通用 博客文章
线性方程组的解:直接和迭代求解器
本篇博客中,我们将向您介绍使用 COMSOL 求解任何有限元问题时,其中所用的两类线性方程组的求解算法。这些信息与理解求解器的内部工作原理,以及内存使用如何随问题大小变化等相关。
选择合适的单元进行网格划分
在上一篇博客中,我们介绍了线性静态问题的网格划分注意事项。其中,网格收敛是一个关键概念,因为随着网格的细化,解将变得更加精确。这篇博客,我们将更加深入地探究:对于线性静态有限元问题,如何选择合适的网格进行网格收敛研究。
网格剖分时识别并解决其中的奇异性
阅读之前的一篇博客 “线性静态问题的网格剖分注意事项”,我们发现,有限元模型的解将能在网格细化的限度内收敛至真实解。不仅如此,我们还了解到,在误差较高的区域,可以通过自适应网格细化生成包含更小单元的网格,而不是简单地在整个模型内都使用较小的网格单元。
线性静态问题的网格剖分注意事项
本篇博客中,我们介绍了线性静态有限元问题的网格剖分注意事项。这是网格剖分技巧系列博客的第一篇,希望能帮您建立起对有限元模型剖分网格的信心。
求解线性稳态有限元模型
本篇博客是求解器系列的首篇博客,将介绍用于求解所有线性稳态有限元问题的算法。虽然我们在博客中基于一维有限元问题进行介绍,但所讲解的内容具有普适性,能帮助您理解博客系列中接下来将介绍的更加复杂的非线性多物理场的求解技巧。
使用全局方程模拟室内空气温度
前些天我遇到了一个有趣的问题,它促发了我想要写一篇博客的灵感,因为它使我想到了我们的 COMSOL Multiphysics 软件中一个非常强大但常常没有得到充分利用的功能:全局方程。
如何执行网格细化研究
几周前,我主持了一场有关 COMSOL Multiphysics 后处理和可视化特征的网络研讨会。这场网络研讨会在 COMSOL 用户中的反响非常好,因此我特意写了本篇博客,希望再次强调下我们所涉及的一个重要专题,即在 COMSOL Multiphysics 中进行网格细化研究。
使用无梯度的优化方法求解模型
COMSOL 软件的优化模块包含基于梯度和无梯度的优化 2 种功能。基于梯度的优化方法可以计算目标函数和任何相关约束函数的精确解析导数,但它要求函数是平滑和可微分的。在这篇博客中,我们将研究无梯度优化器的使用,它可以考虑不可微分或不平滑的目标函数和约束条件。为了减轻质量,同时保持对零件峰值应力的约束,我们对旋转轮的尺寸进行了优化。 旋转轮的压力 旋转的轮子会产生离心应力,从而导致整个零件产生应力。为了减轻质量,轮毂上被切割了一些规则的孔洞。下图中显示了离心力产生的 von Mises 应力。我们希望进一步减轻质量,同时将应力保持在临界值以下。 求解应力 虽然我们可以一次对整个轮子进行建模,但由于这个零件存在镜面对称和旋转对称,因此可以减小模型,从而最大限度地降低计算要求。对称边界条件用于约束该零件。 基于旋转速度、旋转轴和材料密度施加体载荷,用于模拟离心力。该模型使用瞬态求解器求解,即假设转速恒定。 选择设计变量 在这个示例中,假设已经有了一套制造工艺,我们希望对零件的整体设计做最小的改动,以降低重新加工的成本。设计变量的一个常见选择就是改变轮毂上孔的半径。因此,我们回到几何序列,对孔的半径及其位置进行参数化。我们还可以根据纯粹的几何分析推算出,每个孔的最大半径必须有一定的限制,否则孔与孔之间的区域会变得太薄,孔与孔之间就会重叠。我们还将对最小半径设限,因为我们不希望孔洞完全消失。 定义目标函数和约束条件 这里的优化目标只是减少零件的质量,即所有域上材料密度的积分。 优化目标是使质量(密度的积分)最小。 这个约束条件稍微复杂一些;我们希望尽量减小零件的峰值应力。但是,我们并不知道峰值应力会出现在哪里。如果内孔或外孔太小,就会导致孔周围应力集中。如果我们将孔的半径做得过大,孔之间的材料就会变得过薄,同样会导致高应力。因此,我们必须监控整个零件的最大应力,并将其限制在指定的峰值应力以下。这是一种无差别约束,尤其需要使用无梯度优化方法。 峰值应力通过域探针进行监测,并命名为 PeakStress。 峰值应力变量受限于一个上限。 用无梯度优化法求解问题 为了求解优化问题,我们在研究分支下添加了优化 功能。Nelder-Mead 方法是两种无梯度方法之一(另一种是坐标搜索)。无梯度优化算法还允许当几何尺寸变化时重新划分网格。 目标函数和约束条件由模型树中的优化 分支定义。控制变量给定了初始条件,我们指定了上限和下限。优化后的设计有很大不同——质量减少了 20%,同时保持了对峰值应力的限制。