高强度激光入射在部分透明材料上会在材料本身沉积功率。如果能借助 Beer-Lambert 定律描述入射光的吸收,我们就可以通过 COMSOL Multiphysics 的核心功能来模拟能量的沉积。本博客将介绍如何模拟吸收率受温度影响的材料对入射光的吸收,以及随之对材料产生的加热。
编者注: 有关该领域新功能的详细信息,请参阅博客:模拟半透明材料的脉冲激光加热。
Beer-Lambert 定律与材料加热
当激光入射到半透明材料上时,部分能量会被材料本身吸收。如果假定光为单波长、平行入射(比如来自激光束),且将在材料中经历极少的折射、反射或散射,那就能通过Beer-Lambert 定律模拟光强。对于光强I,可以将这一定律写为微分形式:
其中z是沿光束方向的坐标,\alpha(T)是材料与温度相关的吸收系数。由于温度会随空间和时间变化,我们还必须求解有关材料内温度分布的控制偏微分方程:
其中热源项Q等于吸收的光。这两个方程代表了一个双向耦合多物理场问题,非常适合通过 COMSOL Multiphysics 的核心功能模拟。我们将分析如何实现……
在 COMSOL Multiphysics 中实现
在上述问题中,激光从上方入射到实心圆柱材料中 (半径 20 mm,长度 25 mm)。我们利用对称特点减小模型尺寸,只考察整个圆柱的 1/4。我们还会将该域分割为两个体。这些体均代表了相同的材料,但我们只会在内部域求解 Beer-Lambert 定律,即激光束唯一加热的区域。
如要模拟 Beer-Lambert 定律,我们需要先增加广义型偏微分方程接口,并设定因变量及单位,如下图所示。
实现 Beer-Lambert 定律的设定;请注意单位的设定。
接下来,方程本身通过广义型偏微分方程接口实现,如下图所示。方程中其他项均设为 0,包括源项f。因此,我们将对f=0时的方程进行求解。源项设为Iz-(50[1/m]*(1+(T-300[K])/40[K]))*I,其中光强相对z方向的偏导为Iz,吸收系数是(50[1/m]*(1+(T-300[K])/40[K])),为便于演示,引入了温度依赖性。这个表达式将针对吸收系数依赖于温度的材料适用 Beer-Lambert 定律,假定我们还将在模型中求解温度场T。
通过广义型偏微分方程接口执行 Beer-Lambert 定律。
由于方程为线性稳态,初始值不会影响强度变量的解。除受光面外,可以在大部分面使用零通量边界条件。我们将假定入射激光的光强沿原点的距离呈高斯分布。材料正上方原点处的入射强度为 3 W/mm2。部分激光会在介电界面发生反射,因此材料表面的光强降为入射强度的 0.95 倍。这一条件可以通过狄氏边界条件实现。与入射面相对的面采用零通量边界条件,说明所有到达此边界的光最后都会离开域。
通过狄氏边界条件设定材料内入射光的光强。
完成上述设定后,由 Beer-Lambert 定律控制的受温度影响的光吸收问题将被研究。此外,还需要求解材料随时间的温度变化。我们将考虑一个导热系数为 2 W/m/K、密度为 2000 kg/m3的任意材料,体热源的比热为 1000 J/kg/K,初始温度为 300 K。
热源本身等于吸收系数乘以光强,或等同于光强对传播方向的导数,可按如下输入:
热源项设为吸收的光。
其他大部分边界都可保留缺省的热绝缘条件,也可以使用温度场的对称性。但受照边界处的温度将明显上升,并会发生辐射热损。这可以作为漫射面边界条件模拟,并将周围的环境温度及表面发射率作为输入。
利用漫射面边界条件模拟从上表面到周围的热辐射。
请注意:使用漫射面边界条件说明对象会作为灰体进行辐射;但灰体假设要求材料非透明。那么在使用 Beer-Lambert 这种适用于半透明材料的定律时,如何解决该矛盾呢?
既然材料的吸收率高度依赖于波长,那我们就能解决这个问题。在本例中,研究的入射激光的波长穿透深度很大。但随着穿透路径被加热,它将主要在长波域发生再辐射。我们可以假定长波波长下的穿透深度极小,因此材料主体对发射辐射不透明这一假设成立。
我们通过求解模型得到一个稳态解或瞬态响应。下图显示了材料随时间变化的温度和光强,以及使用的有限元网格。虽然我们没必要在吸收方向使用扫掠网格,但该特征可以通过相对较少的四面体网格得到光强的平滑解。光强及温度相对中心线深度的绘图表示了温度上升带来的吸收系数的变化及影响。
网格(最左侧)及不同时间点的光强和温度图。
不同时刻下,沿中心线深度变化的光强和温度的函数。
总结及进一步讨论
本篇博客中,我们重点介绍了如何借助COMSOL Multiphysics软件核心功能中的广义型偏微分方程接口执行 Beer-Lambert 定律,以便模拟半透明介质的加热。此方法适用于入射光为平行光,且材料在此波长为半透明的情况。
虽然我们是以激光加热问题为例介绍该方法,但它其实对所有平行入射光均成立;不需要连续光或单波长光。对于宽频谱源,可以将其分解为几个波段并使每个波段内材料的吸收系数基本恒定,再通过单独的广义型偏微分方程对每个波段进行求解。
在本博客介绍的方法中,假定材料本身相对周边热辐射非透明。不过,我们还可以使用传热模块中的参与介质中辐射接口来模拟材料内热的再辐射。
Beer-Lambert 定律还假定入射激光为完全平行,且沿单一方向传播。如果您要模拟强度沿光程逐渐改变的聚焦激光束,那波动光学模块的波束包络接口会是更好的选择。
在接下来的博客中,我们还将介绍其他一些可用于模拟激光-材料相互作用的方法。敬请期待!
评论 (44)
朋辉 辛
2016-10-26您好,请问可以得到您的源程序吗?谢谢!
圣伟 边
2020-06-16可以下载的呀;就在//www.denkrieger.com/model/modeling-laser-beam-absorption-in-silica-glass-with-beer-lambert-law-56101还有//www.denkrieger.com/model/modeling-of-material-heating-via-the-beer-lambert-law-46701
朋辉 辛
2016-10-26您好,这个例子的源程序能给我发一份吗?谢谢!
Yuansheng Zheng
2016-10-26鹏辉,您好!我们没有这个例子的源程序,您可以根据博客内容进行建模,如果遇到问题可以发送邮件至技术支持邮箱:support@cosmol.com。
朋辉 辛
2016-10-26谢谢您的回复
林 文
2016-11-25您好,我想问下,comsol里能否实现激光熔化岩石?
林 文
2016-11-25请问comsol里能否实现激光熔化岩石?
Yuansheng Zheng
2016-11-25林,您好!我认为您的模型的原理与本文一致,只有某些参数或者条件需要根据实际情况修改。
帆 张
2016-12-12(50[1/m]*(1+(T-300[K])/40[K]))这个系数是怎么得到的呢?这是一个大于1的系数能作为吸收系数吗?
Yuansheng Zheng
2016-12-12张帆,您好!
感谢您的评论。
模型相关的问题,请您联系我们的技术支持团队:
在线支持中心:www.denkrieger.com/support
Email:support@comsol.com
谢谢!
Yuansheng
浩然 万
2018-08-20您好,请问comsol可以分析激光穿过倍频晶体产生的热效应么
圣伟 边
2020-06-16可以
kai Sun
2018-09-04您好,请问超短激光辐照Si表面形成波纹的过程可以用这个模型吗?
圣伟 边
2020-06-16应该用更准确的模型;参见超快激光对CCD CMOS的损伤机理相关文章
jing zhang
2022-10-12请问在哪里能找到这些文章呢
jing zhang
2022-10-12你好,如果我没搞错的话,您的毕业论文是不是就是用的comsol模拟的,因为我现在在用你的论文当参考文献复现?,但是遇到了一些问题,可以加个联系方式请教一下吗,非常非常感谢,我的微信号:moonwith1924,拜托,非常感谢!
川 刘
2023-02-02你好,请问你解决了这个问题吗,可以向你请教一下吗?
哲南 赵
2018-11-08您好,请问可以对Iz-(50[1/m]*(1+(T-300[K])/40[K]))*I 这个式子做个更详细的阐述吗?非常感谢
舸 彭
2019-01-17您好,请问下吸收系数与温度的线性关系式是随意给出的还是根据不同材料给出的?如果是后者,可否给出相关的参考文献?谢谢。
圣伟 边
2020-06-16不同材料吸收系数不同;不同波长也是;材料对激光来说有个吸收谱;就像激光晶体不同的掺杂浓度其吸收系数不同;
敏君 杨
2019-01-19您好,想问下激光加热流体引起热对流该怎么分析呢?谢谢
翀 施
2020-06-23 COMSOL 员工对于热对流可以采用COMSOL中的“非等温流”物理场接口来实现,这种热对流因为是自然对流,所以需要将密度设置为温度甚至是压力的函数,然后启用重力项,可以先在COMSOL案例库或者官网上查看关于自然对流的案例。
perfectroute perfectroute
2019-06-28可以通过邮件询问问题吗,会回复吗?
hao huang
2020-06-17 COMSOL 员工可联系技术支持团队:
访问在线支持中心提交:www.denkrieger.com/support
Email:support@comsol.com
晓君 孙
2020-04-13请问设置的时候设置的稳态过程怎么会得到瞬态的解呢
翀 施
2020-06-23 COMSOL 员工从结果来看,因为是瞬态计算。
圣伟 边
2020-06-17老师你好,目前我个疑问,就是对热源的设定;我看文中为“热源本身等于吸收系数乘以光强”,但是对于我们常用的激光增益介质(激光晶体)来说,热源为吸收的一部分转化来的,并非吸收的功率全转化成热功率,因为一部分转化为上能级的能量(受激吸收);转化成热功率的那部分与斯托克斯效率有关,也就是所谓的热生系数/热转化系数。那这个地方是否也是需要添加热转化系数呢?
翀 施
2020-06-23 COMSOL 员工在本模型中,这个半透明介质应该不是所谓的“激光增益介质”,所以不需要添加热转化系数。
焜 王
2021-04-20您好,请问光斑半径是3mm吗?因为这个模型分层是3mm但是{0.95*3[W/mm^2]*exp(-(x^2+y^2)/(1[mm])^2)}这个表达式中1不应该是3吗?还有这个公式是高斯光束吗?
Min Yuan
2022-11-09 COMSOL 员工该表达式是入射表面高斯光束的光强分布,设置的光斑半径为1 mm。您说的模型分层应该是指将几何域分为两部分,其中内部几何域内描述激光束加热的区域,因此几何域半径大于光束半径是可以理解的。
鸿 刘
2023-03-27在新版本comsol中,就只有激光功率和标准差可以改变,如何设置激光的半径呢?
越 赵
2023-04-10 COMSOL 员工您好,标准差控制了高斯函数的宽度,您通过修改标准差的大小就可以实现激光半径的修改。
Kyou Gaku
2023-05-25请问吸收系数为什么这么大?不应该是投射光强和入射光强的比例吗?
Haoze Wang
2023-07-04 COMSOL 员工您好,此处的吸收系数指的是材料对光的吸收,即入射光的能量有多少被吸收转换为热量。
含 韦
2023-07-20请问,固体传热中的diffuse surface1没有找到,可以指导一下嘛
Haoze Wang
2023-07-25 COMSOL 员工您好,在v6.1传热接口中,请添加“表面对环境辐射”边界条件。
张 张
2023-09-11请问,使用这个定律,入射激光可以是随时间变化的高斯光束吗?
越 赵
2023-09-12 COMSOL 员工您好,您可以自定义随时间变化的高斯函数作为如何激光强度分布。
Guang Chai
2024-05-08可以用这个模型的思路建立二维模型吗?我尝试了,Iz换成Iy,但是现在报错显示“找不到一致的初始值,最后一个时步不收敛”,请问有什么解决方法吗?
Min Yuan
2024-05-11 COMSOL 员工您好,具体模型相关的问题,请联系我们的技术支持团队://www.denkrieger.com/support
英豪 左
2024-05-23吸收系数是 (50[1/m]*(1+(T-300[K])/40[K])),这个系数是极小值吗,请问如何与厚度参数联系起来呢
Min Yuan
2024-05-29 COMSOL 员工吸收系数是随温度线性增大的关系,而光强/温度是随厚度变化的,所以吸收系数与厚度也将有关系。
Zuyan Huang
2024-05-27您好!请问对于光纤输出的激光,以一定的发散角(例如12.5°)入射到半透明材料,光斑直径在不同深度会有不同的大小,如何设置热源?
Min Yuan
2024-05-29 COMSOL 员工材料中实际热源分布可以通过光学仿真激光照射过程实现,类似模型可以参考案例://www.denkrieger.com/model/thermally-induced-focal-shift-in-high-power-laser-focusing-systems-19955