提升带通滤波器器件仿真效率的方法

Author Image

作者Jiyoun Munn

2024年 7月 18日

在频域有限元法设计品质因子高的带通滤波器类 RF 器件时,可能会遇到需要设置多个频率采样点以更准确地描述通带的情况。RF 器件仿真中包含的频率采样点的数量与求解时间成正比,即频率分辨率越高,求解时间就越长。 COMSOL Multiphysics®软件的附加产品 RF 模块提供了2种强大的仿真方法,可以帮助提高这类器件的仿真效率。

编者注:这篇博客最初发布于 2016 年 7 月 4 日。现已更新,以反映软件的后处理新功能。

2 种 RF 仿真方法简介

在今天的博客中,我们将讨论 2 种仿真方法:渐近波形估计(AWE)法和频域模态(FDM)方法。这两种方法都旨在帮助用户解决采用超精细频率分辨率,或通过常规的频域研究运行超宽带仿真时,求解时间过长这一常见问题。当涉及描述具有单一谐振或无谐振的平滑频率响应时,AWE 方法非常有效。而 FDM 方法则适用于快速分析多级滤波器,或者目标通带内有多个谐振的大量元件的滤波器。接下来,我们将讨论这两种方法的典型设置和应用场景。

需要说明的是,AWE 和 FDM 方法几乎都不依赖于所选的频率步长。您可以自由地减小频率步长的值,获得分辨率良好的结果绘图,而不会出现明显的速度减慢或额外的内存消耗。不过,这种做法也存在缺点:降低频率步长值可能会影响最终解中保存的数据量。在本文末尾的数据管理部分,我们将给出能显著减小输出文件大小的建议。

请注意,在使用精细分辨率进行 AWE 或 FDM 计算之前,最好先使用较粗的频率分辨率运行一个初步的特征频率和常规的频域仿真。这可以帮助您快速地估算谐振位置,总体了解系统的频率趋势,包括实际通带和所需的频率分辨率。

AWE 方法促进降阶模拟

AWE 是一种先进的降阶模拟技术,由于其数值特征和数学算法技术性太强,我们在此不过多赘述,只演示如何在 RF 模块中使用此方法。 自 COMSOL Multiphysics 6.2 版本开始,软件新增了有一个专门的自适应频率扫描研究步骤,可以实现 AWE 方法。使用此功能时,需要指定目标输出的频率范围,并选择一个表达式用于对AWE 算法进行误差估计。该方法求解器可执行快速频率自适应扫描,默认情况下,使用 Padé 近似。

COMSOL Multiphysics UI 显示了模型开发器,并突出显示了自适应频率扫描研究,展开了相应设置窗口中的研究设置和物理和变量选择部分。

自适应频率扫描研究设置。使用查看默认的渐近波形估计( AWE)表达式。

在模拟谐振电路,尤其是包含许多频率点的带通滤波器类器件时,AWE方法非常有用。例如,COMSOL 案例库中的消失模圆柱腔滤波器模型先运行了一个常规的频域研究,以 5 MHz 的频率步长对 3.45 GHz 到 3.61 GHz 之间的仿真频率进行初始扫频。

消失模圆柱腔滤波器教程模型
圆柱腔滤波器模拟研究的频率扫描结果。

消失模圆柱腔滤波器教程模型 (左) 及其离散频率扫描结果 (右)。谐振频率附近的 S 参数图看起来并不平滑。

假设以更高的频率分辨率再次运行仿真,例如使用100 kHz的频率步长进行扫描,即分辨率提高 50 倍。可以预计,完成仿真所需的时长将提升50倍。但是,在此特定的示例中,使用自适应频率扫描研究完成仿真所需的时长几乎与频率扫描仿真所需的相同,并且能获得以100 kHz 频率步长计算的所有因变量解。

求解时间可能会在一定程度上受用户输入的 AWE 表达式的影响。任何模型变量都可以作为 AWE 表达式,只要能生成一个平滑的结果图,如高斯脉冲或平滑的曲线作为频率的函数,但最明显和典型的选择是基于s参数的全局表达式。例如,对于双端口带通滤波器,将S21 的绝对值(abs(comp1.emw.S21))作为 AWE 表达式的输入可以获得非常好的结果。如果 AWE 表达式的频率响应包含无限梯度,例如在单个频率点具有良好阻抗匹配的天线的S11值,完成仿真则需要更长的时间。如果天线损耗可以忽略不计,使用sqrt(1-abs(comp1.emw.S11)^2)表达式可能结果更好,且能缩短计算时间。上述表达式是默认的物理场控制选项的渐近波形评估 (AWE) 表达式。作为合理的检查方式,我们始终可以先以较粗的分辨率运行一个频域 扫描,绘制表达式,并选择最平滑的结果。

开始运行自适应频率扫描前,需要在研究中设置所需的更精细的频率步长。当仿真完成后,模拟所需时长几乎与离散频率扫描的相同。对比求解出的S参数。由于AWE求解器运行的频率扫描分辨率提高了50倍,因此其频率响应(S参数)结果绘图看起来也更平滑。使用这种方法,不仅可以节省宝贵的时间,还可以获得准确且出色的结果,而且谐振频率的定位也更加准确,如下图所示。如果您对此感兴趣,可以使用相同的分辨率运行一次常规扫描来进行验证,并检查结果是否一致。

自适应频率扫描 (AWE) 和离散频域仿真计算出的 S 参数图和频率对比图。
分别运行自适应频率 (AWE)和离散频域仿真计算出的 S 参数图。使用 AWE 方法模拟的结果绘图的分辨率提高了 50 倍。

使用频域模态方法模拟电路谐振

无源电路的带通频率响应由多个谐振组合而成,因此 FDM 方法是提升其仿真效率的最佳选择。此方法通常包含两个步骤。特征频率分析是模拟任意形状器件共振频率的关键。从特征频率分析中获得所有必要信息后,就可以在频域模态研究中重复使用。当需要更精细的频率分辨率来更准确地描述频率响应时,这样做能够提升仿真效率,如AWE方法所示。

为了无缝执行 FDM 分析,有几个方面需要注意。一方面,需要过滤掉特征频率解中可能存在的所有不需要的非物理低频结果。另一方面,需要考虑目标频率范围内所有可能影响器件性能的物理模式,以获得正确的结果。要满足这两个要求,需要对特征频率研究设置进行一些调整(如下方屏幕截图所示)。首先,建议选择更大的实部作为围绕偏移量的搜索方法的设置。其次,对于搜索特征频率设置,最低通带频率可作为一个参考值。最后,必须调整所需特征频率数设置(例如根据初步测试),以包含必要的模式数量。

The COMSOL Multiphysics 用户界面显示了模型开发器,突出显示了特征频率,以及相应的设置窗口和研究设置。展开了线性点,物理场和变量选择的值。
为模型添加包含两个步骤的频域模态研究,图中突出显示了特征频率设置。

让我们来看一个耦合线带通滤波器教程模型,尝试使用 FDM 方法进行仿真分析。先以 50 MHz 的频率步长对 3.00 GHz 和 4.20 GHz 之间的仿真频率进行扫描,运行一个常规的频域研究

耦合线带通滤波器的三维模型。
S 参数与频率的绘图。

耦合线带通滤波器教程模型(左)及以 50 MHz 频率分辨率进行离散频率扫描的仿真结果(右)。整个目标通带内的 S 参数图看起来并不平滑。

接下来,运行频域模态研究,并按照上文所述设置每个研究步骤。使用分辨率提高了50 倍的频率步长运行研究,并检查结果是否有更优。与 AWE 方法一样,FDM 方法研究得到的 S 参数图看起来更平滑,包含的信息量更大。例如,它显示了最初缺失的所有 S11 参数波纹。如果您对此方法的验证感兴趣,可以运行相同分辨率的常规扫描,并检查结果是否一致。

请注意,特征频率分析包含一个集总端口,作为额外的载荷因子影响仿真,因此计算出的 S 参数的相位与常规频率模型计算的相位不同。计算结果仅和不包含相位的 S 参数值兼容,如以dB为单位的值、绝对值、反射率或透射率。

运行常规的频域仿真扫描和运行频域,模态仿真计算的 S 参数的对比图。
分别由频域,模态(FDM)和离散频域仿真计算出的 S 参数图。使用 FDM 方法计算的结果精度提高了 50 倍。

这与本文的主题并无直接关系,但在最后一张图中,可以看到到特殊的图形标记,它可以突出显示 S11 参数图的所有局部极小值以及 S21 参数图的通带。COMSOL Multiphysics 最近对结果评估功能进行了另一项改进,即从图表中提取交互式结果,将结果的信息性和交互式价值提升到了一个新的水平。

使用精细频率分辨率时的数据管理

如前所述, AWE 或 FDM 方法对如何细化频率扫描并没有真正的限制。不过,如果分辨率真的很高,解中将包含大量数据,从而导致在保存模型文件时,文件大小将大幅增加。在大多数无源RF和微波器件设计中,我们通常只对 S 参数感兴趣,因此在这种情况下,没有必要存储所有的场解。在研究的在输出中存储部分选择适当的选项,就可以控制模型保存计算的解。例如,可以只添加包含 S 参数计算边界的一个或多个选择。指定这些边界为端口集总端口,与整个仿真域相比,这些选择通常很小,因此总文件大小可以大幅减小。

请注意,在设置端口时,可以在指定选区后单击边界选择部分中的创建选择图标添加这种显式选择。然后,可以在相关研究步骤的在输出中存储部分添加由端口创建的所需的显式选择。

COMSOL Multiphysics 的用户界面显示了模型开发器、频域,模态研究步骤、相应的设置窗口以及图形窗口中的几何。
选择了2个集总端口的频域,模态研究步骤的在输出中存储部分。您可以在图形窗口中查看这些选择的位置。

案例库中的教程模型

这篇博客介绍了COMSOL 软件中的 2 个强大的仿真功能,可以帮助您更快、更高效地模拟无源 RF 和微波器件。下列为 COMSOL 案例库中的一些相关教程模型,您可以浏览下载,进一步了解这些方法的使用:

文中演示的方法和研究是通用的,不仅适用于RF仿真,在涉及如声学、力学、微机电系统(MEMS)和波动光学计算中,这些方法也尤其有用。

下一步

了解 COMSOL 中可用于RF和微波仿真的其他专用功能:


评论 (2)

正在加载...
闳 薛
闳 薛
2022-09-22

作者您好,感谢您的分享,我从中受益匪浅。目前有两个问题,望不吝赐教。
第一个是AWE表达式在频率自适应扫描过程中起到什么作用。第二个是不同的AWE表达式会有不同的扫描结果吗。
谢谢!
Email:705635487@qq.com

Hao Li
Hao Li
2022-10-11 COMSOL 员工

您好,
一、表达式将用于 AWE 算法的误差估计,可理解为用于评估 AWE 算法的收敛性。
二、对结果影响较小,但会影响 AWE 算法的计算速度。

浏览 COMSOL 博客
Baidu
map