每页:
搜索

Walter Frei创作的所有博客

如何选择 CAD 数据处理模块?

2015年 4月 14日

COMSOL Multiphysics® 软件提供了多个附加模块来处理外部 CAD 及 ECAD 数据。这些模块支持在 COMSOL Multiphysics 分析工具与 CAD 和 ECAD 设计软件之间进行单向或双向数据传输。本篇博客将介绍这些模块的功能及其应用的必要性。

借助 Beer-Lambert 定律模拟激光与材料的相互作用

2015年 4月 13日

高强度激光入射在部分透明材料上会在材料本身沉积功率。如果能借助 Beer-Lambert 定律描述入射光的吸收,我们就可以通过 COMSOL Multiphysics 的核心功能来模拟能量的沉积。本博客将介绍如何模拟吸收率受温度影响的材料对入射光的吸收,以及随之对材料产生的加热。

借助分割技巧改进网格剖分

2015年 3月 27日

通常,有限元建模中最乏味的一步便是将 CAD 几何细分为有限元网格。这一步通常称为网格剖分,该操作有时可完全自动化。但更多时候,细心的有限元分析人员希望能通过半自动化的方式来创建网格。虽然这将涉及更多操作,但却能带来一些相当明显的优势。本篇博客中,我们将探讨一个非常重要的手动网格剖分技巧:几何分割的概念。

利用 COMSOL Multiphysics 拟合实验数据曲线

2015年 3月 19日

在 COMSOL Multiphysics 中,我们通常需要使用实验数据来表示材料属性或模型的其他输入项。但是,实验数据通常有许多噪点,并会包含我们不希望引入仿真中的实验错误。在这篇博客中,我们将研究如何借助 COMSOL Multiphysics 的核心功能来为实验数据拟合平滑的曲线与表面。

用于电磁波问题的端口与集总端口

2015年 3月 9日

当使用 COMSOL Multiphysics 软件在频域模拟波动电磁场问题时,有几个选项能够进行无反射传播电磁波的边界模拟。本文我们将讨论 RF 模块的‘集总端口’边界条件,以及 RF 模块和波动光学模块中的‘端口’边界条件。

使用事件接口模拟温控器

2015年 2月 19日

温控器 装置的作用是感测系统温度,并基于温度信息控制系统中的加热器和冷却器,使系统温度始终接近期设定值。温控器种类众多,我们今天只重点介绍一种利用两个设定点自动打开或停止加热器的温控器。这种温控器被称为开关式 控制器或继电式 控制器,我们可以使用 COMSOL Multiphysics 的事件 接口对其进行模拟。

对周期性热负荷进行建模

2015年 2月 16日

我们经常收到关于周期性或脉冲性热负荷的建模问题。也就是一个热负荷在已知时间内反复启用和停用的情况。使用COMSOL Multiphysics 中的事件 接口,我们可以轻松、准确并且高效地对这种情况进行建模。这篇文章,我们将为您介绍这种建模技术,它适用于多种类型的瞬态仿真,在这些仿真中,负荷的变化发生在已知时间内。 编者注:这篇博客于 2022 年 10 月 4 日更新,以反映更新后的建模功能。 瞬态仿真简介 首先,我们先从概念上来简单了解一下在 COMSOL Multiphysics 中求解瞬态问题时使用的隐式时间步进算法。这些算法根据用户指定的容差来选择时步。虽然这允许软件在求解中出现渐变时采取非常大的时间步进,但缺点是使用太宽的容差会跳过某些瞬态事件。 为了理解这一点,我们以一个普通微分方程为例来说明: \frac{\partial u}{\partial t} = -u + f(t) 其中,强制函数 f(t) 是一个从 ts 开始,在 te 结束的矩形单位脉冲。给定初始条件 u0=1,我们可以用解析法或数值法在任意时间长度上求解这个问题。 如上图所示,在解析解的图中,当激励函数为零或一时,我们可以观察到解呈指数下降和上升。为了求解这个问题,我们使用默认的瞬态求解器,来看看两个不同相对容差的数值解: 相对容差为 0.2 和 0.01 时的数值解(红点),并与解析结果(灰线)进行了比较。 从上面的图中我们可以看到,非常宽松的相对容差 0.2 并不能准确描述负荷的变化。当设置比较严格的相对容差 0.01 时,得到了合理的解。我们还可以观察到,点的间距显示了求解器所使用的不同时间步进。很明显,在解变化缓慢的情况下,求解器采用了较大的时间步进,而在启用和停用热负荷时采用了较小的时间步进。 然而,如果容差设置得太宽松,当热负荷的宽度变得非常小时,求解器可能会完全跳过热负荷的变化。也就是说,如果 ts 和 te 移动到相互非常接近时,对于指定的容差来说总热负荷太小。当然,我们可以通过使用更严格的容差来缓解这种情况,但还有一个更好的选择。 我们可以通过使用显式事件 来避免收紧容差,显式事件 是一种让求解器知道它应该在一个指定的时间点评估解的方法。从这个时间点向前,求解器将继续像以前一样,直到达到下一个事件。让我们看看上述问题的数值解决方案,在 ts 和 t_e 时间段内采用显式时间,以 0.2 的相对容差进行求解,这是一个非常宽松的容差: 使用 显式事件时的数值解,即使采用非常宽松的相对容差 0.2,与解析结果相比也相当吻合。在远离事件的位置,要采取大的时间步进。 上图说明,每当启用或停用负荷时,显式事件 功能就会产生一个时间步进。宽松的相对容差允许求解器在解逐渐变化时采取大的时间步进。在事件发生后立即采取小的时间步进,以使解的变化得到良好的求解。因此,我们既能很好地解决热负荷的启停问题,又能采取大的时间步进,使整体计算成本最小。 现在,我们已经介绍了相关的概念,接下来,我们来看看如何实现这些显式事件。 一个传热的例子 我们来看一个 COMSOL Multiphysics 案例库中的例子,并稍作修改以包括周期性热负荷和事件 接口。在硅晶片激光加热例子中,激光被建模为分布式热源,在旋转的硅晶片表面来回移动。 激光热源本身沿着中心线在晶圆上来回穿越,周期为 10s。为了尽量减少加热过程中晶圆上的温度变化,我们希望在热源位于晶圆中心的时候周期性地关闭激光。 为了建立这个模型,首先我们引入一个事件接口,并在其中定义一个离散状态 变量。这个变量的名字是 ONOFF,它的初始值是 1,如下面的截图所示。 事件接口中的 离散状态屏幕截图。 我们可以使用离散状态 变量来修改代表激光热源的施加热流,如下图所示。 使用 […]

使用完美匹配层和散射边界条件求解电磁波问题

2015年 1月 28日

求解波动电磁场问题时,您可能会希望模拟一个包含开放边界的域,即电磁波通过计算域的边界时不会产生任何反射。针对这一问题,COMSOL 提供了几种解决方案。今天,我们将分析如何使用散射边界条件和完美匹配层来截断域,并讨论它们各自的适用范围。


浏览 COMSOL 博客
Baidu
map