最新内容
三维感应加热模型的高效网格划分策略
您对三维感应加热模型的高效网格划分策略感兴趣吗?在这篇博客中,我们将演示如何根据单元类型划分网格。
对流-固耦合问题进行拓扑优化的新方法
许多拓扑优化方法仅适用于纯学术范围内的 FSI 问题。 输入用于流体结构设计的 TOBS-GT 算法…
涡街之美
涡街在自然界中经常出现,并且与各种技术应用相关。 这种流体力学现象也可以很美!
如何模拟沿波导的偏振旋转
对光子波导结构建模感兴趣? 了解一些适用于具有多种支持的波导模式和相同波导横截面的设备的有效技术。
使用 COMSOL 理解地震波的行为
1906年,发生了加利福尼亚地震。 1908年,有劳森报告。 1910 年,Harry Fielding Reid 提出了弹性回弹理论。 继续深入研究地震学…
在 COMSOL Multiphysics® 中模拟快速检测
想知道 COVID-19 的快速检测测试究竟是如何工作的? 在此处获取全面说明,以及 COMSOL Multiphysics® 中的 3 个示例模型。 (第 2 部分,共 2 部分)
快速检测测试设备中的物理原理
基于侧流分析 (LFA) 的快速检测测试,也称为免疫色谱测试,可以被认为是非常先进但非常强大的微型实验室。 (第 1 部分,共 2 部分)
通过多物理场仿真设计 5G 设备的腔体滤波器
从雷达和微波炉到粒子加速器,射频腔体滤波器可用于各种不同的应用领域。 其中:5G 设备和基础设施。
使用基准模型分析海啸波
1993 年日本北海道地震引发的海啸波达到了巨大的助推高度——在莫奈谷有记录的海浪甚至高达 32 m(~104 英尺)
焦糖制作背后的科学原理
许多人(包括我自己)都喜欢看一档烹饪比赛节目 The Great British Bake Off:不仅节目有趣,而且里面的食谱看起来也很美味。
模拟 Oldroyd-B 聚合物的行为
你有没有注意到,当对黏弹性流体施加一定的力时,该流体开始像串珠子一样?文中,我们介绍了一个使用 Oldroyd-B 聚合物的例子。
仿真助力扬声器开发的 6 个示例
从用于虚拟现实游戏的耳机到用于助听器的强大换能器,这里有 6 个多物理场仿真示例,用于开发新的和改进的扬声器产品。
在控制系统模型中添加一个全状态空间反馈控制器
获得全状态反馈的简要概述,学习如何使用状态空间控制器插件,并获得使用质量-弹簧-阻尼器系统实例实现该插件的演示。
将自适应网格细化与数据过滤相结合
在我们之前关于数据过滤的博客文章的后续文章中,我们演示了如何为具有非均匀热负载的热模型实现自适应网格细化和亥姆霍兹滤波器。
通过数据滤波提高模型性能
想要在您的模型中包含实验数据作为负载或边界条件,但数据随空间或时间变化并且有噪声? 尝试实现数据过滤,例如亥姆霍兹过滤器。
如何使用 COMSOL Multiphysics® 模拟霍尔效应传感器
霍尔效应传感器的基本工作原理:附近的磁场使通过半导体传感器的电流路径发生偏转,从而导致电位发生可测量的变化。
应该使用哪个辐射接口建立传热模型?
与传导和对流传热机制相比,辐射传热有其独特的特点。例如,辐射不需要任何介质就能远距离传输热量,在非常高的温度下主要是辐射传热产生作用。此外,辐射依赖于方向、波长和温度。那么,在 COMSOL Multiphysics 软件中,哪个接口可以最好地考虑我们传热模型中的辐射?
一场“安静”的革命:通过仿真分析电动机噪声
一个多世纪以来,世界在电动机的帮助下不停地运转。当人类社会享受到从电风扇到汽车等由电动机带来的各种好处时,人们可能就会要求这些机器变得更加安静。电动机发出的声音是一种多物理场现象,因为电动机的电磁运作会通过机器和周围的空气传送振动。
通过仿真分析高强度超声聚焦技术在生物组织中的传播
高强度超声聚焦(High-intensity focused ultrasound,HIFU)是一种用于生物医学领域的非侵入性技术,包括手术、癌症治疗和冲击波碎石术。当施加高强度聚焦超声时,超声波在焦点上耗散实现组织凝结和消融。我们可以通过仿真进一步分析该技术的声学特性和非线性性质。
在 COMSOL Multiphysics® 中模拟热机械疲劳
今天的客座博主是来自Lightness by Design公司的 Björn Fallqvist 博士,他在文中讨论了分析热机械疲劳的不同考虑因素和方法。 在这篇博客文章中,我们研究了 COMSOL Multiphysics® 软件中用于分析热机械疲劳的相关材料模型(模型使用了来自热机械疲劳测试的实验数据,以及参考文献中的材料参数)。随后,对在高温下运行的压力容器进行了分析,并使用非线性连续疲劳损伤模型评估疲劳寿命。 为什么要分析热机械疲劳? 在许多应用中,传统的等温疲劳分析是不够的,因为部件在高温下或在高温循环下工作时,材料性能与室温有很大不同。这种应用的典型例子是涡轮机和发电厂部件。 传统的疲劳分析,尤其是高周疲劳(high-cycle fatigue,HCF),不能直接考虑高温造成的影响。在高周疲劳区域中,载荷较低,蠕变等影响可以忽略不计。有时,S-N 曲线会减小,以解决温度升高时疲劳强度降低的问题。然而,这没有考虑到温度和载荷同时循环时的影响,即所谓的热机械疲劳。这种温度变化的影响在低周疲劳(low-cycle fatigue,LCF)区域中尤为重要,在该区域,需要考虑多个方面,主要是弹塑性和蠕变的材料性能变化。 评估高温下疲劳性能的一种方法是使用样品在多个温度下的稳定(通常是寿命中期)应力-应变曲线,以获得应力或应变幅度,并确定控制非线性应力-应变曲线的硬化参数。理论上,人们可以用一组特定的外加载荷和温度组合进行实验,并尝试根据实验结果估算疲劳寿命。然而,热机械疲劳测试需要相对较长的时间,并且成本较高。评估高温下疲劳能力的一种更方便的方法是使用描述应力水平和失效循环关系的解析表达式,并根据温度对其进行修正。 热机械疲劳试验 在热机械疲劳试验中,试样通常同时承受循环应变和循环温度。这可以是同相(IP)或异相(OOP)。对于前者,最大拉伸载荷与最高温度同时出现,对于后者,最大拉伸载荷出现在最低温度时。 为了与本篇博文中的实验结果进行比较,我们参考了参考文献 1,其中研究了 P91(一种常见的电厂用钢) 的热机械疲劳。我们从参考文献 2 中获得了模型材料参数,获得了应力-应变曲线。值得注意的是,对于参考工作,使用统一的模型(即黏塑性应变由塑性和蠕变分量组成)。然而,这只会影响模型蠕变部分的值。 热机械疲劳分析的材料模型 作为温度的函数的材料模型参数(参考文献2)如下表所示: Temp [°C] E [MPa] k [MPa] Q [MPa] b [-] a1 [MPa] C1 [-] a2 [MPa] C2 [-] Z [MPa s1/n] n [-] 400 187,537.0 96 -55.0 0.45 150.0 2350.0 120.0 405.0 2000 2.25 500 181,321.6 90 -60.0 0.6 98.5 2191.6 104.7 460.7 1875 2.55 600 139,395.2 85 -75.4 1.0 52.0 2055.0 463.0 […]
使用 COMSOL® 分析电动机和发电机设计
使用电磁学仿真,您可以研究和优化永磁电机或发电机中的磁场分布、机械扭矩以及铁的使用和损耗。
利用拓扑优化设计区域热网
发电厂在冬季可以利用热电联产达到高效供电。它是如何做到的呢?依靠区域热网。以前,这种网络设计仅限于小型网络的线性模型或非线性模型。最近的研究表明,我们可以使用基于梯度的优化的非线性模型设计大型网络(参考文献 2)。
计算三相电力变压器中的损耗
三相电力变压器被广泛应用于世界各地的电网中进行高效电力传输。就电容、负载平衡和效率而言,三相电力变压器比单相变压器具有明显的优势,但对其损耗的计算却并不像单相变压器一样简单。使用 COMSOL Multiphysics® 软件,我们可以正确地计算铁芯、线圈和支撑结构的损耗,以及重要的集总参数(例如初级和次级电感)。
如何使用 COMSOL 软件模拟压电微泵
在这篇博客文章中,我们将给大家展示由 Veryst Engineering 公司的 Riccardo Vietri,James Ransley 和 Andrew Spann 提供的压电微泵模型。我们将介绍如何将压电材料与流固耦合作用结合起来,以及如何使用简单的速度相关公式来描述入口和出口边界处的单向阀的作用。