每页:
搜索

传热 博客文章

使用多物理场建模分析真空干燥机的速度

2016年 10月 19日

在某些食品和制药行业中,经常使用不同类型的干燥机来干燥热敏性产品。真空干燥机提供了一个解决方案,从这些敏感物质中去除水和有机溶剂。为了获得最佳的真空干燥机设计性能,工程师需要权衡快速干燥时间和高质量产品的双重需求。为此,您可以使用 COMSOL Multiphysics® 软件研究真空干燥过程。 真空干燥机的优势和功能 从古至今,人们就一直将干燥作为保存食物的一种方法。随着时间的推移,干燥过程从露天干燥或日光干燥逐步扩展到其他干燥技术,例如太阳能干燥,冷冻干燥和真空干燥。从制药到塑料行业等,干燥也是许多应用领域的关键过程。 今天,我们将重点专注于真空干燥的化学过程,这在干燥热敏材料(例如食品和药品)时特别有用。真空干燥机在制药行业通常被称为真空烤箱,同时它还具有其他优点。因为真空干燥机需要在较低的温度下才能运行,所以其消耗的能量更少,从而降低了成本。同时,真空干燥器还能回收溶剂,避免氧化。 旋转真空干燥机。MatyldaSęk 提供自己的作品。通过 Wikimedia Commons 在 CC BY-SA 3.0 下获得许可。 真空干燥机可去除湿粉中的水和有机溶剂。干燥机的工作原理是在真空中降低液体周围的压力,从而降低液体的沸点,并提高蒸发速率。结果,液体会以更快的速度干燥(此过程的另一个主要优点)。 为了使真空干燥有效,我们需要在不伤害产品的前提下减少干燥次数,这意味着我们需要严格控制操作条件。为了平衡这些目标并了解操作条件如何影响产品,可以使用 COMSOL Multiphysics 的多物理场建模功能。 利用多物理场模型分析真空干燥机的干燥速度 今天,我们将分析 Nutsche 过滤干燥机的真空干燥过程。该干燥机的工作原理是从容器的底部和侧壁加热湿的饼,并降低饼顶部的气相压力。该示例基于 Murru 等人发表的论文。(模型文档中的参考文献1)。 首先,让我们近距离查看该模型。该真空干燥机由一个包含湿饼的圆柱滚筒组成,该圆柱滚筒包含三相:固体粉末颗粒、液体溶剂和气体。饼的材料属性需要包括所有三个阶段的属性,这取决于饼中每个阶段的比例变化。每个阶段的部分是由体积分数决定的,这是我们建模的变量之一。 在二维轴对称组件中,将饼建模为半径 40 cm,高 10 cm 的矩形几何形状。在顶部,我们的模型暴露在一个低压顶部空间中。同时,在过滤干燥器的侧面和底部边界处使用热通量边界条件考虑 60°C 的加热流体。 轴对称 Nutsche 过滤干燥机中的真空干燥过程。 接下来,我们的教程结合了蒸发和传热建模,以研究滤饼的液相分布和温度。利用 系数型 PDE 接口计算滤饼的溶剂体积分数,并使用 “ 固体传热” 接口模拟传热。为了解决多孔介质中的水分传输问题,我们在传热模块中使用了预定义的多物理场接口。我们还同时使用热沉和质量沉两项考虑溶剂蒸发,并将溶剂输运作为扩散过程进行近似估算。 我们对模型做出以下假设: 当液相值达到零时,蒸发停止,表明液体已完全蒸发。 当局部蒸气压小于顶空水蒸气压时,蒸发停止,表明蒸发没有驱动力。 当液相的体积分数降至临界值以下时,溶剂中的扩散停止。 在这些情况下,我们可以使用阶跃函数将蒸发速率和扩散系数平滑地降低到零。 我们的烘干机运行速度有多快? 我们可以看到我们的仿真结果和预期结果基本一致。让我们从30个小时后的滤饼开始分析。如下图所示,滤饼的温度在侧边界和底边界都接近加热流体的温度(60°C)。液相的体积分数在这些受热边界附近最低,而在滤饼的中心最高。此外,表观的水分扩散率在滤饼中心是最高的,在液相蒸发的地方几乎为零。考虑到我们模型的假设,这些结果都是在预期中的。 30小时后,滤饼的温度(左),液相的体积分数(中)和表观水分扩散率(右)。 换种方式,让我们扩展时间范围,看看 10、20 和 30 小时后的蒸发速率。这项研究也得到了预期的结果,它显示出蒸发从加热壁开始,并且当这些边界处的溶剂量减少时,蒸发就减少。在此过程中,蒸发前沿移向滤饼的中心。 10(左),20(中)和30(右)小时后的蒸发速率。 通过仿真得到的定量结果与先前的研究结果非常吻合,这验证了它们的有效性。因此,我们可以使用此模型来准确预测产品随时间的干燥程度。利用此信息,我们可以最大程度地减少产品暴露在高温下的时间。此外,如果要减少热敏产品的干燥时间,我们可以更改干燥机的尺寸。通过多物理场仿真,我们可以设计出效率更高的真空干燥机,以用于各种行业。 联系 COMSOL 进行软件评估 探索更多食品和制药行业的建模应用 自己尝试:下载此博客文章中介绍的真空干燥教程 查看以下相关博客文章: 通过仿真优化生物制药工艺 借助仿真 App 探索生物传感器设计中的生物学 利用仿真 App 优化食品加工工艺中的感应加热技术 优化椰枣热加工过程中的水化操作

借助仿真保证冷藏车的制冷效率

2016年 9月 6日

为了避免运送物品变质,冷藏车必须保持低温。因此优化车辆的隔热材料和制冷系统是设计中的一项重要流程。为了确保制冷设备在开-关门的过程中的运行效率,法国液化空气集团(Air Liquide)联手 COMSOL 认证咨询机构 SIMTEC,使用 COMSOL Multiphysics® 软件执行了传热与 CFD 耦合仿真。

研究生物反应器式填埋场以解决日益严峻的垃圾处理问题

2016年 8月 26日

在世界各地,堆积到填埋场的垃圾数量正在以惊人的速度增长。传统的垃圾填埋场不仅占用了大片土地,还会带来很多环境问题,因此研究人员希望寻求一种更加安全且节省空间的解决方案。一个可行的方案是将传统的厌氧 填埋场转换为好氧 生物反应器式填埋场。然而这一转换过程或许还需耗费数年时间进行更为深入的实验研究。为了更快地获取结果,加拿大西安大略大学(University of Western Ontario)的研究人员使用 COMSOL Multiphysics® 软件对转换过程进行了高效的分析。

流场仿真问题中的可压缩性选项和浮力

2016年 8月 22日

针对流体流动和温度场的数值分析可为很多工程应用提供有价值的参考。在执行此类仿真时,效率是一个重要的考虑因素。在本文中,我们将讨论 COMSOL Multiphysics® 仿真软件中多种形式的流体流动方程,以及这些方程中每个选项的最佳使用方式。同时还将着重探讨不同的选择对传热分析产生的影响。此外,我们还会介绍如何基于这些公式来创建自然对流和强制对流仿真。

优化椰枣热加工过程中的水化操作

2016年 8月 16日

和许多其他农作物一样,椰枣的品质相当受农艺措施的影响。在阿拉伯的突尼斯,农艺措施减少了这些可食用软果的天然水分含量。热加工是改善椰枣品质的方法之一,其关键的操作流程是水化。结合试验研究和模拟分析的优势,科研团队力争优化水化过程,提高工艺效率和可靠性。

模拟激光闪射法的仿真 App

2016年 8月 15日

激光闪射法是一种被广泛用于测量材料导热系数的方法,最早由 W.J. Parker 等人于 1961 年提出。文章重点介绍了一种激光闪射法演示仿真 App ,它可以对激光闪射实验进行数值模拟,并对影响整体精度的参数进行修改,使用户的模拟工作更加简单。今天,我们将对这一款简单易用的仿真 App 及其背后的理论基础进行深入探讨。

应用于冷冻疗法的热电器件的设计分析

2016年 7月 20日

冷冻技术被用于治疗多种化妆品皮肤病问题,以及移除体内肿瘤和受损组织。英国伯明翰大学(University of Birmingham)的研究人员放弃了此前典型的氮基方法,转而试图研究热电冷却装置或 Peltier 装置对冷冻探针冷却的潜力。让我们看看研究人员们是如何借助 COMSOL Multiphysics 提供的工具完成这一研究的。

如何在温控器仿真中实现延时功能

2016年 6月 30日

为了使室内保持舒适的温度,许多家庭都会使用暖气或空调一类的温度调节装置。一个简单的温控器通常具有开 和 关 两个设定点,并以此来实现对温度的控制。只要使用事件 接口,您就能轻而易举地在 COMSOL Multiphysics 中模拟此类控制方案,具体操作请参考之前发布的一篇博客文章。在本文中,我们将在温控器仿真中加入延时功能,使加热器在开启与关闭操作之间保持一定的时间间隔。


浏览 COMSOL 博客
Baidu
map