每页:
搜索

最新内容

模拟涡轮静叶片的热应力

2013年 9月 18日

仿真软件可以帮助我们理解和优化组件设计。任何一个仿真都需要基于实际应用建立模型。建模使我们能够足够详细地表征实际现象,从而获得特定应用或组件的相关信息。

为什么微波炉加热食物不均匀?

2013年 9月 3日

我们可能都经历过这样的场景:下班回到家,把昨晚的剩菜放在微波炉里,坐下来准备吃一顿简餐,结果却发现吃到的食物一口滚烫,一口冰冷。这样的经历不止一次促使我思考:为什么微波炉对食物的加热会这么不均匀?

使用 COMSOL Multiphysics® 模拟磁致伸缩效应

2013年 8月 26日

如果你曾经站在变压器旁边,可能听到过它发出的嗡嗡声,并怀疑附近是不是有蜜蜂。下次再听到这种声音时,你大可以放心,这不是蜜蜂,而是变压器铁芯的磁致伸缩发出嗡嗡声。 什么是磁致伸缩? 磁致伸缩是一种效应,它会使所有暴露在磁场中的磁性材料的形状发生变化。例如,磁致伸缩效应会使一块铁伸长 0.002%,使镍收缩 0.007%。这一现象曾经因为被用在第一次世界大战期间的声呐设计中而引起了广泛关注。进一步的研究,最终研制出了用于工程的磁致伸缩材料,例如 Terfenol-D,以及最近研制出的 Galfenol,它的伸长率高达 0.04% ~ 0.2%。 磁场引起的应变现象也称为正(磁致伸缩)效应。磁致伸缩效应可以追溯到原子级的相互作用,它是磁性材料中的磁能和机械能在受到磁场和机械应力时所发挥的平衡作用而产生的。下面的动画是对磁致伸缩材料内部情况的简单说明。 当对材料施加交变的磁场时,构成材料的微小椭圆体磁铁会随着磁场大小和方向的变化来回翻转。这些微小磁性体方向的改变表现为一种宏观应变。如果以典型的电力线频率(50Hz – 60Hz)交变磁场,材料中的交变应变会使它像扬声器一样工作,从而产生可以听见的声音。这就解释了变压器发出的嗡嗡声之谜。 这种双向磁机械耦合也会产生逆 效应,即作用在磁性材料上的应力可以通过调整这些微小磁体的方向来改变材料本身的磁性状态。正效应和逆向效应分别用于驱动类和传感类应用。 磁致伸缩材料的应用 从航空航天、石油生产到声学和 MEMS,磁致伸缩材料几乎可以应用在所有行业。下面列出了一些重要的商业应用: 声学设备 声呐 水听器 用于清洗、混合和乳化的超声波振动器 超声波摩擦焊接 驱动器 直线电机和旋转电机 尺蠖式驱动器 用于机床头部的位置控制器 燃油喷射系统 光学扫描系统 液压驱动器,例如伺服阀和泵 用于减小阻力的智能机翼中的主动后缘 传感器 位置传感器 非接触式扭矩传感器 磁场传感器 MEMS生物和化学传感器 振动控制 减振器 平台稳定器 图像稳定器 能量收集器 混合智能结构 带混合压电/磁致伸缩磁芯的 Tonpilz 换能器 混合压电/磁致伸缩复合驱动器和传感器 您还可以利用磁致伸缩效应把家里客厅的墙壁或窗户变成扬声器! 那么,如何在 COMSOL Multiphysics 中对这种有趣的现象进行建模呢? 在 COMSOL Multiphysics 中对磁致伸缩进行建模 对磁致伸缩型换能器进行建模的正确方法包括准确模拟磁和结构性能,并使用适当的材料模型模拟这些物理场之间的相互作用。COMSOL 中内置了预定义的物理场接口,可用于设置磁仿真和结构仿真。COMSOL 还支持灵活地设置用户自定义的本构关系,用数学的方式表示材料模型。 实验表明,正向和逆向磁致伸缩效应都是非线性的。当模拟那些在准静态条件下运行,但暴露在大范围机械力和磁场中设备时,建立完整的非线性响应模型可能很重要。在这类设备中,了解磁致伸缩磁芯在什么工作条件下饱和是有用的。这些信息可以为设计人员提供极限值,还可以解释实际的非线性行为,例如传感器灵敏度的变化或用户期望从磁致伸缩设备获得的驱动器最大力。 在某些已知频率和已知工作条件下工作的声学换能器中,可以使用线性本构定律简化材料模型。这些定律(或方程)是在假设换能器操作涉及围绕偏置点的小幅振荡的条件下推导的。而如果在建模方法中考虑这些实际因素,那么我们就能够轻松模拟磁致伸缩换能器在较宽工作频率范围内的响应。 在 COMSOL Multiphysics 中,可以同时设置非线性和线性本构方程模拟磁致伸缩器件。接下来,我想与大家分享一些我们对一个实验换能器进行模拟的结果。 模拟磁致伸缩换能器 典型的换能器有一个被驱动线圈包围的磁致伸缩磁芯。流过线圈的电流会产生磁场。传感器有一个钢制外壳,包围着驱动线圈和铁芯。磁芯连接到活塞上,活塞用于在启动器配置中将磁芯的位移传递到外部机械部件上,或在传感器配置中将负载从外部机械或声源传递到磁芯上。钢制外壳、活塞和铁芯形成了一个封闭的磁通路径。 对于非线性模型,我们使用了 Galfenol的典型材料表征曲线,并确定了重要设计参数的非线性,例如换能器的阻力。我们还能够探索驱动和传感行为的变化与各种磁场和作用在传感器上的拉伸和压缩载荷的函数关系。有关这个模型的更多信息,请查看 COMSOL 案例库中的非线性磁致伸缩换能器和传感器 教程案例。 非线性磁致伸缩换能器仿真中的位移幅度、驱动器和传感器曲线以及换能器阻力图。 对于线性模型,我们使用了 Terfenol-D 的典型材料参数,并生成了驱动器载荷线。我们还研究了换能器位移的幅度和相位,以及驱动线圈阻抗的频率响应。 线性磁致伸缩传感器仿真中的驱动器载荷线、线圈阻抗、位移幅度和位移相位图。 2013 年 COMSOL […]

优化太阳能电池板设计 推动光伏产业发展

2013年 8月 21日

太阳能光伏电池是利用光伏效应 将太阳能直接转化为电能或电压的半导体器件。这些光伏电池通常被称为太阳能电池或太阳能电池板,2012 年产生了大约 93TWh 电能,足以为 2000 多万户家庭供电。由于这些电池需要直接暴露在太阳光下,因此被放置在室外,受到各种因素的影响。

通过模拟农药径流了解杀虫剂的危害

2013年 8月 8日

使用杀虫剂控制农作物中的害虫时,即使它已经完成使命,对环境的影响也会继续。杀虫剂会渗入人类和动物赖以生存的土壤和水源,将有害化学物质扩散到周围的生态系统中。

如何执行网格细化研究

2013年 8月 6日

几周前,我主持了一场有关 COMSOL Multiphysics 后处理和可视化特征的网络研讨会。这场网络研讨会在 COMSOL 用户中的反响非常好,因此我特意写了本篇博客,希望再次强调下我们所涉及的一个重要专题,即在 COMSOL Multiphysics 中进行网格细化研究。

使用无梯度的优化方法求解模型

2013年 8月 2日

COMSOL 软件的优化模块包含基于梯度和无梯度的优化 2 种功能。基于梯度的优化方法可以计算目标函数和任何相关约束函数的精确解析导数,但它要求函数是平滑和可微分的。在这篇博客中,我们将研究无梯度优化器的使用,它可以考虑不可微分或不平滑的目标函数和约束条件。为了减轻质量,同时保持对零件峰值应力的约束,我们对旋转轮的尺寸进行了优化。 旋转轮的压力 旋转的轮子会产生离心应力,从而导致整个零件产生应力。为了减轻质量,轮毂上被切割了一些规则的孔洞。下图中显示了离心力产生的 von Mises 应力。我们希望进一步减轻质量,同时将应力保持在临界值以下。 求解应力 虽然我们可以一次对整个轮子进行建模,但由于这个零件存在镜面对称和旋转对称,因此可以减小模型,从而最大限度地降低计算要求。对称边界条件用于约束该零件。 基于旋转速度、旋转轴和材料密度施加体载荷,用于模拟离心力。该模型使用瞬态求解器求解,即假设转速恒定。 选择设计变量 在这个示例中,假设已经有了一套制造工艺,我们希望对零件的整体设计做最小的改动,以降低重新加工的成本。设计变量的一个常见选择就是改变轮毂上孔的半径。因此,我们回到几何序列,对孔的半径及其位置进行参数化。我们还可以根据纯粹的几何分析推算出,每个孔的最大半径必须有一定的限制,否则孔与孔之间的区域会变得太薄,孔与孔之间就会重叠。我们还将对最小半径设限,因为我们不希望孔洞完全消失。 定义目标函数和约束条件 这里的优化目标只是减少零件的质量,即所有域上材料密度的积分。 优化目标是使质量(密度的积分)最小。 这个约束条件稍微复杂一些;我们希望尽量减小零件的峰值应力。但是,我们并不知道峰值应力会出现在哪里。如果内孔或外孔太小,就会导致孔周围应力集中。如果我们将孔的半径做得过大,孔之间的材料就会变得过薄,同样会导致高应力。因此,我们必须监控整个零件的最大应力,并将其限制在指定的峰值应力以下。这是一种无差别约束,尤其需要使用无梯度优化方法。 峰值应力通过域探针进行监测,并命名为 PeakStress。 峰值应力变量受限于一个上限。 用无梯度优化法求解问题 为了求解优化问题,我们在研究分支下添加了优化 功能。Nelder-Mead 方法是两种无梯度方法之一(另一种是坐标搜索)。无梯度优化算法还允许当几何尺寸变化时重新划分网格。 目标函数和约束条件由模型树中的优化 分支定义。控制变量给定了初始条件,我们指定了上限和下限。优化后的设计有很大不同——质量减少了 20%,同时保持了对峰值应力的限制。

模拟冷冻干燥工艺

2013年 8月 1日

提起冷冻干燥工艺,我就会想起小时候吃过的像冻干冰淇淋一样的太空食品。对于保存太空食物而言,冷冻干燥工艺很重要,但它也可以用于其很多应用。


浏览 COMSOL 博客
Baidu
map