建模工具和定义 博客文章
如何使用 PID 控制器插件模拟控制系统
PID 控制器可用于多种行业。这篇博客文章演示了如何在两个仿真示例中轻松合并 PID 控制器插件。
如何使用插件自定义模型开发器的工作流程
学习如何创建插件和使用插件功能,您可以构建自己的插件库或者使用 COMSOL Multiphysics®内置的插件库,来自定义及简化您的仿真工作流程,提高仿真效率。
如何借助浏览器内置的翻译工具查看 COMSOL 文档?
COMSOL Multiphysics® 软件内置了与操作自动关联的在线帮助功能和大量的技术文档。虽然我们正在逐步进行汉化,但是目前很多文档仅有英文版本,对于一些中文用户来说,阅读这些技术文档可能比较费时费力。好消息是,近年来机器翻译在准确度和可读性方面都得到了质的提升,很多主流网页浏览器也内置了机器翻译工具,方便用户在浏览网页时对页面内容进行自动翻译。
通过仿真研究如何击败巨型怪兽
当你在观看怪兽题材电影时,有没有想过:如果地球上真的存在巨型怪兽会怎样?为了找到保护人类的有效方法,来自卡迪夫大学(Cardiff University)和牛津大学(University of Oxford)的两个数学生物学家使用数学建模对电影中常见的消灭这些巨型怪兽的方法进行了测试。通过对仿真结果的分析,他们还进一步确定了适用于不同地区的最佳策略。 基于种群生态学理论研究如何消灭巨型怪兽 一个科学考察队在探索马里亚纳海沟(Mariana Trench)深处时,意外地从温跃层的裂缝中释放了一只史前巨鲨——巨齿鲨。随后,他们耗费了大量武器、技术和船员来追捕这头巨鲨。在另一个类似的虚构故事中,一头体型庞大的大白鲨用它锋利的牙齿威胁度假岛上的人类……直到主角将它击败送回海底深处。 《大白鲨》(Jaws)的拍摄地点位于美国马萨诸塞州的马撒葡萄园岛(Martha’s Vineyard, Massachusetts),科德角海岸附近。在真实世界中,近年来鲨鱼的数量一直在迅速增长。虽然鲨鱼袭击人类的事件远比电影中展现的要少得多,但当人们看到海滩上出现大量背鳍时,仍然会感到担忧。那么,究竟是什么原因导致这么多的大白鲨靠近海岸呢? 大白鲨。图片由 Olga Ernst 提供自己的作品。通过 Wikimedia Commons 在 CC BY-SA 4.0 下获得许可。 简单来说,海豹数量的减少是导致这个问题的主要原因。在1880 年代到 1960 年代,由于海豹会捕食鳕鱼,新英格兰渔民便将其视为渔业的威胁,因此大量捕杀海豹,直到该地区的海豹数量有明显减少。之后, 1970 年代颁布的《海洋哺乳动物保护法》( Marine Mammal Protection Act)中将杀死海洋哺乳动物定为非法行为,这才使得海豹的数量有所回升…… 以海豹为食的鲨鱼数量也随之增多。 一些人提议捕杀海豹,另一些人提议捕杀鲨鱼,但通过捕杀这种方法可能会使问题变得更加严重。如何预测哪些选择会产生预期结果,哪些选择会带来意想不到的后果呢?其中一种方法就是运用数学方法研究生物学。 种群生态学理论 为了激发人们对真实生活中的生态问题(如大白鲨重返海角)的兴趣,数学生物学家 Thomas Woolley 博士和 Philip Maini 教授将目光转向了惊险刺激的怪兽电影。他们基于《环太平洋》(Pacific Rim)、《侏罗纪世界》(Jurassic World)、《哥斯拉》(Godzilla)和《金刚》(King Kong) 等各种类型的电影所发现的“证据”,将理论种群生态学数学应用于一个研究名为 Kaijus 的巨型怪兽和 Jaegers巨型机器人的虚构场景中。在下文中,您将看到这些典型的证据可以指导他们确定仿真参数。 尽管这一研究所需要考虑的问题有很多,但其基本原理仍围绕着自然界已经发现的理论:种群动态。对于 Woolley 而言,使用电影类比来吸引人们对种群生态学产生关注是一个很好的切入点,他说:“我们如何才能以最好的方式将研究的东西展示出来呢?”人们可以很容易地以僵尸灾难与 疟疾或流感的传播进行比较,因为它们的数学模型是一样的。而对于怪兽题材来说,生物学家们关注于物种间的竞争,捕食者与猎物之间的相互作用,以及人类尝试灭绝物种等。 使用 COMSOL Multiphysics® 软件内置的捕食者-猎物方程等常用工具,可以对生态害虫问题进行研究。该方程的官方名称为 Lotka–Volterra,它从数学上描述了两个物种相互作用的方式,其中一个是捕食者,另一个是猎物,以及它们的种群随时间的变化情况。研究人员以捕食者-猎物的相互作用问题为基础,对上文提到的 Kaijus 巨型怪兽进行了仿真计算。 kaiju 巨型怪兽种群的数学建模 在制定消灭策略之前,生物学家根据以下主要标准为 Kaijus 定义了预测种群规模的参数: 相互作用 行动路径 环境边界 初始分布 怪兽 Kaiju 的设定表明,这些生物不仅具备繁殖能力,当种群数量过多,必须为资源竞争时,它们还会自相残杀。因此,科学家们在模型的交互部分使用了逻辑斯蒂增长微分方程。在现实生活中,这类方程可用于描述从酵母到狼等各种生物种群。 在移动方面,科学家们基于流行电影中这些怪兽的能力,确定它们能在不到一天的时间内从海洋移动到陆地,并根据从环太平洋沿岸到日本(约 1000 英里)所需的 24 小时时间周期来计算它们的移动速度。他们发现,Kaijus 能以大约每小时 40 英里的速度游泳。作为自然力量,Kaijus 倾向于从起点随机移动到最近的陆地。这有助于科学家们根据怪兽密度的扩散和时空演变推导出偏微分方程。此外,他们还考虑了怪兽可以改变方向的情况,尤其是在遇到边界时。 […]
COMSOL Multiphysics® 中的高效参数控制和使用
任何模型都可以从适当的参数列表中受益。 了解如何通过参数节点和表单等功能更有效地控制和使用模型参数。
数值积分和高斯点简介
在有限元模型中,你可能会在多种情境下遇到数值积分和高斯点的概念。在本篇博客文章中,我们将讨论在什么情况下,以及为什么使用数值积分。此外,还强调了在 COMSOL Multiphysics® 软件中检查和修改数值积分方案的方法。最后,对高斯点自由度的使用进行了说明。
在 COMSOL Multiphysics®中使用几何零件和零件库
使用自己创建的或者从 COMSOL Multiphysics® 软件及其附加产品提供的任何零件库中添加的几何零件,可以大大简化仿真过程中复杂几何结构的构建。本篇博客,我们将向您介绍如何添加和使用几何零件,以及创建用户定义的零件库。 几何零件和零件实例 COMSOL中有许多称之为 几何体素 的 CAD 工具,用于创建几何零件,这些几何体素是一些基本的几何形状,例如块、圆锥、圆柱、球体、棱锥和圆环等三维几何。您可以将这些几何体素组合起来形成更复杂的几何结构用于仿真。 几何零件 提供了一种重现和参数化这类复杂几何图形的方法。当这些图形被添加为 COMSOL Multiphysics® 几何后,可以简化几何创建,提供方便使用的、具有多个参数的零件,用于定制零件的形状或尺寸。 几何零件示例:多体动力学模块零件库中的斜齿轮零件。 被添加为几何零件(直接在模型中创建或从零件库中获取)后,这些图像将成为可用的几何中的 零件实例,看起来就像任何其他几何特征一样,成为仿真中定义完整几何的几何序列的一部分。在几何实例的 设置 窗口中,通过指定 输入参数 的值来定义零件实例的形状、尺寸和位置,这些参数用于定义几何零件以及实例零件的位置和方向(相对于全局坐标系或用户定义的工作平面)。 在模型开发器的 全局定义 下创建几何零件时,可以访问用于定义模型组件几何形状的几何序列中提供的同一个 CAD 特征:所有几何体素;带有相关拉伸、旋转和扫描的工作平面;以及其他几何工具。对于更高级的零件,还可以添加 If、Else If、Else 和 End If 节点来使用编程,例如,使用一些参数来控制零件的某些方面。此外,您还可以添加 参数检查 节点来发现错误,例如用户输入的参数值超出了实际零件的范围。还可以定义几何零件的 1D、2D 和 3D 几何结构。 对于参数化,您可以直接在主要 零件 节点的 设置窗口 中为几何零件添加输入参数。当零件用户将其添加为零件实例时,这些输入参数就可以供零件用户使用。此外,您还可以添加一个 局部参数 子节点来定义在组件中局部使用的其他参数,这些参数不需要用户指定。 使用零件库中的几何零件 COMSOL 零件库中提供的几何零件 COMSOL Multiphysics® 软件及其一些附加产品(模块)中均带有零件库,其中包含许多在每个模块的应用领域中常见并且有用的几何零件: COMSOL Multiphysics® 软件: 带壁的直管和弯管(环形) AC/DC 模块: 多匝线圈 单导体线圈 磁芯 传热模块: 各种各样的散热器 微流体模块: 各种微流体通道 搅拌器模块: 各种类型的叶轮 轴 釜 多体动力学模块: 外齿轮和内齿轮 齿条 射线光学模块: 各种类型的透镜 反射镜 棱镜 分束器 反光镜 RF 模块: 各种类型的连接器 表面贴装器件 波导 […]
课程:定义多物理场模型
在 COMSOL® 软件中建立多物理场模型有 3 种方法:全自动、使用预定义耦合的手动和手动使用用户定义的耦合。 在这里,我们讨论第一种方法。