通用 博客文章
借助仿真 App 优化 5G 和物联网的相控阵天线设计
5G 移动网络和物联网(Internet of Things,简称 IoT)是射频及微波行业的两大热点话题。要想在此类无线应用领域取得新的进展,就需要大幅提升数据传输速率,同时还需在源电子扫描阵列(active electronically scanned arrays,简称AESA)、相控阵天线,以及多输入多输出(multiple-input-multiple-output,简称 MIMO)技术等方面取得重大突破。在上述应用的原型设计和制造过程中,缩短时间和降低成本非常重要。借助仿真和 App,我们便可以缩短无线通信设计的研发周期。
如何在 COMSOL Multiphysics 中实现傅里叶变换
在之前的博客文章中,我们讨论了如何模拟聚焦激光束用于全息数据存储。在具体的示例中,通过对透镜入口处的电磁场振幅进行傅立叶变换得到由傅立叶透镜聚焦的电磁波。
借助 App 快速准确地分析声反射
对于许多工程领域,研究声的反射与吸收非常重要。仿真是进行此类分析的宝贵工具,它能够清楚地解释声波是如何与周围物体的表面发生相互作用的。今天,我们将以水-海床界面的声反射为例,了解“App 开发器”如何使该领域受益于仿真的强大功能。
App 开发器用作教学工具
充分提高学习效率,同时使学生保持学习热情,这是教授们希望在所有课程中实现的共同目标。 在以物理和工程学为基础的课程领域,仿真 App 通过简化方式向学生介绍复杂概念,从而帮助教授实现这一目标。以下,让我们来看看大学教授们在课堂中使用 App 的一些创新方式。
促进 5G 移动网络的发展
请设想一下“理想”中的无线网络:每当拿起通讯设备时,都可以获得极佳的网络信号品质和超高的数据下载速度,无论我们身在何处,都可以与世界上任何一个位置紧密地联系在一起。这样一个理想的无线网络,最重要的是一定要可靠——不会造成通话中断、信息无法送达及网页打开延迟。为了满足 5G 这一理想网络的特殊性能要求,工程师们正在考虑通过特定的射频设计,将这种技术变成现实。
第二部分:可提升用户工作流的仿真 App 设计技巧
在本系列博客的第一部分中,我们重点讨论了如何设计出结构清晰、外观整洁的用户界面。今天,我们将介绍一些仿真 App 的设计技巧,帮助您提升工作流和用户体验。请阅读本文以了解如何利用 App 结构、工具提示和警告消息等提供的信息,来提升仿真 App 的用户工作流。
探究图灵的形态发生理论
你是否思考过老虎身上的条纹究竟是怎样形成的?艾伦·图灵(Alan Turing)的形态发生理论提供了一种可能的解释:条纹一类的图案最初呈均匀状,逐渐自然地演变成有规律的图案。今天,我们将详细讨论图灵的形态发生理论,并探讨一些现代研究,其中涉及了 COMSOL Multiphysics 中的分支形态发生建模。
第一部分:提升仿真 App 设计与结构的技巧
COMSOL Multiphysics® 仿真软件中的“App 开发器”为我们呈现了一个近乎完全自由的 App 设计环境。然而作为工程师,我们还需要在创意和关注点之间找到平衡点,以避免仿真 App 的设计变得杂乱无章。此系列博客由两部分组成,本文为第一部分,旨在指导您创建设计思路清晰、结构流畅的仿真 App。