每页:
搜索

最新内容

压电材料的晶体取向和极化方向

2014年 2月 14日

正压电效应和逆压电效应与材料的各向异性程度密切相关,反过来,各向异性又受压电材料的晶体结构影响,同时各向异性的程度还受 极化 过程的影响。这篇博客,我们将介绍如何在 COMSOL 软件中正确地模拟压电材料的晶体取向和极化方向。

用阿伦尼乌斯方程描述化学反应动力学

2014年 2月 13日

无数的复杂情况和陷阱使化学模拟具有挑战性。在这篇博客中,我们对化学动力学和阿伦尼乌斯定律进行了介绍,以提供帮助。

使用投影算子分析仿真结果

2014年 2月 12日

还记得用手在墙上制作皮影戏吗?投影算子,可以用类似的方法分析你的仿真。让我们来解释一下…

使用组件耦合功能模拟温度控制器

2014年 2月 11日

了解如何在 COMSOL Multiphysics® 的热过程模拟中实现一个简单的温度控制器(反馈回路)。我们以硅晶片为例进行演示。

如何选择正确的电流分布接口?

2014年 2月 10日

在设计电化学电池时,我们需要考虑电解质和电极中的三类电流分布:一次分布、二次分布 和三次分布。不久之前,我们介绍了电流分布的基本理论;本文则以线电极为例,详细解释不同的电流分布类型,帮助你在 COMSOL Multiphysics 中选择合适的电流分布接口,顺利执行电化学电池仿真。

电流分布理论

2014年 2月 7日

在电化学电池的设计中,您需要考虑电解质和电极中的三种电流分布类型,它们被称作一次、二次 和三次电流分布。三种电流分布对应着不同的近似方式和程度,采用其中哪一个则取决于电解质溶液电阻、有限电极反应动力学以及质量传递的相对重要性。在本文中,我们将概述电流分布的概念,并从理论层面上探讨这一主题。

共享内存计算入门:定义、目的及原理

2014年 2月 6日

几周前,我们发布了“混合建模”系列的第一篇博客文章,介绍了混合并行计算的含义,以及它是如何提高 COMSOL Multiphysics 运算效率的。今天,我们将简要探讨混合并行计算的一个组成部分——共享内存计算。不过在此之前,我们首先会解释“应用程序并行运行”的意义。此外,我们还将讨论何时以及如何在 COMSOL 软件中使用共享内存。

使用 COMSOL 模拟窗户的隔热性能

2014年 2月 4日

设计师在设计建筑物时,常常会考虑:怎样才能让建筑物内部保持舒适的温度,使人感到冬暖夏凉呢?这可以通过对建筑物的窗户结构进行精心设计来实现。

封闭腔体积的求解和控制

2014年 2月 3日

在 COMSOL® 软件中,有多种方法可以模拟流体与固体的相互作用。例如,可以使用完整的纳维-斯托克斯方程对压力场和流体速度场进行显式建模。尽管这种方法非常准确,但对于一些流-固耦合问题来说,它的计算成本比实际需要的要高得多。今天这篇文章,我们将介绍一种模拟包含不可压缩流体的封闭腔的方法,假设通过流体的动量和能量传递很小。 编者注: 作者撰写这篇博客的时候,COMSOL 中还没有计算封闭腔中流体载荷的功能。现在,COMSOL Multiphysics® 6.2 版本新增了封闭腔功能,可用于计算封闭腔中的流体载荷。 模拟封闭腔中的流体 我们来看一个 COMSOL 案例库中的示例:超弹性密封条的压缩模型。这个示例考虑的是压缩的软橡胶密封件的横截面。腔体中封闭的流体是空气。该示例计算了压缩力,并将密封件中考虑压缩空气影响与不考虑压缩空气影响的结果进行了比较。 软橡胶密封件的压缩模型。仿真结果显示了应力和应变。使用了不同的方法对密封件内部的空气进行模拟。 示例模型将空气视为可压缩流体,计算了随此二维示例中密封件的横截面积 A 变化的腔体内部压力 p 的变化。接下来,让我们来看看它是如何实现的。将腔体内的空气视为绝热压缩下的理想气体,则压力-密度关系为: \frac{p} {p0}=\left(\frac{\rho} {\rho0} \right)^\gamma=\left(\frac{A0} {A}\right)^\gamma   所以,要计算压力的变化,只需要知道面积的变化就可以了。假设未压缩密封件的面积和压力,以及比热率 \gamma均已知,如何计算横截面积呢?该面积由一个我们甚至不想考虑在模型中的区域来描述。使用高斯定理将面积积分转换为边界积分: A=\int\Omega 1 d\Omega = \int\Omega \left( \nabla \cdot \left[ \begin {array} {c} x \ 0 \end {array} \right]\right) d\Omega = \oint x nx d\Gamma   其中,x 是变形的密封件构型的 x 坐标,n_x 是边界的向外法向量的 x 分量,也在变形配置中,由此给定密封件的封闭区域。这是通过一个定义在封闭体积的完整内部边界上,名为 AreaInt 的积分耦合算子 完成的。变形区域由在“完整模型”上定义的变量 EnclosedArea 定义。 在密封件的内边界上定义面积积分。 分别定义封闭面积和内部压力的变量的定义。必须使用负号来计算面积,因为固体的法线指向腔体。 计算出的变形面积用于确定密封件变形时内部压力的变化。计算得出的压差作为一个载荷施加到密封件内部。要查看上述方法的完整操作,请查看超弹性密封条模型文档。 考虑不可压缩流体 上述方法假设流体是可压缩的,并且密封件的内部压力与面积变化呈函数关系。但如果流体是不可压缩的呢?假设考虑的不是包含可压缩空气的密封件,而是一个充满水的气囊,其中水几乎是不可压缩的。那么,随着结构的变形,封闭的面积不能改变,上述方法就行不通了。因此,我们需要一个替代方案。 我们将 全局方程 功能添加到固体力学接口,通过在这个模型中引入一个额外的方程来求解流体内的压力,使体积不会发生变化。我们来看看这个接口: 引入的全局方程的设置。需要启用高级物理选项才能查看此功能。 上面的屏幕截图显示了用于额外变量 压力 的 全局方程 设置。此方程成立的条件是变量 封闭区域 等于初始面积 123.63 […]

COMSOL Multiphysics 中自由剖分四面体网格的尺寸参数

2014年 1月 30日

对几何进行网格剖分是仿真过程的重要组成部分,它对于最快地得到最好的结果至关重要。不过,没人希望因要找出最佳的网格规格而影响进度。为了帮助解决该问题,COMSOL Multiphysics 内置了 9 种网格剖分尺寸参数。这里,我们将介绍自由剖分四面体网格的尺寸参数。在后续的博客中,我们还将介绍棱柱、六面体单元和其他类型的扫略网格剖分。

空间与时间的积分方法概述

2014年 1月 29日

积分是数学模型中最重要的功能之一,特别是对数值仿真而言。例如,偏微分方程组 (PDEs) 就是由积分平衡方程派生而来。当需要对偏微分方程进行数值求解时,积分也将发挥非常重要的作用。本篇博客介绍了 COMSOL 软件中可用的积分方法,以及如何使用,供您参考。

在 COMSOL 中使用广义拉伸耦合算子:动态探测

2014年 1月 28日

请看一个激光加热的例子,热源(激光)在移动,几何体也在移动。如何使用广义拉伸耦合算子在几何体的某一点上探测解?

利用混合并行计算技术加速物理场仿真

2014年 1月 23日

二十年前,配备了多达 1000 个处理单元的向量处理器超级计算机在超级计算机 500 强中占据了统治地位。随着时间推移,大规模并行计算集群不仅迅速取代了向量超级计算机成为了榜单中的新霸主,同时还促使了分布式计算的兴起。集群的每个计算节点上最初只有一个专用于高性能计算的单核处理器,很快,人们针对需要共享内存的节点,增加节点上的处理器数量,并以这种具备内存共享能力的并行计算机为基础,开发出了多核处理器,满足了各类计算应用对高效算法的需求。再看今天的超级计算机 500 强排名,我们会发现当中大多数集群均由数量众多的计算节点组成,每个节点又包含多个插槽(socket),每个插槽连接着最多可达八核的多核处理器。并行计算是一种适用于共享内存计算系统的技术,与基于分布式内存的集群采用的并行计算技术全然不同。为了实现高效率的并行计算,我们需要一种两者并用(混合)的机制。

模拟电磁波和周期性结构

2014年 1月 17日

我们经常想要模拟入射到周期性结构中的电磁波(光、微波),例如衍射光栅、超材料,或频率选择表面。这可以使用 COMSOL 产品库中的 RF 或波动光学模块来完成。两个模块都提供了 Floquet 周期性边界条件和周期性端口,并将反射和透射衍射级作为入射角和波长的函数进行计算。本博客将介绍这类分析背后的概念,并将介绍这类问题的设定方法。

求解代数场方程

2014年 1月 14日

COMSOL Multiphysics® 通常用于求解 PDE,ODE 和初始值问题。但是,您是否知道它也可求以解决代数方程,甚至超越方程?

使用 COMSOL 模拟 RF MEMS 开关

2014年 1月 7日

RF MEMS 开关通常由微机械桥或悬臂、衬底和电极或介电层组成。您可以使用 RF 仿真来设计这样的器件。

共轭传热

2014年 1月 6日

我们将在本篇博客中解释共轭传热 这一概念,并会展示相关应用。共轭传热综合了固体传热和流体传热。固体传热以传导为主;流体传热则以对流为主。我们在很多情况下都能观察到共轭传热。如设计散热器时,就可以结合散热器中的传导和周围流体中的对流来进行优化。

建立子模型:如何分析大型模型中的局部效应

2014年 1月 1日

你有没有碰到过对一个具有大量边界条件的特别大的结构进行建模?了解如何使用子模型,这是在COMSOL Multiphysics®中分析大型模型局部效应的一种建模技术。

由二维轴对称电磁模型创建可视化三维绘图

2013年 12月 31日

今天,我们将介绍在 COMSOL 软件中如何绘制矢量场的三维视图,这些矢量场由 RF 模块和波动光学模块中的电磁波、频域 接口的二维轴对称公式计算获得。 由二维轴对称解生成三维绘图 回想一下,COMSOL 软件中的时谐分析 假设场分量根据 e^{j\omega t} 在时间上振荡,其中 \omega 是角频率。在二维轴对称公式中,电场的角度依赖性由 e^{-j m \phi} 计算,其中 m 是用户指定的整数。由时间和角度的相关性 e^{j(\omega t-m \phi)},可知电场围绕 Z 轴 旋转。我们的目标是由具有这种角度依赖性的二维轴对称解创建三维绘图。 使用二维旋转数据集创建三维绘图 在计算出二维轴对称问题的解之后,COMSOL Multiphysics 会自动生成一个名为“二维旋转”的位于“数据集”节点下的二维数据集,如下图所示。 旋转数据集可用于绘制三维视图。由于我们绘制的是三维绘图,因此将完成一次从 0° 到 360° 的完整旋转。“二维旋转1”的设置如下所示。可以看到,在 “旋转层”下,起始角度被设置为 0,旋转角度被设置为 360。 二维轴对称计算中的平面坐标为 (r,z)。由于角度 \phi 不属于计算域,因此没有被定义。不过,可以通过选中“定义变量”旁的复选框将它添加为三维数据集中的坐标。“二维旋转1”数据集中的角度变量名被设置为“rev1phi”,并可用于下文中的绘图和导出值的表达式中。 如下图所示,考虑一个带矩形截面的轴对称谐振腔。在二维轴对称公式中仅模拟矩形截面。 我们可以使用特征频率研究计算谐振模式。假设我们想绘制 m = 1 模式的场量。下图左侧为在 rz 平面 绘制出的电场大小。我们还可以在将空腔一分为二的表面上绘制电场的大小,这是使用 xy 平面 上的“emw.normE”三维切面图绘制的,平面数被设为 1。右下图中绘制了电场的大小。由于场是围绕 Z 轴 旋转的行波,因此它是轴对称的,这也是因为它遵循 | e^{j(\omega t – m \phi)} | = 1。 绘制电场的径向分量 现在,我们来绘制空腔平面内电场径向分量的实部。具体来说,我们将绘制 t=0 时的 Re { E_r(r,z) \, e^{j(\omega t-m \phi)} },其中 […]

使用自适应网格划分进行局部解的改进

2013年 12月 27日

选择网格对于解决方案的准确性很重要。 在这里,我们介绍了一种自适应网格划分技术,以基于局部度量细化网格。

学习高效地求解多物理场问题

2013年 12月 26日

我们总是被问到该如何更有效率地学习求解多物理场问题。过去的几周,我一直在撰写阐述 COMSOL Multiphysics 核心功能系列博客。这些博客旨在帮助您理解有关高效开发精确的多物理场模型背后的关键理念。今天,我将整体回顾一下该系列博文。

提高多物理场问题的收敛性

2013年 12月 23日

在“求解多物理场问题”这篇博客中,我们介绍了 COMSOL 中用于求解稳态多物理场问题的全耦合和分离算法。这里,我们再来看一下能够加快这两种方法收敛的一些技巧。

求解多物理场问题的 2 种算法

2013年 12月 16日

这篇博客,我们将介绍 COMSOL Multiphysics 中求解多物理场有限元问题的两类算法。到目前为止,我们已经学习了如何进行网格划分,以及求解线性和非线性单物理场有限元问题,但是还没有考虑过同一个域内存在多个相互影响的不同物理场的问题。

二维材料,并非只有石墨烯

2013年 12月 13日

您也许听过这样一个故事,研究人员在一层石墨上反复用胶带粘贴,最终发现了石墨烯。石墨烯拥有许多优良的属性,比如它令人难以置信的强度、质量和电学属性;但并不是只有石墨烯具备这类属性。其他一些二维材料也可以用于电气应用,有些可以结合石墨烯使用,也有些材料可单独使用。


浏览 COMSOL 博客
Baidu
map