CAD 导入 & LiveLink 产品 – COMSOL 博客 - //www.denkrieger.com/blogs 发布博客 Mon, 24 Jun 2024 06:16:28 +0000 en-US hourly 1 https://wordpress.org/?v=5.7 表面贴装器件预处理过程仿真 //www.denkrieger.com/blogs/preconditioning-of-surface-mount-devices-for-reliability-testing //www.denkrieger.com/blogs/preconditioning-of-surface-mount-devices-for-reliability-testing#respond Mon, 20 May 2024 03:07:05 +0000 http://cn.staging.comsol.com/blogs?p=367661 表面贴装器件(SMD)使设计人员能将大量元件集成在印刷电路板(PCB)上,从而在小尺寸上实现大量功能电路。然而,用于固定表面贴装器件的焊接过程会对器件施加高水平的应力,导致器件变形,进而影响其性能。预处理是一个在可靠性测试之前进行的,以可控和可重复的方式再现这些应力的过程。这篇博客,我们将探讨一个模型,通过三个预处理阶段的仿真来分析由于热膨胀、吸湿膨胀和塑封材料孔隙内蒸汽压力带来的封装应力和翘曲变形。

表面贴装器件

表面贴装器件是一种贴装在印刷电路板或基板表面的无引线或短引线元件。贴装元件的方法称为表面贴装技术(SMT),通过焊接或浸焊工艺固定器件。该技术需要将表面贴装器件置于高温下,这会导致器件变形,从而阻碍其贴装到印刷电路板。为了模拟高温环境对器件的影响,在进行可靠性测试之前需要进行预处理。通过有限元仿真,工程师可以更深入地理解预处理过程对表面贴装器件的影响。

焊接表面贴装器件的照片。
焊接表面贴装器件。获 Creative Commons Attribution-Share Alike 3.0 Unported, 2.5 Generic, 2.0 Generic and 1.0 Generic 许可, 通过 Wikimedia Commons共享。

预处理过程模拟

绝缘栅双极晶体管(IGBT)是表面贴装器件的一个典型示例。表面贴装器件可靠性测试的预处理模型模拟了一个绝缘栅双极晶体管模块,即贴装在一个功率半导体基板上的多个绝缘栅双极晶体管。该模型展示了如何利用建模和仿真分析表面贴装器件在电路板组装过程中经历的多次回流焊操作。在焊接过程中,表面贴装器件暴露在高温环境,这可能会造成内部损坏,尤其是当封装内有湿气的情况下。预处理的目的是在可靠性测试之前,以可控和可重复的方式产生电路板组装过程中产生的应力。此模型中使用的是表面贴装器件预处理序列的行业标准测试方法:JESD22-A113I 标准。

预处理过程有三个主要步骤:

  1. 烘烤
  2. 浸湿
  3. 模拟回流焊的温度变化

如果模拟的器件显示出过大的应力和变形,表明需要重新设计回流焊工艺,例如减慢升温速度,或使用吸湿性较低的材料等其他电磁兼容性材料。

绝缘栅双极晶体管模块的几何模型的侧视图。
绝缘栅双极晶体管模块的几何模型。

烘烤

预处理过程的第一步是烘烤,该步骤通过高温去除结构中的水分。为确保温度分布均匀,逐渐加热绝缘栅双极晶体管,并在 125°C 温度下烘烤 24 h。这一步骤可最大限度地降低回流焊阶段产生的热冲击。初始水分浓度为 10 mol/m3,塑封件外部边界的浓度设定为 0 mol/m3。如下图所示,该器件在烘烤过程中会变形为凹形。

烘烤过程 24 h 后 IGBT 模型中的应力分布模型。
烘烤过程 24 h 后,IGBT 模型中的水分浓度模型。

左:烘烤步骤结束后的应力分布。右:烘烤步骤结束后,显示了结构变形的塑封件中的水分浓度。

烘烤步骤中的结构变形动画。

浸湿

预处理过程的第二步是测量回流过程中水分的影响,因为塑封材料( EMC )层内的水分可能会在回流过程中产生应力,从而导致可靠性问题。烘烤步骤后的浸湿是一种以可控的方式将水分引入塑封材料层的方法,这样可以确保在回流焊过程中可能产生的任何影响都是可重复的。在这个示例中,浸湿过程在 40°C 下持续了 192h。烘烤后的结构是干燥的,因此初始浓度为 0 mol/m3。塑封件外部边界的浓度保持在 140 mol/m3,假设在该步骤中水分在外部边界达到饱和。最终绝缘栅双极晶体管发生的变形较其在烘烤步骤中的变形要小,变成了微凸形。

浸湿步骤中的结构变形动画。

回流焊

回流或焊接阶段用于将绝缘栅双极晶体管模块的温度提高到所用焊膏的熔点,以使其液化。 熔融焊料的回流是将绝缘栅双极晶体管模块连接到印刷电路板的关键。回流焊测试在浸湿步骤后直接进行,初始水分浓度取自上次浸湿过程的最终结果。在该模型中,回流过程在 21 min 内历经三个循环,期间最高温度达到 260°C。在这一过程中,绝缘栅双极晶体管模块在温度峰值时呈凹变形,而在回流过程呈凸变形。这一步骤对器件造成的压力最大,而仿真模型有助于预测压力的位置和程度。

回流焊步骤开始 6 min 后 IGBT 模型中的 von Mises 应力模型。
回流步骤开始 6 min 后 IGBT 模型中的水分浓度模型。

t= 6 min 达到回流步骤温度峰值时的应力分布(左),以及 t = 6 min 后达到回流步骤温度峰值时,显示了结构变形的塑封件中的水分浓度(右)。

回流步骤(3 个循环)中结构变形的动画。

进一步的测试

预处理过程中发生的变形仿真,可以帮助工程师更深入地理解变形对绝缘栅双极晶体管模块的影响,从而能够修改设计,避免损坏,同时提高产量和可靠性。还可以对该模型进行扩展,进一步测试到印刷电路板和表面贴装器件结构及其周围环境之间的热量传递,以及扩展为包括焊接材料的黏塑性等因素的更复杂模型。

更多测试

点击下方按钮,进入COMSOL 案例库,下载模型文档和 MPH 文件,学习如何建立预处理模型:

阅读下列博客,了解电子行业中半导体的更多信息:

]]>
//www.denkrieger.com/blogs/preconditioning-of-surface-mount-devices-for-reliability-testing/feed/ 0
使用 ONERA-M6 机翼模型验证仿真结果 //www.denkrieger.com/blogs/validating-transonic-flow-results-with-the-onera-m6-wing-model //www.denkrieger.com/blogs/validating-transonic-flow-results-with-the-onera-m6-wing-model#respond Thu, 30 Mar 2023 02:23:08 +0000 http://cn.staging.comsol.com/blogs?p=334111 仿真是运行实验的一个方便的手段,因为你可以相对快速和经济地运行大量测试,进而减少风洞试验的次数。为了让你相信跨音速流的仿真结果,我们基于著名的 ONERA-M6 机翼创建了一个验证模型。

使用 COMSOL Multiphysics® 模拟跨音速流

当你将 CFD 模块添加到 COMSOL® 多物理场仿真平台后,就可以访问专门用于模拟流体流动的功能,包括各种预定义的物理场接口。广义上讲,物理场接口定义了方程、分析、网格、研究和求解器,以及适用于特定工程领域或物理现象的结果评估和可视化功能。你始终可以访问 COMSOL Multiphysics 平台包含的基本物理场接口,并且可以通过添加与你的工作相关的模块,例如这个例子中的 CFD 模块来扩展可用的接口列表。

COMSOL Multiphysics 软件用户界面,突出显示了高马赫数流动界面,图形窗口中是 ONERA-M6 机翼模型。
COMSOL Multiphysics 用户界面与正在使用的 CFD 模块中的高马赫数流接口。图形窗口显示求解 ONERA-M6 机翼模型后的结果。

如果你要使用 COMSOL Multiphysics 对机翼上的跨音速流进行建模,需要添加 CFD 模块并使用高马赫数流 接口,最好使用 Spalart-Allmaras 湍流模型,这是一个为空气动力学开发的单方程模型。请注意,我们不会在这里介绍如何设置模型的详细信息,但欢迎你从 COMSOL 案例下载页面下载 MPH 文件和相关说明。

关于 ONERA-M6 机翼模型

ONERA-M6 机翼最处创建于 1970 年代,用于验证涉及跨音速和高雷诺数的(3D)流动计算机模型。通过将我们的模拟结果与 ONERA-M6 实验数据进行比较,我们可以验证 COMSOL 模型是否准确。我们的验证模型基于 NASA 兰利研究中心提供的机翼 CAD 几何结构,我们使用 CAD 导入模块将它导入到 COMSOL Multiphysics 中。(顺便说一下,如果你以前没有看过原始机翼设置的照片,可以在 ONERA 网站上查看。)

结果和验证

运行并求解模型后,我们可以使用表面图和轮廓图可视化机翼上的马赫数和压力分布。结果显示机翼表面存在两个弱激波:

在彩虹色表格中显示了马赫数的机翼模型,压力为等高线图。

这个结果与 ONERA-M6 机翼的实验结果相比如何呢?通过绘制仿真结果和风洞试验的结果,我们看到二者之间存在良好的一致性。简单来说,这个模型准确地描绘了激波的位置和压力系数曲线跳跃的大小。你可以浏览二者结果的比较图:

  • 仿真与实验结果对比(1/8)仿真与实验结果对比(1/8)
  • 仿真与实验结果对比(2/8)仿真与实验结果对比(2/8)
  • 仿真与实验结果对比(3/8)仿真与实验结果对比(3/8)
  • 仿真与实验结果对比(4/8)仿真与实验结果对比(4/8)
  • 仿真与实验结果对比(5/8)仿真与实验结果对比(5/8)
  • 仿真与实验结果对比(6/8)仿真与实验结果对比(6/8)
  • 仿真与实验结果对比(7/8)仿真与实验结果对比(7/8)
  • 仿真与实验结果对比(8/8)仿真与实验结果对比(8/8)

自己动手尝试

准备好带着模型进行试飞了吗?文中介绍的所有模型文件(包括分步说明)均可从 COMSOL Multiphysics 6.1 版本的案例库中下载。

ONERA-M6 模型只是可供下载的众多验证和确认模型之一。如需你想要了解更多信息,请访问 博客文章“现已推出:验证和确认 COMSOL 软件的模型集”的,访问完整模型集。

这个模型使用来自 ONERA-M6 机翼的数据作为参考。这个模型不属于 ONERA,没有获得 ONERA 的认可或赞助。

]]>
//www.denkrieger.com/blogs/validating-transonic-flow-results-with-the-onera-m6-wing-model/feed/ 0
使用集总模型简化电流仿真 //www.denkrieger.com/blogs/combining-volumetric-conductor-models-and-lumped-elements //www.denkrieger.com/blogs/combining-volumetric-conductor-models-and-lumped-elements#respond Mon, 27 Feb 2023 02:18:49 +0000 http://cn.staging.comsol.com/blogs?p=329161 你有没有遇到过这样的情况:想要通过仿真分析连接到诸如电容器、电阻器和电感器等集总电路元件导体内的交流电流分布,但又不想对集总电路元件的几何结构进行非常精确地建模? COMSOL 软件 AC/DC 模块中内置的一系列功能可以帮助您处理这种情况。您可以将包含真实体积的导体模型与电路元件的近似模型或集总 模型相结合。让我们来看看如何做到这一点!

带铜线和电容的电路板模型设置

假设你有一块 1.5mm 厚的印刷电路板(PCB),它类似于一个三明治结构,其底部是导电的基底层,顶部为 200µm 厚的覆铜层,中间是电介质。在这块电路板顶层的导线之间,焊接了几个表面贴装电容,如下图所示。其中一条铜走线被激励,由于三个电容器的电容不同,信号将在输出端之间被分割。在 100kHz 左右的工作频率下,集肤深度将与铜的厚度相当,因此我们应该对铜导体的体积以及电介质和空气的体积进行建模,以正确捕捉传输线的行为。(关于传输线建模的更多细节,请参阅我们学习中心的文章《TEM 和准 TEM 传输线建模》)。我们不想建立包含表面贴片电容的真实几何形状的模型,因此只在传输线间引入附加的耦合电容,以观测施加信号的变化。

印刷电路板的部分模型,由200 µm厚的接地地板和铜线组成。
图为一块具有 200um 厚的接地底板、铜迹线和连接铜迹线的三块表面贴片电容的 PCB 板模型。PCB 板上的其他结构不在建模范围内,铜迹线是阻抗已知的信号传输线。

由于导体内部存在明显的集肤效应和邻近效应,因此适用于磁场 接口。为了在这个接口中对电容器进行建模,我们使用了集总元件 功能,并将类型设置为用户定义。这个功能应该施加在一个矩形面上,为我们想引入集总元件的区域内架起一个桥梁。这个面需要在几何序列中被勾画出来。

我们需要在集总元件 功能中指定三个基于几何形状的输入端口,集总元件的输入方向必须是一与导体平行的矢量(如下图所示)。也就是说定义器件中流过的电流方向与这个矢量方向相同。集总端口的高度为导电域之间间隙的长度,可用进行电场积分以及计算电压降。集总端口宽度方向为矩形面的正交方向。

COMSOL Multiphysics 用户界面显示了模型开发器,突出显示了集总单元功能,相应的设置窗口中的集总单元属性和设置部分已经展开。
图中显示了选中用户定义选项并指定集总端口高度、宽度和方向的集总元件功能的界面。

除了几何集总元件的几何特征外,我们还需要指定元件随频率变化的阻抗。我们可以在用户定义电容电感器平行 LC串联 LC平行 RLC串联 RLC 等效阻抗等内置选项之间切换。用户定义 选项允许输入一个与频率相关的复数表达式,这样做可以将一个任意的等效电路添加到一个频域模型中。

按照这个模型的激励,我们可以认为是在模拟 4 条阻抗已知的、连接接地平板和铜迹线的信号传输线。为此,我们可以使用集总端口 功能,并将其类型设置为用户定义。在使用和功能上,集总端口 功能与集总元件 功能几乎相同,唯一的不同是它允许施加激励并监测S参数。

集总端口的类型也可以被设置为电路,这样就可以通过电路 接口将任意复杂的集总电路元件组合引入模型中。对于频域模型,使用电路 类型在功能上与使用包含用户定义 的频率相关阻抗的集总元件 功能相同。另一方面,对于时域模型,需要使用电路 接口添加集总电容或电感。

在设置方面,需要注意模型的边界条件。我们只对电路板和传输线的一小部分进行建模,并将假设周围环境对建模域不产生影响;也就是说,我们将忽略周围结构的任何串扰。我们选择将模型放置在一个更大的空气域内,沿其外侧使用理想磁导体边界条件,模拟一个绝缘的外壳。关于这一点的深入讨论,请参阅我们的博客 “如何为线圈建模选择边界条件“。

评估结果

在 100kHz 的工作频率下求解这个模型后,我们可以评估 S 参数并绘制导体中的电流,如下图所示。观察集肤效应和由集总元件引入的电容耦合的电流的拆分情况。由模型结果可知,我们已经在模型表面利用集总元件实现了电流通路。

显示印刷电路板上导电铜迹线的电流分布图。
铜导线中的电流分布图。

在更高的频率下求解

如果将工作频率提高到 10MHz 会发生什么。在这个频率下,集肤深度大约是迹线厚度的 1/10,所以不再需要对铜迹线的内部体积进行建模。我们可以在铜迹线所有边界上使用过渡边界条件。这样做是合理的,具体原因请参阅博客 “如何模拟时变磁场中的导体“。通过只求解空气和电介质内的磁场,我们以较少的总自由度解决了问题。现在有可能将集总端口和集总元件从用户定义 类型切换到均匀 类型。由于施加这些边界的面现在两边都是导电边界,均匀 类型的设置将自动确定端口的宽度、高度和方向。

显示印刷电路板上导体表面的电流流动的图。
在更高的频率下,不需要对导体的内部进行建模,可以使用 过渡边界条件,表征电流在导体的表面流动。

求解更薄的导体层

在讨论的最后,让我们来看看如何对较薄的铜线进行建模。随着铜线厚度的减小,用于划分网格的结果单元变得更小,这就增加了计算成本。可以通过使用过渡边界条件 避免建立铜迹厚度的几何模型,可以将过渡边界条件 施加在内部边界上,也就是说,边界上的场是在两侧求解的。这使得我们可以将迹线建模为一个几何厚度为零的边界,这进一步减少了模型的自由度,尽管我们可能希望在迹线上有稍微精细的网格。在这样的模型中,不包括由于迹线的有限高度而产生的电容效应,但我们可以合理地假设它们很小。

COMSOL Multiphysics用户界面的特写图,模型开发器中的过渡边界条件被高亮显示,相应的设置窗口中的过渡边界条件部分被展开。
过渡边界条件的用户界面截图,它根据材料属性和厚度计算内部边界的损耗。

绘图显示了印刷电路板上几何厚度为零的表面上流动的电流。
使用 过渡性边界条件的结果。电流在几何厚度为零的表面上流动。

结束语

这篇博客,我们介绍了如何使用集总单元 功能结合固体导体建模,建立一个等效电路元件。然后,讨论了另外两种情况:当集肤深度非常小时,通过过渡边界条件 对固体导体建模,以及通过过渡边界条件 对非常薄的固体建模,所有这些都与集总单元功能相结合使用。这些建模技术对任何模拟电路板或想在其电磁模型中包含集总电路元件的应用都很有用。值得一提的是,以上技术不仅可以在 AC/DC 模块的磁场 公式中使用,也适用于 RF 模块的电磁波、频域 公式。

]]>
//www.denkrieger.com/blogs/combining-volumetric-conductor-models-and-lumped-elements/feed/ 0
LiveLink™ for CAD 产品的离线同步功能 //www.denkrieger.com/blogs/offline-synchronization-for-the-livelink-for-cad-products //www.denkrieger.com/blogs/offline-synchronization-for-the-livelink-for-cad-products#respond Tue, 31 May 2022 05:36:03 +0000 http://cn.staging.comsol.com/blogs?p=304511 最新的 COMSOL Multiphysics® 6.0 版本软件为 LiveLink™ for CAD 产品引入了一项新功能:当 COMSOL Multiphysics 和 CAD 软件安装在不同的计算机上时,可以同步文件。在这篇博文中,我们将为您介绍更多关于这一新功能的信息,以及如何在两个程序之间同步文件。

在两个软件程序和两台计算机之间同步文件

当在一台计算机上并行运行 COMSOL Multiphysics 和 CAD 软件程序时,LiveLink 接口用于将几何图形从 CAD 软件关联传输到 COMSOL Multiphysics 中。另一方面,当使用该接口从 COMSOL Multiphysics 向 CAD 软件传输文件时,也能够更新 CAD 文件中的尺寸。

如果无法在同一台计算机上运行软件,LiveLink 接口现在提供了一种新的离线同步 模式,可以让你很方便地在 CAD 软件中保存同步文件,并将其加载到 LiveLink 节点中。

闭环图展示了箭头从 COMSOL Multiphysics 到 Parameters,到 CAD 程序,到更新的几何,然后再返回 COMSOL Multiphysics 。

你可以双向使用 LiveLink 接口,但同步始终由 COMSOL Multiphysics 启动。该接口使用关联方式将几何体从 CAD 程序中转移到 COMSOL模型,并确保保留所有几何设置。你还可以通过将尺寸或参数的名称和值发送到 CAD 软件来修改 CAD 程序中的几何图形。在 CAD 程序中,几何图形被更新和重建,然后最终被传送回 COMSOL Multiphysics 软件。

LiveLink™ for AutoCAD®,LiveLink™ for Inventor®,LiveLink™ for PTC®Creo® Parametric™, LiveLink™ for Solid Edge®,以及 LiveLink™ for SOLIDWORKS® 都为用户提供了离线同步功能。例如,当你想在安装了 CAD 软件的计算机之外的另一台计算机上运行 COMSOL Multiphysics 仿真时,或者同一组织中两个人在不同计算机上使用这两个软件包时,这项功能特别有用。该功能在两个软件程序之间通过 LiveLink 插件传递同步文件(包含几何、选择和参数)和同步请求文件(包含参数值)进行工作。

图中显示了一台计算机正在运行CAD程序,旁边的一台计算机正在运行COMSOL Multiphysics,箭头显示两者之间的文件正在同步。
 LiveLink ™ for PTC ® Creo ® Parametric™  LiveLink ™ for COMSOL Multiphysics®的示意图。

图中显示了一台计算机正在运行 CAD 程序,旁边的一台计算机正在运行COMSOL Multiphysics,箭头显示两者之间的文件正在同步。
在设置 窗口中为之前同步的几何图形打开离线同步。

LiveLink 插件和参数化扫描

使用 CAD 软件中的 LiveLink 插件生成并保存同步文件,其中包含不同版本的几何图形。你可以使用 COMSOL Multiphysics 安装程序安装这个插件,此安装程序还将在你的计算机上安装 COMSOL Multiphysics。你还可以选择另一种方式安装插件,就是使用 COMSOL Client 安装程序,你可以在 COMSOL 免费下载这个程序。这种方式将 COMSOL 客户端与 LiveLink 插件一起安装,该插件可用于运行仿真 App。请注意,从 CAD 软件保存同步文件不需要 LiveLink 插件的许可证;但是,将同步文件加载到 COMSOL Multiphysics 需要许可证。

在 CAD 软件的用户界面中,该插件启用了 COMSOL Multiphysics 选项卡,其中包含配置 CAD 设计以实现同步的功能:

  • COMSOL 参数选择 窗口,可以在其中从 COMSOL 模型中选择要控制的参数
  • COMSOL 选择 窗口,可以使用它来定义几何上的选择
  • COMSOL离线同步 窗口,可以在其中保存同步文件

在 COMSOL Multiphysics 中,如果你在研究节点中设置了参数化扫描,就可以通过请求文件以离线同步的方式运行它,如下面的动画剪辑所示。例如,如果你想在 Linux® 或 macOS 计算机上安装 COMSOL Multiphysics 时运行参数化扫描,可以在 CAD 软件中预先准备并保存一个同步文件,其中包含扫描所需的几何图形。在 COMSOL Multiphysics 的 LiveLink 节点中,你可以加载同步文件并计算参数化扫描。

启用离线同步后,你可以在模型中保存对参数化扫描同步文件的请求。LiveLink ™ for SOLIDWORKS® 会读取请求文件并保存包含所有参数元组几何的同步文件。该文件被加载到 COMSOL Multiphysics 中,在其中计算带有参数扫描的研究。

各种接口产品的离线同步

  •  Inventor® 中的离线同步。 Inventor®中的离线同步。
  •  PTC® Creo® Parametric™ 中的离线同步。PTC® Creo® Parametric™ 中的离线同步。
  •  Solid Edge® 中的离线同步。 Solid Edge® 中的离线同步。
  • AutoCAD® 中的离线同步。AutoCAD® 中的离线同步。

请注意,此功能适用于 COMSOL Multiphysics ®软件支持的所有操作系统,例如 Windows®、macOS 和 Linux®以及 LiveLink™  for AutoCAD®、 LiveLink™ for Inventor®、 LiveLink™  for PTC® Creo® Parametric™、LiveLink™ for Solid Edge® 和 LiveLink™for SOLIDWORKS® 用户。单击下面的按钮,了解有关 COMSOL Multiphysics 6.0 版本新功能的更多信息。

AutodeskAutodesk 徽标、AutoCAD Inventor Autodesk, Inc. /或其子公司和/或关联公司在美国和/或其他国家/地区的注册商标或商标。

Linux 是 Linus Torvalds 在美国和其他国家的注册商标。

LiveLink 是 COMSOL AB 的商标。

MacOS 是 Apple Inc. 在美国和其他国家/地区注册的商标。

Microsoft Windows 是 Microsoft 集团公司的商标。

PTC、Creo 和 Parametric 是 PTC Inc. 或其子公司在美国和其他国家/地区的商标或注册商标。

Solid Edge 是 Siemens Product Lifecycle Management Software Inc. 或其子公司在美国和其他国家/地区的注册商标。

SOLIDWORKS 是 Dassault Systèmes SolidWorks Corp. 的注册商标。

]]>
//www.denkrieger.com/blogs/offline-synchronization-for-the-livelink-for-cad-products/feed/ 0
FDA 基准:离心血泵的 CFD 建模 //www.denkrieger.com/blogs/fda-benchmark-cfd-modeling-of-a-centrifugal-blood-pump //www.denkrieger.com/blogs/fda-benchmark-cfd-modeling-of-a-centrifugal-blood-pump#comments Fri, 22 Apr 2022 05:33:40 +0000 http://cn.staging.comsol.com/blogs?p=304791 计算流体动力学(CFD)建模是对心血管应用和设备中的流体流动进行建模的一种有效方法,已被广泛用于模拟血液接触医疗设备中的血流动力学。使用 CFD 建模代替物理测试方法进行虚拟测试,使设备开发人员能够加快开发周期、降低成本,以及验证设备的安全性和有效性,让患者不需要接触没有经过验证的医疗设备原型。

由于这些优点,美国食品和药物管理局(FDA)经常建议行业使用建模和仿真来预测临床结果、为临床试验设计提供信息并支持有效性证据(参考文献 1)。为了改进 CFD 建模在心血管设备监督意见书中的使用并使其标准,FDA 开发了模拟喷嘴和离心血泵中流体流动的两个基准模型。为了验证 CFD 模型,他们在多个实验室进行了 体外 实验,以获得实验速度、压力和溶血数据。喷嘴基准的 CFD 建模预先由 COMSOL 认证咨询公司 Veryst Engineering 完成。

在这篇博文中,我们展示了使用 COMSOL® 软件模拟的离心血泵模型。

离心血泵模型

我们从美国国家癌症研究所的网站上获得了泵的几何形状,并根据 FDA 提供的规范为在 COMSOL® 软件中进行 CFD 建模做准备。我们使用 COMSOL® 软件中的 CFD 模块和搅拌器模块来运行冻结转子研究,该研究需要将流体域划分为静止子域和旋转子域。研究中尽可能保持最小的几何清理和修改。

一个离心血泵模型,标记了进血口、出血口和区域变形移动网格。
离心血泵的模型定义。

根据 FDA 指南,使用牛顿流体来描述血液。先求解 k-epsilon 湍流模型获得良好的初始流体流动解,并将其代入剪切应力输送 SST 模型,再求解 SST 模型获取具有更高保真度的流动解。在 3500 r/min 泵速,2.5–7 l/min 流速条件下进行了模拟。

进行冷冻转子研究来计算(伪)稳态解。

验证

FDA 于 2017 年发布了基准离心血泵研究,报告了计算研究的结果以及 体外 实验的数据(参考文献 2)。我们从出版物中的图表中提取了实验数据,并将这些数据与我们的 CFD 模型的结果进行了比较,用于验证 CFD 建模结果。

在 3500 r/min 的泵速下,计算了几种不同流速的泵的压头。计算结果与物理测量值非常吻合,如下图所示。

CFD模型结果与Malinauskas等人在3500转/分运行时不同进口流量下离心泵压头实验结果的对比图(参考文献2)。
图表显示了在 3500 r/min 下运行的离心泵在几种不同流速下的压头计算结果。

在 6 l/min 和 3500 r/min 的泵条件下,计算了上叶片平面的二维速度大小。计算出的径向速度大小与测量值基本吻合,并且与其他 CFD 的研究报告一致(参考文献 2,图 6A、C )。

A graph comparing the CFD model's results with Malinauskas et. al.'s experimental results of the blood pump's radial velocity magnitude along the radial cut line.
图中显示了基于沿径向切线的 xy 速度分量的血泵模型内部的速度大小。该图还显示了该模型的结果与 Malinauskas 等人(参考文献 2)的实验结果的比较。

同样,在扩散器区域的 x = 0.035 m 处, 6 l/min 和 3500 r/min 的泵条件下,计算了速度曲线。计算出的速度大小与测量结果基本吻合,并与其他 CFD 研究报告一致(参考文献 2 的图6B、D)。

CFD 模拟结果与 Malinauskas 等人关于沿血泵径向切线方向的径向速度大小的实验结果对比图。
图表显示了基于扩散器切线 的 x y 速度分量血泵内部的速度大小。该图还显示了模型结果与 Malinauskas 等人(参考文献 2)的实验结果的比较。

该模型文件演示了 COMSOL Multiphysics 如何使后处理变得简单。用户可以设置探针和非局部耦合算子(例如,平均值、表面积分等),由计算 CFD 的结果中计算出衍生值。使用各种类型的截取操作从 CFD 数据集中提取数据子集也非常方便。

最后,我们绘制了 6 l/min 和 3500 r/min 泵条件下,上叶片通道平面的三维速度大小的插值轮廓。结果与参考文献 2 中报告的其他 CFD 研究基本上是一致的。

使用 变换三维数据集得到的旋转和速度切片的可视化结果。

验证和确认

在医疗设备评估中接受建模和仿真需要充分的验证、确认和不确定性量化(VVUQ)。ASME V&V 40 标准(参考文献 3)于 2018 年发布,为评估医疗设备计算模型的可信度提供了一个框架,并考虑到了设备的风险因素。模型风险评估的关键概念是使用环境(COU)。在 V&V 40 推荐的框架中,“模型风险是计算模型相对于其他帮助决策的证据的影响,以及如果决策不正确对患者或终端用户的影响的综合考量。”换句话说,可信度应该与依赖计算模型作为证据的程度相当。对于像血泵这样的左心室辅助设备(LVAD)来说,一个不正确的可信度决定会对病人造成损伤。因此,相关的决策结果被评为“高”(参考文献 3)。

V&V 的一个重要方面是代码验证。COMSOL 验证和确认模型网页提供了 140 多个可供下载的验证和确认案例。在流体流动领域,COMSOL 模型已通过解析解以及求解相同方程的科学出版物进行了验证,并使用广泛接受的实验数据进行了验证。

我们还在 COMSOL Multiphysics 6.0 版中发布了不确定性量化模块。目标是为 COMSOL 用户提供一个可与 COMSOL Multiphysics 模型轻松集成的 UQ 工具。在生物医学应用中,实际模型参数通常不能确定指导。变异性也是生物体固有的。我们希望这对研究兴趣量如何依赖于模型输入变量的医疗设备建模人员有所帮助。

结论

CFD 可以有效地表征医疗设备中的流体流动。在这篇博文中,我们展示了使用 CFD 模块和搅拌器模块模拟的 FDA 血泵基准模型的 CFD 解。这两个模块为旋转机械中的流体流动提供了有效的 CFD 解决方案,这在离心血泵中很常见。模拟结果与 FDA 报告的实验和计算研究一致。

自己尝试

我们通过 FDA 血泵模型向您展示了 COMSOL Multiphysics 如何简化后处理。单击下面的按钮进入 COMSOL “案例库”,尝试自己动手模拟。

对其他生物医学应用仿真感兴趣?

如果您对其他生物医学应用仿真感兴趣,可以查看以下相关资源,了解 COMSOL Multiphysics 如何用于模拟各种生物医学应用:

参考文献

  1. T. Morrison, “How Simulation Can Transform Regulatory Pathways”, U.S. Food & Drug Administration, 9 Aug. 2018; https://www.fda.gov/science-research/about-science-research-fda/how-simulation-can-transform-regulatory-pathways
  2. R. A. Malinauskas, P. Hariharan, S. W. Day, L. H. Herbertson, M. Buesen, U. Steinseifer and B. A. Craven, “FDA benchmark medical device flow models for CFD validation”, Asaio Journal, 63(2), 150–160, 2017; https://pubmed.ncbi.nlm.nih.gov/28114192/
  3. ASME, “Assessing Credibility of Computational Modeling through Verification and Validation: Application to Medical Devices”, 2018; https://www.asme.org/codes-standards/find-codes-standards/v-v-40-assessing-credibility-computational-modeling-verification-validation-application-medical-devices
]]>
//www.denkrieger.com/blogs/fda-benchmark-cfd-modeling-of-a-centrifugal-blood-pump/feed/ 3
如何计算 CAD 几何文件的投影面积 //www.denkrieger.com/blogs/how-to-compute-the-projected-area-of-a-cad-file-in-comsol //www.denkrieger.com/blogs/how-to-compute-the-projected-area-of-a-cad-file-in-comsol#respond Thu, 20 Jan 2022 03:02:49 +0000 http://cn.staging.comsol.com/blogs?p=289861 你有没有遇到过想要计算 CAD 几何文件的投影面积的时候?这在很多情况下都很有用,例如快速估计空气动力阻力。如果你只需要计算几个方向上的投影面积,有好几种方法可以做到;但是,如果你想计算所有可能方向上的投影面积怎么办?今天,我们将介绍一种计算和使用这类数据的有效方法。

几种简单的方法

假设有一个复杂的 CAD 几何图形,我们首先要考虑的是:这个几何图形沿特定方向的投影面积是多少?有几种方法可以做到这一点?第一种方法,我们可以使用广义投影算子。这种方法需要围绕整个几何图形绘制一个框,如果想要获得良好的分辨率,就必须进行非常精细的网格划分。由于在整个域上进行网格划分和积分的成本很高,这种方法可能非常耗时。第二种方法是 COMSOL 6.0 中的新功能,即三维模型投影功能。这个新功能可以使我们在空间中绘制工作平面并将三维 CAD 几何文件投影到该工作平面上,然后直接测量这些投影的面积。这种基于 CAD几何文件的方法要快得多,并且不需要任何网格划分,但是需要使用 COMSOL 软件的CAD 导入模块设计模块或 LiveLink™ 产品。如果我们想要计算沿多个不同任意方向的投影面积,上述这两种方法都比较繁琐。

CAD 文件的投影面积由通用投影操作符(左)和设计模块的投影功能(右)确定。
确定投影面积的两种方法: 使用 广义投影 算子,其结果取决于网格(左);使用 投影功能,在一组工作平面上创建投影表面(右)。

一种更通用的方法

相比对 CAD 几何文件划分体网格或添加其他 CAD 操作,我们可以利用投影区域的定义,即:

A_{projected}= \int_A \cos\left( \beta \right) dA

其中,对于那些沿视线方向可见的表面, 是视线与表面法线之间的夹角。

对表面进行积分很容易,但是如何评估项 ?事实证明,当使用无限距离 外部辐射源照射时,我们可以通过 表面对表面辐射 接口获得该项。计算这个项只需要部分面网格,而非体网格。使用此接口甚至不需要求解表面到表面的辐射,因为这种带有阴影的入射外部通量是作为预处理步骤计算的。因此,我们可以简单地对所有表面上的外部通量进行积分,然后除以标称入射通量,就可以得到在 外部辐射源 接口中输入的任何方向的投影面积。由于默认使用四阶高斯积分,因此可以使用相当粗的网格。

显示外部辐射源功能的设置窗口的屏幕截图。
外部辐射源特征可用于设置几何体的光照以计算投影面积。

通过入射通量确定的投影面积,如使用外部辐射源功能预先计算的那样
对通过 外部辐射源 特征预先计算的入射通量进行积分可以获得投影面积。注意机翼的阴影。

在所有方向上提取和使用投影面积数据

通常,我们需要从各个方向提取投影区域。现在我们可以简单地对任何感兴趣的入射方向重新计算上述积分,但计算成本将非常高。

相反,想象物体周围有一个球体,并在该球体上选择有限数量的方向来照射目标。在这些有限的方向集之间,我们可以在整个球体表面上使用线性内插法。但是,在选择这些方向之前,值得一提的是,投影区域将关于通过周围球体中心的任何平面对称。本文中使用的 CAD 几何图形关于中平面对称,所以利用这两个对称性,只考虑位于空间正 xy 象限的四分之一球体就可以了。

接下来,进行以下步骤:

  1. 创建几何,利用 CAD 零件的对称性,用有限数量的点定义观察方向
  2. 计算沿这些方向的投影横截面积
  3. 将数据插值到所有中间方向
  4. 提取这些数据

首先,我们创建一个非常特殊的几何图形,如下图所示。该几何图形看起来像一个四分之一球体的网格,它是通过首先单独创建一个单位球体的一部分的网格,导出该网格,然后将其导入模型的第二个 组件 来创建的。导入的设置是这样的,表面网格的每个单元都是一个单独的表面,每个节点都是一个几何点。该表面位于空间的正 xy 象限。

导入设置的屏幕截图(左)和一个网格,其中每个元素代表一个不同的面(右)。
导入设置的网格,使每个单元代表不同的面。

这些点中的每一个都将代表一个采样方向,我们将评估其投影面积。在这些点之间的每个三角形块上,我们将使用线性有限元基函数对区域进行线性插值,以便可以从任何入射角近似投影区域。

为此,我们在四分之一球模型的所有表面上添加 系数形式偏微分方程接口,将离散化设置为线性,并将因变量的名称设置为 AREA

设置窗口的屏幕截图,显示了用于实现插值的系数形式边界 PDE 接口
设置 系数形式偏微分方程接口将实现插值。

在这个接口中,我们将对几何中的所有点施加 逐点约束 特征,这样就可以对问题进行完全约束,因为所有的节点点都是几何点。这些设置的最终效果是所有其他物理设置都无效,并可以保留它们的默认值。我们将得到每个曲面拐角处的约束节点值之间的线性插值解。

设置窗口的屏幕截图,显示了系数形式边界 PDE 界面中的逐点约束特征。
对模型上的所有点施加 逐点约束特征。

由于需要在每个点设置离散观察方向的投影面积,因此我们使用了以下约束表达式:

AREA-nojac(if(dom==INDEX,comp1.intop1(rad.Gext/1[W/m^2]),AREA))

展开这个表达式,它设置了 AREA每个点的值。首先,整个表达式必须等于 0,因此 AREA 被设置为等于 nojac() 算子的表达式。这个算子意味着其中的表达式没有增加雅可比贡献,有关这个运算原理的更多详细信息,请参阅关于通过符号微分加速模型收敛的博客文章。在这个算子中是 if(logical expression, true, false)语句。这个语句以逻辑表达式 dom==INDEX 开头。每个几何对象(域、边界、边或点)都有一个与之关联的唯一整数:它的域索引 dom。在我们即将进行的研究中,将对这个几何图形中所有点的全局参数 INDEX 进行辅助扫描。

在扫描期间,当逻辑表达式的计算结果为假时,AREA 变量保持不变。当逻辑表达式为真时,得到投影面积,即截获通量除以入射通量的积分。积分算子 comp1.intop1() 被定义在我们的第一个组件中,覆盖 CAD几何文件的所有暴露表面。但是,当计算这个积分时,第一个分量中的 外部辐射源 特征如何得出与第二个分量中的点相关联的方向?我们在第二个分量中的所有点上使用第二个积分耦合变量,并在外部辐射源 方向场中使用它:

comp2.intop2(x[1/m]*(dom==INDEX))

解读这个表达式的方法是:评估第二个组件中的所有点,即 x 位置(或 y-或 z 位置),然后乘以 (dom==INDEX),结果将是 0 或 1。也就是说,我们将仅对当前索引的点评估朝向该点的光照矢量,如下面的屏幕截图所示。

显示组件 1 的外部辐射源功能的设置窗口的屏幕截图。
在第一个组件中,入射辐射方向是根据第二个组件中的几何定义的点位置来设置的。

接下来,我们要扫描索引变量的所有值,我们通过包含辅助扫描的稳态研究步骤 来完成。在这项研究中,我们不需要求解表面到表面的辐射,因为入射通量是一个预处理步骤。

设置窗口的屏幕截图,显示包含辅助扫描的固定研究步骤。
扫过索引变量将获得投影面积。

由于只有扫描中的最后一个值包含所有结果,因此我们可以弃除最后一个解之外的所有内容。这可以通过 组合解 研究步骤完成,如下面的屏幕截图所示。

显示组合解决方案功能的设置窗口的屏幕截图,该功能用于保留扫描中的最后一个解决方案。
使用 组合解 特征仅保留扫描中的最后一个解。

接下来,为了举例说明如何使用这些数据,我们用一个具有 瞬态 步骤的研究来说明。在该研究中,我们将根据与飞机轴对齐的球坐标系在球体表面上追踪一个点,并且向上定义 角。

CAD 模型和投影区域,由一组点表示。
CAD 模型和沿离散方向的投影区域,由一组点表示,以及在一个表面上的插值。沿着在该表面上追踪的一条线的场值可以通过球坐标系上的 广义拉伸算子进行评估。

设置窗口显示常规拉伸操作符。
通过广义拉伸 算子从球体表面的插值数据中提取数据。

对于球坐标系,要从该球体上的任意位置提取数据,我们可以将广义拉伸算子 用作动态探针,通过输入目标映射 表达式的变量,来说明解对称性。

结束语

有多种方法可以计算 CAD几何文件的投影面积。在本文介绍的三种方法中,使用 广义投影 算子的计算成本最高,因为它在一个域上集成并且需要在周围域中使用精细的网格。因此,只有在不能使用其他两种方法时才使用它。第二种方法是基于 CAD 的操作,即使用 投影 特征。虽然这种方法简单、准确并且不需要划分网格,但需要手动设置每个投影方向。最后一种方法,使用 表面对表面辐射 接口是最复杂的设置,但在重用数据以进行进一步的基于方程的建模方面,提供了极大的灵活性。点击下方按钮,下载关于此方法的教程模型文件:

 

]]>
//www.denkrieger.com/blogs/how-to-compute-the-projected-area-of-a-cad-file-in-comsol/feed/ 0
模拟超高真空系统中的压力 //www.denkrieger.com/blogs/simulating-the-pressure-in-an-ultrahigh-vacuum-system //www.denkrieger.com/blogs/simulating-the-pressure-in-an-ultrahigh-vacuum-system#respond Thu, 19 Aug 2021 02:01:44 +0000 http://cn.staging.comsol.com/blogs?p=278941 今天,来自荷兰乌特勒支应用科学大学的客座博主 Vera Erends 将为我们带来她的研究,讨论如何使用仿真理解超高真空系统的运行与天文应用……

科学家此前提出的爱因斯坦望远镜(ET)将是第三代引力波天文台,它将建立在现有已成功建立的激光干涉探测器的基础上。在过去的 5 年中,对合并黑洞(BHs)和中子星的研究已经有了突破性发现。这些发现将带领科学家进入引力波天文学的新时代。爱因斯坦望远镜将被建立在地下隧道中,该隧道呈三角形,臂长 10 公里。

2024 年左右,科学家将决定在哪里建造爱因斯坦望远镜,荷兰马斯特里赫特附近的边境地区和撒丁岛的一个地区都是被提议的可能建造位置。

在期待爱因斯坦望远镜到临之前,一个比利时-德国-荷兰财团已经开始在马斯特里赫特附近建造了一个较小规模的研究设施,名为 ETpathfinder。它将容纳一个路径长度为 20 米的引力波探测器,测量设备将类似于爱因斯坦望远镜中的设备。

该设备将成为以下领域的国际研究中心:

  • 引力天文学
  • 高精度测量技术
  • 隔震
  • 测控软件
  • 低温学
  • 量子光学

ETpathfinder 的设计是由位于阿姆斯特丹的荷兰国家亚原子物理研究所(Nikhef)与马斯特里赫特大学合作完成的。为了实现第三代引力波探测器,如用于爱因斯坦望远镜的低温镜干涉仪科,一些规范将被测试和开发。

什么是 ETpathfinder?

下图为 ETpathfinder 的示意图。它由两条 20 米长的轨迹组成,其中包含作为振动腔运行的真空管。光会在两面镜子之间反射。这些镜子位于所谓的塔中,在真空中工作,彼此之间的距离为 10 米。

在一个典型的引力波探测器中,轨迹上的两个振动腔彼此呈 90 度角,就像法布里-佩罗-迈克尔逊干涉仪(FPMI)一样。在 ETpathfinder 研究的第一阶段,轨迹包含 FPMI。然后,利用小型光学元件,在每只臂上放置两个振动腔。这样,这两种轨迹可以被用于两种不同的激光波长和工作温度(15K 和 120K)下的研究。

A schematic of a typical gravitational wave detector with two vibrating cavities shown in red and blue.

镜像塔中的超高真空系统

低温和真空技术是通过仿真研究 ETpathfinder 的主要重点,特别是镜塔中的光学镜和低温屏蔽层,如下图所示。在 10-9 mbar 的超高工作真空中,99% 的粒子都是水分子。这些水分子易于与表面结合并形成层(单层和多层)。如果在冷却到 10k 的镜表面形成这样一层,水分子就会冻结,激光束就会折射。光子将被反射镜吸收而不是反射,导致反射镜局部升温和热变形,从而对干涉仪的质量产生不利影响。

镜塔每年需要多次打开以进行维护和研究。恢复运行时,需要排出气体。为了加快这一过程,温度会被升高。由于所有电子设备和敏感材料都会在高温下膨胀,因此所以塔的温度不能超过 338K。

ETpathfinder 的两个镜塔之一的 3D 渲染,带有真空容器、低温防护罩、有效载荷和镜子

冷却策略

不可避免的是,一旦达到真空,一些水分子仍会留在真空室中。如果低温屏蔽层和反射镜同时冷却,这些分子很有可能会与反射镜表面结合并在那里停留很长时间(几个世纪)。为了防止这种情况发生,人们设计了一种冷却策略。

下图显示了带有低温屏蔽层和镜面的镜塔底部的横截面。冷却策略如下:首先用氦冷却绿色屏蔽,然后冷却蓝色屏蔽层。假设镜面上存在较低的压力; 因此,水分子会迁移到较冷的、被氮冷却的表面。

A cross-sectional view of the bottom of a mirror tower in the ETpathfinder, with the shields, mirrors, and other components labeled and colored.

超高真空仿真的验证与验证

到目前为止,只有一个由 Nikhef 公司的物理学家 H.J. Bulten 使用射线追踪编写的代码进行的模拟计算。尽管模拟的结果非常值得期待,但尚未将射线追踪代码与其他软件包进行比较。一项研究旨在为 ETpathfinder 超高真空系统中的压力找到一种可靠的计算方法。

在对实际 ETpathfinder 进行计算之前,已利用超高真空装置上的测量值对 COMSOL Multiphysics® 软件进行了验证。这是本研究的第一部分,已经在 Nikhef 公布。

第二步是研究在打开系统进行维护或研究后,ETpathfinder 在排气过程中需要加热多长时间才能达到 10-9mbar 的真空状态。

最后,我们研究了冷却策略对镜面单分子水分子层覆盖率的影响(在它冷却到10 K后)。

步骤1

理论模型验证

为了验证射线追踪代码,我们使用超高真空装置进行了测量,见下图。将测量结果与射线追踪代码进行比较,并使用 COMSOL Multiphysics 软件的分子流模块进行模拟。

超高真空装置的设计是为了研究不同材料的放气。它可以加热到 423K,由两个腔室组成:

  1. 下腔室,有一扇门来装载测试样品,并由 O 形密封圈密封
  2. 上腔室,其中包含四极杆质谱仪 (RGA)和稳定离子计

并排图像显示左侧超高真空系统的照片和右侧同一系统的示意图

预计将有约 1.2·10-14 mol/s 的水分子进入上腔室。这一估计数是基于:

  • 装载门处 Viton O 形环的表面积和渗透常数
  • 事实上,在两个腔室之间有一个手动操作的阀门
  • 上腔室的压力比另一个腔室低

在装置投入运行之前,先对其进行充气,然后是 22 小时的真空泵时间。之后,系统从 299K 加热到 344K,这是通过在真空室外部和绝缘屏蔽层之间循环暖空气来完成的。

记录温度,如下图所示。该图还包括插入到射线追踪代码和 COMSOL Multiphysics 中的温度历史。

将记录的真空室温度(红线)与光线追踪软件(绿线)和 COMSOL Multiphysics(蓝线)中的温度进行比较的线图

真空装置的理论背景和参数

分子流动是流动计算的一种特殊形式。粒子在超高真空中的自由路径长度远远大于真空容器本身的尺寸(克努森数 >10)。压力的计算基于粒子与壁面的碰撞,而不是粒子之间的碰撞。因此,室内空间和容器结构的建模并不重要:它只需要考虑墙壁的内部几何形状就足够了。下图描述了超高真空的设置,右侧网格用于计算。

并排图像显示了在 COMSOL Multiphysics 中建模的超高真空设置的左侧模型几何和右侧网格

与表面碰撞的粒子被吸附而不是反射的概率(黏附系数)取决于特定时间步长内单层的覆盖率。黏附系数是一个介于 0 和 1 之间的数字(1 是与表面结合的 100% 概率),并使用以下公式计算:

s = \textrm{sc} *\Big( 1- \frac{n_{\textrm
{adsorption}}}{n_{\textrm{sites}}}\Big)

根据文献和专业知识,黏附系数 (sc) 设置为 0.2。n吸附量(mol/m2) 是表面吸附颗粒的数密度,由 COMSOL Multiphysics 在每个时间步长内计算。n 位点 (mol/m2) 是表面上单层的最大分子数,设为 6.0·10-5mol/m2

在模型中,假设吸附的水分子在表面不解离,因此分子从表面解吸的速率 Γ (mol/m2/s)取决于停留时间(τ)和吸附分子的密度:

\Gamma_{\textrm{desorption}} =\frac{n_{\textrm{adsorption}}}{\tau}

在等温过程中,τ 是一个常数。然而,在这种情况下,温度会上升,需要计算每个时间步长的 τ

\tau = \frac{1}{f}\exp\left(\frac{E_\textrm{b}}{RT}\right)

其中,f 为束缚在金属上粒子的固有振荡频率(1.0·1013 Hz), R (8.314J/(mol K) 为气体常数,T (K)为温度,Eb (J/mol)为束缚能。束缚能取决于材料的表面粗糙度。计算的数值范围为 0.9eV (86.840 kJ/mol)~1.10 eV (106.130 kJ/mol),间隔为 0.05。

结果

测量和仿真结果如下图所示。COMSOL Multiphysics 仿真和射线追踪代码预测的加热循环结束时的压力低于 Stabil-ion 真空计的测量值。

使用离子规(红线)、射线追踪软件(绿线)和 COMSOL Multiphysics(蓝线)拍摄的真空室压力比较线图

在不同时间和不同温度下的重复测量得到了相似的结果。结论是,超高真空装置中的压力下降速度比文献中发现的标准脱气曲线似乎预测得要慢。原因可能是真空室实际上有更大的表面积。例如,测量仪器、阀门和涡轮分子泵上的叶片可能有重大贡献。此外,O形圈的渗透性是不确定的,整体加热可能不均匀。因此,壁某些地方的排气量可能比理论模型预测的要低。

文献中提到了束缚能在 0.83eV~0.95eV 的范围。然而,将模拟结果与真空装置的测量数据进行比较,可以清楚地看到,当使用更高的束缚能时,模拟结果更一致。这表明,在实际中,排气量比理论预测的要低。

步骤 2

ETpathfinder 的几何形状和参数

对于 ETpathfinder 的实际模拟,必须简化其几何形状——就像超高真空设置的情况一样。下图显示了这些意义深远的简化。实际上,所有三个屏蔽层都由两层板组成,其中的孔彼此并不同心。在模型中,这是三个单层屏蔽,其中的孔被插槽取代。这些插槽位于底部的内屏蔽层和顶部的第二屏蔽层中。

ETpathfinder 模型几何的并排图像,左侧显示完整,右侧显示简化
下图左侧显示了一个完整的镜像塔的 CAD 模型,在右侧显示了一个简化的模型,其中几何形状已经被倒置用来反映内部体积。

镜像塔模型几何的并排图像,左侧显示完整,右侧显示简化
关于 ETpathfinder 的一些附加信息:它包含 13 个涡轮分子泵(3200l/s)和预抽泵。预计在 87.6 m2 的区域内,通过双差压泵 O 形环的渗透率为 1.5·10-11 mol/m2, O 形环之间的压力为 1mbar。

ETpathfinder 的点火(加热)

当镜塔打开后,必须达到 10-9 mbar 的压力。进行了7次不同发射时间的模拟,以确定 ETpathfinder 的镜塔应该加热多长时间。结果如下图所示。

绘制不同射击时间下 ETpathfinder 镜塔压力的折线图

尽管在点火 25 小时后,压力远低于 10-9mbar 的设计目标,但单层膜的很大一部分没有气体排出。这需要长达 168 个小时或整整一周的时间。根据这些调查结果,建议开火时间至少为一周。

步骤3

测试当前的冷却策略

为了分析冷却策略的效果,模拟了两种情况:

  1. 开火后直接冷却(下图左)
  2. 内屏蔽层和镜面在 338K 的温度下保持较长时间,而第二个屏蔽层冷却到 80K(下图右)

直接冷却在镜面上留下 3.333% 的单分子层,而冷却策略留下 0.068%(38 倍)。对第二个防护层也进行了研究,但效果不如预期。

比较直接冷却和镜塔上更多样化的冷却策略的并排图

结论

仿真有助于增强对冷却策略的信心。然而,当然对仿真进行了假设,重要的是要对结果进行评判。由于以下几个因素,达到 10-9mbar 的压力是一个真正的挑战:

  1. 均匀加热和冷却
  2. O 型环的渗透
  3. 表面粗糙度
  4. 微污染

仿真对特定情况的预期泵送曲线给出了很好的见解,但理论模型只是对现实的一种乐观表示。

正如 Karl Jousten 在一篇关于热脱气的论文的结论中所描述的:“在这篇评论的最后,应该指出的是,材料的脱气在理论和实验中都是一个非常生动的主题,它们被大量讨论,非常复杂,并且关于它还有很多东西要学习。”

超高真空工程是一个高度专业化的领域,在微观层面有许多未知的方面。部分由于这些未知因素,创建逼真的仿真是一项重大挑战。COMSOL Multiphysics 等软件包提供的功能和计算能力令人印象深刻。

特别感谢 Nikhef 的员工在我实习期间为我提供测试设备,并分享了他们在真空技术方面的专业知识。也感谢 NEVAC 给我机会发表我的研究和他们所做的贡献。最后,感谢 COMSOL 能够在客座博客文章中展示我的工作。

关于作者

Vera Erends 是荷兰乌得勒支应用科学大学机械工程专业的学生。她在阿姆斯特丹 Nikhef 实习期间首次接触真空技术和分子流模拟。她与 Nikhef 的员工(如物理学家 HJ Bulten 博士和真空专家 B. Munneke)密切合作,成功研究了 ETpathfinder 的自由分子流并发表了她的第一篇论文。

参考文献

  1. Het ontwerp van de grootste vacuüminstallatie op aarde: de Einstein Telescope, NEVAC blad 56-1 − maart 2018.
  2. ET Pathfinder team, ETpathfinder Design Report. Science Park, Amsterdam, The Netherlands (2020). www.etpathfinder.eu/wp-content/uploads/2020/03/ETpathfinder-Design-Report.pdf
  3. M. Ortino, “Sticking coefficients for technical materials”, master thesis, Politecnico Milano, CERN, Geneva, Switzerland, 2020. www.politesi.polimi.it/bitstream/10589/131905/1/Mattia%20Ortino%20Master%20Thesis.pdf
  4. COMSOL Multiphysics, Molecular Flow Module User’s Guide, ver. 5.4, 2018. doc.comsol.com/5.4/doc/com.comsol.help.molec/MolecularFlowModuleUsersGuide.pdf
  5. K. Jousten, “Thermal outgassing. Proceedings of the CERN Accelerator School”, Snekersten, Denmark, CERN report, S. Turner ed., pp. 111–125, 1999. cds.cern.ch/record/455558/files/open-2000-274.pdf
]]>
//www.denkrieger.com/blogs/simulating-the-pressure-in-an-ultrahigh-vacuum-system/feed/ 0
COMSOL Multiphysics® 在生物医学领域的 8 种应用 //www.denkrieger.com/blogs/8-uses-of-comsol-multiphysics-in-the-biomedical-industry //www.denkrieger.com/blogs/8-uses-of-comsol-multiphysics-in-the-biomedical-industry#respond Thu, 10 Jun 2021 08:25:59 +0000 http://cn.staging.comsol.com/blogs?p=302061 从机械心脏泵植入物、疫苗存储装置到血液分析仪,生物医学应用本质上通常是多物理场。因此,多物理场仿真可以帮助从根本上改变生物医学设备和流程的设计和分析方式。今天这篇博客,我们分享了 8 个真实的例子,来介绍生物医学领域的工程师和研究人员如何使用 COMSOL Multiphysics® 软件驱动他们创新的救生设计。

1. 左心室辅助装置

心脏衰竭,或称充血性心力衰竭,仅在美国就影响了超过 600 万成年人。当心脏不能向全身输送足够的血液和氧气时,就会发生这种常见的疾病。帮助缓解心力衰竭的一种方法是使用左心室辅助装置(LVAD),这是一种机械泵,植入胸腔后可提供循环支持。左心室辅助装置通常被称为 “移植的桥梁”,因为它们通常用于治疗等待心脏移植的病人。不仅如此,它们也可以被用作因客观医疗条件而无法接受心脏移植的病人的长期治疗方案。

正如预期的那样,左心室辅助装置的设计通常很复杂。他们需要:

  • 足够的功率(大约10 瓦左右),可以正常运行
  • 足够小,可以装进病人的胸膛
  • 由与人体相容的材料制成

为了设计具备所有这些品质的左心室辅助装置,雅培实验室的研究人员使用了仿真技术。例如,他们使用 COMSOL Multiphysics 帮助设计了左心室辅助装置的离心泵。为了防止血液在泵内和泵周围凝结(设计 左心室辅助装置 时的一个常见挑战),研究人员在 左心室辅助装置 的设计中加入了一个磁悬浮转子。使用COMSOL,研究人员能够对 左心室辅助装置中的转子和湍流进行建模和分析。

左心室辅助电机的磁悬浮转子(左上)和泵腔(左下)的仿真。左心室辅助装置的离心泵示意图(右)。
磁悬浮转子的仿真(左上),泵腔内流体流动的 CFD 仿真(左下),以及 左心室辅助装置 的离心泵示意图(右)。

此外,研究人员还对左心室辅助装置的控制器进行了机械冲击分析,用于研究它的弹性。这个控制器有助于左心室辅助装置的供电、控制和性能监控。

“我每天都在使用 COMSOL Multiphysics,包括概念验证模型和模拟非常复杂的、具有详细 CAD 几何结构和多种相互作用的物理特性。我花费了数个月在一些复杂模型上以获得我所有需要的信息。”
– Freddy Hansen, 雅培实验室高级研发工程师

2. 疫苗储存

根据美国疾病控制和预防中心的说法,疫苗储存在减轻常见可预防疾病的传播方面发挥着重要作用。然而,由于严格的温度要求,许多疫苗在存储过程中会变质,从而造成浪费。

作为全球公益项目的一部分,Intellectual Ventures 公司创新设计了一种被动式疫苗储存装置,用于将疫苗安全地运送到世界各地。它的设计只需要使用一批冰就可以将疫苗保持在 0°C~10°C。它的外壳具有多层绝缘,包括反射铝薄层、低导电空间和非导电真空空间。被动式疫苗储存装置不需要外部电源就可以工作。

一种被动式疫苗储存装置的模型。
在 COMSOL Multiphysics 中进行的被动式疫苗储存装置热仿真。

在设计阶段,研究人员在一个与撒哈拉以南非洲地区温度相似的环境室中测试了几个被动式疫苗储存装置原型的性能。为了优化被动式疫苗储存装置系统的设计,在建造原型之前,该团队使用了 COMSOL Multiphysics 以及它附加的各种产品,包括传热模块和分子流模块。

通过实验和模拟,该团队能够设计出一种容易运输的被动式疫苗储存装置,可以将疫苗冷藏长达一个月,从而能够将疫苗安全运输到世界各地,甚至是在电力有限或没有电的地方。

3. 消融技术

2020 年,肝癌是全球癌症相关死亡的第三大常见原因,导致了超过 80 万人丧生。这种疾病有时用消融技术进行治疗。这是一种微创治疗,可以在不切除肝脏肿瘤的情况下破坏它们。治疗肝癌的两种消融术包括:

  • 射频消融 (RF),使用针状探针传递高频电流来加热和杀死肿瘤内的癌细胞
  • 微波消融 (MW),使用针状探针发送电磁波来破坏肿瘤内的癌细胞

许多执行这类消融治疗的医疗专业人员面临的一个共同挑战是,他们无法获得有关这些程序有效性的实时反馈。为了解决这各问题,射频和微波消融技术的领先开发商——美敦力公司的一个研究团队使用仿真设计了具有更强的可预测性和有效性的新型消融探针。在他们的工作中,该团队使用 COMSOL Multiphysics 和附加的射频模块来优化探头的发射和接收特性。

4.老花眼

随着年龄的增长,我们的眼睛会出现越来越难以聚焦近距离的物体的情况。这种情况被称为老花眼,会影响到世界上大多数年龄到了65岁的人。老花眼的主要原因是晶状体形状的变化,晶状体是眼睛内部的一个微小结构。在我们年轻的时候,晶状体很薄且有弹性,但随着时间的推移,它会逐渐变厚,弹性变差。如果不加以矫正,老花眼会是造成视力障碍的最常见原因

老花眼可以通过使用眼镜、隐形眼镜或简单的放大镜来缓解。一种更深入的治疗形式是屈光手术。但是,所有这些选择都有其自身的缺点和限制。

人眼的光力学模型。
用于帮助研究老花眼的人眼模型。

为了推进老花眼的研究并治疗老花眼的根本原因,瑞士医疗器械公司 Kejako 的研究人员创建了一个人眼的 3D 机械模型。使用 COMSOL Multiphysics,该团队能够模拟人眼的机械和光学特性。他们模型的最终设计准确地模拟了老花眼的自然发展过程。

5. Linac-MR

加拿大 Cross 癌症研究所的一个研究团队设计了一种创新设备,可以对人体内的癌细胞进行成像和治疗。该设备称为 Linac-MR,它将线性粒子加速器 (Linac) 和磁共振图像 (MRI) 整合到了一个系统中,目的是无论肿瘤是否转移都能靶向和治疗任何肿瘤,同时并避免损害肿瘤部位周围的健康组织。

为了优化这种复合型设备的设计,研究人员需要分析能够阻止 Linac -MR 发挥最佳性能的物理现象。为此,研究人员将目光转向了多物理学仿真。
Linac-MR 配置
Linac -MR 系统的配置。

该团队最早进行的一个仿真是确定 Linac -MR 中钢屏蔽板的最佳尺寸,这块板用于保护 Linac 免受 MRI 磁场的影响。他们使用 COMSOL Multiphysics 设计了一个半径为 30 厘米、厚度为 6 厘米的优化防护罩——其尺寸是原始设计的三分之一。

此外,研究人员希望设计一种能产生 10 兆电子伏电子束的 Linac-MR。这样该系统就能够治疗多种癌症类型。最初,他们估计 Linac 需要一个 70 厘米长的波导,系统才能产生 10 兆电子伏的电子束。通过仿真,他们了解到使用30 厘米的波导就足够了。通过减少波导的长度,研究人员可以建造一个更小的房间来容纳 Linac-MR ,从而在此过程中节省时间和金钱。

6. 血液学分析

实验室测试(例如血液学分析)的设计必须绝对准确,这一点至关重要,因为这些测试影响着当今多达 70% 的医疗决策。

HORIBA 医疗是一家医疗诊断设备、血液学和临床化学设备的全球供应商,它们在设计时考虑了以下标准:

  • 速度
  • 准确性
  • 尺寸
  • 使用方便

仿真使 HORIBA医疗能够满足这些设计要求。
ABX Pentra® 系列分析仪中孔径电极系统的工作原理示意图。
ABX Pentra® 系列分析仪中的孔径电极系统示意图。

例如,通过仿真,HORIBA 医疗能够增强 Pentra® 系列中的微孔电极系统,这是他们最先进的血液分析仪之一。他们使用 COMSOL Multiphysics 分析了该系统中发生的各种复杂物理过程,包括流体速度、通过孔的压降、热传递和电场。

“由于这是一个非常小的系统,因此很难通过实验进行任何测量。仿真使我们能够改进一些仅使用物理原型无法完成的流程。”

– Damien Isèbe,HORIBA 医疗科学计算工程师

7. 细胞分选仪

The Technology Partnership 的研究人员设计了一种微流控细胞分选设备,可用于帮助治疗癌症和各种其他疾病。他们设计的涡流驱动细胞分选器 (VACS),包括一个输入通道,目的是将生物细胞分选到两个输出通道:

  • 废细胞
  • 感兴趣的细胞

与传统的细胞分选仪相比,涡流驱动细胞分选器更快、更于便携(尺寸为 1 mm x 0.25 mm)、更容易使用和处置。此外,与传统的细胞分选仪不同,涡流驱动细胞分选器使用热蒸汽泡脉冲技术来正常工作。

显示出旋涡驱动细胞分选器的组成部分的图表。
涡流驱动细胞分选仪的组件。

据 The Technology Partnership研究团队称,在涡流驱动细胞分选器的整个设计过程中都需要多物理场仿真。例如,使用流体动力学模型,他们模拟和分析了设备的热蒸汽泡技术的效果。通过这样做,该团队能够快速构建涡流驱动细胞分选器的工作原型——世界上最小的细胞分选仪之一。此外,仿真还有助于验证他们的设计。

8. 药物洗脱支架

当心脏中的动脉被斑块积聚阻塞时,就会发生冠状动脉狭窄。患有这种疾病的病人可能会出现呼吸急促、胸痛和头晕等症状。

为了治疗这种疾病,医疗专业人员有时会使用一个小型金属支架来保持堵塞的动脉畅通。然而,组织会在支架上生长,并在这个过程中使动脉重新变窄。帮助防止这种过度组织生长的一种方法是使用药物洗脱支架,这种支架上涂有药物,旨在减少动脉中的细胞增殖。为了更好地了解这些支架是如何工作的,创新的医疗设备开发商—— Boston 科学的一个工程师团队使用了多物理场仿真。

图示说明支架如何在被斑块堵塞的血管中工作。
血管被斑块阻塞的示意图(左上)、插入的支架并在被斑块阻塞的血管中扩张(右上)以及支架在血管中的工作(下)。

在他们的工作中,Boston 科学团队对药物洗脱支架涂层的释放曲线进行了建模和研究。释放曲线是药物涂层溶解到血管组织中的速率。这项研究帮助团队设计了一种药物洗脱支架,该支架具有可根据患者自身需求定制的可控释放曲线。

COMSOL News 生物医学特辑

阅读我们的 COMSOL News 生物医学特辑,了解文中描述的 8 个示例以及另外 4 个有关示例的更多信息。

ABX Pentra Pentra HORIBA ABX SAS 的注册商标。

]]>
//www.denkrieger.com/blogs/8-uses-of-comsol-multiphysics-in-the-biomedical-industry/feed/ 0
如何在 COMSOL®中使用草图工具绘制二维几何 //www.denkrieger.com/blogs/how-to-use-the-sketch-tools-in-comsol-to-draw-2d-geometry //www.denkrieger.com/blogs/how-to-use-the-sketch-tools-in-comsol-to-draw-2d-geometry#respond Thu, 18 Jun 2020 05:40:38 +0000 http://cn.staging.comsol.com/blogs?p=236341 在COMSOL软件中对二维组件进行建模,或在三维模拟中使用工作平面时,您可能已经注意到,如何创建几何图形的功能发生了一些细微但重要的变化。使用草图 模式以及约束和尺寸,可以绘制平面几何图形并定义您所绘制的几何实体之间的关系。请放心,您已经习惯使用的二维几何图形绘制功能仍然可用,但新版本软件新增的一些功能绘图效率更高。

草图模式简介

与 COMSOL Multiphysics® 软件 5.5 版本一起发布的草图 模式,使您可以在图形 窗口中交互式绘制和编辑几何图形。该功能可用于平面绘图,并可与 COMSOL® 软件的核心功能一起使用。

COMSOL Multiphysics 模型构建器中“草图”选项卡的屏幕截图。
二维或三维模型组件的几何或工作平面功能区分别提供了草图选项卡。

使用草图 模式,您可以交互式绘制大量不同类型的形状。这些形状的绘制方式与先前版本的软件相同,但具有增强的可视化效果、指示器和功能。

交互式绘图

使用草图 模式在 图形 窗口中绘制几何图形时,所有对象均以线框渲染的方式显示(如下图左所示),直到离开草图模式或模型树中的几何节点。无论您为对象类型(例如实线、开放曲线或封闭曲线)选择何种设置,此选项都将保持不变,从而使您可以轻松访问和查看所有组成的对象。

在COMSOL Multiphysics 中以“草图”模式工作时的固体对象。
在“图形”窗口中草绘的实体对象。

草图模式下(左)与草图模式外(右)比较,实体几何的可视化图形。

打开草图 工具栏并在工具栏的绘图 部分选择要制作的几何形状类型后,您可以在图形 窗口中单击并移动或拖动鼠标形成形状。您可以通过不同的按钮来绘制不同的几何体素,并且可以通过组合多个体素特征创建任何几何图形。

 

首先使用相应形状的体素特征、矩形按钮和多边形按钮绘制一个矩形。使用矩形按钮,通过左键单击,将鼠标拖动到所需的大小,然后再次单击鼠标左键以完成绘制。使用多边形按钮,通过为每条边形成线段来绘制对象。完成绘制最后一条边后,右键单击即可完成绘制。

与 COMSOL® 软件的早期版本相比,新的草图 模式提供了交互式且更快的绘图选项,例如:

  • 插值曲线
  • 贝塞尔曲线
  • 长方形
  • 正方形
  • 圆形
  • 弧线
  • 椭圆形

新版本还增加了新功能,增加了绘制以前无法绘制的几何形状和特征(例如多边形)的选项,所有这些功能都可以最大限度地提高组合所需几何图形的效率。

您现在可以通过选择一个或多个点,然后拖动鼠标以交互式创建圆角。

 

视频中演示了正在使用的 圆角操作。选择尖角处的顶点,然后拖动它以形成圆角。

通过复合曲线 特征,您可以将不同类型的边交互式地放置到单个对象中,同时保持所有组成边之间的连接。绘制一系列不同类型的边缘线时,会自动生成此特征并将其添加到几何序列中。您还可以通过以下方法手动使用此功能:在几何序列中选择与几何中连接边相对应的节点,单击鼠标右键,然后选择复合曲线 特征。这会将序列中选择的所有已连接但独立的曲线对象组装为单个对象。

 

视频显示了正在绘制的复合曲线。先自动绘制,再手动绘制。手动将对象组装为复合曲线时,可能需要先更新对象类型的设置,以使菜单选项可用。

交互式编辑

编辑几何图形中的任何对象时,除了在设置 窗口中更改对象的任何值外,现在还可以单击并拖动对象本身、对象的边或顶点以调整其大小或更改几何的一个或多个零件。您也可以在拖动鼠标的同时按 Ctrl 和(或) Shift 键,以更改设计中其他几何实体的移动方式。

 

如本视频中所示,您可以通过多种方式交互式地编辑几何。您可以单击并拖动对象的中心以移动它,可以通过拖动边缘来更改大小,或者可以通过拖动顶点来更改大小或配置。

此外,如果草图包含多个对象,选择几何实体后不确定零件属于几何序列中的哪些节点,您可以双击它。草图中该零件所属的节点将在模型开发器窗口中自动被选择。

 

在草图模式下双击每个单独的几何实体时,将在模型开发器窗口中自动选择对应于该几何零件的节点。

当您为模拟的几何体进行复杂的设计时,这将非常有用。在这里,您可以在设置窗口手动更改其属性,或直接在图形窗口中更改对象。

导航和指示器

使用草图模式时,您会注意到在图形窗口以及正在交互的各个几何实体上都会出现许多可视指示器。单击草图按钮后,粗体栅格线会自动出现在 x–y– 截距处,从而可以快速参考栅格中的原点。

A screenshot showing the Graphics window in the Model Builder with the Sketch mode enabled and grid lines shown.
在几何中启用草图模式后,图形窗口中在原点处显示粗体栅格线。

拖动模型几何图形中的任何顶点时,您会看到,当该点拖动到与几何图形中的其他点对齐时,会出现绿色的栅格线。您还会发现,在几何图形中绘制任何新对象时,也会出现这些相同的线。此功能为在相对位置上绘制对象提供了指导。

 

当拖动点或绘制新对象与其他点对齐时,图形窗口中将显示绿色栅格指示线。

如前所述,您除了可以在图形窗口中进行交互式编辑所绘制的对象外,还可以在设置窗口中进行更改。对于某些几何体素特征(例如多边形或插值曲线),在编辑点坐标时,红色圆圈标识您当前正在编辑的图形窗口中的对应点,从而使您能够准确地看到要移动的点。

 

在多边形的设置窗口中,选择表中的任何单元格都会导致相应的点及坐标以红色圆圈突出显示。

设计模块中的约束和尺寸

草图 功能选项卡中,设有约束和尺寸工具应用于平面几何,您也可以在图形窗口中以交互的方式完成。当您绘制或处理复杂的几何图形和研究时(例如,如果要参数化几何图形并随后更改值),此功能将非常有用且尤为重要。您无需为体素的坐标和尺寸创建表达式,然后再手动定义表达式;您可以指定位置、距离和角度,从而使该过程变得更快、更简单。请注意,您需通过设计模块访问此功能,它并不是 COMSOL® 软件的基础功能的一部分。

A screenshot of the Sketch tab in the Design Module, including the Constraint and Dimension sections.
设计模块中草图选项卡中的约束和尺寸功能

通过在几何节点上打开设置窗口的约束尺寸部分的相应设置,您就可以启用这些工具。

A screenshot of the Geometry Settings window for inputting constraints and dimensions in the Design Module.
在几何设置窗口,通过从相应的下拉菜单中选择开,就可以启用约束和尺寸功能。

约束 是设置与数值无关的几何实体的要求。这样的示例包括:要求两边相互垂直或要求直线与曲线相切的。COMSOL 软件具有许多可使用的预定义约束,例如:

  • 平行
  • 垂直
  • 相切
  • 重合
  • 同心
  • 等距
  • 等半径
模型构建器中“图形”窗口中的简单几何图形。
在两个相邻边之间应用垂直约束后的简单几何。

在两个相邻边之间应用 垂直约束之前(左侧)和之后(右侧)的简单几何形。

相反,尺寸 是设置与数值关联的几何实体的要求。例如,可以设置圆弧半径或两点之间的距离的值。参数和表达式也可以用于定义此类值,这在运行参数扫描或参数优化时会很有用(稍后会对此进行详细介绍)。COMSOL® 软件内置的尺寸包括:

  • 距离
  • x距离
  • y距离
  • 总边长
  • 角度
  • 半径
  • 位置
图形窗口中的简单几何图形。
A simple geometry after applying a Distance dimension to an edge.

一个简单的几何图形区域,显示了 距离尺寸应用于边之前(左侧)和之后(右侧)。

约束尺寸 特征可以应用于几种不同的方式。您可以通过在功能区中选择所需的约束尺寸按钮,然后在图形窗口中选择要应用关系的适当几何实体来手动添加它们。通过启用智能约束模式或智能尺寸模式,您也可以通过更自动化的方法来完成此操作。使用这种方法,您可以在草图工具栏中选择约束按钮或尺寸按钮;开始选择几何;然后,根据您选择的几何实体,鼠标旁边会出现相应的约束或尺寸图标,然后就可以应用了。

此外,如果打开使用约束和尺寸,则在交互式编辑草图时还可以自动添加约束。例如,拖动一个顶点以与草图中的另一个顶点重合会导致自动生成重合约束。

定义好草图后,几何图形将被锁定并显示为黑色,而在解锁和可编辑时显示的是灰色。此外,在几何 节点的设置窗口中会显示一条状态消息,说明草图已完全定义。请注意,应用约束和尺寸以创建完全定义的草图不是必须的,但建议在几何参数扫描和优化完全定义草图。

 

启用智能约束模式可将约束应用于任意几何图。注意视频开头的几何状态消息。之后,将启用智能尺寸模式以将尺寸应用于几何图形。在视频末尾,应用所有这些约束和尺寸后,请注意出现的几何图形的状态消息。

在对几何图形应用任何约束或尺寸后,您始终可以将鼠标悬停在任何代表性图标上。这将在图形窗口中突出显示与约束或尺寸关联的几何实体。您也可以双击图标,然后将自动选择几何序列中的相应节点。在此,您可以选择在设置窗口中编辑约束或尺寸的任何属性。

 

将鼠标悬停在应用于几何图形的任何约束和尺寸上时,关联的几何实体将在图形窗口中突出显示。然后,您可以双击任何约束/尺寸以在设置窗口中打开并编辑其属性。

为参数化扫描准备草图

在详细讨论了几何功能之后,您可能想知道在设计过程中的哪些点需要使用这些功能,特别是如果您希望使用参数化扫描来研究几何参数的影响。对于这样的应用,建议对已绘制的草图应用约束和尺寸,以使其定义良好。这样做可以确保在更改尺寸时,您绘制的几何图形的行为可预测。随着尺寸和坐标根据您在扫描中指定的值的更新,几何实体的形状以及几何实体之间的相互关系得以保持。

没有特定的过程需要将未充分定义的草图设置为充分定义。但是,我们发现在使用草图工具绘制和唯一定义用于参数研究中的草图时,以下步骤很有用:

  1. 绘制几何图形
  2. 应用约束
  3. 应用尺寸
  4. 应用约束和尺寸以锁定刚体的自由度

在上述步骤中,您可以看到应用约束和尺寸实际上分为两部分:一部分用于定义和约束草图中的几何实体,另一部分用于定义和约束几何以避免刚体平移和旋转。遵循此顺序通常可以有效地获得定义良好的草图。这样一来,几何形状本身首先受到约束。然后,生成定义良好的几何图形需要约束和尺寸来消除草图中的自由移动使其成为刚性体,例如位置x 距离y 距离 可用于约束刚体的自由度。

后续步骤和延伸学习

在了解了 COMSOL 软件中新增的几何绘制功能之后,我们建议您尝试一下。体验组合不同的形状,并采用上述推荐的草图绘制工作流程,来熟悉这些重要的工具。

要了解有关草图工具栏以及约束尺寸 功能的更多信息,您可以分别参考 COMSOL Multiphysics 5.5 版本“发布亮点”页面中的几何设计模块。另外,对于获得设计模块许可证的用户,设计模块 的简介文档中提供了有关使用草图 工具以及约束和尺寸的教程。

]]>
//www.denkrieger.com/blogs/how-to-use-the-sketch-tools-in-comsol-to-draw-2d-geometry/feed/ 0
如何创建包含 CAD 导入和选择的仿真 App //www.denkrieger.com/blogs/how-to-create-an-app-with-cad-import-and-selections //www.denkrieger.com/blogs/how-to-create-an-app-with-cad-import-and-selections#respond Thu, 30 Apr 2020 03:42:09 +0000 http://cn.staging.comsol.com/blogs?p=226391 在使用 COMSOL 软件二次开发的过程中,你可能会遇到这样的问题:如何使用 App 开发器创建可以处理 CAD 导入并能让用户交互式选择边界条件的仿真 App?我需要了解编程吗?今天我们将为您介绍在COMSOL软件中创建包含CAD导入和选择的仿真App 的方法,通过这些方法,你不仅可以通过一系列简单的步骤来做到这一点,而且不需要任何编程!你只需在 COMSOL 软件附加的 App 开发器的表单编辑器中执行标准操作就可以轻松完成。

CAD 导入和 仿真 App 选择演示

 

本文即将讨论的仿真 App 屏幕操作录像。

模型开发器中的选择

“选择”是创建本文开头演示的仿真 App 的关键。首先,我们来回顾一下选择的概念以及它们在 COMSOL Multiphysics® 软件中的用法。

在模型开发器中,指定选择可以在分配材料属性、边界条件和其他模型设置时,对域、边界、边或点进行分组。我们可以通过在组件>定义 节点下添加子节点来创建不同类型的选择。这些可以在整个模型组件中重复使用。

下面,我们以边界条件的选择为例来说明如何使用选择。当我们选择一些边界与某个边界条件关联时,可以直接在 COMSOL Desktop® 环境的 图形 窗口中单击那些边界。这是默认选项,称为手动选择。然后这些边界将被添加到该边界条件的局部选择中。

图片显示了带有手动选择出口流边界的微混合器模型。
使用编号为 186 的边界手动选择出口流边界。

相反,指定选择可以让我们定义全局选择,只需从边界条件的下拉列表中进行选择即可将其重新应用。下图显示了显式 选择的定义和使用,将编号为 186 的边界定义为出口流边界

设置窗口的屏幕快照,用于显式选择名称为出口边界
定义显式选择,将编号为 186 的边界定义为出口边界。

屏幕快照显示了名为“选择”的“出口边界”,用于层流边界条件
对层流的出口边界条件使用出口边界选择。

准备用于创建 仿真App 的模型

我们将以 COMSOL Multiphysics 案例库中的 微混合器模型 教程为例,说明 CAD 导入和选择的用法。在案例库中,原始模型位于以下位置:COMSOL Multiphysics > 流体动力学 > 微混合器

该模型模拟了一个静态层流微混合器,混合器具有两组平行的分离-再成形-重组混合单元。每个混合单元使流体层的数量增加了一倍,从而实现快速混合过程。以标量混合质量为输出结果,通过计算出口处的浓度曲线的相对方差来定义。

来自模型生成器中的 COMSOL Multiphysics 案例库中的微混合器模型。
COMSOL Multiphysics® 案例库中的微混合器模型。

我们将对此模型稍做修改并作为仿真 App 的基础模型。尽管这是一个微流体模型,但这里使用的操作是通用的,适用于任何模型。

COMSOL 案例库中的模型都是通过使用 COMSOL Multiphysics 中的内置功能来构建几何结构的。但是,这里我们将其修改为基于 CAD 导入的版本。

首先,下载并打开相应的文件 micromixer_prepared.mph,该文件在与本博客文章相关的文件列表中可以查看:支持 CAD 导入和选择的 App

该模型在几何 序列中具有一个 CAD 导入节点,如下图所示。

“ CAD导入设置窗口图。
CAD 导入设置窗口,显示输入了一个本地的 COMSOL 几何结构。

如果我们拥有可访问 CAD 内核的附加产品(CAD 导入模块,设计模块或用于连接 CAD 的 LiveLink™ 产品之一),则该仿真 App 将允许我们导入各种行业标准的 CAD 格式文件。

为了使仿真 App 不依赖导入 CAD 格式文件的尺寸,该模型还添加了 缩放 操作,并设置参数为 geometryScale,如下图所示。

缩放操作设置窗口的屏幕截图
缩放操作的设置窗口。

geometryScale 的值 1 假定导入的 CAD 格式文件以微米为单位定义。 geometryScale 的默认值 1000 假定导入的 CAD 格式文件以毫米为单位定义。

如本文开头所述,模型 micromixer_prepared.mph 具有两个显式 选择,即入口边界出口边界。这些选择将应用于模型中的流量和质量传输的入口和出口。

将出口边界选择应用于出口边界条件的微型混合器模型
出口边界选择应用于稀物质传递接口的 出口边界条件。

使用新表单向导创建第一个仿真 App

现在,让我们基于微混合器模型创建一个仿真 App。在主屏幕 选项卡上,从模型开发器切换到 App 开发器,然后单击新建表单,打开新建表单向导。

输入/输出页面,将表单标题 更改为 Main,并将表单名称 更改为 main。然后,双击左侧的树使以下参数在表单中可用(详请参见下图):

  • 入口浓度
  • 扩散系数
  • 平均速度
  • 几何比例

此外,双击全局计算 节点以显示计算出的混合质量。

表单向导中的输入/输出页面
表单向导中的输入/输出页面。

图形 页面中,双击浓度,表面(tds以将其作为默认图形输出。

打开图形页面的表单向导
表单向导中的 图形页面。

按钮 页面中,双击计算研究1以添加计算 按钮。

打开按钮页面的表单向导
表单向导中的 按钮页面。

单击确定 退出表单向导。

在表单编辑器中,根据下图使用拖放操作放置图形 对象和计算按钮。单击并拖动以调整图形 对象的大小,使其稍大一些。


表单编辑器中的初始应用布局。

下一步,将 App 布局模式切换为 栅格 模式。通过选择增长列增长行对齐>水平填充,以及 对齐>垂直填充,使图形 对象可调整大小。有关如何执行此操作的详细说明,请参阅COMSOL App开发器 简介(5.5版本)中第 116-117 页。

具有初始应用程序布局的表单编辑器演示了表单对象的拖放功能
网格布局模式,其中 图形对象可调整大小。

现在,我们通过单击功能区中的测试 APP 来运行该仿真 App。此仿真 App 非常有趣,对于各种输入都可以轻松计算并获得结果。

微混合器仿真 App 是在第一次设计迭代中内置于 COMSOL Multiphysics 的仿真开发器中。
微混合器仿真 App 的第一个版本。

在运行时最大化整个 App 窗口可能更为方便。在 App 开发器 中,单击 App 开发器模型树中的主窗口 节点,然后在设置窗口中的大小 部分,选择初始大小最大化,就可以启用这个功能。

打开“初始大小”选项的“主窗口设置”窗口的屏幕快照。
初始大小设置为 主窗口的设置。

启用 CAD 导入

为将 CAD 导入仿真 App,我们需要添加一个专用按钮,使用该按钮打开文件浏览器并执行导入。为了给新添加的按钮留出空间,如下图所示,在最后一个输入框相对浓度方差,出口 下方添加新行。

屏幕截图显示了如何在表格中添加另一行
在表格中添加另一行。

如下图所示,单击并选择新行中最左边的单元格。

屏幕快照显示了主窗体,选中的单元格显示了较深的蓝色
主表单中一个选中的单元格会显示更深的蓝色。

选择空单元格后,在表单 选项卡中,选择插入对象>输入>按钮。在按钮的设置窗口,将文本 更改为导入,使用图像库中名为 import_32.png 的图标(单击图标右侧的+按钮),然后将大小更改为(或使用另一个图标)。

混合模型开发器中导入按钮的设置
导入按钮的设置窗口。

右键单击按钮,然后选择对齐>右对齐 以更好地放置按钮。

屏幕截图显示了如何在仿真App中布局的右侧对齐CAD导入按钮。
CAD 导入按钮,靠右对齐。

现在,按钮的布局已经准备就绪。下一步是将动作或命令关联到按钮。单击导入按钮查看其设置窗口。在选择要运行的命令 部分中,浏览并双击模型>组件1>几何1>导入1>文件名(文件名)

导入按钮设置窗口的选择要运行的命令部分的屏幕快照。
导入文件添加到 导入按钮的命令序列中。

同样,浏览并双击模型>组件1>几何1GUI命令>图形命令>缩放范围,以将这些操作添加到命令 序列中。此外,根据下图,使用命令 序列下方的编辑变元按钮,或在绘制几何1缩放范围命令的变元字段中,手动键入 main/graphics1

屏幕快照显示了如何编辑“缩放范围”和“绘制几何1”命令的参数。

变元 main/graphics1 将图形输出到仿真 App 中的相应的图形 对象。不管模型的尺寸有多大,缩放到窗口大小命令可以确保整个 CAD 模型在图形窗口中都是可见的。

现在,我们可以通过单击测试 App 来运行该仿真 App,然后导入在本篇博客相关文件中下载的 MPHBIN 文件。

为了能够使用缩放 参数轻松更改导入 CAD 模型的比例,我们需要在新比例下重建几何对象并对其进行可视化。为此,我们可以添加另一个按钮来显示和构建几何图形。使用编辑器工具 窗口可以很容易地做到这一点。通过单击功能区的表单选项卡中的相应按钮,可以打开编辑器工具 窗口。单击编辑器工具 窗口中的导入按钮右侧的空白单元格,浏览至模型>组件>几何,然后单击鼠标右键,选择按钮。

编辑器工具窗口的屏幕快照,用于将“绘图几何”按钮添加到仿真 App
使用 编辑器工具窗口添加 绘制几何按钮。

突出显示了“绘制几何图形”按钮。
主表单中的绘制几何按钮。

如果需要对导入缩放后的CAD模型自动调整图形 轴,请根据下图,在绘制几何 按钮的设置窗口中,向命令序列添加缩放范围命令。

绘制几何图形”按钮的命令序列
绘制几何按钮 命令序列。

选择边界

现在,我们添加两个按钮来选择边界:一个按钮用于入口边界,另一个按钮用于出口边界

单击与计算 按钮相同的行中最左边的空白单元格。

使用编辑器工具窗口,浏览并右键单击模型>组件1>定义>选择>入口边界>按钮

选项已扩展的“编辑器工具”窗口添加了一个用于选择入口边界的按钮。
绘图选择 按钮添加到所选单元格。右键单击并选择对齐>右对齐以更好地放置按钮。

双击绘图选择 按钮,然后在其设置 窗口中,将文本 更改为入口

双击绘图选择按钮,然后在其设置窗口中,将文本更改为入口

入口边界 入口选择按钮。

根据下图,通过浏览并右键单击模型>组件1>定义>选择>出口边界>按钮,然后将按钮的相应文本更改为出口,重复上述步骤以创建出口 按钮。

入口和出口按钮用于在微型混合器模拟应用程序中进行边界选择。
用于边界选择的 入口出口按钮。

与在 模型开发器 中一样,单击 出口 选择按钮,使图形 对象具有交互性,从而允许我们单击边界,以便为出口边界 选择一个或多个边界。如下图所示,在绘制出口边界 命令中将 graphics1 作为变元反映在命令 序列中。对于入口 按钮,也是如此。

截图显示了“出口”按钮的命令顺序。
出口按钮的命令顺序。

要查看单击选择按钮后用户界面的显示方式,请参阅本文末尾更高级版本的仿真 App 图示。

在使用新的选择按钮之前,我们还需要在用于计算混合质量的平均算子中使用选择。在模型开发器中,转到组件1>定义>平均值1组件1>定义>平均值2,然后根据下图将选择 分别更改为入口边界出口边界

边界平均运算子的“设置”窗口,显示选择设置
边界平均算子 的选择设置。

参数化阶跃式流入浓度曲线

为了使用户能够控制用于测量混合质量的入口边界处的浓度阶跃函数,我们需要将其参数化并将此表达式提供给用户。为了表示微流体通道的特征宽度(数量级),根据下图,以具有默认值 1400[um] 的全局参数 channelWidth 开始。

在“参数设置”窗口中,突出显示通道宽度的“全局参数”。
通道宽度的全局参数

找到阶跃函数组件 1 > 定义 >阶跃 1 的设置窗口。在平滑部分中,在过渡区域大小 输入 channelWidth/10。这样可确保在从 0 增加到 1 时,阶跃函数的过渡区域为通道宽度的 10%。过渡过于尖锐可能会导致粗糙网格存在收敛问题。在本文的后面,我们将看到如何使用此阶跃函数来设置自定义浓度曲线。

步骤设置窗口显示了步骤功能的过渡区域的设置。
阶跃函数的过渡区域设置。

接下来,在流入边界条件的浓度 设置中,将表达式替换为 cStep

流入设置窗口突出显示了流入浓度变量
用于流入浓度的变量 cStep

组件1>定义>变量,定义新的变量 cStep 使表达式 等于 c0*step1(-z[1/m])

“变量设置”窗口突出显示了cStep变量的定义表达式。
定义变量 cStep

在 App 开发器的表单中,根据下图,在几何比 输入框下方添加两个新行,并使用编辑器工具 窗口分别为通道宽度参数和浓度阶跃 变量添加输入。为了放置和适应新的输入框,我们可能需要使用表单编辑器功能区中的合并单元格工具。使用 Shift + 单击以选择多个单元格,然后单击合并单元格。另外,我们可能还需要拖动以展开输入框的列,以适合浓度阶跃 的新变量表达式。有关更多信息,请参见模型开发器简介

主要形式带有两个新变量,分别是浓度阶跃和通道宽度
带有 通道宽度参数和浓度阶跃变量表达式的两个新行。

打开编辑器工具,其中显示了如何将“通道宽度”参数添加到表单。
通道宽度参数添加到表单。

将打开“编辑器工具”,其中显示了如何将“浓度阶跃”变量表达式添加到表单
将浓度阶跃变量表达式添加到表单。

使用数据访问控制单元大小

为了让用户控制单元的大小,请通过单击模型开发器的开发工具 选项卡中的相应按钮来启用数据访问。这样我们就可以访问单元大小的大小 属性,并在仿真 App 中使用它。

应用程序构建器中数据访问按钮的屏幕快照,用于允许访问称为“预定义”的元素大小属性。
使启用数据访问按钮,访问预定义单元大小属性。

表单中,在浓度方差输出下方添加另一行。单击新添加的行中最左侧的单元格,然后使用编辑器工具 窗口添加预定义大小输入

编辑器工具窗口中:

通过“编辑器工具”窗口将预定义大小的组合框对象添加到仿真 App。
使用编辑器工具窗口为预定义大小添加组合框对象。

这样做将为预定义的大小 添加一组合框 对象,如下图所示。请注意,我们可能需要使用合并单元格 来获得所需的布局。

主表单中“预定义大小”组合框的屏幕截图
主表单中的预定义大小选项。

该仿真 App 的基本版本现在已经准备就绪。如果您不想执行所有步骤,可以从与此博客文章相关的文件集中下载该 App。文件名是 micromixer_basic_app.mph

测试仿真 App

测试该仿真 App需要导入 CAD 文件 split_recombine_mixer.mphbin,并使用输入参数,如下图所示。这些参数将重现微流体模块中可用的教程模型的结果。

微型混合器模型的输入参数图表,包括入口浓度,扩散系数等
分离-重组微混合器模型的输入参数。

表达式 c0*step1((0.75[mm]-x)[1/m]) 定义了 x 方向上的浓度阶跃,过渡区域位于两个入口边界之间。具体地,过渡区域是 500 微米道宽度的 10%。这意味着在入口边界之间的区域中,浓度阶跃 表达式的值在宽度为 50μm 的区域内从 0 迅速增加到 1,从而确保左右入口的浓度值分别精确地为 0 和 1。单位表达式 [1/m] 确保阶跃函数的输入变元没有单位。

计算后的结果如下图所示。在这种情况下,相对浓度方差为 0.158。

微型混合器模拟的图像
使用具有用户定义的 CAD 导入和选择功能的临时设计仿真 App 模拟分离-重组微混合器。

启用其他 CAD 格式

启用任何格式的 CAD 导入取决于附加产品,我们需要在模型开发器中的几何 序列中为 CAD 导入节点显式启用任何文件格式。为此,需启用数据访问,操作与上述的启用用户单元大小控制时相同。在导入设置窗口中,选中 旁边的复选框,然后更改为任何可导入文件,如下图所示。此处可用的选项将取决于可用的附加产品。

导入设置窗口,带有选择导入任何可导入文件的选项。
启用任何可导入文件以进行 CAD 导入。

在 App 开发器中,双击导入按钮以打开其设置窗口。双击模型>组件1>几何1>导入1>源(类型),然后输入文件 作为变元。反复使用上移 按钮将其上移到命令 序列的顶部。(可用变元为:文件、网格、本机、cad和ecad。)

选择一个选项以导入任何类型的文件以进行 CAD 导入。
为 CAD 导入启用任何文件类型。

整理仿真 App

在可下载文件列表中,我们会找到此仿真 App 的稍微复杂的版本,文件名为 micromixer_app.mph。此版本仿真 App 的界面组织得更好,所有按钮都作为功能区项来使用,各种输入和输出分别布置在 CAD网格传递流动结果 子表单中,并通过表单集合进行汇总,如下图所示。此外,在文件菜单中,还有保存另存为重置报告 选项

但是,即使在此版本的仿真 App 中,也无需编程。使用表单编辑器,仅需要几步就可以创建它。为了使仿真 App 简洁明了,其中并未设置错误检查和文档。我们可以在 COMSOL Multiphysics 案例库中找到更多高级仿真 App,例如 螺旋静态混合器 App

通过添加到应用程序的CAD导入功能以交互方式应用带有入口边界条件的微型混合器模型几何
在微混合器几何结构中交互式地设置入口边界条件,该几何结构是使用仿真 App 中的 CAD 导入功能导入的。

具有专用用户界面的交互式模拟应用程序,允许cad导入和选择
此仿真 App 的设计更好,且仅使用表单编辑器创建而无需编程。

通过网页浏览器在 COMSOL Server™ 上使用仿真 App

当然,我们可以使用 COMSOL Compiler™ 将仿真 App 编译为独立的应用程序,或者通过连接到 COMSOL Server™ 来运行它。使用 COMSOL Server 运行时,我们可以使用以下三种方式运行 App:

  1. COMSOL Client for Windows®
  2. 标准网页浏览器
  3. COMSOL Client for Android™

使用 COMSOL Client for Windows® 运行时,通过在用户界面中单击来执行选择的方式,与使用 COMSOL Multiphysics® 进行选择的方式相同。使用标准的网页浏览器或 COMSOL Client for Android™ 运行时,我们可以双击边界来选择它们。

具有CAD导入功能的微型混音器仿真 App 可通过COMSOL Server™在Web浏览器上运行。
通过连接到 COMSOL Server™,可在 Chrome™ 网页浏览器中运行的具有 CAD 导入和选择功能的仿真 App。

仿真 App 的潜在扩展

本文介绍了如何创建包含 CAD 导入和选择的仿真 App 而无需进行任何编程。仿真 App 有两种类型的入口和出口边界条件,使用本文介绍的技巧可以轻松扩展仿真 App 的其他边界条件。例如,仿真 App 还可以为其他类型的边界条件添加更多的选择,例如对于设置固定压力值或对滑移流进行建模。该仿真 App 演示了计算流体动力学和稀物质传递。您也可以轻松地为另一个物理领域创建类似的仿真 App,例如结构力学、声学、电磁学或传热。

下载仿真 App 文件

单击下面的按钮,下载本文中讨论的仿真 App。通过学习该仿真 App,激发创建您自己的仿真 App(并添加专门功能)的灵感!

Android 和 Chrome 是 Google LLC 的商标。Microsoft 和 Windows 是 Microsoft Corporation 在美国和/或其他国家的注册商标或商标。

]]>
//www.denkrieger.com/blogs/how-to-create-an-app-with-cad-import-and-selections/feed/ 0