仿真 App 平台—— AURORA,无论学生在哪所大学就读,都可以轻松使用。

“仿真 App 的优势在于,学生可以利用它们来了解有关超导应用性能的若干事项。虽然模拟的案例非常简单,但我希望它们能够帮助学生了解真实超导应用中某些方面的重要性。”Grilli 说道。

探索仿真 App 和访问服务器

AURORA 目前由 11 个仿真 App 组成,可用于分析不同规模的超导体的电磁和热性能。有一个仿真 App 用于模拟暴露在磁场中的超导样品,还有一个用于模拟磁铁中的磁场分布,等等。尽管这些仿真 App 是为电气工程的学生设计的,但任何想要了解超导体以及超导的全球重要性和影响的人都会对它们感兴趣的。所有这些仿真 App 的计算时间都在 4min 以下,最短的是 2s。

您可以通过开放的 AURORA 服务器直接访问它们。接下来,我想重点介绍几个仿真 App。

仿真:瞬态金兹堡-朗道方程

在磁场存在的情况下,超导材料具有排除磁场的能力。然而,当这些磁场超过一定强度时,它们可以进入材料。这种情况可以用以物理学家维塔利·金兹堡(Vitaly Ginzburg )和列夫·朗道(Lev Landau)命名的金兹堡-朗道方程来模拟。瞬态金兹堡-朗道 App 可以用来可视化I型和II型超导体的这一过程。通过该仿真 App,用户可以修改以下参数:

  • 施加的磁场
  • 超导样品的半径
  • 金兹堡-朗道参数,它决定了超导体是 I 型还是 II 型

瞬态金兹堡·朗道 App 的屏幕截图,在 AURORA 服务器中打开其背景信息和描述。
瞬态金兹堡-朗道 App,可通过 AURORA 服务器访问。

请看下面这个 App 的操作演示。

 

仿真 App:磁铁设计

超导体最常被用于磁体应用,如核磁共振系统和粒子加速器。通过磁体设计应用程序,用户可以看到超导磁体中的磁场分布,特别是螺线管形磁体。磁体的模型是一个空心圆柱体,包括内半径 a、外半径 b 和长度 2 L,如下图所示。

一个磁铁的模型,其内半径、外半径和长度分别标为 a、b 和 2L。

该仿真 App 的输入使用户能够改变磁体的几何形状、施加在磁体横截面的均匀电流密度以及用于绕组的导线横截面的面积。这个 App 的一个重要作用是,它探索了磁铁的形状如何影响磁场的均匀性,这是一个用于寻找超导体可运行的最大电流的属性。

 

运行中的磁性设计 App。

查看由 Grilli 提供的所有仿真 App,并在 AURORA 服务器上亲自试用。任何人在任何地方通过浏览器都可以直接运行这些 App,不需要安装软件(参考文献1)。对于其中一个模拟超导故障电流限制器中 HTS 导线的电热性能的仿真 App,也有一篇专门的文章介绍(见参考文献2)。

AURORA:一个具有多种解释的词

在决定 AURORA 的名称时,Grilli、Riva 和 Dutoit 希望它与该平台的主要目标密切相关:鼓励教室内外的个人探索超导体并对这些材料的工作原理保持好奇心。在汇编了一份与他们的任务有关的关键词清单后,他们想到了 AURORA 这个名字,它代表着通过应用程序来学习超导技术(leArning sUpeRcOnductivity thRough Apps)。

Aurora 也是罗马神话中一个女神的名字,她以“打开通往太阳和新的一天的道路”而闻名;创建 AURORA 服务器的目的是希望为新一代的学生打开一条道路,让他们能以一种引人入胜和发人深省的方式了解超导体(参考文献1)。

推荐阅读

参考文献

  1. Nicolò Riva et al., “AURORA: a public applications server to introduce students to superconductivity,” J. Phys.: Conf. Ser., 2021; https://doi.org/10.1088/1742-6596/2043/1/012005
  2. Nicolò Riva et al., “Superconductors for power applications: an executable and web application to learn about resistive fault current limiters”, European Journal of Physics, 2021; https://doi.org/10.1088/1361-6404/abf0da
]]>
//www.denkrieger.com/blogs/solving-the-superconductor-teaching-challenge-with-apps/feed/ 2
最新发布的 COMSOL® 6.1 版本有哪些新功能? //www.denkrieger.com/blogs/version-6-1-is-here-whats-new-in-the-latest-release-of-comsol //www.denkrieger.com/blogs/version-6-1-is-here-whats-new-in-the-latest-release-of-comsol#respond Fri, 11 Nov 2022 06:46:16 +0000 http://cn.staging.comsol.com/blogs?p=318301 上周,我们推出了全新的 COMSOL Multiphysics® 6.1 版本软件。新版本软件为 COMSOL Multiphysics® 平台产品及其众多模块以及接口产品增加了各种新功能、教程模型,并增强了工作流畅性。今天这篇博客,我们将简要介绍这些众多更新中的一些核心功能和组件。如果您想了解完整的新版本更新,请单击文章底部的按钮,进入发布亮点页面浏览。

核心功能更新

COMSOL Multiphysics® 6.1 版本在 COMSOL Desktop® 中对网格划分、可视化、研究和求解器进行了重大更新,并增加了新的函数和工具。此外,还为创建仿真 App 和仿真数据管理提供了很多新功能。阅读下文,了解更多有关 6.1 版本软件更新的详细内容。

网格划分、可视化、研究和求解器

新版本软件对合并实体塌陷实体 操作进行了更新,使网格的清理和修复变得更加容易。前者可用于合并网格内的顶点、边和表面,而后者可用于塌陷小表面和短边。此外,现有的网格操作也得到了极大的增强和改进。例如,导入操作现在可以轻松地将几何模型与导入的网格组合在一起(如下图所示),映射扫描 操作提供了一种生成网格(包括导入的网格)的新方法。6.1 版本还增加了新的调整每一层的方向 复选框(可在边界层属性 节点的设置中使用),用于创建更高质量的边界层网格。

COMSOL Multiphysics 用户界面显示了选择导入操作的模型开发器、相应的设置窗口和图形窗口,其中有一个椭圆体模型的几何形状与一个人头的网格相结合。
这个示例使用了 导入操作将椭球体模型的几何结构与人体头部的导入网格相结合。

在 6.1 版本中,在可视化方面的一个主要更新是增加了直接阴影 功能。这个功能位于图形 窗口工具栏中,提供了一种增强三维几何结构(如母线板装配组件)深度感知的方法。它可以与之前版本中引入的环境光遮蔽 功能一起使用,用于进一步增强几何体的真实感。

展示了一个母线板装配组件的直接阴影的模拟图。
同时增强 直接阴影 环境光遮蔽视觉效果,使模型图像更加真实。

对于研究和求解器,6.1 版本的更新包括:

  • 用于 CFD 仿真和自适应频率扫描 研究步骤的性能改进
  • 自适应网格细化 提供了更好的组织研究设置
  • 求解微分代数方程(DAE)的显式时间步进方法

COMSOL Desktop®

COMSOL Desktop® 现在包含了一个简便的在模型设置中创建和编辑参数的工作流程、一个新的查找和替换 工具、最小二乘拟合 函数、高斯过程 函数、withparam 算子,以及允许将模型图像和表格插入到 Microsoft Word 文档时与 COMSOL 模型文件保持链接的 Microsoft ® Word 接口。

App 开发器和模型管理器

App 开发器中内置了一些模板,可用于创建具有可调整子窗口大小的仿真 App,并支持内嵌多种语言界面。此外,表单编辑器方法编辑器 也进行了多项改进。

 

锂电池组设计器仿真 App 中调整子窗口大小,这是使用 App 开发器的一个新模板开发而成。

上一个版本,我们首次发布了模型管理器,它位于 COMSOL Multiphysics 用户界面中,是一个用于存储数据库和控制 COMSOL 仿真数据、CAD 文件、实验数据等的工作空间。从 6.1 版本开始,这个工作区现在可以启用报告和 CAD 装配体的版本控制。此外,新版本还对工作区的标记、注释和搜索功能进行了许多重大改进。

附加产品的新特征和功能

在整个产品库中,您将看到许多新的和改进的特定物理场特征和功能。下面,让我们来了解其中的一些主要更新。

力学

对于结构力学模块、MEMS 模块和多体动力学模块,用户将看到接触建模功能有了很大的改进。例如,这些产品现在包括一个新的、稳健的机械接触公式(使用 Nitsche 方法计算),一个对大型3D模型特别有好处的新接触搜索算法,并改进了对自接触的支持。新版本软件还对结构力学模块进行了各种专门的更新,包括:

  • 用于计算壳和膜表面磨损的新功能
  • 用于在分析中使用材料模型之前对其进行数值测试和验证的一项新功能
  • 用于预测焊缝应力的增强功能

 

由于圆柱形物体的摩擦滑动,壳表面会产生磨损。这个仿真是使用添加到接口的新增 磨损子节点 实现的。

6.1 版本还引入了实体薄膜阻尼壳薄膜 阻尼接口,可用于模拟薄层流体中的阻尼。这些新接口在结构力学模块和 MEMS 模块中都可以使用。

声学

声学模块中新增了两个用于声流仿真的新接口:压力声学声流 接口和热黏性声学声流 接口。声流仿真对于片上实验室装置、金属加工和半导体加工等应用尤其重要。

 

您可以在声流阱中的光声阻滞效应教程模型和玻璃毛细管中的声阱和热声流三维模型教程模型中查看新的声流功能(如下所示)。

对流声-结构边界、时域显式耦合对,对流声-结构边界,时域显式 的多物理场耦合,使得模拟对流声学中流体流动效应成为可能。从事流量计系统设计和分析的人员可能会对这个更新特别感兴趣。

流体和传热

CFD 模块的用户现在可以使用新的分离涡模拟 接口进行分离涡流仿真(DES),这个新接口结合了大涡模拟(LES)的准确性以及使用雷诺平均纳维-斯托克斯(RANS)湍流模型混合方法的计算效率。

CFD 模块中还包括在多孔域中使用 RANS 湍流模型的新功能,增强了对过滤器、排气系统中的催化转换器和化学反应器的建模能力。

通过空气过滤器的速度流线的模拟图。
包含速度流线的空气过滤器的模型图像。请注意,流线颜色表示压力场的变化。

在传热模块中,新的轨道热载荷传热 接口为用户提供了一种模拟卫星辐射载荷的方法。使用这个接口,您可以在模型中包括太阳辐射、反照率和各种不同航天器零件之间的传热效应。

CFD 模块和传热模块都包含用于 RANS 湍流模型的新的热壁函数 设置,可用于非等温流动 耦合的传热湍流 设置。这些新的功能可以提高流固耦合传热仿真的准确性。

电气

AC/DC 模块新增了新的磁体 功能,用于模拟电机中的磁体 阵列,以及模拟电机绕组的新的多相绕组 功能。这两项新增功能将进一步增强 COMSOL® 软件的电机分析能力。其他模块的更新还包括新的 磁流体动力学 接口,可用于模拟液态金属和某些等离子体的流动。

在 RF 模块和波动光学模块中,新增了新的电磁波 FEM-BEM 接口,使电磁波的混合有限元法(FEM)-边界元法(BEM)模型的设置变得更加容易。请查看下面的屏幕截图的模型树中的接口信息。

选择物理场窗口,左边选择了电磁波,FEM-BEM接口,右边打开了检查物理场接口窗口。

对于等离子体模块,新增了带射频偏压的电感耦合等离子体 接口可用于对具有周期性RF偏置的耦合等离子体反应器进行建模,以及一个等离子体化学 新插件可用于通过特定的接口从文本文件为模型创建完整的等离子体化学。

化学

电池设计模块的一个主要更新是包含一个新的电池包 接口,为工程师和研究人员提供了一种评估具有数百个电池的电池包的可靠性和安全性的方法。燃料电池和电解槽模块现在允许对含有其他物质(如氨、重烃、硫化合物和痕量杂质)的系统进行建模。

在最新版本的化学反应工程模块中,简化了在分离和精细化工行业(如液-液萃取和气体洗涤)中特别重要的分离过程建模。这个更新是通过新的包含传质的分散两相流 接口实现的。

新的和更新的教程模型

6.1 版本还新增了许多新的和更新的教程模型,您可以在 COMSOL Desktop® 的案例库窗口或 COMSOL 网站的案例下载页面中找到。以下 是9 个最新的教程模型:

  • 模拟电力线的磁场
  • 分析磁流体动力学泵中的磁场分布
  • 对敞开式扬声器箱中的扬声器驱动器的声学行为进行建模
  • 查看降阶模型和完整模型的比较
  • 分析对飞机机翼的雷击
  • 使用 LES 接口模拟三维山丘几何上的湍流
  • 对风力涡轮机叶片的树脂传递模塑工艺进行建模
  • 分析一个板翅式换热器设计
  • 对连续式搅拌器内的混合过程进行建模和分析

6.1 版本软件中还有哪些新功能?

请单击下面的按钮,查看最新 6.1 版本 COMSOL® 软件的完整发布亮点。

Microsoft 是 Microsoft 公司集团的商标。

]]>
//www.denkrieger.com/blogs/version-6-1-is-here-whats-new-in-the-latest-release-of-comsol/feed/ 0
COMSOL Multiphysics® 在食品工业中的应用 //www.denkrieger.com/blogs/the-use-of-comsol-multiphysics-in-the-food-industry //www.denkrieger.com/blogs/the-use-of-comsol-multiphysics-in-the-food-industry#respond Thu, 13 Oct 2022 05:51:11 +0000 http://cn.staging.comsol.com/blogs?p=318011 在过去的几十年里,无数的食品和饮料出现在杂货店的货架上,然而在几年后它们就停产了。你甚至可以想到您最喜欢的零食或饮料似乎突然消失了。这种食物消失的行为可以用一个非常简单的答案来解释:如果一种产品不畅销,那么它被补货的机会就比较少。

在这篇博客中,我们将探讨失败的产品和多物理场仿真的使用如何激发食品行业内创新器具、产品和工艺流程的开发。

从失败中孕育成功的食品

停产或失败的产品不一定是坏事,因为从它们的衰落中可以学到很多东西,它们还可以激发出生产畅销产品的灵感。美国早餐麦片品牌 Wheaties® 公司的起源就是这样一个例子。在 20 世纪 20 年代初,Washburn Crosby® 公司(即今天的通用磨坊公司)的一名员工正在准备一种麦麸混合物时候,不小心将一部分半液体混合物掉到了热炉子上,很快混合物就变脆片状了(参考文献1)。从此,我们今天所熟知的麦片诞生了,但故事并没有就此结束。这种片状谷物并非一夜成名,自 1924 年首次亮相以来,多年来它一直是一个失败的产品。当在美国各地的广播电台播放有关麦片的广告词后,它最终成为了家喻户晓的名字。麦片的名气的进一步扩大要归功于它与体育界的密切联系。(超过 850 名运动员曾在 Wheatiesbox® 的封面上出现过)。

食品工业中另一个类似的从失败到成功的故事是微波炉发明背后的故事。和麦片一样,微波炉也是一个偶然的发现。物理学家兼发明家 Percy Spencer 在实验室测试磁控管时,注意到他口袋里的花生糖开始融化。为了进一步研究磁控管的烹饪能力,Spencer 将爆米花粒和鸡蛋暴露在里面。他发现爆米花爆裂了,鸡蛋爆炸了。Spencer 从这些观察结果中得出结论:磁控管产生的低密度微波能量不仅加热了食物,而且加热速度很快。1945 年,Spencer 和他的雇主 Raytheon 公司根据这一发现,为一项发明申请了专利,他们称之为“Radarange®”。

一艘轮船上的 Radarange。
一艘轮船上的Radarange。图片来源:Acroterion — 自己的作品。根据CC BY-SA 3.0 授权,通过 Wikimedia Commons 共享。

Radarange 的早期版本由于其尺寸、价格和重量而未能成功量产(它比冰箱还大,以今天的货币计算价值超过 50,000 美元,重量可能超过 750 磅!)。随着对其设计的重大修改,它变得更加适合家庭使用,这项发明的销售额急剧上升,后来被称为微波炉。今天,超过 90% 的美国家庭都拥有一台微波炉,其中包含基于 Percy Spencer 发现的技术。

这些故事告诉我们,从失败中学习,从失败中建立并保持灵感是很重要的。仿真实现这一点的一种方法,它可以轻松优化旧的设计和测试新设计。接下来,我们来看看在食品工业中使用仿真可以实现什么。

食品工业中的仿真

工程师和研究人员使用仿真能够获得有关他们正在研究的产品、过程或设备性能的宝贵见解。通过仿真,用户可以测试那些具有挑战性甚至不可能进行的物理测试的参数。他们还可以使用仿真来提出新设计、优化设备并加速原型制作过程。可以研究产品质量对不同参数的敏感性,以实现产品的可重复性。对于在食品行业工作的工程师来说,通过仿真深入了解产品、过程或设备尤为重要,因为食品生产需要密切关注细节。食品特性的微小变化都能被消费者的嗅觉和味觉检测出来。

借助 COMSOL Multiphysics 软件,工程师可以在一个直观的软件环境中分析影响食品的各种物理现象(包括传热、流体流动、化学反应、固体力学和电磁学)。这种多功能性使 COMSOL Multiphysics® 成为一个可以使食品生产链的所有阶段受益的平台,包括生产、加工、分销、零售和餐厅。在下一节中,我们将探讨五个具体的示例,来重点说明在食品行业中使用仿真的好处。

教程模型示例

COMSOL Multiphysics 及其附加模块包含对食品和饮料行业中常用的各种流程、工业设备和家用电器进行建模的功能。让我们回顾这些众多示例中的几个…..

过程

冷冻干燥

冷冻干燥是一种干燥热敏性材料的工艺,被广泛应用于各个行业,从用于保存抗生素和疫苗的制药行业到用于修复浸水书籍、艺术品、照片等的文件修复行业等。然而,这个过程因它在食品工业中的使用而最广为人知,因为它能够保存食品长达 30 年。当一种物质,如食物,被冷冻干燥时,它首先被冷冻,然后通过升华 的过程直接变成气态。在之前的博客文章中,我们讨论了如何使用相图来显示固体,以及如何跳过液相直接进入气态阶段。

冷冻咖啡的特写图。
冻干咖啡的特写图。图片来源:Pleple2000 — 自己的作品。根据CC BY-SA 3.0授权,通过Wikimedia Commons 共享

为了深入了解冷冻干燥工艺,可以使用传热仿真对其进行建模和分析。例如,使用 COMSOL Multiphysics 和它附加的传热模块中的特性和功能,可以模拟冰在真空室条件下通过小瓶的多孔介质升华,这是许多冷冻干燥设置的常见测试用例。你可以查看冷冻干燥教程模型,获取执行此操作的分步说明。

冷冻干燥工艺后期的温度和热通量仿真。
冷冻干燥模型的图像。

啤酒酿造中的发酵

食品和饮料行业使用的另一种工艺是发酵工艺,通常用于生产啤酒。在啤酒酿造过程中,发酵用于将麦芽汁中的糖转化为乙醇和二氧化碳气体,从而使啤酒具有酒精含量和碳化作用。当冷却的麦芽汁(<20°C)和酵母被添加到发酵容器中时,这个过程就开始了,发酵容器通常是处于厌氧条件下的封闭罐。这个操作会导致麦芽汁发酵。发酵完成后,我们就得到了啤酒这一产品。(提示:在我们的博客文章“通过模拟啤酒酿造中的发酵建提升啤酒的品质”中了解有关发酵工艺的更多信息。

一组间隔紧密的发酵罐。
一组发酵容器。图片来源:Antoine Taveneaux – 自己的作品。根据CC BY-SA 3.0授权,通过Wikimedia Commons共享

发酵过程的结果可能是不可预测的,因为它依赖许多不同的因素,包括初始糖含量、酵母类型和选择的过程温度。通过啤酒酿造发酵教程模型,你可以进一步分析此过程,并通过化学建模更好地预测其结果。该教程分两步对发酵过程进行建模。第一步,使用反应工程 接口在完美混合的罐中对发酵过程进行建模。第二步,模型被扩展为一个考虑了传质、传热和自然对流的球形罐几何结构。这两种模型都可以评估可能影响发酵过程中产生的最终酒精含量的各种参数。点击此处,查看此教程的 MPH 文件和 PDF 说明。

啤酒发酵反应器中局部偏差平均浓度的模拟。
啤酒发酵反应器中平均浓度的局部偏差。该模型可以了解产品对发酵反应器中局部温度和流量的敏感性。

工业设备

搅拌器

在食品工业中,工业搅拌器用于将两种或多种独立的成分结合起来生产各种食品和饮料,包括但不限于:

  • 糖果
  • 口香糖
  • 咖啡
  • 敷料
  • 果汁
  • 酱汁
  • 糖浆

这些机器在确定食品的特性方面发挥着关键作用,例如味道和质地。如前所述,消费者可以很容易地检测到它们的变化。因此,搅拌器在不同批次之间高效、一致地运行非常重要。(在大多数情况下,它们不仅是搅拌器,也是反应器。)仿真可以设计搅拌器,他们可以及时生产出高质量、均匀且安全消费的产品。

工业搅拌器的特写。
工业搅拌器。图片来源:Erikoinentunnus — 自己的作品。根据CC BY-SA 3.0授权,通过Wikimedia Commons共享

模块化搅拌器模型教程提供了有关如何对三种混合过程场景进行建模的详细说明:

  1. 带有 Rushton 涡轮的平底搅拌器中的层流混合问题
  2. 使用 k-epsilon k-ε 湍流模型的带斜叶片叶轮的平底搅拌器中的湍流混合问题
  3. 使用 k-omegak-ω湍流模型的带斜叶片叶轮的平底混合器中的湍流混合问题

使用这个教程模型,可以轻松修改搅拌器的几何形状,以更好地满足其特定的搅拌器应用和建模需求。可以访问 COMSOL 案例下载页面,深入了解此模型,并下载相关的 MPH 文件。

带 Rushton 涡轮机的挡板平底混合器的模型几何结构。
带有四个斜叶片叶轮的平板搅拌器的几何模型。

带有 Rushton 涡轮机的档板平底搅拌器(左)和带四个斜叶片叶轮的挡板平底搅拌器(右)的模型几何形状。

意大利面挤出机

意大利面挤出机经常出现在工业化的意大利面工厂中,它们可以提供一种高效、简单和快速的方式,来生产不同形状和大小的意大利面。这些机器能够通过它们的许多组件将粗面粉(一种面粉)和水的混合物塑造成不同形状的生意大利面(如意大利细面条)。挤出螺杆是一个特别重要的组件,它在运动时将粗面粉和水转化为面团,并将其推入机器的挤出钟罩,该罩由带有许多毫米大小的孔的筛网组成。面团通过两个不同的出口,以意大利面的形式离开机器。下面最右边的图片为这种意大利面挤出机的模型。

不同形状和大小的干意大利面条的特写图。
一个面食挤出机模型显示了彩虹色表的流场,其中模型的左端是深蓝色;中间是黄色和蓝色;喷嘴的颈部是浅蓝色,底部和末端是深蓝色。

左图:不同形状和大小的干意大利面。摄影:Karolina Kołodziejczak,图片来源 Unsplash。右图:面食挤出机的流场和几何形状,包括挤出螺杆、钟罩、毫米大小的孔和两个出口。

尽管意大利面挤出机的历史很悠久,但这些机器的效率并不完美。挤出机设计可能出现的问题包括:

  • 面粉和水混合不完全
  • 压力分布和挤出速度不均匀
  • 面团循环不良

使用意大利面挤出教程模型,可以预测挤出机内部的条件如何导致不同面团配方出现此类问题。点击此处,详细了解此模型以及如何设置它。

家电

微波炉

在 Percy Spencer 发现微波炉多年后,其设计仍在研究和改进中。其中一个原因是,使这种普通家用电器在几分钟内煮出一顿饭的技术并非没有缺陷。许多微波炉用户普遍感到烦恼的是,该设备不能一致均匀地加热食物。当微波炉对食物的加热不均匀时,消费者就只能吃下部分冷冻、部分煮熟的早餐、午餐、晚餐或小吃。某些食物在微波炉中煮得不均匀,因为它的成分含水量不同;食物的含水量越多,加热的速度就越快。饭菜不能均匀的加热的另一个原因是由于设备在使用时会出现复杂的振荡模式。

通过 RF 建模,可以更好地了解工作中的微波炉的物理场。例如,微波炉教程模型可用于模拟微波炉烹饪马铃薯时的加热过程。在这个示例中,微波炉被模拟为一个连接到 2.45 GHz 微波源的铜盒。模型中的矩形波导将微波引向微波炉的中心。点击此处,深入探索该教程模型。

一个加热马铃薯的微波炉模拟。
微波炉型号。

延伸阅读

想了解更多关于仿真在食品行业的应用吗?浏览以下案例,了解如何使用 COMSOL Multiphysics 研究膨化零食生产、开发屡获殊荣的大比目油炸鱼卷配方和模拟世界著名的糖果棒生产过程中所涉及的相互作用的物理现象。

参考文献

  1. “Wheaties®,” Wikipedia, Wikimedia Foundation, 8 September 2022; https://en.wikipedia.org/wiki/Wheaties

Wheaties 是 General Mills IP Holdings II, LLC 的注册商标。

]]>
//www.denkrieger.com/blogs/the-use-of-comsol-multiphysics-in-the-food-industry/feed/ 0
COMSOL Multiphysics® 6.0 版本全新发布 //www.denkrieger.com/blogs/now-available-comsol-multiphysics-version-6-0 //www.denkrieger.com/blogs/now-available-comsol-multiphysics-version-6-0#comments Tue, 14 Dec 2021 05:45:51 +0000 http://cn.staging.comsol.com/blogs?p=284441 今天,我们发布了全新的 COMSOL Multiphysics® 6.0 版本软件!在 6.0 版本软件中,我们提供了一个新的核心功能 “模型管理器”,可以高效的管理仿真数据和团队协作;新增了一个附加产品 “不确定性量化”模块,用于全局灵敏度和概率分析。此外,6.0 版本还对平台产品和附加产品进行了许多重大更新。下面,我们将为您简要介绍最新版本中的新增功能。

模型管理器:仿真数据管理满足团队高效协作

使用仿真模型时,我们通常需要保留旧版本文件的备份。为什么呢?因为我们可能会使用旧版本作为新模型的模板。或者,如果我们的建模工作偏离轨道,可能需要参考旧版本。创建的模型越多,文件就越多。因此,我们可能会发现自己花在管理模型文件和数据上的时间比实际建模和仿真工作的时间还要多!新增的“模型管理器”是一个仿真数据管理工具,可以帮助我们解决这个问题。

COMSOL Multiphysics 用户界面在“图形”窗口中显示了一个混合器模型以及该模型不同版本的列表
使用模型管理器,您可以保存带有注释的模型文件,这在尝试查找旧版本模型时特别有用。

这项功能被完全集成在 COMSOL Desktop® 用户界面中,并提供了一个结构化的工作区,使个人和团队可以在其中集中管理他们的仿真数据和辅助数据(例如 CAD 文件和实验数据)。“模型管理器”旨在促进同事和工程团队之间的协作,并帮助简化建模和仿真工作流程。

“模型管理器”的主要特性和功能:

  • 高效、集中的模型存储
  • 版本控制
  • 强大的搜索功能
  • 比较 工具
  • 用户访问控制

请点击此处,深入了解“模型管理器”。

新产品:“不确定性量化”模块

6.0 版本新增的“不确定性量化”模块可以生成更完整、准确和有用的多物理场模型。顾名思义,这个附加产品可以用来分析模型不确定性的影响。您可以用它来执行以下研究类型:筛选、敏感性分析、不确定性传播和可靠性分析。

这个模块可被用于:

  • 测试模型假设的有效性
  • 确定最重要的输入参数
  • 了解输出变化如何取决于输入变化
  • 探索输出的概率分布
  • 发现设计的可靠性

“不确定性量化”模块的主要优势之一是,它可以分析使用 COMSOL Multiphysics 进行的任何仿真中的不确定性,包括电磁、结构、声学、流体流动、热和化学工程仿真。它还可以与 CAD 导入模块、设计模块和任何用于 CAD 的 LiveLink™ 产品结合使用。

支架模型的不确定性传播研究
使用“不确定性量化”模块对支架进行的不确定性传播研究。

各种物理场的更新

随着 6.0 版本的发布,您还将看到现有附加产品的许多功能得到改进。在这里,我们将重点介绍一些重大更新。

传热

当使用传热模块时,您将会受益于表面对表面辐射性能的改进,这次改进将以内存用量和计算时间为指标的性能提升了至少10倍。性能的提升并没有牺牲精度,并且可以分析更大的结构。对于模拟具有大温差、高表面发射率或少量传导和对流传热的建模需求,这个提升非常重要。

带炉灶的客厅中的辐射热通量模型
在新增的带加热炉的房间中的传热教学模型中,您可以看到实际的性能改进。

电磁学

多年来,我们已经能够使用 COMSOL Multiphysics 导入和分析印刷电路板(PCB)的许多性能。6.0 版本新增了几个用于 PCB 电磁分析的新功能。例如,计算 PCB 的电阻和电感矩阵,增加了这些参数在频域的计算提取。此外,RF 模块还新增了 PCB 微波和毫米波电路的自适应网格划分和物理控制网格划分的新功能。

结构力学与声学

现在,您可以通过将来自 CFD 模块的大涡模拟 (LES) 与声学模块的功能相结合,进行流致噪声仿真,例如风扇和管道产生的噪声。

COMSOL Multiphysics 用户界面显示模型开发器,其中突出显示了气动声源耦合节点、相应的设置窗口以及图形窗口中的串联圆柱模型
并列圆柱障碍物周围由流动引起的噪声。

此外,还有许多与使用非线性结构材料的工程师相关的改进。例如,非线性结构材料模块将蠕变模型求解速度提高了至少 10 倍,并提供了降阶积分的新功能,提高了许多非线性材料模型的性能。

核心功能的改进

6.0 版本还对 COMSOL Multiphysics 平台产品进行了多项改进。下面是对一些后处理、可视化、几何和网格更新情况。

后处理和可视化

现在我们可以在剪切实体域时使用交互式剪切功能实现横截面,这项功能可以更轻松地处理复杂的 CAD 几何图形。另一个新功能允许我们创建绘图阵列,以便在“图形”窗口中并排查看多个结果。例如,在下图中,您可以看到一组图,这些图显示了一个快速测试条中的液体样品在四个不同时步下的扩散情况。

显示快速测试条中液体饱和度的四个图的阵列

此外, “图形” 窗口工具栏中新增的 环境光遮蔽 选项使几何体看起来更逼真。还有一些新增和改进的颜色表,可以进一步扩展 COMSOL Multiphysics 的可视化功能范围。

Prism 颜色表中显示的车门模型
岩浆颜色表中的整体反应堆模型
Viridis 颜色表中的腐蚀模型。

在上图中,您可以看到汽车门模型中使用的新 Prism颜色表(左)、整体式反应器模型中使用的新Magma颜色表(中)以及腐蚀模型中使用的新 Viridis 颜色表(右)。这里只列举了 6.0 版本中可用的部分新颜色表。

网格划分

最新版本新增了许多重要的网格划分改进。例如,一个新的并集 操作可用于将相交的导入表面网格(例如 STL 格式的文件)合并起来。这个功能为您提供了一种组合此类网格的可靠方法。此外,现在可以轻松地将边界层单元添加到导入的网格中。其他一些更新包括:

  • 改进了网格编辑的实用性
  • 网格图显示的着色改进
  • 更高效的网格复制
  • 压力声学的物理控制网格划分

几何

新版本对各种几何形状进行了更新,包括但不限于更快地构建之前构建的几何节点、模型开发器中的 节点以及 2D 偏移加厚 操作。

App开发器

App 开发器中有哪些新功能呢?6.0 版本在方法编辑器 中增加了改进的调试,可用于在调试时检查和更改变量和声明。最新版本中还提供了一个新的“主窗口”编辑器。它的工作方式类似于表单编辑器,但适用于以前只能从 App 开发器树编辑的组件:功能区、菜单栏和主工具栏。此外,还有一个新的仪表盘 表单对象,其工作方式与旋钮 表单对象类似。需要注意的是,这个对象为只读对象,可以根据指针在仪表盘上的位置显示值。

带有刻度线和黑色箭头的 2D 仪表对象
用于显示设备中电流的新仪表窗。

新增的教程模型

除了上面讨论的所有更新之外,新版本还新增了很多教程模型。您可以在 COMSOL 桌面的“案例库”窗口和 COMSOL 网站的“案例下载”页面中找到。请浏览下面的幻灯片查看 6.0 版本中新增的 10 个新教程:

  • 模拟 PEM 燃料电池中的耦合电化学反应、电荷、物质传输和热传递对PEM燃料电池中耦合的电化学反应、电荷、物质输运和热传递进行建模。
  • Perform a coupled analysis of flow, heat transfer, and structural deformation and stress in a pipeline network. 对管网中的流动、传热、结构变形和应力进行耦合分析。
  • Analyze wind strakes on a chimney. 分析烟囱风带。
  • Model the temperature and flow fields in a pasta extrusion process.意大利面挤出过程中的温度和流场模型。
  • Perform a FEM–BEM coupling of a microstrip patch antenna. 对微带贴片天线进行FEM-BEM耦合分析。
  • Model the deformation of an iron plate by magnetic force. 模拟铁板在磁力作用下的变形。
  • Analyze the scattered sound pressure level (SPL) in the near field of a submarine. 潜艇的近场散射声压级(SPL)分析。
  • Model a Rowland circle spectrometer. 罗兰德圆周光谱仪模拟。
  • Analyze the dynamics of a roller conveyor. 分析滚筒式输送机的动力学特性。
  • Simulate a cardiac contraction on a simplified heart geometry. 在一个简化的心脏几何结构上模拟心脏的收缩过程。

下载 6.0 版本

请点击下方链接,浏览 COMSOL Multiphysics® 6.0 版本的所有更新并下载最新版本:

]]>
//www.denkrieger.com/blogs/now-available-comsol-multiphysics-version-6-0/feed/ 2
提取南瓜和猛犸象的DNA //www.denkrieger.com/blogs/extracting-dna-from-pumpkins-to-mammoths //www.denkrieger.com/blogs/extracting-dna-from-pumpkins-to-mammoths#respond Tue, 26 Oct 2021 09:39:17 +0000 http://cn.staging.comsol.com/blogs?p=373411 在大多数北美地区,人们将南瓜视为秋天的象征。每年的这个时候,无论是在杂货店和零售店的陈列架上,还是在门廊和人行通道上,都随处可见南瓜的身影。然而,到了季节末,大多数南瓜都会腐烂在垃圾桶底部。在扔掉这种 诡异的 蔬菜之前,我们建议用它来做一个简单的 DNA 提取实验。

门廊栏杆上的中型南瓜特写。
一个中等大小的南瓜

在这篇博客中,我们将讨论如何利用身边的材料提取南瓜的 DNA。此外,还将介绍DNA 提取领域的最新突破——一项与三头猛犸象的臼齿有关的研究。

生命的蓝图

所有生物体的细胞核内都有脱氧核糖核酸(DNA)。生物体的功能和生存方式都与它们的 DNA有关。科学家提取和研究这种复杂分子的原因多种多样,例如开发新药物、对农作物进行基因改良,以及识别犯罪嫌疑人

真核细胞中的细胞核、染色体和 DNA的图片。
真核细胞中 DNA 的图解。图片由 Sponk、Tryphon、Magnus Manske、User:Dietzel65、LadyofHats (Mariana Ruiz) 和 Radio89 提供。图片获 CC BY-SA 3.0 许可,通过Wikimedia Commons发布

DNA 的首次分离源自一次无意的发现。19 世纪 60 年代,瑞士医生 Friedrich Miescher 将酸加入白细胞和盐溶液后,发现一种未知物质被分离了出来。Miescher 并不知道,这种被他称为“核蛋白质”的物质实际上就是生命的蓝图:DNA。

如今,科学家可以使用市场上各种不同的 DNA 提取试剂盒从细胞中分离 DNA。利用容易获得的材料,您也可以在自己家中提取 DNA……

从南瓜中提取 DNA

在家里做 DNA 提取实验时,很多人都会选择使用草莓,因为草莓每个细胞中都含有大量的 DNA, 因此提取效果最好。不过,为了庆祝秋季的到来,我们决定用南瓜来进行这个实验。

请观看下面的实验演示视频,进一步了解DNA 提取的原理。

如视频中所示,DNA 提取实验需要以下材料:

  • 一个南瓜
  • 洗洁精
  • 碘盐
  • 91% 的异丙醇(浓度越高,实验效果越好)
  • 粗纱布
  • 搅拌机
  • 测量用具
  • 筷子
步骤 1:混合

第一步,将南瓜块与 240 ml 水、60 ml 洗洁精和 14 g 盐放一起搅拌。当水、盐和洗洁精混合在一起时,会形成一种会破坏南瓜细胞的裂解溶液,并将其 DNA 分子释放到溶液中。

步骤 2:过滤

接着,在玻璃杯上铺上一层纱布,并用橡皮筋固定住。然后,把泡沫状的南瓜混合物倒在纱布上,过滤出一种很像橙汁的液体。这一步有助于确保溶液中没有多余的南瓜块。

步骤 3:分层

最后一步,在过滤溶液中加入等量的异丙醇。这样,玻璃杯中就形成了三层:

  1. 南瓜(底层)
  2. DNA(中间层)
  3. 异丙醇(表层)

由于 DNA 不溶于酒精,所以会在溶液底部沉淀。同时,由于南瓜 DNA 分子的密度小于其周围溶液的密度,会在玻璃杯中缓慢上升。异丙醇温度越低,DNA析出的速度就越快。因此,我们建议在实验开始前将其放在冰箱或冰柜中。注:我们在异丙醇中加入了蓝色食用色素,来帮助清楚地看到分离过程。

虽然大多数 DNA 分析都需要专门的实验室设备,但您仍然可以用筷子等尖头物体提取南瓜 DNA,并将其保存在一杯异丙醇中进行观察。

提取世界上最古老的 DNA

2021 年 2 月,一个国际研究团队宣布,它们已经成功提取了有记录以来地球上最古老的 DNA ,并对其进行了测序。这些 DNA 是从20 世纪 70 年代在西伯利亚东北部的永久冻土层中发现的三只猛犸象的牙齿中分离出来的。其中,最古老的遗骸(约 120 万年前)、第二古老的遗骸(约 120 万年前)和最年轻的遗骸(约 70 万年前)分别在西伯利亚的 Krestovka、Adycha 和 Chukochya 河流附近被发现。这是人类首次从距今 100 多万年的遗骸中提取 DNA。

研究人员在 Nature 杂志上发表的一篇论文中分享了他们的发现。在他们的发现之前,已知最古老的 DNA 是在一块70 万年前的马骨中发现的。

草原猛犸象的示意图。
草原猛犸象插图。图片作者:Dmitry Bogdanov。图片获 GNU Free Documentation License许可,通过 Wikimedia Commons 共享

研究人员在研究 DNA 时面临许多挑战,因为 DNA 在细胞死亡后会开始降解。此外,它还可能受到细菌和人类活动的污染。研究团队将该古老DNA与大象DNA和人类 DNA 进行比较,去除了所有可能与人类相关的数据。他们从最古老的猛犸象遗骸样本中获取了 DNA 核的4,900 万个碱基对,从第二古老的样本中获得了 8.84 亿个碱基对,从最年轻的样本中获得了 37 亿个碱基对。

在对 DNA 进行研究后,研究团队对猛犸象的进化有了一些突破性的发现。他们了解到,研究中最古老的样本来自一个未知的猛犸象谱系,并将其命名为Krestovka 谱系(该名称是根据发现遗骸的地点命名的)。他们相信,这一谱系与最后一个冰河时代的著名猛犸象物种——哥伦布猛犸象的诞生有关。

该团队的研究还让人们对猛犸象如何以及何时适应寒冷的栖息地有了新的认识。根据他们的研究,与寒冷气候生活相关的如毛发生长、体温调节、脂肪沉积、耐寒性和昼夜节律等基因变异,早在标志性的披毛猛犸象出现之前就已经存在了。这些结果表明,猛犸象谱系中的大多数适应性变化都是渐进的过程

除了展示对猛犸象进化的新认识外,这项工作还强调了提取和研究数百万年前 DNA 的可行性,而这曾经被认为是不可能完成的任务。这不禁让我们思考:我们能追溯到多远的过去?

相关资源

在这篇博客中,我们讨论了如何通过一个简单的实验从蔬菜中提取 DNA,以及科学家们如何正在 DNA 提取领域取得巨大进步。

想进一步了解 DNA?请查看这些资源:

]]>
//www.denkrieger.com/blogs/extracting-dna-from-pumpkins-to-mammoths/feed/ 0
注意前方! 通过仿真分析高尔夫球的性能 //www.denkrieger.com/blogs/fore-analyzing-the-performance-of-a-golf-ball-with-simulation //www.denkrieger.com/blogs/fore-analyzing-the-performance-of-a-golf-ball-with-simulation#respond Wed, 25 Aug 2021 02:13:57 +0000 http://cn.staging.comsol.com/blogs?p=278081 旋转木马、烟花和游乐场设备只是纪录片 How it’s made 中重点介绍的一部分产品。其中,有一集特别讲述了高尔夫球是如何制作的。这是一个令人着迷的过程,包括橡胶板、钢桶、压模机等等。看完这集视频后,我受到了启发,想学习更多关于高尔夫球技术的知识。在今天的博文中,我们将探讨高尔夫球的演变历史以及仿真在未来高尔夫球设计中的作用。

译者注:How it’s made (中译名:《制造的原理》/《造物小百科》)是美国探索频道的科普纪录片,涵盖了几乎所有的制造技术。

高尔夫球的演变

全球每年约生产12 亿个高尔夫球,它们有多种风格和设计,包括:

  • 单层球,仅由一种材料制成,以 Surlyn® 树脂为代表。常被用于小型高尔夫球场和练习场。
  • 双层球,具有实心橡胶芯和塑料外壳,是普通高尔夫球手的首选。
  • 三层球,包含内核芯、软橡胶套和外层。想要更好地控制击球的经验丰富的高尔夫球手会使用这种球。
  • 四层球,由三层橡胶层和一层硬质外层制成,它们比大多数高尔夫球更昂贵,并且通常由挥杆快速的专业人士使用。
  • 五层球,由聚氨酯橡胶包裹着四层橡胶层,相对较新,是职业高尔夫球手的热门选择。

混凝土表面上的小型高尔夫球杆和高尔夫球的照片
一根 7 号铁球杆和一个双层高尔夫球。

尽管这五种主要类型的高尔夫球在很多方面有所不同,但它们有一个共同特点:圆圆的球表面上布满了凹痕。然而,也会有例外的情况。正如我们今天所知道的,高尔夫球已经经历了许多设计上的改变。下面,我们简要地探讨高尔夫球发展的五个不同阶段

1. 木制球

人们普遍认为,现代高尔夫运动起源于 15 世纪的苏格兰。然而,关于第一个高尔夫球是由什么制成的,有很多争论。许多说法称,它们是用山毛榉和黄杨树等硬木雕刻而成的,而有一些人则不太相信,因为几乎没有证据支持这一理论。

无论最早的高尔夫球是否由硬木制成,有一点是肯定的:木质高尔夫球在高尔夫比赛中是不符合标准的。它们的飞行能力一般,主要是由于它们的重量。

2. 毛茸球

接下来是毛茸茸的球。这种球最初产于荷兰,然后进口到苏格兰。它是由一个圆形的皮革外壳制成的,里面装有牛毛或稻草。由于它们价格实惠,300 多年来一直是高尔夫球的热门选择。

3.羽毛球

羽毛球是在 17 世纪早期发明的。它与毛茸球很像,但里面装的不是牛毛,而是鹅毛或鸡毛。为了制作羽毛球,高尔夫球制造者会把湿羽毛塞进一块湿皮革里,当羽毛变干时,羽毛会膨胀,而皮革变干后会收缩。这就造就了非常紧凑和致密的高尔夫球。有一些人说,它的特征只有现代高尔夫球才具备。

羽毛球的缺点是它们非常昂贵。以今天的货币计算,一个羽毛球的价格从10美元到20美元不等(约 60 元到 120 元人民币)。

白色表面上的 6 个羽毛状高尔夫球的照片
六个羽毛高尔夫球。图片由Geni提供自己的作品。图像在GNU 免费文档许可证下,通过Wikimedia Commons获得许可

4. 古塔胶球(Gutty)

1848 年, Robert Adams Paterson 发明了“gutty”,也就是古塔胶球,它彻底改变了高尔夫球的设计。它的形状是一个球体,由人心果树的树汁液干燥后制成。与羽毛球相比,古塔胶球虽然飞不了那么远,但是它的价格却便宜很多,让更多的人参与到高尔夫运动中来。

在使用古塔胶球的时候,高尔夫球手们很快就注意到一个奇怪的现象:表面被割裂的球飞得更远。这一发现促使高尔夫球制造商有意在他们设计的球上添加凹痕,通常是用荆棘图案(或类似浆果表面的图案)。

5. 哈斯克球(Haskell)

那么,无聊是怎么导致高尔夫球设计的下一次重大突破的呢?1898 年,Coburn Haskell 在等待朋友的时候,将橡胶线绑成一个球状物,以此来消磨时间。当他把球弹起来时,被它惊人的飞行能力吓了一跳。他的朋友 Bertram G. Work 建议他在上面加一层覆盖物,于是 Haskell 就诞生了。

早期的 Haskell 是由液体或固体内核、橡胶线层和由橡胶树液制成的外壳制成的。像古塔胶球一样,它们的表面也有荆棘图案。然而,当人们了解到倒置凹坑可以让球获得更好的飞行模式时,情况发生了变化。哈斯克球的发明为我们今天所熟知的高尔夫球铺平了道路。

高尔夫球的未来

可以说,高尔夫球已经经历了从由毛皮、羽毛到树脂液体制成的很长一段路,但是高尔夫球的进化并没有结束。制造商们一直在研究提高高尔夫球空气动力学和机械性能的方法。

与过去的高尔夫球制造商不同,工程师和设计师现在可以利用仿真分析不同层数、材料、凹坑数量和大小等高尔夫球的性能。让我们在今天的博客文章中探讨一个使用仿真设计高尔夫球的例子……

模拟高尔夫球杆对高尔夫球的影响

正如我们在高尔夫球的冲击分析教程模型中演示的那样,工程师可以使用仿真分析高尔夫球杆撞击高尔夫球时的机械冲击。黏性罚函数可以用来模拟两个部分之间的接触,以稳定动态事件。仿真只观察了2毫秒的时间段,因为它只关注球杆击球的影响。

 

点击查看高尔夫球冲击分析教程模型的动态演示!

模型概述

模拟的高尔夫球杆的尺寸基于一个具有 34° 杆面角的 7 号铁。杆头宽约 9 厘米,趾部高 6 厘米,距离杆身3.5 厘米。该模型假设球杆由钢制成,并具有以下特性:

  • 密度:7850kg/m3
  • 杨氏模量: 200GPa
  • 泊松比: 0.3

高尔夫球是一种高度规范的运动器材。因此,在建模时,我们确保我们的高尔夫球符合由 R&A 和美国高尔夫协会(USGA)建立的高尔夫标准。所述高尔夫球模型的直径为42.67mm,由三层组成(一个内核,一层覆盖物和一个外壳),球表面有362个凹坑。用 neo–Hookean 超弹性材料模型描述了球的所有部分,并定义了内核和覆盖物的黏弹性性质。整个球重45.93克。

下面,我们可以看到球杆和高尔夫球的几何形状。

7 铁制高尔夫球杆和三件式高尔夫球的几何模型
在示例教程模型中,7 号铁和 3 层高尔夫球的几何形状。

结果

下面,我们可以看到球杆撞击高尔夫球之前、期间和之后的模拟。当高尔夫球被杆头击中时,会产生很大的变形。通过观察印在高尔夫球上的COMSOL标志的运动,我们也可以推断出摩擦接触如何导致高尔夫球的旋转。模拟预测的转速为6113转/分。

显示高尔夫球在被高尔夫球杆击打之前、之中和之后的四张图像的拼贴画,球上的徽标随着每个时间步长而轻微旋转
高尔夫球被 7 号铁球杆击球前、中、后的照片。计时时间分别为 0ms(左上)、0.15 ms(右上)、0.30ms(左下)0.45 ms(右下)

下图中的大变形更加明显。

模拟结果显示了高尔夫球在被球杆击打时的变形和压缩应变,在 COMSOL Multiphysics 中建模并在彩虹色表中进行了可视化
0.3 ms时,高尔夫球的变形和球内部第三主(压缩)应变的分布。

在下图中,我们可以看到杆头和高尔夫球在撞击过程中的平均速度大小。这使我们能够详细地研究这个问题的运动学。由于杆轴的柔韧性,杆头的速度在撞击期间和之后都有所下降。撞击后,最初的145公里/小时(~90英里/小时)的杆头速度被转换为187公里/小时(~116英里/小时)的球速度。这导致所谓的击球效率约为1.3,这与现代商业高尔夫球的性能相当。

绘制杆头速度的折线图(以蓝线显示)和高尔夫球(以绿线显示)
在模拟过程中杆头和球的速度。

接下来,让我们看看在模拟过程中高尔夫球的总弹性和动能的变化。在下图中,弹性和动能含量的峰值代表了杆头撞击球的持续时间。撞击后,高尔夫球的弹性能量由于其核心的黏弹性特性而衰减。相比之下,其动能可达到64 J的恒定值。

绘制高尔夫球在被球杆击打之前、期间和之后的总弹性能(用蓝线显示)和动能(用绿线显示)的线图
高尔夫球在被7号铁球杆击打前、中、后的总弹性能和动能。

下一步

从 COMSOL 案例库中下载模型文档和 MPH 文件,了解如何建立本文讨论的模型。

拓展阅读

阅读更多使用仿真分析运动和运动器材的方法:

SurlynPerformance Materials NA Inc.的注册商标。

 

]]>
//www.denkrieger.com/blogs/fore-analyzing-the-performance-of-a-golf-ball-with-simulation/feed/ 0
通过传热仿真分析 LED 灯泡设计 //www.denkrieger.com/blogs/analyzing-led-bulb-designs-with-heat-transfer-simulation //www.denkrieger.com/blogs/analyzing-led-bulb-designs-with-heat-transfer-simulation#respond Thu, 22 Jul 2021 01:42:57 +0000 http://cn.staging.comsol.com/blogs?p=278311 在我年轻的时候,我花了很多时间参加体育锻炼和比赛。随着年龄的增长,我的训练和比赛被安排的越来越晚。我经常会在晚上去踢足球。然而,当我踏上球场时,它几乎像白天一样明亮……

依靠 LED 技术的球场内外

球场附近的灯光使我和我的球队可以一直比赛到深夜。

一张绿色足球场的夜间照片,天色昏暗,球门柱两侧有两个高大的 LED 灯
夜晚灯光明亮的足球场。图片来自 Jonathan Petersson,Unsplash

我的经历并不是独一无二的:几十年来,世界各地的运动队都会在晚上比赛和练习。然而,最近几年,你可能已经注意到,球场上的一些区域比以前更加明亮了。这是为什么呢?

为了提高可持续性,许多体育组织选择用发光二极管(LED)技术来取代他们体育场馆的传统照明系统。LED 灯泡不仅比传统的白炽灯泡更节能,而且更亮。根据美国环境保护署(EPA)的说法,“绿色运动”的好处包括:

  • 保护生物多样性
  • 降低运营成本
  • 创造和扩大绿色产品和服务市场
  • 其他更多的好处

一种常用来为各种户外(和室内)体育场馆和球场照明的 LED 灯泡是 LED 玉米灯泡。就像一个运动员将日常生活和体育锻炼融入到一个时间表中一样,LED 灯泡必须将许多功能融入到一个系统中。通过仿真,工程师可以研究和更好地理解 LED 技术背后的原理。我们将在今天的博客文章中探讨一个例子。

多功能 LED 灯泡

走进一家五金店,经过庭院家具、烧烤架和户外电源设备的陈列台,你可能会发现一片 LED 玉米灯泡整齐地藏在一个专门用于照明设备的过道里。在这个区域,你可以看到各种各样大小、样式和价格不同的 LED 灯。它们通常由一二百个微小的发光二极管组成,排列在一起并固定在金属或环氧树脂结构上。非常贴切地,LED 玉米灯泡是以与它们形状相似的蔬菜命名的:玉米棒。

一张带有黄色 LED 芯片的白色 LED 玉米灯泡的照片,放在一张网格纸上
一个 LED 玉米灯泡。图片来自 Dmitry G – 自己的工作。通过Wikimedia Commons 获得CC BY-SA 3.0许可共享。

玉米 LED 灯泡的独特形状可能会吸引消费者的眼球,但正是它们的节能性能让它们成为高强度放电(HID)和白炽灯泡的热门替代品。与白炽灯泡相比,LED 预计将节省 75% 的能源,使用寿命可延长 25 倍。(参考1)。

为了增加它们的多功能性,这些灯泡的色温范围从 2700K 到 6000K。LED灯泡的色温代表灯的颜色。高开尔文(5500K-6500K)的灯泡是亮白色,低开尔文(2700-3000K)的灯泡是暖白色。

LED 玉米灯泡有多种风格,可适用于室外和室内应用,照亮从车库和仓库到高速公路和体育场的所有地方。

设计 LED 的挑战

尽管 led 通常被认为比传统灯泡更有高效,但在将电转化为光方面,它们仍然不是 100% 的有效。它们的一些能量以热量的形式释放出来。这种热量会滞留在灯泡的颈部,导致灯泡中的电子元件(如芯片)随着时间的推移而退化。因此,有些人已经注意到,LED的寿命只是其包装上承诺的寿命的一小部分。因此,热管理是设计 LED 灯泡时的一个重要考虑因素。

传热建模可以用来优化LED灯泡设计的几何形状和材料,估计灯泡内将会发生的最高温度。今天,我们将探索LED玉米灯泡的热模型。

在COMSOL Multiphysics®中模拟LED灯泡

LED 灯泡冷却教程模型

LED 灯泡冷却教程模型通过考虑 LED 芯片的加热、浮力驱动气流的冷却和周围环境的辐射来估计 LED 玉米灯泡的温度。此外,还考虑了能量传输和动量传输之间的耦合,来计算 LED 灯泡内外的非等温气流。

模型概述

模型灯泡由以下部分组成:

  • 透明丙烯酸塑料,顶部有 6 个孔
  • 8 个横向 PCB 支持 18 个 LED 芯片
  • 1 个顶部 PCB 支持 12 个 LED 芯片
  • 一个钢底座

灯泡的总功率为5 W。

下面,我们可以看到四分之一 LED 灯泡几何形状的两个不同角度。请注意,由环氧树脂制成的 LED 芯片显示为橙色。由铝制成的多氯联苯显示为棕色。

从正面显示的 LED 灯泡模型几何结构视图
LED 灯泡模型的四分之一视图,其中突出显示了顶部 PCB 上 LED 芯片的位置

LED 灯泡几何形状的正面视图,突出 LED 芯片在侧面 PCB 上的位置(左)。显示 LED 芯片在顶部 PCB 上位置的视图(右)。

建模结果

使用 固体和流体传热层流 接口计算了灯泡内外气流的温度分布和速度大小。

如下图所示,本研究中 LED 芯片的最高温度达到76 °C。自然对流的最大速度量级为 0.2m/s。

用于 LED 灯泡设计的芯片中温度分布的仿真结果,以红白色渐变进行可视化
LED 灯泡内部和外部气流的速度场幅值图,在 COMSOL Multiphysics 的彩虹色表中可视化

标称功率为 5W 的灯泡中 LED 芯片的温度分布(左图)。灯泡内外气流的速度场大小(右)。

注意:在 COMSOL Multiphysics 的 5.6 版本中,这个 LED 灯泡模型的计算时间比 5.5 版本缩短了 10%。点击此处了解更多信息。

温度和速度导致 LED 灯泡模型
LED 灯泡模型中温度分布(表面图)和速度(箭头和流线)的仿真结果

研究现实生活中的 LED 灯泡设计

在教程文档中,我们做了一些之前从未做过的事情:将模拟结果与我们进行的真实实验进行比较!

在我们的实验中,两个 LED 灯泡被固定在一个垂直的板上,它们的属性与教程模型中的 LED 灯泡相似。它们通过 230V 交流家用电流供电。两个灯泡内部的温度是用一个基本的红外摄像机计算出来的。72°C 是观察到的最高温度(接近本教程中观察到的最高温度)。

用于验证 LED 灯泡模型的实验装置照片,其中打开了两个 LED 灯泡,中间有一个红外摄像头
我们的实验装置。

带有用于保护 LED 芯片的塑料屏蔽罩的 LED 灯泡的照片
和教程模型一样,实验中使用的两个玉米灯泡都有一个塑料保护层,这有助于保护它们的二极管不受外界环境的影响,比如灰尘。

虽然我们可能需要一个更细致的实验来给出模型和现实之间差距的精确定量,但这个实验可以作为概念的证明。具体来说,它强调了LED灯泡的冷却受其垂直或水平方向的影响最小。这些结果与LED灯泡冷却教程模型的结果吻合较好。

现在轮到你了…

在今天的博客文章里,我们讨论了如何通过传热模拟来分析LED灯泡的热管理。点击下面的按钮,自己动手尝试LED灯泡冷却教程模型:

进一步的阅读

在 COMSOL 博客上阅读其他 LED 建模的例子:

参考文献

  1. “LED Lighting”, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, https://www.energy.gov/energysaver/save-electricity-and-fuel/lighting-choices-save-you-money/led-lighting.
]]>
//www.denkrieger.com/blogs/analyzing-led-bulb-designs-with-heat-transfer-simulation/feed/ 0
COMSOL Multiphysics® 在生物医学领域的 8 种应用 //www.denkrieger.com/blogs/8-uses-of-comsol-multiphysics-in-the-biomedical-industry //www.denkrieger.com/blogs/8-uses-of-comsol-multiphysics-in-the-biomedical-industry#respond Thu, 10 Jun 2021 08:25:59 +0000 http://cn.staging.comsol.com/blogs?p=302061 从机械心脏泵植入物、疫苗存储装置到血液分析仪,生物医学应用本质上通常是多物理场。因此,多物理场仿真可以帮助从根本上改变生物医学设备和流程的设计和分析方式。今天这篇博客,我们分享了 8 个真实的例子,来介绍生物医学领域的工程师和研究人员如何使用 COMSOL Multiphysics® 软件驱动他们创新的救生设计。

1. 左心室辅助装置

心脏衰竭,或称充血性心力衰竭,仅在美国就影响了超过 600 万成年人。当心脏不能向全身输送足够的血液和氧气时,就会发生这种常见的疾病。帮助缓解心力衰竭的一种方法是使用左心室辅助装置(LVAD),这是一种机械泵,植入胸腔后可提供循环支持。左心室辅助装置通常被称为 “移植的桥梁”,因为它们通常用于治疗等待心脏移植的病人。不仅如此,它们也可以被用作因客观医疗条件而无法接受心脏移植的病人的长期治疗方案。

正如预期的那样,左心室辅助装置的设计通常很复杂。他们需要:

  • 足够的功率(大约10 瓦左右),可以正常运行
  • 足够小,可以装进病人的胸膛
  • 由与人体相容的材料制成

为了设计具备所有这些品质的左心室辅助装置,雅培实验室的研究人员使用了仿真技术。例如,他们使用 COMSOL Multiphysics 帮助设计了左心室辅助装置的离心泵。为了防止血液在泵内和泵周围凝结(设计 左心室辅助装置 时的一个常见挑战),研究人员在 左心室辅助装置 的设计中加入了一个磁悬浮转子。使用COMSOL,研究人员能够对 左心室辅助装置中的转子和湍流进行建模和分析。

左心室辅助电机的磁悬浮转子(左上)和泵腔(左下)的仿真。左心室辅助装置的离心泵示意图(右)。
磁悬浮转子的仿真(左上),泵腔内流体流动的 CFD 仿真(左下),以及 左心室辅助装置 的离心泵示意图(右)。

此外,研究人员还对左心室辅助装置的控制器进行了机械冲击分析,用于研究它的弹性。这个控制器有助于左心室辅助装置的供电、控制和性能监控。

“我每天都在使用 COMSOL Multiphysics,包括概念验证模型和模拟非常复杂的、具有详细 CAD 几何结构和多种相互作用的物理特性。我花费了数个月在一些复杂模型上以获得我所有需要的信息。”
– Freddy Hansen, 雅培实验室高级研发工程师

2. 疫苗储存

根据美国疾病控制和预防中心的说法,疫苗储存在减轻常见可预防疾病的传播方面发挥着重要作用。然而,由于严格的温度要求,许多疫苗在存储过程中会变质,从而造成浪费。

作为全球公益项目的一部分,Intellectual Ventures 公司创新设计了一种被动式疫苗储存装置,用于将疫苗安全地运送到世界各地。它的设计只需要使用一批冰就可以将疫苗保持在 0°C~10°C。它的外壳具有多层绝缘,包括反射铝薄层、低导电空间和非导电真空空间。被动式疫苗储存装置不需要外部电源就可以工作。

一种被动式疫苗储存装置的模型。
在 COMSOL Multiphysics 中进行的被动式疫苗储存装置热仿真。

在设计阶段,研究人员在一个与撒哈拉以南非洲地区温度相似的环境室中测试了几个被动式疫苗储存装置原型的性能。为了优化被动式疫苗储存装置系统的设计,在建造原型之前,该团队使用了 COMSOL Multiphysics 以及它附加的各种产品,包括传热模块和分子流模块。

通过实验和模拟,该团队能够设计出一种容易运输的被动式疫苗储存装置,可以将疫苗冷藏长达一个月,从而能够将疫苗安全运输到世界各地,甚至是在电力有限或没有电的地方。

3. 消融技术

2020 年,肝癌是全球癌症相关死亡的第三大常见原因,导致了超过 80 万人丧生。这种疾病有时用消融技术进行治疗。这是一种微创治疗,可以在不切除肝脏肿瘤的情况下破坏它们。治疗肝癌的两种消融术包括:

  • 射频消融 (RF),使用针状探针传递高频电流来加热和杀死肿瘤内的癌细胞
  • 微波消融 (MW),使用针状探针发送电磁波来破坏肿瘤内的癌细胞

许多执行这类消融治疗的医疗专业人员面临的一个共同挑战是,他们无法获得有关这些程序有效性的实时反馈。为了解决这各问题,射频和微波消融技术的领先开发商——美敦力公司的一个研究团队使用仿真设计了具有更强的可预测性和有效性的新型消融探针。在他们的工作中,该团队使用 COMSOL Multiphysics 和附加的射频模块来优化探头的发射和接收特性。

4.老花眼

随着年龄的增长,我们的眼睛会出现越来越难以聚焦近距离的物体的情况。这种情况被称为老花眼,会影响到世界上大多数年龄到了65岁的人。老花眼的主要原因是晶状体形状的变化,晶状体是眼睛内部的一个微小结构。在我们年轻的时候,晶状体很薄且有弹性,但随着时间的推移,它会逐渐变厚,弹性变差。如果不加以矫正,老花眼会是造成视力障碍的最常见原因

老花眼可以通过使用眼镜、隐形眼镜或简单的放大镜来缓解。一种更深入的治疗形式是屈光手术。但是,所有这些选择都有其自身的缺点和限制。

人眼的光力学模型。
用于帮助研究老花眼的人眼模型。

为了推进老花眼的研究并治疗老花眼的根本原因,瑞士医疗器械公司 Kejako 的研究人员创建了一个人眼的 3D 机械模型。使用 COMSOL Multiphysics,该团队能够模拟人眼的机械和光学特性。他们模型的最终设计准确地模拟了老花眼的自然发展过程。

5. Linac-MR

加拿大 Cross 癌症研究所的一个研究团队设计了一种创新设备,可以对人体内的癌细胞进行成像和治疗。该设备称为 Linac-MR,它将线性粒子加速器 (Linac) 和磁共振图像 (MRI) 整合到了一个系统中,目的是无论肿瘤是否转移都能靶向和治疗任何肿瘤,同时并避免损害肿瘤部位周围的健康组织。

为了优化这种复合型设备的设计,研究人员需要分析能够阻止 Linac -MR 发挥最佳性能的物理现象。为此,研究人员将目光转向了多物理学仿真。
Linac-MR 配置
Linac -MR 系统的配置。

该团队最早进行的一个仿真是确定 Linac -MR 中钢屏蔽板的最佳尺寸,这块板用于保护 Linac 免受 MRI 磁场的影响。他们使用 COMSOL Multiphysics 设计了一个半径为 30 厘米、厚度为 6 厘米的优化防护罩——其尺寸是原始设计的三分之一。

此外,研究人员希望设计一种能产生 10 兆电子伏电子束的 Linac-MR。这样该系统就能够治疗多种癌症类型。最初,他们估计 Linac 需要一个 70 厘米长的波导,系统才能产生 10 兆电子伏的电子束。通过仿真,他们了解到使用30 厘米的波导就足够了。通过减少波导的长度,研究人员可以建造一个更小的房间来容纳 Linac-MR ,从而在此过程中节省时间和金钱。

6. 血液学分析

实验室测试(例如血液学分析)的设计必须绝对准确,这一点至关重要,因为这些测试影响着当今多达 70% 的医疗决策。

HORIBA 医疗是一家医疗诊断设备、血液学和临床化学设备的全球供应商,它们在设计时考虑了以下标准:

  • 速度
  • 准确性
  • 尺寸
  • 使用方便

仿真使 HORIBA医疗能够满足这些设计要求。
ABX Pentra® 系列分析仪中孔径电极系统的工作原理示意图。
ABX Pentra® 系列分析仪中的孔径电极系统示意图。

例如,通过仿真,HORIBA 医疗能够增强 Pentra® 系列中的微孔电极系统,这是他们最先进的血液分析仪之一。他们使用 COMSOL Multiphysics 分析了该系统中发生的各种复杂物理过程,包括流体速度、通过孔的压降、热传递和电场。

“由于这是一个非常小的系统,因此很难通过实验进行任何测量。仿真使我们能够改进一些仅使用物理原型无法完成的流程。”

– Damien Isèbe,HORIBA 医疗科学计算工程师

7. 细胞分选仪

The Technology Partnership 的研究人员设计了一种微流控细胞分选设备,可用于帮助治疗癌症和各种其他疾病。他们设计的涡流驱动细胞分选器 (VACS),包括一个输入通道,目的是将生物细胞分选到两个输出通道:

  • 废细胞
  • 感兴趣的细胞

与传统的细胞分选仪相比,涡流驱动细胞分选器更快、更于便携(尺寸为 1 mm x 0.25 mm)、更容易使用和处置。此外,与传统的细胞分选仪不同,涡流驱动细胞分选器使用热蒸汽泡脉冲技术来正常工作。

显示出旋涡驱动细胞分选器的组成部分的图表。
涡流驱动细胞分选仪的组件。

据 The Technology Partnership研究团队称,在涡流驱动细胞分选器的整个设计过程中都需要多物理场仿真。例如,使用流体动力学模型,他们模拟和分析了设备的热蒸汽泡技术的效果。通过这样做,该团队能够快速构建涡流驱动细胞分选器的工作原型——世界上最小的细胞分选仪之一。此外,仿真还有助于验证他们的设计。

8. 药物洗脱支架

当心脏中的动脉被斑块积聚阻塞时,就会发生冠状动脉狭窄。患有这种疾病的病人可能会出现呼吸急促、胸痛和头晕等症状。

为了治疗这种疾病,医疗专业人员有时会使用一个小型金属支架来保持堵塞的动脉畅通。然而,组织会在支架上生长,并在这个过程中使动脉重新变窄。帮助防止这种过度组织生长的一种方法是使用药物洗脱支架,这种支架上涂有药物,旨在减少动脉中的细胞增殖。为了更好地了解这些支架是如何工作的,创新的医疗设备开发商—— Boston 科学的一个工程师团队使用了多物理场仿真。

图示说明支架如何在被斑块堵塞的血管中工作。
血管被斑块阻塞的示意图(左上)、插入的支架并在被斑块阻塞的血管中扩张(右上)以及支架在血管中的工作(下)。

在他们的工作中,Boston 科学团队对药物洗脱支架涂层的释放曲线进行了建模和研究。释放曲线是药物涂层溶解到血管组织中的速率。这项研究帮助团队设计了一种药物洗脱支架,该支架具有可根据患者自身需求定制的可控释放曲线。

COMSOL News 生物医学特辑

阅读我们的 COMSOL News 生物医学特辑,了解文中描述的 8 个示例以及另外 4 个有关示例的更多信息。

ABX Pentra Pentra HORIBA ABX SAS 的注册商标。

]]>
//www.denkrieger.com/blogs/8-uses-of-comsol-multiphysics-in-the-biomedical-industry/feed/ 0
优化扬声器组件的 3 个示例 //www.denkrieger.com/blogs/3-examples-of-optimizing-loudspeaker-components //www.denkrieger.com/blogs/3-examples-of-optimizing-loudspeaker-components#respond Thu, 03 Jun 2021 03:43:24 +0000 http://cn.staging.comsol.com/blogs?p=277931 你还记得你参加的第一场演唱会吗?一想起我的第一次经历,仿佛又回到了 2007 年 12 月 30 日。当时,我坐在一个拥挤的中型剧院里,手里拿着海报,房间里回荡着倒计时声:54321! 然后,美国创作型歌手 Fergie 走了出来。我将永远记住这一天,这让我对未来几年的现场音乐充满了期待。放置在剧院周围的扬声器让我欣赏了一场完美的音乐会,即使我的座位在会场的后面。

为什么要优化扬声器组件?

无论是用于家庭影院系统、健身房、家庭野餐还是音乐会场地,扬声器都要表现出最佳的性能。为了设计高性能扬声器,我们可以使用仿真优化它的各种组件。例如,我们可以使用 COMSOL Multiphysics 软件对高音罩和波导、磁路和弹波(也叫定位支片)进行形状或拓扑优化。

下面,我们来查看关于这些组件优化的三个例子……

1.优化高频扬声器

高频扬声器是一种小型、轻便的喇叭驱动器,目的是产生高频声(约 2kHz 至约 20kHz)。在英文中,非常贴切地将它命名为小鸟、发出的鸣叫声 “tweet tweet”。

理想的高频扬声器驱动器能得到平坦的灵敏度曲线,无论听众的位置如何,声音都是一样的(它具有全向辐射特性)。然而,所有扬声器驱动器设计中都会遇到声盆分裂和波束效应,这将对高频扬声器的质量产生负面影响。物理定律只是对高频扬声器的理想程度设定了一个极限。最佳高频扬声器设计将具有平坦的频率响应和尽可能多的空间覆盖范围。

通过使用形状优化改变高音扬声器组件的形状,您可以提高高频扬声器的整体性能。使用 COMSOL Multiphysics 提供的高音罩和波导管形状优化教程模型,您可以学习如何对高音罩和波导管进行形状优化,以得到其最优的空间和频率响应。这些优化需要在一定频率以及空间范围内进行。该教程显示了设置此问题的步骤。

典型高音扬声器的示意图,标有主要组件,包括圆顶、悬架、波导、多孔吸收器、音圈和线圈架
高频扬声器的主要部件。

这个扬声器模型的主要组成部分包括:

  • 波导
  • 球顶
  • 多孔吸声体
  • 音圈
  • 悬架
  • 音圈骨架

悬架、球顶和音圈都是用 COMSOL 中的 固体力学 接口模拟的。Thiele–Small模拟电路用于包含驱动器的电磁特性。高频扬声器通常含有一个泡沫件,在设计中用来避免激发不同的动态效应(如共振和圆顶柔性模式),因此该模型中添加了一个这样的泡沫件。此外,模型中还添加了结构阻尼。

结果

在该模型中,通过与初始高频扬声器形状的性能进行比较,分析了优化后高频扬声器设计的性能。下面,您可以查看两个高频扬声器轴上1m处的声压级(SPL)。平坦的目标SPL由黑色的水平虚线表示。请注意,优化的高频扬声器在5 kHz至20 kHz的期望频率范围内产生几乎平坦的响应。此外,每个设置都显示了两组曲线。这两组曲线展示了使用两种不同的方法计算模型中的远场响应。

绘制在 1 m 处工作的高音扬声器的轴上声压级的线图,蓝色和绿色线分别表示初始设计和优化设计
1m 处的轴上 SPL

接下来,我们可以比较在 20kHz 的最大频率下工作时优化的和初始的高频扬声器设计。由此,我们可以看到 SPL 分布和两个高音罩、音圈骨架和悬架的结构变形。如下图所示,高亮部分结果表明与优化设计相比,初始设计在球顶和音圈骨架会发生更大的变形(也称为声盆分裂)。

仿真结果显示了最高频率 SPL 的初始(左)和优化(右)高音扬声器设计的变形,在彩虹色表中可视化。
在图中,可以看到在最高频率下初始高频扬声器设计(左)和优化高频扬声器设计(右)的变形。

最后,我们还可以研究两种设计的方向性,如下图所示。方向性图在一个图中突出显示了频率和空间响应。方向性优化的区域用灰色框标记。从图中可以看出,响应在频率上是平坦的,同时具有从大约 -10° 到 +10° 的均匀空间覆盖。

初始(左)和优化(右)高音扬声器设计的指向性图,彩虹色表显示了与目标 SPL 的偏差
初始设计(左)和优化设计(右)的方向性图。这里,各种颜色代表与目标 SPL 的偏差。黑线代表 +-3dB 和 +-6dB 的限值。

总的来说,这个教程强调了一种使用形状优化来优化高频扬声器设计性能的方法。想尝试一下自己设计吗?从 COMSOL 案例库下载模型文档和MPH文件,详细了解如何建立高音罩和波导形状优化模型。

2.扬声器磁路的优化

扬声器驱动器中包含磁路,将磁通量集中到气隙中。在气隙内,线圈垂直于磁力线放置,并连接到扬声器的音圈骨架和球顶。当交流电通过线圈时,电磁力引起线圈运动。正如预期的那样,扬声器薄膜会接收这种运动,与周围的空气相互作用,并在此过程中产生声波。

设计良好的磁路通常由铁磁极片和顶板组成,它们能够:

  • 使集中在线圈上的磁通量最大
  • 在整个线圈上提供均匀的磁场

磁路的性能也通常由BL参数(力因子)来表征。在磁路中,BL是气隙中磁通量与线圈长度的乘积。高性能磁路具有大的 BL 参数,但也希望BL参数对于不同的音圈位置x是恒定的。这就是为什么该参数通常被表示为 BL(x)。平坦的 BL(x) 曲线通常会导致较小的失真,因为它会导致扬声器系统的该部分的线性度。这里,使用拓扑优化来优化磁路。

磁路仿真

使用磁路拓扑优化教程模型,可以对磁路组件执行两种不同的拓扑优化研究。第一个优化研究是为了得到轻质的磁路设计,该磁路设计在气隙中具有强磁场强度,并且在静止位置具有最大的BL系数。第二个优化研究的目的是产生具有平坦BL(x)曲线的磁路。第一种设计非常适合高频工作的扬声器(如高频扬声器),而第二种设计非常适合低频工作的扬声器(如低频扬声器)。

具有优化几何形状和以蓝白色渐变显示的平坦 BL 曲线的扬声器模型图像

扬声器磁路的优化几何形状,可得到平坦的 BL(x) 曲线(左)。特写动画,展示了优化磁路形状的步骤(右)。请注意,使用拓扑优化 ,该算法可以在灰色区域自由添加或移除铁和空气。

这两种优化设计都与传统磁路设计进行了比较,证明了性能的提高。优化的设计还能减少铁的用量。

此外,还创建了一个验证模型来验证在磁路的第二种优化研究中生成的设计。

结果

在下图中,我们可以查看两种优化设计中的磁通量密度模值(顶行)和输出材料体积因子(底行)。请注意,左栏中的图像表示第一种拓扑优化研究(高BL静态设计)的磁路设计结果,右栏中的图像表示第二种优化研究(平坦 BL(x) 设计)的设计结果。

A collage of 4 simulation plots showing the magnetic flux density norm (top) and output material volume factor (bottom) for two optimized magnetic circuit designs.

正如预期的那样,两个结果都表明优化的磁路由两个独立的部分组成:

  • 连接到磁体底部的中心部件(极片或磁轭)
  • 连接到磁体顶部(顶板)的分离部分

在下图中,我们可以看到所有不同磁路模型的 BL(x) 曲线。

绘制磁路设计在静止(蓝色)、优化(绿色)、验证(红色)和传统(青色)时的 BL 曲线的折线图
在这个图中,我们可以看到静止位置时 BL 系数最大的磁路(深蓝色)、BL 曲线平坦的磁路(绿色)、验证模型(红色)和传统磁路(浅蓝色)BL(x)曲线。注:传统磁路设计的BL(x)曲线结果基于是扬声器驱动器模型

注意,这里显示的结果只是案例教程的一部分。使用 COMSOL Multiphysics,设计工程师可以设置自己的优化问题,考虑各种设计标准;例如,固定装置的位置、特殊的几何限制或系统的总重量。优化问题的结果通常会激发和产生创新的想法,然后可以进一步完善。我们可以查看 COMSOL 案例库中的磁路的拓扑优化模型获取如何执行这两项拓扑优化研究的详细说明,并查看其他结果。

3.增强扬声器的悬架系统

在扬声器中,悬架系统设计用于固定声盆和防尘罩,并稳定音圈。在大多数扬声器设计中,悬架系统由悬边和弹波组成。下面,我们可以查看悬架系统以及普通扬声器设计中的其他主要组件。

典型扬声器设计的示意图,包括悬挂系统,部件标记为:环绕声、锥盆、蜘蛛网、防尘帽、音圈、顶板、磁铁、极片和挡板。
含悬架系统的典型扬声器设计。

当工作在不同的频率时,扬声器的音圈会上下移动。在高频时,位移相对较小,但在低频时,位移明显。当音圈的位移很大时,顺性 CMS(x) 沿线圈路径变化。弹簧会因越来越大的变形而变硬。这种变化,或称为非线性,会导致扬声器设计中的失真效应。第二个例子中,在拓扑优化示例中处理了驱动力因子 BL(x) 的非线性。

并排图像显示了当被高频激发时音圈中的位移,波更紧密,波更近,低频激发,波更松散,更分散
在这里,可以看到音圈在高频(左)和低频(右)激励下的位移。当以高频激励时,音圈的位移很小(在平坦区域工作),但是当以低频激励时,线圈的位移很大。注意:在两幅图像中,频率用红色曲线表示,音圈用蓝色曲线表示。

无论音圈的运动范围如何,都可以创建线性运动的扬声器悬架系统。怎么做呢?通过改变定位支片的形状。

定位支片的设计优化

扬声器悬架系统中的定位支片是一个薄膜状的机械部件。它们通常由织物制成,呈之字形。你可能已经猜到了,它是以与它相似的八条腿的蜘蛛命名的。

使用扬声器定位支片优化教程模型,我们可以学习如何通过形状优化轻松更改支片的形状。

该模型包括两项研究:

  1. 传统定位支片的性能(用于比较)
  2. 形状优化以及优化后支片的性能
COMSOL Multiphysics 中传统蜘蛛设计的图像,扬声器显示为红色,蜘蛛显示在彩虹色表中
形状优化的蜘蛛设计,用作优化扬声器组件的示例

传统定位支片设计(左)和形状优化后的定位支片(右)。

结果

仿真结果显示了传统设计(蓝点)、优化设计(绿点)和理想化设计(灰线)的力与位移(左)和顺性曲线(右)。在这两种情况下,优化设计与理想化设计非常接近。

绘制传统(蓝点)、理想(灰线)和优化(绿点)扬声器驱动器设计的力与位移的关系图
绘制传统(蓝点)、理想(灰线)和优化(绿点)扬声器驱动器设计的顺应性曲线的图表

在这个模型中,目标是得到一个平坦的顺性曲线。然而,通常希望具有一定程度的非线性,使得弹簧在大变形时变得坚硬,但是却可以确保 CMS(x) 曲线对称。开发工程师在运行他们的优化模型时可以自由设置此类和其他目标。想了解更多关于这个模型的信息吗?查看扬声器定位支片优化模型教程,尝试自己动手模拟。

后续步骤

了解有关优化模块的更多信息,使用该模块可以对你的设计进行形状、拓扑和参数优化研究,而不考虑物理场或应用领域:

拓展阅读

在COMSOL博客上阅读扬声器建模的其他示例:

]]>
//www.denkrieger.com/blogs/3-examples-of-optimizing-loudspeaker-components/feed/ 0