燃料电池和电解槽 – COMSOL 博客 - //www.denkrieger.com/blogs 发布博客 Tue, 24 Sep 2024 02:34:03 +0000 en-US hourly 1 https://wordpress.org/?v=5.7 模拟两相非等温零间隙碱性水电解槽 //www.denkrieger.com/blogs/modeling-a-two-phase-nonisothermal-zero-gap-alkaline-water-electrolyzer //www.denkrieger.com/blogs/modeling-a-two-phase-nonisothermal-zero-gap-alkaline-water-electrolyzer#respond Fri, 30 Aug 2024 08:22:36 +0000 http://cn.staging.comsol.com/blogs?p=373731 地球上的清洁氢大多数由碱性水电解槽生产。建模和仿真能够帮助设计人员洞察其中涉及的各种电化学和传输现象、设计和运行参数,更好地理解这些电解槽。这篇博客,我们将通过一个碱性水电解槽装置的示例模型,重点介绍如何使用 COMSOL Multiphysics® 软件研究电解槽蕴含的多物理场现象,包括电流与温度分布。

绿氢在工业中的应用

碱性水电解槽是清洁氢或“绿氢”生产中最常见的装置,这主要得益于其生产设备简单并且稳定、电解质无腐蚀性以及材料价格低于其他电解槽,从而使得规模易于扩大。此外,这种装置能容许的进水杂质范围更加广泛,进一步增加了其应用。

然而,在氢能产业中,虽然电解槽是目前绿氢生产的首选方式,但与其他可持续性较低的氢能相比,绿氢仅占全部氢气产量的不到1%。通过水电解法生产氢气的产量相对较低的原因是,水电解法的投资和运营成本比蒸汽甲烷重整工艺更高。运行成本在很大程度上取决于电力成本,这意味着在一些电力成本较低的国家,电解法是一种更具竞争力的技术。如果更多地利用该技术,投资成本可以随着氢产量的增加而降低。建模和仿真可用于研究、优化设计和操作条件,帮助降低工艺中的电能消耗。此外,建模和仿真还可以减少建立实验室原型、中试和全尺度模拟的需求,从而降低开发成本,并降低最终的总投资成本。

零间隙模型探讨

我们即将讨论的两相非等温零间隙碱性水电解槽模型是使用 COMSOL Multiphysics 的附加产品燃料电池和电解槽模块建立的,您可在附加的案例库中找到。该模型的目标是研究电解槽中的电流和温度分布如何受电解质中气泡分布的影响。

该几何模型定义了一个电解槽堆的几何单元,它包含两个电解槽,其中两个电解槽被波纹双极钢板隔开,沿通道方向延伸 10 cm。模型采用6 M 氢氧化钾(KOH)作为电解质,将多孔气体扩散电极(GDE)设置为紧贴电解槽隔膜。(有关建模的详细介绍,请参阅模型文档,您可以点击文末链接,访问并下载该文档)。

左图:碱性水电解槽模型电池单元的横截面。右图:对该横截面进行拉伸和镜像处理,可以看到该几何图形如何表示电解槽堆的电池单元。沿垂直方向堆叠电池单元将形成一个电解槽堆。

可以使用周期条件在垂直方向上重复该几何单元,并可以利用对称性条件在水平方向上对其进行镜像处理,如上图所示。几何单元中有三个隔膜域:一个位于电池中间,一个位于底部,一个位于顶部。顶部和底部隔膜的厚度是中间隔膜的一半;堆叠导致中间隔膜的厚度为完整的厚度。波纹双极板分别隔开氧气和氢气的气电解质通道,并将氧电极、隔膜和氢电极压在波纹板的窄表面之间。氧电极和氢电极均为多孔气体扩散电极,这意味着电化学反应发生在电极厚度方向,具体取决于电极动力学和孔隙电解质电导率。

设计的目标是避免气体夹带在多孔气体扩散电极内部,以使电极表面产生的气体尽快从电极和隔膜中逸出。由于气泡会遮挡电极表面,因此在产生气泡后应尽快将其排出,使电极表面可通过电流,并降低活化过电位(较低的电损耗)。此外,滞留在电极内部和电极与隔膜之间的气泡还会降低电导率和阻碍电解液的流动,进一步增加欧姆过电势和浓度过电势(即增加能耗)。在模型中,气泡遮挡电极表面和电解质浓度的变化(假定恒定)都没有被考虑在内。因此,剩下的影响就是气泡会降低多孔气体扩散电极中孔隙电解质的电导率,从而增加电极过电位。

用棱镜色标法绘制的碱性水电解槽气体流线和气体含量等值面图,模型最左侧为明亮的紫粉红色,中间为黄色,最右侧为淡紫色。 碱性水电解槽示例,显示了流道中的气体流线和气体含量等值面。可以看到,波纹双极板分别分隔开了氢气和氧气的气体通道和电解质通道(与第一幅图的左侧图对比)。

模拟结果

通过求解模型方程,我们可以从多个角度了解氢气和氧气的生产过程。例如,可以针对以下四种效应绘制不同的曲线图,以更好地了解不同操作条件和设计的影响:

  1. 电解质通道中的气体体积分数
  2. 电极孔隙电解质中的气体体积分数
  3. 隔膜中的电流密度分布
  4. 电池中的温度分布

在下图中,电池电压为 2.1 V,平均电流密度约为 4.2 A/cm2

上左图:气体和电解质通道中的气体体积分数。上右图:氢气和氧气多孔气体扩散电极中的气体含量。下左图:隔膜中的电流密度。下右图:温度分布。

气体体积分数图(上左)显示了流道中的气体含量,可以看到,氢气流道中的气体含量较高,因为在电解过程中每产生一个氧分子就会产生两个氢分子(每个氢分子产生两个电子,每个氧分子产生四个电子)。与预期的情况一样,从入口到出口,通道中的气体含量不断增加。

在多孔气体扩散电极的气体含量图中,可以看到,气体被截留在双极板和隔膜之间的区域,而在多孔气体扩散电极面向流道的部分被有效地排出。这意味着,我们可以考虑将波纹双极板做得更窄,沿宽度方向增加波纹,以缩短通向流道的路径,从而使气体能够离开电池。

电流密度图(左下)反映了多孔气体扩散电极中的气体含量。可以看到,对应于流道位置的电流密度较高,而这些位置的多孔气体扩散电极中的气体含量较低。多孔气体扩散电极中的滞留气体会降低孔隙电解质的电导率,导致电流密度降低。但这种影响很小。模型既没有考虑气泡阻塞活性位点的影响,也没有考虑电解质的供给。如果考虑到这些影响,电流密度分布将更加不均匀。

温度图(下右)显示,温度从入口到出口沿流动方向逐渐升高。此外,由于隔膜和孔隙电解质(导电性差)中的焦耳热较高,以及多孔气体扩散电极和隔膜的散热较差,多孔气体扩散电极和隔膜中的温度也较高。

上述仿真结果展示了工程师和科学家可以在COMSOL中进行哪些模拟,来更好地了解不同几何参数和工作条件将如何影响电池的性能。文中介绍的模型还可以进一步扩展,以考虑气泡遮挡电极表面和电解质组分的影响。

动手尝试

想亲自动手模拟碱性水电解槽的模型吗?COMSOL案例库中提供了相关的MPH 文件和分步说明,欢迎下载。

扩展阅读

这篇博客,我们重点介绍了一种零间隙碱性水电解槽装置,但这仅是氢能生产的一种应用。欢迎阅读 COMSOL 博客,探索更多关于氢能生产及利用的仿真实例:

]]>
//www.denkrieger.com/blogs/modeling-a-two-phase-nonisothermal-zero-gap-alkaline-water-electrolyzer/feed/ 0
计算碱性电解槽堆中的寄生分流 //www.denkrieger.com/blogs/modeling-shunt-currents-in-an-alkaline-electrolyzer-stack //www.denkrieger.com/blogs/modeling-shunt-currents-in-an-alkaline-electrolyzer-stack#comments Thu, 30 May 2024 08:22:58 +0000 http://cn.staging.comsol.com/blogs?p=368611 碱性水电解槽可以通过电化学分解水来制取零碳排放的氢气。虽然这一工艺可以通过制取清洁氢能来帮助降低全球碳含量,但氢能的成本仍高于化石燃料。为了最大限度地降低氢能制取的成本,尽可能地提高电解槽的运行效率,以及尽可能长时间持续地运行电解槽至关重要。限制电解槽堆运行效率和使用寿命的一个因素就是寄生分流。这篇博客,我们将探讨如何通过模拟碱性电解槽堆,更好地了解其运行过程中可能产生的寄生分流。

通过碱性电解槽制取清洁氢能

水电解槽与可再生能源电力配合使用时,可实现完全零碳排放,制取出 “绿色”氢能。碱性水电解槽在全球水电解槽的装机容量中占比较大,通常由许多重复的阳极、隔膜和阴极电池组成,这些电池共同构成一个电解槽堆。在碱性水电解槽堆中,所有电池都享用相同的电解质。

由于所有电池都处于离子接触状态,寄生分流在电池之间通过歧管和电解质通道在入口和出口侧流动。这些寄生分电流会降低能效并导致腐蚀。仿真能够将典型碱性水电解槽堆中的这些分流可视化,揭示电解槽设计的优势和局限性。

由20 个独立的电池构成的碱性电解槽堆模型。
包含 20 个独立电池的碱性电解槽堆模型。

探索碱性水电解槽模型

碱性水电解槽堆中的分流模型是使用 COMSOL Multiphysics® 软件平台的附加产品燃料电池和电解槽模块建立的。为了与实际中常用的材料相匹配,示例模型采用了钢制端板和双极板,以及 6M 氢氧化钾 (KOH) 电解质。使用 Butler-Volmer 动力学表达式模拟电极表面,考虑电极和电解质中的欧姆损耗,并忽略气相质量传输限制。建立的模型为等温模型,将电解槽堆工作温度设置为 85°C,通过辅助扫描将电池平均电压从 1.3 V 扫描至 1.8 V,求解模型方程。电化学分解水的过程包括两个独立的半电池反应:阴极的析氢反应和阳极的析氧反应。

带注释的单个电池单元的模型几何结构。
重复的单个电池。在 x 方向缩放 10 倍。

虽然燃料电池和电解槽的许多性能特征可以通过单个电池来了解,但在某些情况下,采用完整的电解槽堆模型是全面了解其性能的唯一方法,文中示例就是其中一种情况,因为电解槽堆中的各个电池的分流分布各不相同。本例中的电解槽堆模型由 20 个电池单元组成,可用于深入研究分流对整体设计的潜在影响。

仿真结果

仿真结果显示,由于气体含量相对较高,出口(上部)通道的有效电解质电导率较低,因此出口通道的分流低于进口通道。还可以看到,分流在电解槽末端更为明显,并且电解槽电压越高,分流越大。

碱性电解槽堆模型,用绿色和紫色箭头显示电解质电位。

平均电池电压为 1.8 V 时,电池堆中的电解质电位,以及相应的进出口通道和歧管中的电解质电流流线。

定义碱性水电解槽能效的方法有很多种。在示例模型中,我们根据所产生氢气的吉布斯自由能来衡量能效,并将能效定义为:在相同条件下运行的燃料电池可能产生的最大能量(单位时间)除以在电解槽堆中产生氢气所需的电能。模型显示,由于库仑效率不断提高,能效先在 1400 A 左右达到最大值,1400 A 后,由于电解槽电压在更大电流下不断升高,能量效率又有所下降。

动手尝试

想自己动手模拟碱性水电解槽模型吗?COMSOL应用库中提供了相关的 MPH 文件和详细的分步说明,欢迎下载。

]]>
//www.denkrieger.com/blogs/modeling-shunt-currents-in-an-alkaline-electrolyzer-stack/feed/ 2
使用 COMSOL Multiphysics® 开发燃料电池的 4 个仿真案例 //www.denkrieger.com/blogs/4-examples-of-fuel-cell-modeling-in-comsol-multiphysics //www.denkrieger.com/blogs/4-examples-of-fuel-cell-modeling-in-comsol-multiphysics#comments Tue, 10 Jan 2023 02:53:08 +0000 http://cn.staging.comsol.com/blogs?p=324731 燃料电池是清洁能源领域最受关注的新技术之一。燃料电池通过涉及氢氧化和氧还原的电化学反应产生电能。简单来说,如果能够为燃料电池稳定供给氢气和氧气,它就能发电。此外,这个过程中产生的副产物是水,因此它是一种不会产生二氧化碳或有毒副产物的“清洁燃料”。

探索不同的燃料电池设计

燃料电池的整体性能受到其电流密度分布、反应物的进给量以及温度变化等因素的影响。借助多物理场仿真可以研究这些因素,以及由热膨胀引起的可能的结构形变。通过COMSOL Multiphysics® 软件的一个附加产品燃料电池和电解槽模块,工程人员可以在同一个模型中对所有这些因素进行分析,用于设计和模拟不同的燃料电池。软件提供不同类型的多物理场耦合功能,如反应流、非等温流等,通过耦合模拟这些相互作用的物理现象可以清楚地了解电池在实际应用中的运行状态,还可以将模拟扩展到整个燃料电池堆。

接下来,让我们通过 4 个仿真案例来说明如何使用 COMSOL Multiphysics 评估燃料电池设计中的不同影响因素。

1.固体氧化物燃料电池

固体氧化物燃料电池中的电解质和电极由金属氧化物(硬陶瓷材料)制成。这种电池中的电极为多孔气体扩散电极(GDE),两个电极之间包含一层固体电解质,形成三明治结构。本节,我们将通过 固体氧化物燃料电池中的电流密度分布教程模型,来探究固体氧化物燃料电池的内部运行。

这个教程可用于模拟含逆流的平行通道固体氧化物燃料电池的一个基本单元中的电流密度分布。电池的燃料为湿氢气(氢气和水蒸气)和湿空气(水蒸气、氧气和氮气),分别从阳极侧和阴极侧供给。

标记了双极板、空气出口和氢气入口的固体氧化物燃料电池的几何结构。
标记了空气流道、氢气流道、空气进口和氢气进口的平行流道固体氧化物燃料电池的基本单元的几何结构。

图1. 一个电池堆中的固体氧化物燃料电池单元的几何结构,包含双极板(左)。一个基本单元的模型几何,包含一个空气流道和一个氢气流道(右)。假设双极板处于恒定电势,并且不包括在模型中,而是将电势设置为多孔气体扩散电极(GDE)和双极板之间的接触表面的边界条件。

该模型涵盖以下过程的全耦合:

  • 阳极和阴极的质量守恒
  • 气体流道中的流动
  • 多孔电极中的气体流动
  • 氧离子贡献的离子电流守恒
  • 电子电流守恒
  • 阳极和阴极的电荷转移反应(电化学反应)

作为一个真正的多物理场问题,该模型使用了描述电池内部发生的过程和现象的多个物理场接口。使用 氢燃料电池 接口求解用于描述气相中的物质传递的 Maxwell-Stefan 扩散和对流方程。使用可压缩的 Navier–Stokes 方程定义通过自由流动区域的流道,使用 Brinkman 方程描述多孔电极内的流速。使用多孔电极理论定义电解质、孔隙电解质和电极中的电流守恒,通过耦合多孔气体扩散电极中的局部浓度与热力学的 Nernst 方程和电荷转移反应动力学(电极动力学)的 Butler–Volmer 方程。

该模型中值得研究的参数为以下各项之间的关系:

  • 流道宽度
  • 电极厚度
  • 电解质(包括多孔电解质)的电导率
  • 电极的电导率
  • 单元的长度
  • 气体成分和气体进料速率

这些设计和运行参数决定了电池在不同负载下的性能。这个模型是完全参数化的,也就是说你可以对上述参数的不同数值进行模拟,来了解和研究电池单元的行为。接下来,我们将给出该模型的仿真结果,你还可以在 COMSOL 案例库中查看其相关的 MPH 文件和 PDF 说明,深入理解如何构建这个模型。

仿真结果

从左到右,图 2 显示了阳极中的氢摩尔分数,阴极中的氧摩尔分数以及电解质上的电流密度。模拟结果显示,空气的馈入限制了电池的性能,导致进气口的电流密度很高,出口处的电流密度很低。此外,还可以看到,通道中间的电流密度略高于边缘的,这是因为集流体和气体通道的接触面阻碍了气体输送。

用彩色标尺显示阳极的氢气摩尔分数的图,模型的最左边是红色,中间是白色,最右边是蓝色。
用彩虹色标显示阴极的氧气摩尔分数的图,其中最左边是蓝色,中间是浅蓝色,最右边是红色。
用彩虹色标显示电解液中的电流密度分布图,其中最左边是蓝色,中间是浅蓝色,最右边是红色。

图2. 在 0.6 V 的电池电压下,阳极的氢摩尔分数(左)和阴极的氧摩尔分数(中间),气体通道和气体扩散电极显示了各物质组成。电解液中的电流密度分布(右)表明,空气馈入限制了电池的性能,导致进气口位置的电流密度很高。

图 3 显示,在图 2 的工作条件下,最大功率的电流密度略低于 1800 A/m2(下左图),因此最大功率略低于 1150 W/m2。当气流速率增大时,最大功率密度可上升到 1300 W/m2(下右图)。如果绘制电解质中的电流密度分布,会看到它更加均匀。然而,这种性能的提高必须与气泵所需的功率相平衡,即气泵必须提供高出 50% 的压力。

显示进气压力为6 bar时的极化和功率密度曲线的图表。
显示进气压力为9bar时的极化和功率密度曲线的图表。

图3.进气压力为 6 bar 时的极化和功率密度曲线(左),显示了电流密度在 1800 A/m2 左右时最大功率略低于 1150 W/m2。通过将入口压力增加到 9 bar(右)来提高气流速率,从而将电流密度和功率密度的最大值分别提升至 2200 A/m2 和 1300 W/m2

2. 低温质子交换膜燃料电池

质子交换膜(PEM)燃料电池中有一层聚合物膜电解质。通常,质子交换膜在运行过程中具有相对较高的含水量。在具有蛇形流场的低温质子交换膜燃料电池教程模型中,由膜和气体扩散电极(GDE)组成的膜电极组件(MEA)被夹在含蛇形气体流道的双极板之间。在下图的几何结构中,空气通道及其入口位于膜电极组件上方,氢气通道及其入口位于膜电极组件下方。

标有空气进口、空气出口、氢气出口和氢气进口的 PEM 燃料电池的几何结构。
图4. 质子交换膜燃料电池模型的几何结构

由于阳极(负极)的氢氧化反应和阴极(正极)的氧还原反应,质子交换膜燃料电池在阴极产生水。产生的水通过膜渗透到阳极侧。假设阴极气体扩散电极产生的水不能有效被去除,这种情况下,电极的孔将被水淹没,从而阻碍氧气的供给,导致电池性能大幅下降。相反,如果膜和孔隙电解质太干燥,将导致电解质中的欧姆电导率降低。因此,质子交换膜燃料电池运行的一个关键因素是水管理。

这个模型可以求解:

  • 气体扩散电极和膜电解质中的电荷守恒和质量传递方程
  • 膜两侧气相中的流动方程
  • 水通过扩散(渗透)和迁移(电渗阻力)在膜中传输的方程
  • 电极上的电荷转移反应方程(电化学反应)

这个模型中值得关注的方面是:

  • 蛇形图案的影响
  • 流道横截面的尺寸
  • 双极板和电极之间接触面的宽度
  • 膜电极组件的尺寸
  • 电池所有组件的材料属性

所有这些方面都可以在不同的运行条件(气体进料速率和载荷)下进行研究。这个模型还可以用于优化给定气体供给和负载的电池设计。你可以在下一节查看此模型的模拟结果。如果你想直接跳转到建模的详细分步说明,可以点击此处下载。

仿真结果

该模型计算了各种气体扩散电极和气体流道中气体的成分,如图5所示。图中显示氧气的消耗量比氢气大得多。氧气的消耗发生在沿气体扩散电极厚度方向上,主要是由于氧气具有较小的扩散率。因为空气和氢气在通道中的流动是逆向的,所以两种反应气体在双极板的两端被耗尽。

用棱镜色标显示氧气摩尔分数的图,模型的最左边是深红紫的颜色,中间是红橙色,最右边是黄绿色。
用棱镜色标显示氢气摩尔分数的图,模型的最左边是浅紫蓝色,中间是橘红色,最右边是深红紫色。

图5.氧摩尔分数(左)和氢摩尔分数(右)模拟图。

如果观察氢气流道和膜中的水活度,可以看到水活度在靠近进气口的地方更大。在这个位置的气相中氧含量很高,由于氧气传输限制了反应速率,导致局部电流密度更高。还可以看到,膜电导率在水活度大的位置更为明显,从而影响电池中的电流密度分布。氧气和水含量使电流密度增加,直到阴极气体扩散电极中的液态水含量开始阻碍气体传输。

用棱镜色标显示流道的相对湿度的图,模型的最左边是紫色、红色和橙色;中间是浅蓝紫色;最右边是浅紫色。
用棱镜色标显示膜中水活度的图,模型的最左边是红色;中间是黄色、浅蓝色和蓝色;最右边是蓝色。

图6. 流道中的相对湿度(左)和膜中的水活度(右)。

3. 非等温质子交换膜燃料电池

使用非等温质子交换膜燃料电池教程模型,我们可以对质子交换膜燃料电池中的电化学反应、流体流动、传热以及电荷和物质传递进行多物理场仿真。这个教程中的电池包括两个膜电解质组件电极,以及二者中间的气体扩散层(GDL)。电极的活性层被建模为表面,也就是说忽略了它们的几何厚度。活性层厚度是一个参数,但它不会反映为模型几何体中的厚度,也就是说气体成分和电势在沿活性层的厚度方向上是恒定的。氢气通道由波纹板形成,波纹板也用作与阳极接触的电流气体通道。充满液态水的冷却通道在氢气通道的另一侧运行。气室由一个扩展的网状集流体组成,该集流体将阴极与金属平板分开。位于扩展网格顶部的金属板用作双极板,将阴极室与下一个电池的冷却通道隔开。该冷却通道将在当前电池上方重复堆叠。

请注意,图7的宽度为两个单位,它包含两个氢气流道。由于沿宽度对称,我们只需要对该几何结构的 1/4 进行建模。但是,这种结果很难解释,而且模型方程可以在几分钟内求解,因此可以使用比所需要的模型大的几何结构。

一个非等温 PEM 燃料电池的几何结构,标注了扩张网状集流器、双极金属板、空气入口、氢气入口、冷却水、波纹板电流馈入器、阳极 GDL、膜和阴极 GDL。
图7. 非等温质子交换膜燃料电池教程模型的几何结构。

图中几何结构的右侧显示了湿空气和氢气流的入口以及液体冷却液。

使用 单相流 接口的层流纳维-斯托克斯方程描述冷却液态水,使用 传热 接口定义和求解电池温度。使用模型中的 反应流电化学加热非等温流 多物理场节点定义理解电池整个运行(包括流动、化学物质传递、电化学反应和通过电池的传热)过程中涉及的各种多物理场现象。

这里要研究的是空气流道中使用的扩展网状结构的影响。设计此结构是为了创建一个垂直于膜电极组件的流场分量,以确保氧气供应和水排出。燃料电池的性能可能会随着控制扩展网格几何结构的参数而异。这些参数可能会影响集流体与电极接触之间的关系,以及用于质量传输(包括去除水)的区域。该模型允许在给定的运行条件和负载下优化结构。你可以在下一节查看该模型的仿真结果图,还可以通过 COMSOL 案例库下载该模型的 PDF 文档和 MPH 文件,尝试自己构建这个模型。

仿真结果

下图左显示了朝向出口侧增加的膜电解质电流密度。由于水的形成,膜的导电性随膜的含水量的增加而升高。如果查看膜的含水量,可以看到水积聚在集流体和阴极之间的接触区域下方,那里的电流密度也很大。如果水淹没阴极,阻碍氧气的运输,这最终可能会成为一个问题。假设我们在保持工作条件不变的情况下,通过将氢流道的长度增加一倍来拉长电池的长度。那么,最终会看到沿流道长度方向的电流密度急剧降低,因为质量传输限制导致氧还原反应减慢。

用彩虹色标显示膜的电解液电流密度的图,模型的最左边是红色、黄色和浅绿色,最右边是浅蓝绿色。
用棱镜色标显示膜的相对湿度的图,其中模型的最左边是紫色、红色和橙色;中间是黄色、绿色、橙色和蓝色;最右边是蓝色。

图8.电池电压为 0.5V 时,膜的通平面电解质电流密度(左)和膜的相对湿度(右)。

使用这个模型,我们还可以观察阴极气体混合物中的氧摩尔分数和水蒸气摩尔分数。朝出口方向的氧气水平降低,水含量增加。

用彩虹色标显示氧气摩尔分数的图,模型的最左边是黄绿色,中间是橘红色,最右边是暗红色。
用彩虹色标显示氢气摩尔分数的图,模型的最左边是蓝色;中间是浅蓝色、黄色和橙色;最右边是红色。

图9. 氧摩尔分数(左)和氢摩尔分数(右)仿真图。

此外,还可以看到整个电池和冷却流道的温度曲线。在膜电极组件中观察到最高温度,这很合理,因为热源是通过焦耳热和活化损失产生的。

用 HeatCamera 颜色表显示 PEM 燃料电池中的温度分布图,模型的底部是紫色,中间是黄色,顶部是紫色。
图10. 电池内的温度分布。

电池的功耗如图11所示。该仿真图显示了电池中热量的分布。可以看到,最明显的热源在膜内部,这是由于膜的导电性差所致。此外,还可以看到在扩展网格与阴极接触的位置产生了大量的热。在这个位置,电极的导电性相对较差(与集流体相比),而电流密度很高。

用彩色标尺显示的MEA、馈电和集流体中热源图,其中模型的底部是浅蓝色和深蓝色,中间大部分是黄色,顶部大部分是浅蓝色。
图11. 膜电极组件、馈电和集流体中热源的对数图。

最后,我们可以生成电池的极化曲线,显示电池电压与平均电流密度(每单位膜面积上的电流)的函数关系。在低电流密度下,电池电压的显著下降主要是由于阴极的活化过电位造成的。同时,在电流密度稍高的情况下,随之出现一个以欧姆损耗为主的线性区域。我们看到在高电流密度下的损耗略有增加,其中由于质量运输阻力而导致曲线略微向下弯曲。

显示电池电压与平均电流密度关系的图。
图12. 极化曲线显示电池电压与平均电流密度的函数关系。

4. 燃料电池堆冷却

COMSOL Multiphysics 6.1 版本新增了燃料电池堆冷却教程模型,可用于评估由 5 个电池、5 个膜电极组件和 2 个端板组成的质子交换膜燃料电池堆的热管理。这类分析很重要,因为燃料电池堆电池内的温度分布不均匀会导致水蒸气冷凝不均匀,以及电池间性能的不必要变化。

在本例中,电堆与含液体冷却液的双极板交叠在一起。左侧图片显示了用于构建模型几何结构的重复单元。中间和右侧的图片显示了最终的模型几何结构,由两个金属端块夹着 5 个堆叠的单元构成。

标有冷却水出口、氢气出口、空气进口、冷却水进口、氢气进口、MEA和空气出口的重复单元单元的几何结构。
含 5 个基本单元的电池堆的空气流道示意图,标记了终端板、进气口、双极板和流形、MEA和出气口。

含 5 个基本单元的电池堆的氢气通道模式图,标记了终端板、氢气出口、双极板和流形、氢气进口和 MEA。

图13. 在图中,我们可以看到重复的基本单元(左)以及含 5 个电池单元的电池堆,显示了氧气流道模式(中)和氢气流道模式(右)。包含空气和氢气流道的金属板(左图中以粉红色和蓝色显示)在电池堆中背靠背焊接。流道的模式使焊缝之间有空隙,形成了冷却水的流动通道。端板用于固定结构并施加压力,以保持双极板与膜电极组件之间的最佳接触。

该模型定义了以下方程:

  • 温度
  • 电极和电解质相电位
  • 反应物质在每个单独气室中的质量传输
  • 气体和液体流动室中的流体压力和流场
  • 膜电极组件活性层中的电极动力学

在这个模型中,值得研究的方面是电池堆中可能发生的组成、温度和电流密度分布的变化。这些因素取决于双极板和膜电极组件的几何结构,还可能取决于电池堆中包含的基本单元数量。该模型允许我们使用具有反映气体流道结构的各向异性特性的多孔介质方法处理气体流道的几何结构。通过将这种方法与气体流道的完整描述进行比较,我们可以验证其准确性。这种方法提供了良好的准确性(取决于目的),同时大大降低了计算成本(CPU 时间和内存要求)。

下节,我们将展示这个模型的仿真结果,你可以在 COMSOL 案例库中下载此模型的 PDF 说明和 MPH 文件,尝试自己模拟。

仿真结果

图14 显示了电极之间膜中的电流密度分布。空气的供应似乎决定了电荷转移速率,导致进气口处的电流密度较高,出口处的电流密度较低。此外,电池堆顶部、中部和底部的电流密度分布几乎相同。

用棱镜色标显示顶部电池中膜上电极之间的电流密度的图,其中PEM燃料电池堆模型的最左边是浅紫蓝色,中间是水蓝色和浅绿色;最右边由绿色、黄色、橙色和红色组成。
用棱镜色标显示电池中部的膜上电极之间的电流密度的图,其中PEM燃料电池堆模型的最左边是浅紫蓝色,中间是水蓝色和浅绿色;最右边由绿色、黄色、橙色和红色组成。
用棱镜色标显示底部电池膜中电极之间的电流密度的图,其中PEM燃料电池堆模型的最左边是浅紫蓝色,中间是水蓝色和浅绿色;最右边由绿色、黄色、橙色和红色组成。

图14. 顶部(左)、中间(中)和底部(右)电池膜中电极之间的电流密度。

图15 显示了气体流道和多孔电极中顶部电池中的氢和氧摩尔分数。与预期的一样,顶部的电流密度分布反映了氧摩尔分数的分布。请注意,氧气的消耗程度比氢气大得多。此外,氧气沿阴极厚度方向耗尽,而氢摩尔分数沿阳极厚度方向几乎不变。

显示氢气摩尔分数与彩虹色标的图,其中模型的最左边是浅蓝色和深蓝色;中间是黄橙色;最右边是浅红色、橙色和黄色。
显示氧气摩尔分数与彩虹色标的图,其中模型的最左边是浅蓝色和黄色;中间是黄色、红色和橙色;最右边是深红色。

图15.电池堆顶部电池中的氢摩尔分数(左)和氧摩尔分数(右)。

图16 显示了阴极气体流道和电极、膜以及阳极流道和电极中电堆顶部电池中的温度,在颜色图例中从右到左表示。膜中的温度较高,这是意料之中的,因为膜具有较低的导电性和导热性。此外,温度沿着冷却水的方向升高,这也是意料之中的。

用 HeatCamera 的颜色表显示顶部单元的温度的图,其中模型的最左边是黄色,中间是粉红色和紫色,最右边是深紫色。
图16. 电池堆顶部单元的温度。

图17 显示了电池堆中的温度。最高温度出现在中间单元膜中。这个位置离有助于冷却的端板最远。双极板中的冷却通道也提供冷却功能。此外,还可以看到两个端板的温度分布相同。

用 HeatCamera 颜色表显示电池堆中温度的图,其中模型的最左边是黄色、橙色和浅粉色、紫色;中间是紫色和粉色;最右边是深紫色。
图17.电池堆中的温度。右侧和中间的颜色图例对应端板,左侧颜色图例对应电池单元。

该模型显示了沿电池堆高度方向温度的轻微变化。如果要堆叠更多的电池单元,这种情况将会改变。堆叠更多单元将导致沿电池单元高度方向的氧气或氢气被耗尽,歧管中的气体流道也会发生变化。

下一步

文中仅介绍了几个如何使用仿真开发燃料电池的案例,COMSOL 案例库中还有更多其他案例。工程师通过仿真能够更深入地理解燃料电池的运行,不断提高电池的整体效率、功率和可靠性。

请注意,文中显示的所有案例都是使用燃料电池和电解槽模块开发的。单击下面的按钮,了解有关此模块的更多信息(可用于模拟氢燃料电池和工业电解槽等)!

下载教程模型

单击下面的链接,进入 COMSOL 案例库,下载随附的 MPH 文件,尝试自己构建文中提到的教程模型。

  1. 固体氧化物燃料电池中的电流密度分布
  2. 具有蛇形流场的低温质子交换膜燃料电池
  3. 非等温质子交换膜燃料电池
  4. 燃料电池堆冷却
]]>
//www.denkrieger.com/blogs/4-examples-of-fuel-cell-modeling-in-comsol-multiphysics/feed/ 54
模拟聚合物电解质膜(PEM)电解槽中的两相流 //www.denkrieger.com/blogs/modeling-two-phase-flow-in-a-pem-electrolyzer //www.denkrieger.com/blogs/modeling-two-phase-flow-in-a-pem-electrolyzer#comments Tue, 18 May 2021 05:09:53 +0000 http://cn.staging.comsol.com/blogs?p=288891 为了减少对化石燃料的依赖,全球必须向风能和太阳能等可再生能源转型,同时必须将这些可再生能源输送到最需要的地方。氢是宇宙中含量最丰富的元素,通过有效存储和运输氢能有望解决这一问题。聚合物电解质膜(PEM)电解槽是一种通过电解水制取氢气的装置,提升 PEM 电解槽的效率有助于实现氢能替代电池和液态化石燃料。借助 COMSOL Multiphysics® 仿真软件,您可以模拟 PEM 电解槽的运行机理,深入探究和优化电解槽设计,提高电解槽性能。

利用风能和太阳能发电面临的挑战

可再生能源发电正在帮助全球迈向低碳型经济,但是像风能和太阳能这样的能源也有其自身的问题。例如,风能和太阳能的生产与消费者之间的需求难以平衡。此外,安装风力涡轮机和太阳能电池板的最佳位置常位于电网容量有限的偏远地区,能源存储和运输困难。提高能源的储存和运输是扩大可再生能源生产的重要条件。

电池是人们熟知的一种储能方式,但电池开采中使用的金属会危害环境,并且废旧电池的处理也是一个问题。虽然人们在不断深入研究如何优化电池设计,但未来巨大的能源储存需求仍需要考虑其他的方法。

氢储能的应用前景

基于电解氢的储能系统可以帮助解决输送风能和太阳能的难题。通过发电设施为电解槽提供电能,然后利用电能从水中分离氢气(这个过程我们将在下文中详细解释)。氢气被捕获、储存,并通过管道或存储罐被输送到需要的地方。电解氢也被用于如“绿色钢铁”生产等工业应用中。

显示依靠氢能的不同领域的图,包括太阳能、风能、水力、交通、能源、工业应用等。

虽然测试结果显示这种方法应用前景广阔,但是公用事业部门尚未计划大规模发展氢电解工艺。一个巨大的阻碍是生产电解槽的成本。

使用 PEM 电解槽从水中提取氢气

PEM 电解槽装置有两个电极室,中间隔着一层聚合物膜。液态水在阳极侧循环流动。在电解作用下,一些水分子在阳极分解成氧气和质子,质子穿过聚合物膜并在阴极还原为氢气,聚集在阴极侧。

示意图显示了电解槽的工作原理,标有阳极、阴极和隔膜组件。
电解槽的工作机理。图片来自 Davidlfritz — Photoshop。通过Wikimedia Commons 获得许可(CC BY-SA 3.0)。

据 2015 年氢能纲要报告 报道,这种电解方法有很大的优势。相较于其他类型的电解槽,PEM 电解槽:

  • 小巧
  • 灵活
  • 易操作
  • 能够耐受不同的载荷
  • 能够在高压条件下运行

尽管应用前景广阔,但 PEM 电解槽还没有被广泛采用,主要是由于其高昂的成本。需要在装置的阳极使用铱,在阴极使用铂,才能进行催化作用。虽然氢电解槽使用的金属量与电池中使用的相比非常少,但铱和铂是稀有金属。获取这些金属需要的成本极高,这意味着 PEM 电解在经济上还行不通。尤其是铱,既昂贵又会在操作过程中降解。因此,提高阳极侧铱层的耐久性和转换效率是 PEM 电解槽研究的重点。

通过模拟两相流最大程度地提高转换效率

COMSOL 软件附加的燃料电池和电解槽模块提供了模拟 PEM 电解槽的功能。PEM 电解槽多物理场模型能够模拟装置阳极侧的两相流体动力学,帮助研究激活态铱的电解作用。这里,我们将讨论这个模型及其中的一些有趣的结果。如果您想直接查看详细的分步教程,可以在 COMSOL 案例库中下载教学模型:聚合物电解质膜电解槽

PEM 电解槽模型的几何形状,标记了入口和出口。
PEM 电解槽的模型几何形状。

仿真结果表明,在靠近装置中心的电极流道末端,气体体积分数接近100%。同时,在最右侧的通道中发生的气体转化要少得多。理论上,装置中所有的液态水都应该被氧化,释放出质子,用于电解槽阴极侧的还原反应。但与预期相反,大量“红色区域”的铱几乎没有响应,因为在通道中几乎没有液态水可氧化。这表明重新设计电解槽的几何结构,有可能更有效地利用催化材料。

PEM 电解槽模型的模拟结果,水的分布以蓝色显示,氧气以红色显示。
PEM 电解槽运行期间,液态水(蓝色)和生成的氧气(红色)的分布。

通过仿真重点研究 PEM 电解槽设计的优化,可以帮助设计人员提高电解槽的工作效率,并有助于实现氢能的输送和利用。

下一步

单击下面的按钮,尝试自己动手模拟 PEM 电解槽中的两相流:

]]>
//www.denkrieger.com/blogs/modeling-two-phase-flow-in-a-pem-electrolyzer/feed/ 1