声阱仿真:热声流和粒子追踪

Author Image

作者Eva Poland

2024年 8月 7日

声阱为各种生物医学应用提供了一种操控细胞和粒子的无接触式方法。在典型的声阱设备中,压电换能器在流体中产生压力场,从而产生能有效捕获流体中微小悬浮物的声辐射力。这篇博客,我们将深入探讨一个包括热声流和粒子追踪的声阱模型。

声阱简介

1874 年,August Kundt 首次证明了声波可以对暴露粒子施加声辐射力。自 20 世纪 90 年代以来,这一原理就已经被应用在微流体装置和片上实验室系统中,如今,商业化的声阱设备已被全球生命科学实验室和医疗机构广泛采用,用于低浓度样品的富集和纯化,细胞之间的相互作用研究、粒子分选,以及现场即时诊断的细菌、病毒或生物标记物的分离等。

微流体通道中的声流横截面图。
图 1 微流体通道横截面上的声流,可用于生物流体样品中对粒子进行浓缩或分离。

声阱中诱发的声波会产生声流,即在捕获位点周围形成快速移动的涡流。这种声流会对流体中的颗粒产生黏性阻力。同时,颗粒也会受到声辐射力的作用。对于大颗粒,声辐射力占主导地位,对于小颗粒,黏性阻力占主导地位。改变主导力性质的颗粒临界尺寸取决于具体的设备和颗粒的声学特性。在大多数设备中,声辐射力用于捕获或控制颗粒,因此,来自声流场的黏性阻力通常会阻止小于临界尺寸的小颗粒被声阱捕获。

了解这些信息后,让我们深入探讨如何在 COMSOL Multiphysics®中模拟声阱。您可以从案例库中下载文中讨论的玻璃毛细管中的声阱和热声流三维模型。

声阱仿真

示例的三维声阱几何结构如下图所示。声阱系统的几何沿两个平面对称,因此只需要计算系统的 1/4 几何:装满水(蓝色)的 1/4 玻璃毛细管(黄色)及其下方的 1/4 微型压电换能器(灰色)。实际上,相较于 0.48 mm 的高度和 2.28 mm的宽度,约 5 cm 的玻璃毛细管非常长,因此使用完美匹配层(PML)对其两端进行模拟。完美匹配层是一个可添加到几何体中的域,用于模拟所有出射波的衰减和吸收。下图中绿色显示为包含 1/2 毛细管一端的完美匹配层。在此模型中,完美匹配层在玻璃毛细管和流体中都处于激活状态。

三维声阱模型图。
图 2 声阱的 1/4 几何结构。

声阱仿真是一个复杂的多物理场问题,涉及电磁学、固体力学、声学和流体流动等多种现象,某些情况下,还包括传热。压电换能器上的振荡电压差会引起压电材料振动,进而引起玻璃毛细管振动。这种压电效应通过耦合压电传感器域中的静电与压电传感器和玻璃毛细管的固体力学来模拟。为了模拟流体中产生的压力场,在玻璃毛细管和流体之间的边界上使用了声-结构多物理场接口,用于耦合固体力学与压力声学。

此外,压电换能器中的能量耗散会使系统升温,在玻璃毛细管和流体中产生温度梯度,进而在流体的声学特性中产生梯度,影响声流。非等温流动的多物理场耦合考虑了这种温度梯度的影响,将整个几何结构(固体和流体)的传热仿真与流体域中的蠕动流模型相结合。蠕动流和压力声学之间的耦合用于模拟声流。最后,为了验证声阱模型是否按照预期工作,使用了粒子追踪技术来确定流体中两类颗粒的轨迹,即大颗粒硅玻璃和小颗粒聚苯乙烯。

接下来,我们来看看仿真结果!

仿真结果

声场

声场使用频域计算。在频率为 3.84 MHz 的超声状态下激励系统。该频率波长的 1/2 约等于流体腔的高度。压电换能器中的电场、压电效应在压电换能器和玻璃毛细管中产生的位移场,以及由此在流体中产生的声压场如下图所示。在压电换能器上方,声场包含一个最小压力区域,称为压力节点。

显示了位移、电场和压力场 的 3D声阱模型图。

图 3 声阱中的位移场(nm)、电场和压力场。

声场中作用在颗粒上的声辐射力可以用 Gor’kov 势能来描述。图 4 显示了模型中计算的小颗粒聚苯乙烯 Gor’kov 势能。悬浮在流体中的颗粒会被推到最小 Gor’kov 势能处,从而被困在玻璃毛细管的中心。有关声辐射力的详细讨论以及如何使用 COMSOL Multiphysics®计算声辐射力,请查看我们之前的博客

三维声阱模型显示了声阱中聚苯乙烯颗粒的 Gor’kov 势能。
图 4 直径为 1 µm 的聚苯乙烯颗粒的 Gor’kov 势能。

热声流

声流的仿真结果如何?下图的模拟结果显示,压电换能器上方有四个涡流,这只能用温度场来解释。压电换能器的升温引起玻璃毛细管和流体产生温度梯度,从而产生流体密度梯度和可压缩性梯度。流体材料参数中的这些梯度与声学相互作用产生热声体积力,热声体积力产生声流,最终形成这种特定的声流模式。

声阱内部玻璃毛细管的三维图像显示了热声流。
图 5 玻璃毛细管内的热声流和温度梯度。根据对称平面绘制的声阱实际几何。

粒子轨迹

通过粒子追踪,我们还可以了解具有特定性质的颗粒是否会被吸入声阱。下面的动画显示了直径为 10 µm 的大颗粒硅玻璃和直径为 1 µm 的小颗粒聚苯乙烯的计算轨迹。压电换能器上方的硅玻璃颗粒向玻璃毛细管中心移动并被困在那里,而较小的聚苯乙烯颗粒的移动则受流体流动的控制。

图6 大颗粒硅玻璃的运动轨迹。

图 7 小颗粒聚苯乙烯的运动轨迹。

动手尝试

有兴趣自己动手建立文中示例的多物理场模型吗?点击下面的按钮即可下载该模型的 MPH 文件:

扩展阅读

您也可以在 COMSOL 案例库中找到一些包含声流和声阱的教程模型:


评论 (0)

正在加载...
浏览 COMSOL 博客
Baidu
map