食品科学 – COMSOL 博客 - //www.denkrieger.com/blogs 发布博客 Tue, 01 Oct 2024 20:14:48 +0000 en-US hourly 1 https://wordpress.org/?v=5.7 模拟啤酒发酵过程 //www.denkrieger.com/blogs/better-brewing-modeling-beer-fermentation //www.denkrieger.com/blogs/better-brewing-modeling-beer-fermentation#respond Thu, 06 Jun 2024 06:19:37 +0000 http://cn.staging.comsol.com/blogs?p=368251 几个世纪以来,酿酒师们一直致力于通过测试原料和优化发酵过程来酿造口味纯正的啤酒。发酵过程受初始糖含量、酵母类型和工艺温度等因素的影响,自发现以来,对其进行预测始终充满挑战。鉴于这种可变性,对发酵进行深入分析可以显著提升啤酒酿造工艺。借助 COMSOL Multiphysics® 软件,工程师可以深入查看发酵过程,确定精准调控的方式,以生产出风味最佳且酒精含量最适宜的啤酒。

到底在酿造什么?

人类对发酵饮料的喜爱可以追溯到几千年以前,啤酒类饮料最早出现在中国和古代美索不达米亚等地区。随着时间的推移,啤酒在不同的文明中不断发展:在古埃及被用作一种支付方式 ,在中世纪的欧洲修道院中找到了归宿,以及在英国的美洲殖民地为革命言论推波助澜。人们与啤酒的密切关系是一个悠久的传统,啤酒酿造至今仍是人们关注的焦点。

两个人碰杯的特写镜头。
啤酒酿造历史悠久,沁人心脾。干杯!照片由 Markus Spiske 提供,图片来自 Unsplash

在发酵过程中,糖分被转化为酒精,释放出 CO2 ,并形成风味化合物。这一过程是否顺利决定了最终酿造出的啤酒是美味可口还是无法饮用。由于涉及的因素众多,多物理场仿真可以将精准预测酿造过程,从而减轻酿造师酿造出可口啤酒的压力。

探索发酵过程

啤酒由以下4种基本成分构成:

  • 淀粉来源(麦芽)
  • 发酵催化剂(酵母)
  • 香料(啤酒花)

在发酵过程开始之前,先将大麦粒浸泡、烘干形成麦芽,然后将麦芽煮沸并混合均匀,以将释放出的淀粉转化为一种含糖液体,即麦芽汁。接着,在煮沸的麦芽汁中加入啤酒花,并使用热交换器冷却混合物。冷却必不可缺,它为酿造过程的下一阶段————发酵做准备。发酵通常是在厌氧条件下在封闭罐中进行。当麦芽汁冷却到 20°C 以下时,就开始加入酵母,麦芽汁开始发酵。发酵一般需要数周的时间,但时间的长短取决于所使用的酵母类型和发酵温度。

啤酒厂外的两个蓝色的大型啤酒酿造罐。
美国佛蒙特州一家啤酒厂外的大型啤酒酿造设备。

当糖分被转化为酒精和 CO2 ,并产生各种风味物质后,“啤酒”就诞生了 。在发酵过程中,酵母类型、温度和初始糖含量都起着重要作用。 COMSOL Multiphysics® 可用于预测发酵结果。

使用 COMSOL Multiphysics® 模拟发酵过程

您可以在COMSOL 案例库中下载案例模型,亲自动手模拟发酵过程。在示例模型中,我们使用 反应工程 接口模拟了发酵过程,并假设系统完全混合(即 反应 速率不受质量或热量传递的限制)。在建立模型时,我们使用了一种在温度接近 12°C(酿造啤酒的理想温度)条件下生长的酵母,并考虑糖的含量包含麦芽糖、葡萄糖和麦芽三糖。使用该模型,我们可以评估影响最终酒精含量、啤酒口感和发酵时间的几个参数。

除了考虑不同类型的糖之外,我们还使用完全混合模型分析了发酵过程中产生的两种风味化合物的浓度:乙酸乙酯(EtAc)和乙醛(AcA)。乙酸乙酯是一种酯类物质,能让啤酒风味纯正,而乙醛是一种醛类物质,会影响口感。建立模型时,我们将初始温度和罐中冷却介质的温度都设定为 12°C。

完全混合模型结果的一维图,显示了不同类型的糖浓度随时间的变化。
完全混合模型结果的一维图,显示了酒精含量。
“完全混合模型结果的一维图,显示了乙酸乙酯和乙醛风味化合物的浓度。
完全混合模型结果的一维图,显示了温度。

仿真绘图显示了完全混合模型的结果,包括糖类浓度(上左)、酒精含量(上右)、乙酸乙酯和乙醛风味化合物浓度(下左)及(下右)随时间变化的温度。

从模拟结果可以看出,随着时间的推移,所有类型的糖分含量都在减少,而酒精含量却在增加。如第一幅图所示,所有的葡萄糖在 90 h 后都被消耗完。还可以看到,葡萄糖的快速消耗与最初的温度升高相对应。在温度接近峰值 250 h(大约 1.5 周)时,酒精含量已超过 5.5%,口感不好的乙醛浓度也开始下降。为了使乙醛浓度足够低,获得可接受的口感,必须让啤酒多发酵几个小时(同时增加酒精体积含量)。如果在实践中要改进这种啤酒的配方,可以在开始时向麦汁中添加更多的酵母,来加速乙醛含量的降低。

历久弥新的发酵

文中的模型示例结果可以帮助解释为什么酿造行业需要几个星期的发酵时间。即使发酵时间为 250 h,模拟结果也显示还需要发酵更多时间,但这却为未来生产出美味的啤酒奠定了基础。如果我们有足够的时间来不断调整模型中的发酵过程变量,就能酿造出随时随地都能享用的啤酒 —无论是罗马小酒馆,还是现代微型酿酒厂。

想亲自动手尝试模拟完全混合模型吗?点击下方按钮进入COMSOL案例库,下载案例教程,探索如何设置模型的详细分步说明:

阅读相关博客

]]>
//www.denkrieger.com/blogs/better-brewing-modeling-beer-fermentation/feed/ 0
从电视信号到烤面包: 使用八木-宇田天线加热麦芬蛋糕 //www.denkrieger.com/blogs/from-tv-signals-to-toasting-tuning-a-yagi-uda-antenna-to-heat-muffins //www.denkrieger.com/blogs/from-tv-signals-to-toasting-tuning-a-yagi-uda-antenna-to-heat-muffins#respond Fri, 29 Dec 2023 09:07:35 +0000 http://cn.staging.comsol.com/blogs?p=353001 对于一些美食爱好者来说,没有什么比新鲜出炉的麦芬蛋糕的香味更让人难忘了。无论是巧克力味、蓝莓味还是南瓜味麦芬,这些甜点加热后都特别美味。带着饥饿和好奇的心情,我们决定尝试用一种非常规的设备来加热麦芬蛋糕:八木-宇田天线。通过多物理场仿真,让我们来看看有没有可能将天线用于这种美味的应用中,或者我们注定要吃冷食。

你听说过这些独特的加热方法吗?

自从有食物以来,人们就一直在研究加热食物的最佳方法。对于那些仍在寻找理想的加热方法的人来说,自制太阳能烤箱以及其制作烤棉花糖饼干的功能是不二之选。我们来做一个有趣的实验,首先将铝箔和保鲜膜加入一个定制的纸板箱中,然后把纸板箱移到阳光下,它就能发挥太阳能烤箱的功能,慢慢地把里面的点心烤得酥脆可口。利用这种创造性的能量,我们使用了一种颠覆常规的方式加热麦芬蛋糕。

天线通常用于如移动设备飞机上传输电视信号。在这些应用中,天线中的电荷运动产生的电磁波无害,且没有很大的热效应。然而,在特定频率下,天线能够使物体产生分子间摩擦并将其加热。如果调谐正确,天线应该可以替代我们假设的烤箱很好地工作。

天线上的一只戴着厨师帽的红隼,嘴里叼着麦芬的插图。

一只栖息在天线上的红隼正在享用一块巧克力麦芬蛋糕。谁知道这些鸟对烘焙食品情有独钟呢?照片由 Regine Tholen 拍摄,来自 Unsplash。原作已经被修改。

微波炉(不是家用电器)仿真

在这个有趣的仿真示例中,我们希望避免使用全向天线,因为它的 360° 辐射方向图和相对较低的增益。这些特性使得这类天线使用起来,没有定向天线那么安全和有效。因此,我们选择了模拟八木-宇田天线。

无论是定向天线还是全向天线,在烹饪时都会受到限制。例如,天线只能通过辐射产生热量。与常规的厨房电器相比,这是一个缺点,因为常规的厨房电器可以依靠对流和传导产生热量。尽管如此,我们还是希望我们的天线能够产生足够的强度和方向控制的电场,以克服这一局限。

借助 COMSOL Multiphysics® 软件,我们建立了包含 1 个驱动元件(通过馈电线供电)、1 个反射器(位于电磁场的相反方向)和4个定向器(可使天线功率更大、方向性更强)的天线模型。我们还使用了 COMSOL Multiphysics® 的附加产品 RF 模块,它提供了专用于 RF 仿真的功能。通过该模块,用户可以轻松地地根据指向性和辐射模式的增益确定辐射元件(例如我们示例中的天线)的性能。

八木宇田天线示意图,导向器、驱动元件和反射器均用蓝色显示。

COMSOL Multiphysics® 软件中的 Yagi-Uda 天线底部有 4 个定向器,顶部附近有1个驱动元件和1个反射器。这些元件被连接到聚四氟乙烯(PTFE)制成的杆上,并都被视为完美电导体(PEC)。

对于八木-宇田天线这种应用,我们应该确定我们的参数。仿效常规的市售微波炉,我们将八木-宇田天线调谐到 2.45 GHz,这样就能产生加热食物所需的分子间摩擦力。我们还让麦芬通过传送带通过天线的电磁场,以降低其过热的风险。毕竟,我们是要重新加热麦芬,而不是烤焦它们。在这次仿真中,我们模拟了两块麦芬蛋糕,它们具有以下特性:

  • 相对介电常数 = 65-j20
  • 电导率 = 0
  • 导热系数 = 0.55 W/(m*K)
  • 恒压下的热容量 = 3640 J/(kg*K)
  • 密度 = 1050 kg/m3

在仿真过程中,我们执行了参数扫描来考虑麦芬的运动,同时还执行了一个瞬态研究,以观察 12 s 内的温度变化。借助瞬态研究的传热变量,仿真显示了天线产生的使我们能够直观地看到麦芬蛋糕温度分布的电磁场。

如果把这个仿真搬到现实中,我们就会看到一对美味的麦芬蛋糕沿着传送带,从天线下方一边移动到另一边。下面是这个过程的动画演示:

两块麦芬蛋糕在 12 s 内穿过电磁场。

随着模型的建立和求解,我们可以查看仿真结果来看看点心是否已经被适当地加热。

传输一种有效但非常规的热信号

仿真结果表明这对麦芬是热的。每个麦芬的部分温度都超过了 45 °C,而且正如预期的那样,最靠近天线的区域产生的热量最多。将麦芬暴露在电磁能下后,在规定时间内,两块麦芬的平均温度变化都超过了 40 °C。两块麦芬经历的最大温度变化也都超过了 110 °C。其中,第二块麦芬的平均温度和最高温度更高,后者超过了 120 °C。

随时间变化的麦芬蛋糕的平均温度(左)和最高温度(右)。在这两幅图中,第一块麦芬蛋糕用蓝线表示,第二块麦芬蛋糕用绿线表示。

以上仿真结果表明,八木-宇田天线可以快速地、显著地加热松饼。虽然我们的仿真取得了成功,但从短期或长期来看,这些天线都无法取代厨房中的烤箱。相反,您也许还是应该把八木-宇田天线放在屋顶上,把麦芬蛋糕放在烤箱里。

了解更多关于这个示例的信息

建模和仿真是研究天线和相关不同物理场之间相互作用的绝佳方法。正如文中所讨论的,您可以将八木-宇田天线的常规功能转换为一个加热应用,并模拟电磁波和固体中的热量传递。想要了解有关此示例的更多信息,请参阅 COMSOL® 案例库中的相关 PPT 演示。

渴望获取更多内容?

想要了解更多有关食品应用仿真的信息,请浏览以下博客:

]]>
//www.denkrieger.com/blogs/from-tv-signals-to-toasting-tuning-a-yagi-uda-antenna-to-heat-muffins/feed/ 0
COMSOL Multiphysics® 在食品工业中的应用 //www.denkrieger.com/blogs/the-use-of-comsol-multiphysics-in-the-food-industry //www.denkrieger.com/blogs/the-use-of-comsol-multiphysics-in-the-food-industry#respond Thu, 13 Oct 2022 05:51:11 +0000 http://cn.staging.comsol.com/blogs?p=318011 在过去的几十年里,无数的食品和饮料出现在杂货店的货架上,然而在几年后它们就停产了。你甚至可以想到您最喜欢的零食或饮料似乎突然消失了。这种食物消失的行为可以用一个非常简单的答案来解释:如果一种产品不畅销,那么它被补货的机会就比较少。

在这篇博客中,我们将探讨失败的产品和多物理场仿真的使用如何激发食品行业内创新器具、产品和工艺流程的开发。

从失败中孕育成功的食品

停产或失败的产品不一定是坏事,因为从它们的衰落中可以学到很多东西,它们还可以激发出生产畅销产品的灵感。美国早餐麦片品牌 Wheaties® 公司的起源就是这样一个例子。在 20 世纪 20 年代初,Washburn Crosby® 公司(即今天的通用磨坊公司)的一名员工正在准备一种麦麸混合物时候,不小心将一部分半液体混合物掉到了热炉子上,很快混合物就变脆片状了(参考文献1)。从此,我们今天所熟知的麦片诞生了,但故事并没有就此结束。这种片状谷物并非一夜成名,自 1924 年首次亮相以来,多年来它一直是一个失败的产品。当在美国各地的广播电台播放有关麦片的广告词后,它最终成为了家喻户晓的名字。麦片的名气的进一步扩大要归功于它与体育界的密切联系。(超过 850 名运动员曾在 Wheatiesbox® 的封面上出现过)。

食品工业中另一个类似的从失败到成功的故事是微波炉发明背后的故事。和麦片一样,微波炉也是一个偶然的发现。物理学家兼发明家 Percy Spencer 在实验室测试磁控管时,注意到他口袋里的花生糖开始融化。为了进一步研究磁控管的烹饪能力,Spencer 将爆米花粒和鸡蛋暴露在里面。他发现爆米花爆裂了,鸡蛋爆炸了。Spencer 从这些观察结果中得出结论:磁控管产生的低密度微波能量不仅加热了食物,而且加热速度很快。1945 年,Spencer 和他的雇主 Raytheon 公司根据这一发现,为一项发明申请了专利,他们称之为“Radarange®”。

一艘轮船上的 Radarange。
一艘轮船上的Radarange。图片来源:Acroterion — 自己的作品。根据CC BY-SA 3.0 授权,通过 Wikimedia Commons 共享。

Radarange 的早期版本由于其尺寸、价格和重量而未能成功量产(它比冰箱还大,以今天的货币计算价值超过 50,000 美元,重量可能超过 750 磅!)。随着对其设计的重大修改,它变得更加适合家庭使用,这项发明的销售额急剧上升,后来被称为微波炉。今天,超过 90% 的美国家庭都拥有一台微波炉,其中包含基于 Percy Spencer 发现的技术。

这些故事告诉我们,从失败中学习,从失败中建立并保持灵感是很重要的。仿真实现这一点的一种方法,它可以轻松优化旧的设计和测试新设计。接下来,我们来看看在食品工业中使用仿真可以实现什么。

食品工业中的仿真

工程师和研究人员使用仿真能够获得有关他们正在研究的产品、过程或设备性能的宝贵见解。通过仿真,用户可以测试那些具有挑战性甚至不可能进行的物理测试的参数。他们还可以使用仿真来提出新设计、优化设备并加速原型制作过程。可以研究产品质量对不同参数的敏感性,以实现产品的可重复性。对于在食品行业工作的工程师来说,通过仿真深入了解产品、过程或设备尤为重要,因为食品生产需要密切关注细节。食品特性的微小变化都能被消费者的嗅觉和味觉检测出来。

借助 COMSOL Multiphysics 软件,工程师可以在一个直观的软件环境中分析影响食品的各种物理现象(包括传热、流体流动、化学反应、固体力学和电磁学)。这种多功能性使 COMSOL Multiphysics® 成为一个可以使食品生产链的所有阶段受益的平台,包括生产、加工、分销、零售和餐厅。在下一节中,我们将探讨五个具体的示例,来重点说明在食品行业中使用仿真的好处。

教程模型示例

COMSOL Multiphysics 及其附加模块包含对食品和饮料行业中常用的各种流程、工业设备和家用电器进行建模的功能。让我们回顾这些众多示例中的几个…..

过程

冷冻干燥

冷冻干燥是一种干燥热敏性材料的工艺,被广泛应用于各个行业,从用于保存抗生素和疫苗的制药行业到用于修复浸水书籍、艺术品、照片等的文件修复行业等。然而,这个过程因它在食品工业中的使用而最广为人知,因为它能够保存食品长达 30 年。当一种物质,如食物,被冷冻干燥时,它首先被冷冻,然后通过升华 的过程直接变成气态。在之前的博客文章中,我们讨论了如何使用相图来显示固体,以及如何跳过液相直接进入气态阶段。

冷冻咖啡的特写图。
冻干咖啡的特写图。图片来源:Pleple2000 — 自己的作品。根据CC BY-SA 3.0授权,通过Wikimedia Commons 共享

为了深入了解冷冻干燥工艺,可以使用传热仿真对其进行建模和分析。例如,使用 COMSOL Multiphysics 和它附加的传热模块中的特性和功能,可以模拟冰在真空室条件下通过小瓶的多孔介质升华,这是许多冷冻干燥设置的常见测试用例。你可以查看冷冻干燥教程模型,获取执行此操作的分步说明。

冷冻干燥工艺后期的温度和热通量仿真。
冷冻干燥模型的图像。

啤酒酿造中的发酵

食品和饮料行业使用的另一种工艺是发酵工艺,通常用于生产啤酒。在啤酒酿造过程中,发酵用于将麦芽汁中的糖转化为乙醇和二氧化碳气体,从而使啤酒具有酒精含量和碳化作用。当冷却的麦芽汁(<20°C)和酵母被添加到发酵容器中时,这个过程就开始了,发酵容器通常是处于厌氧条件下的封闭罐。这个操作会导致麦芽汁发酵。发酵完成后,我们就得到了啤酒这一产品。(提示:在我们的博客文章“通过模拟啤酒酿造中的发酵建提升啤酒的品质”中了解有关发酵工艺的更多信息。

一组间隔紧密的发酵罐。
一组发酵容器。图片来源:Antoine Taveneaux – 自己的作品。根据CC BY-SA 3.0授权,通过Wikimedia Commons共享

发酵过程的结果可能是不可预测的,因为它依赖许多不同的因素,包括初始糖含量、酵母类型和选择的过程温度。通过啤酒酿造发酵教程模型,你可以进一步分析此过程,并通过化学建模更好地预测其结果。该教程分两步对发酵过程进行建模。第一步,使用反应工程 接口在完美混合的罐中对发酵过程进行建模。第二步,模型被扩展为一个考虑了传质、传热和自然对流的球形罐几何结构。这两种模型都可以评估可能影响发酵过程中产生的最终酒精含量的各种参数。点击此处,查看此教程的 MPH 文件和 PDF 说明。

啤酒发酵反应器中局部偏差平均浓度的模拟。
啤酒发酵反应器中平均浓度的局部偏差。该模型可以了解产品对发酵反应器中局部温度和流量的敏感性。

工业设备

搅拌器

在食品工业中,工业搅拌器用于将两种或多种独立的成分结合起来生产各种食品和饮料,包括但不限于:

  • 糖果
  • 口香糖
  • 咖啡
  • 敷料
  • 果汁
  • 酱汁
  • 糖浆

这些机器在确定食品的特性方面发挥着关键作用,例如味道和质地。如前所述,消费者可以很容易地检测到它们的变化。因此,搅拌器在不同批次之间高效、一致地运行非常重要。(在大多数情况下,它们不仅是搅拌器,也是反应器。)仿真可以设计搅拌器,他们可以及时生产出高质量、均匀且安全消费的产品。

工业搅拌器的特写。
工业搅拌器。图片来源:Erikoinentunnus — 自己的作品。根据CC BY-SA 3.0授权,通过Wikimedia Commons共享

模块化搅拌器模型教程提供了有关如何对三种混合过程场景进行建模的详细说明:

  1. 带有 Rushton 涡轮的平底搅拌器中的层流混合问题
  2. 使用 k-epsilon k-ε 湍流模型的带斜叶片叶轮的平底搅拌器中的湍流混合问题
  3. 使用 k-omegak-ω湍流模型的带斜叶片叶轮的平底混合器中的湍流混合问题

使用这个教程模型,可以轻松修改搅拌器的几何形状,以更好地满足其特定的搅拌器应用和建模需求。可以访问 COMSOL 案例下载页面,深入了解此模型,并下载相关的 MPH 文件。

带 Rushton 涡轮机的挡板平底混合器的模型几何结构。
带有四个斜叶片叶轮的平板搅拌器的几何模型。

带有 Rushton 涡轮机的档板平底搅拌器(左)和带四个斜叶片叶轮的挡板平底搅拌器(右)的模型几何形状。

意大利面挤出机

意大利面挤出机经常出现在工业化的意大利面工厂中,它们可以提供一种高效、简单和快速的方式,来生产不同形状和大小的意大利面。这些机器能够通过它们的许多组件将粗面粉(一种面粉)和水的混合物塑造成不同形状的生意大利面(如意大利细面条)。挤出螺杆是一个特别重要的组件,它在运动时将粗面粉和水转化为面团,并将其推入机器的挤出钟罩,该罩由带有许多毫米大小的孔的筛网组成。面团通过两个不同的出口,以意大利面的形式离开机器。下面最右边的图片为这种意大利面挤出机的模型。

不同形状和大小的干意大利面条的特写图。
一个面食挤出机模型显示了彩虹色表的流场,其中模型的左端是深蓝色;中间是黄色和蓝色;喷嘴的颈部是浅蓝色,底部和末端是深蓝色。

左图:不同形状和大小的干意大利面。摄影:Karolina Kołodziejczak,图片来源 Unsplash。右图:面食挤出机的流场和几何形状,包括挤出螺杆、钟罩、毫米大小的孔和两个出口。

尽管意大利面挤出机的历史很悠久,但这些机器的效率并不完美。挤出机设计可能出现的问题包括:

  • 面粉和水混合不完全
  • 压力分布和挤出速度不均匀
  • 面团循环不良

使用意大利面挤出教程模型,可以预测挤出机内部的条件如何导致不同面团配方出现此类问题。点击此处,详细了解此模型以及如何设置它。

家电

微波炉

在 Percy Spencer 发现微波炉多年后,其设计仍在研究和改进中。其中一个原因是,使这种普通家用电器在几分钟内煮出一顿饭的技术并非没有缺陷。许多微波炉用户普遍感到烦恼的是,该设备不能一致均匀地加热食物。当微波炉对食物的加热不均匀时,消费者就只能吃下部分冷冻、部分煮熟的早餐、午餐、晚餐或小吃。某些食物在微波炉中煮得不均匀,因为它的成分含水量不同;食物的含水量越多,加热的速度就越快。饭菜不能均匀的加热的另一个原因是由于设备在使用时会出现复杂的振荡模式。

通过 RF 建模,可以更好地了解工作中的微波炉的物理场。例如,微波炉教程模型可用于模拟微波炉烹饪马铃薯时的加热过程。在这个示例中,微波炉被模拟为一个连接到 2.45 GHz 微波源的铜盒。模型中的矩形波导将微波引向微波炉的中心。点击此处,深入探索该教程模型。

一个加热马铃薯的微波炉模拟。
微波炉型号。

延伸阅读

想了解更多关于仿真在食品行业的应用吗?浏览以下案例,了解如何使用 COMSOL Multiphysics 研究膨化零食生产、开发屡获殊荣的大比目油炸鱼卷配方和模拟世界著名的糖果棒生产过程中所涉及的相互作用的物理现象。

参考文献

  1. “Wheaties®,” Wikipedia, Wikimedia Foundation, 8 September 2022; https://en.wikipedia.org/wiki/Wheaties

Wheaties 是 General Mills IP Holdings II, LLC 的注册商标。

]]>
//www.denkrieger.com/blogs/the-use-of-comsol-multiphysics-in-the-food-industry/feed/ 0
通过模拟热平衡烤出更美味的苹果派 //www.denkrieger.com/blogs/model-balanced-heat-transfer-bake-a-better-apple-pie //www.denkrieger.com/blogs/model-balanced-heat-transfer-bake-a-better-apple-pie#comments Mon, 14 Mar 2022 02:26:52 +0000 http://cn.staging.comsol.com/blogs?p=295711 苹果是制作甜点(比如苹果派)的常见原料,但有一种苹果是许多烘焙师都避免使用的。在这篇博客中,我们将探讨这种备受争议的原料在烘焙中的应用,并将通过一个案例模型来展示如何模拟正在烘烤的苹果派中的传热过程。

烤还是不烤

各种各样的苹果

网上有很多苹果派的食谱,关于这款甜点的做法各有不同。但是大多数人都认为,一些苹果更适合制作苹果派,包括但不限于青苹果(Granny Smith)、金冠苹果(Golden Delicious)、蜜脆苹果(Honeycrisp)和布瑞本苹果(Brae burn)。这些苹果酸甜适中,因此成为烘焙的理想选择。

如果想制作出美味的苹果派,大多数厨师会建议你避免使用蛇果(Red Delicious),因为这种苹果在高温下很容易碎裂并且失去风味。在一篇名为 Serious Eats 的博客中,使用蛇果制作的苹果派被评为 1 分,成为榜单上排名最低的苹果派。

了解到蛇果在烘焙界的名声后,我很想亲自看看它的表现。接下来,我将对用青苹果制作的苹果派和用蛇果制作的苹果派进行比较。制作这两种苹果派使用的配方、配料和烘焙程序均相同。(如果您想跳过这部分,请单击此处,直接阅读模拟烤箱中的苹果派相关内容。)

食谱

制作苹果派有两种必需材料:饼皮和馅料。我按照一个简单的食谱来制作饼皮,其中需要用到面粉、黄油、盐、糖和水。按照这个食谱制作馅料,需要用到以下材料:

  • 6 个中等大小的苹果
  • 150 克(3/4 杯)糖
  • 2 汤匙通用面粉
  • 3/4 茶匙肉桂粉
  • 1/4 茶匙盐
  • 1/8 茶匙肉豆蔻粉
  • 1 汤匙柠檬汁

制作蛇果苹果派的步骤如下:首先把一张饼皮放在一个椭圆形的玻璃烤盘里。然后,把馅料的所有配料放在一个大碗里。接着将馅料添加到铺着饼皮的烤盘中。将馅料铺满整张饼皮后,再在馅料上放一张饼皮,然后将两张饼皮的边缘压在一起。最后,在最上面的一层饼皮上开几个小口,将整个馅饼放入烤箱,温度约为 220 ℃。烘烤 45 min。

然后,用同样的方法制作青苹果派。制作两个苹果派的唯一区别是烤盘的形状。

4张照片组成的网格显示了苹果派烘焙过程的不同阶段。
使用蛇果制作苹果派的步骤(按顺时针方向,从开始到准备烘烤阶段)。

蛇果派与青苹果派,哪个更好吃?

蛇果做的派不好吃吗?青苹果是烘焙用苹果的黄金标准吗?

对我来说,用蛇果制作的苹果派颜色更深,但正如美食评论家所说,它缺乏风味。与青苹果派相比,蛇果派吃起来水分更多,熟得不够透,而且有轻微的颗粒感。

两张并排的图片是一个苹果派,由红色美味的苹果(左)和几个红色美味的苹果(右)做成。
一个用蛇果制作的苹果派(左)和几个蛇果(右)。

用青苹果制作的派则有经典的苹果派风味:酸甜可口,并且有浓郁的柠檬味。

两张并排的苹果派图片,由史密斯奶奶的苹果(左)和几个史密斯奶奶的苹果(右)做成。
一个用青苹果制成的苹果派(左)和几个青苹果(右)。

两种苹果派各有优点和缺点,像许多人一样,我也建议在烘焙时使用青苹果。但是,如果你的任务是消耗掉那些在苹果采摘季剩下的蛇果,那么使用它们制作派也很不错。

现在,我们知道哪种苹果制作的派味道更好了,接下来让我们研究一下它们在烘焙时发生的传热过程吧!

模拟烤苹果派时烤箱中的传热

无论你选择哪种苹果制作派,稳定的热量传递对于烘焙过程都是必不可少的。

在烤箱内部,热量通过三种传热过程传递:

  1. 对流:烤箱后部的风扇将热空气吹入烤箱。
  2. 传导:热量从派边缘传递到派中间的方式。这也是空气和派在它们的交界处进行热量交换的方式。
  3. 辐射:热电阻向烤箱壁和派辐射热量。

图中显示了烤箱内发生的热传递过程,烤饼上标注了对流、传导和辐射。
烤箱中的传热过程。

现代烤箱有几种加热模式,可以慢烹、烧烤、上部加热或下部加热。选择的加热模式决定了是激活上部电阻、后风扇还是后部电阻。

假设将烤箱设置为风扇烧烤模式,则激活上部电阻 (1000 W)、后部电阻 (1500 W) 和后风扇。烤箱的目标温度设置为 220°C。那么,派中的温度分布均匀性如何?距离目标温度有多近?烹饪它需要多少能量?让我们通过仿真来寻找答案。

基于直觉建模

对需要模拟的应用进行初步了解后,我们发现需要考虑派周围的流体流动、空气和派内部的热量传递以及表面对表面辐射才能完整地描述传热过程。在 COMSOL Multiphysics® 软件中,我们可以使用传热模块中的非等温流动表面对表面辐射传热将所有这些物理场耦合在一起。

在烤箱中烘烤 45 min 后,派的温度不均匀,温度从 140°C(中间) 到 210°C(边缘)不等。平均温度约为 160°C。

一个模型显示了在设定为 220°C 的家用烤箱中烘焙45分钟后馅饼内部的温度。烤箱内的速度流线也显示出来。
家用烤箱内的温度和速度流线图(按温度着色)。

烤箱工作一小时后,消耗了 0.26 kWh 的能量,内部空气温度保持在 220°C。

现在,我们已经回答了上文提到的问题,但还没有深入探讨模拟过程。如果讨论的更详细一点呢?上述设置是否过于简单而不能准确模拟这个过程?

高级建模

了解建模和仿真的应用场景中涉及的物理场,对于快速获得准确的结果至关重要。对于在这个应用中要评估的内容,第一个建模过程没有遗漏任何一个物理场,但实际上过于宽泛了。在这个模拟中,我们可以忽略自然对流,因为强制对流占主导地位。这意味着流体流动和传热的耦合很弱,也意味着空气可以被认为是不可压缩的。基于这两点,我们可以简化模型,从而减少计算时间。简化后的模型计算速度实际上比第一个模拟示例快了 4 倍。

两个模型的仿真结果呢?几乎一模一样!

一个比较单向非等温流动法(单向NITF)和非等温流动法(NITF)的图表,用于计算烤箱中烘焙的馅饼内部的平均温度。使用单向NITF方法获得的结果用蓝线表示,而使用NITF方法获得的结果用绿色虚线表示。
比较单向非等温流动法(单向NITF)和非等温流动法(NITF)的图表,用于计算烤箱烘焙馅饼所消耗的总能量。使用单向 NITF 方法获得的结果用蓝线表示,而使用 NITF 方法获得的结果用绿色虚线表示。

随着时间的推移,派的平均温度(左)和烤箱消耗的总能量(右)。

动手尝试

烘焙是传热物理学的一个常见应用,这也是为什么它是说明如何使用 COMSOL Multiphysics 模拟流体流动和传热耦合的完美示例。在这篇博客中,我们通过模拟了家用烤箱中馅饼的传热过程,并考虑了传导、对流和辐射作用。

想尝试自己动手模拟相关的模型吗?单击下列按钮至 COMSOL 案例库,下载案例模型。

注意:使用案例模型,您可以更新烤箱的温度和烘烤食物(例如馅饼)的持续时间,以符合您的实际建模需求。在这篇文章中,我们让烤箱在 220°C 下运行 45 min,以匹配苹果派的平均烘焙过程。

相关阅读

想了解更多关于食品仿真的相关信息吗?请阅读以下博客:

]]>
//www.denkrieger.com/blogs/model-balanced-heat-transfer-bake-a-better-apple-pie/feed/ 1
使用 COMSOL® 模拟意大利面挤出机 //www.denkrieger.com/blogs/pasta-alla-simulazione-modeling-an-extruder-in-comsol //www.denkrieger.com/blogs/pasta-alla-simulazione-modeling-an-extruder-in-comsol#respond Mon, 14 Feb 2022 02:34:51 +0000 http://cn.staging.comsol.com/blogs?p=291461 将谷物磨成面粉,加水加压揉成面团,然后再切块煮沸。意大利面看似是一种非常基本的厨房素材。然而,它的一些特点似乎激发了人们的创造力,而且不仅仅是发生在厨房里。你有没有听说过这样一个故事:马可波罗于 13 世纪在中国发现了意大利面并把它带到了意大利?这可能并不是真的,因为当时古罗马和希腊已经开始食用小麦制作的面食了(参考文献 1)。

我还听过一个值得怀疑的故事。小时候,我的一位小学老师告诉我们,意大利的妈妈们会从锅中取出一些正在煮的意大利面,将它们扔到墙上来看是否会掉落,来测试意大利面的成熟度。真的是这样吗? 在我9年的生命中,我从未见过我的意大利裔美国祖母扔过一根面条!

是什么让这种传闻如此 根深蒂固 呢?难道仅仅是因为意大利面和人一样,比表面上看起来更复杂吗?欢迎查阅我们的意大利面挤出 案例教程模型,了解意大利面制作的真实故事。

意大利面的流变学平衡行为

艺术与科学、面粉与水、橄榄油和大蒜,无论我们是生产面条还是把它们做成晚餐,我们都必须平衡互补元素之间的紧张关系。制作意大利面粉的谷物中含有淀粉和蛋白质。为了制作面团,我们在面粉中加水,然后用手或工具搅拌。这个过程中增加的水分和压力会将湿粉末变成黏且有弹性的圆球。

图中显示两名妇女制作意大利面; 左边的女人正在挂意大利面晾干,右边的女人正在做面团。
一名男子在外面的柜台工作,手拉一圈意大利面。

左图:15 世纪的意大利绘画中制作意大利面的妇女。图片来自 Wikimedia Commons在公共领域中的图像。右图:中国辽宁大连的一名男子正在制作拉面。照片由 CEphoto, Uwe Aranas 拍摄,通过 Wikimedia Commons 获得许可( CC BY-SA 4.0 )。

生意大利面面团可能看起来很均匀,但实际上,面团中的淀粉和蛋白质分子分布并不均匀。这些不同的分子可以帮助定义意大利面面团的 流变性,用于描述当施加水分、机械应力和热量后面团如何发生流动和变形。无论这个面团最终是被制作成 松饼 还是花卷意面,面团的流变性都会受每个生产阶段处理方式的影响。

挤出机如何将原料变成面条

当我们从和面开始制作意大利面时,可以根据面团的外观和手感对其进行调整:这里加一点水,那里揉一揉。当工业级别生产意大利面时,这种用手调整面团的流变性就不再适合了。面条厂通常使用机器(例如挤出机)来混合和揉搓生意大利面面团。下图显示了一个典型的面食挤出机设计示例:

意大利面挤出机模型的几何形状,金属叶片围绕中心杆盘旋,喷嘴位于右端。
案例模型中的面食挤出机内的组件。

挤出机的核心是挤出螺杆或蜗杆,它是由一个螺旋状刀片和旋转轴组合而成。(它看起来像一个巨大的意大利螺旋 面!)水和面粉被送进如图中设计的挤出机的左侧。当挤压蜗杆转动时,配料会被用力推向右移动。蜗杆运动产生的热量、运动和压力将混合物转化为面团,在将面团被推入图中右侧机器出口喷嘴中的孔。各种配件被安装在出口处,用于制作各种形状的面条,并使用其他设备切割和干燥最终产品。

挤出工艺的潜在问题

尽管使用这种机器制作意大利面已经有数百年的历史了,但这项技术仍然存在问题。University of Naples的一项研究(参考文献2)指出,挤压过程涉及复杂的“由压力和温度共同驱动的聚合现象”。挤出机内部可能出现的问题包括:

  • 面粉和水混合不充分
  • 压力分布和挤出速度不均匀
  • 面团循环不良,容易形成霉菌

这些问题会影响最终产品的外观和味道,甚至无法安全食用。为了帮助预测可能导致这类问题的条件,我们可以使用 COMSOL Multiphysics® 软件对意大利面挤压过程进行建模。

模拟热量和速度的不均匀分布

自 6.0 版本开始,COMSOL Multiphysics 案例库中新增了如何模拟面团通过面食挤出机时的非等温流动案例模型。该模型可用于预测挤出机内的条件如何影响最终产品。

由于机械搅拌产生的温度升高,面食面团的黏度会随着通过挤出机而降低。

注意:为简单起见,模型中假设水分含量为常数,此处不作说明。

非等温流动,层流 接口提供了蠕变流体传热 接口之间的耦合,使我们能够计算这种黏度耗散。挤出螺杆在旋转域内以 20 转/分的角速度运动。使用冻结转子分析可以对螺杆作用和产生的面团流场进行有效的近似,节省了内存和时间。

挤出机模型的模拟结果显示了热和剪切应力对面团的综合影响。在螺杆表面与外壁相遇的地方,剪切速率最大,黏性热最大。壁附近产生的热量以螺旋形路沿径向连续对流离开挤出机口模。由于面团的剪切变稀效应,黏度随着剪切速率的增加而降低。黏度也会随着温度升高而降低。这些不均匀分布的影响导致了近一个数量级的黏度变化。靠近刀片中间的部分面团,剪切速率低,几乎像刚体一样旋转。这些效应使得垂直于流动方向的混合非常差,从而导致面团质量不均匀。

温标旁边的面食挤出机模型,模型左端为深紫色; 中间是粉红色、红色和橙色的渐变色; 并且喷嘴是黄色的。
意大利面挤出机模型显示出彩虹的表观粘度,模型左侧为红色,中间为深紫色和蓝色,喷嘴为浅蓝色。

意大利面挤出机模型内的模拟温度曲线(左)和表观黏度(右)。

此外,靠近出口处的面团温度不均匀。这些仿真结果表明,对挤出机进行隔热将使螺杆部分出口处的温度更加均匀,从而确保面团在到达喷嘴之前具有更加均匀的面团特性。

一个意大利面挤出机模型,显示彩虹中的速度分布,模型的左端为深蓝色; 中间是黄色、橙色和蓝色; 喷嘴的颈部为浅蓝色,而底部和末端为深蓝色。
一个意大利面挤出机模型,以彩虹显示剪切速率,模型末端为深绿色; 中间是黄色、绿色和蓝色; 喷嘴主要是浅色、近乎透明的蓝色。

意大利面挤出机模型内的模拟速度曲线(左)和剪切速率(右)。

尝试自己动手

虽然我没法让你尝尝我祖母制作的意大利面,但可以提供文中提到的的意大利面挤出机仿真模型。请点击下方按钮,下载案例教程,尝试自己动手模拟 —— 但是,说了这么多有关意大利面的话,你是不是感觉有点饿了,先吃点意大利面再开始吧!

想了解更多与食品科学相关的内容吗?

请查阅下面这些有关食物仿真的博客:

参考文献

  1. S. Marchetti, “Chinese Noodles Not The Inspiration for Pasta, Historians Say, Its Roots Are in Ancient Greece — And They Have The Texts to Prove It”, South China Morning Post, 23 Apr. 2020; https://www.scmp.com/lifestyle/food-drink/article/3080891/chinese-noodles-not-inspiration-pasta-historians-say-its-roots
  2. F. Sarghinia, A. Romano, and P. Masi, “Experimental Analysis and Numerical Simulation of Pasta Dough Extrusion Process”, Journal of Food Engineering, vol. 176, pp. 56–70, May 2016; https://doi.org/10.1016/j.jfoodeng.2015.09.029
]]>
//www.denkrieger.com/blogs/pasta-alla-simulazione-modeling-an-extruder-in-comsol/feed/ 0
提取南瓜和猛犸象的DNA //www.denkrieger.com/blogs/extracting-dna-from-pumpkins-to-mammoths //www.denkrieger.com/blogs/extracting-dna-from-pumpkins-to-mammoths#respond Tue, 26 Oct 2021 09:39:17 +0000 http://cn.staging.comsol.com/blogs?p=373411 在大多数北美地区,人们将南瓜视为秋天的象征。每年的这个时候,无论是在杂货店和零售店的陈列架上,还是在门廊和人行通道上,都随处可见南瓜的身影。然而,到了季节末,大多数南瓜都会腐烂在垃圾桶底部。在扔掉这种 诡异的 蔬菜之前,我们建议用它来做一个简单的 DNA 提取实验。

门廊栏杆上的中型南瓜特写。
一个中等大小的南瓜

在这篇博客中,我们将讨论如何利用身边的材料提取南瓜的 DNA。此外,还将介绍DNA 提取领域的最新突破——一项与三头猛犸象的臼齿有关的研究。

生命的蓝图

所有生物体的细胞核内都有脱氧核糖核酸(DNA)。生物体的功能和生存方式都与它们的 DNA有关。科学家提取和研究这种复杂分子的原因多种多样,例如开发新药物、对农作物进行基因改良,以及识别犯罪嫌疑人

真核细胞中的细胞核、染色体和 DNA的图片。
真核细胞中 DNA 的图解。图片由 Sponk、Tryphon、Magnus Manske、User:Dietzel65、LadyofHats (Mariana Ruiz) 和 Radio89 提供。图片获 CC BY-SA 3.0 许可,通过Wikimedia Commons发布

DNA 的首次分离源自一次无意的发现。19 世纪 60 年代,瑞士医生 Friedrich Miescher 将酸加入白细胞和盐溶液后,发现一种未知物质被分离了出来。Miescher 并不知道,这种被他称为“核蛋白质”的物质实际上就是生命的蓝图:DNA。

如今,科学家可以使用市场上各种不同的 DNA 提取试剂盒从细胞中分离 DNA。利用容易获得的材料,您也可以在自己家中提取 DNA……

从南瓜中提取 DNA

在家里做 DNA 提取实验时,很多人都会选择使用草莓,因为草莓每个细胞中都含有大量的 DNA, 因此提取效果最好。不过,为了庆祝秋季的到来,我们决定用南瓜来进行这个实验。

请观看下面的实验演示视频,进一步了解DNA 提取的原理。

如视频中所示,DNA 提取实验需要以下材料:

  • 一个南瓜
  • 洗洁精
  • 碘盐
  • 91% 的异丙醇(浓度越高,实验效果越好)
  • 粗纱布
  • 搅拌机
  • 测量用具
  • 筷子
步骤 1:混合

第一步,将南瓜块与 240 ml 水、60 ml 洗洁精和 14 g 盐放一起搅拌。当水、盐和洗洁精混合在一起时,会形成一种会破坏南瓜细胞的裂解溶液,并将其 DNA 分子释放到溶液中。

步骤 2:过滤

接着,在玻璃杯上铺上一层纱布,并用橡皮筋固定住。然后,把泡沫状的南瓜混合物倒在纱布上,过滤出一种很像橙汁的液体。这一步有助于确保溶液中没有多余的南瓜块。

步骤 3:分层

最后一步,在过滤溶液中加入等量的异丙醇。这样,玻璃杯中就形成了三层:

  1. 南瓜(底层)
  2. DNA(中间层)
  3. 异丙醇(表层)

由于 DNA 不溶于酒精,所以会在溶液底部沉淀。同时,由于南瓜 DNA 分子的密度小于其周围溶液的密度,会在玻璃杯中缓慢上升。异丙醇温度越低,DNA析出的速度就越快。因此,我们建议在实验开始前将其放在冰箱或冰柜中。注:我们在异丙醇中加入了蓝色食用色素,来帮助清楚地看到分离过程。

虽然大多数 DNA 分析都需要专门的实验室设备,但您仍然可以用筷子等尖头物体提取南瓜 DNA,并将其保存在一杯异丙醇中进行观察。

提取世界上最古老的 DNA

2021 年 2 月,一个国际研究团队宣布,它们已经成功提取了有记录以来地球上最古老的 DNA ,并对其进行了测序。这些 DNA 是从20 世纪 70 年代在西伯利亚东北部的永久冻土层中发现的三只猛犸象的牙齿中分离出来的。其中,最古老的遗骸(约 120 万年前)、第二古老的遗骸(约 120 万年前)和最年轻的遗骸(约 70 万年前)分别在西伯利亚的 Krestovka、Adycha 和 Chukochya 河流附近被发现。这是人类首次从距今 100 多万年的遗骸中提取 DNA。

研究人员在 Nature 杂志上发表的一篇论文中分享了他们的发现。在他们的发现之前,已知最古老的 DNA 是在一块70 万年前的马骨中发现的。

草原猛犸象的示意图。
草原猛犸象插图。图片作者:Dmitry Bogdanov。图片获 GNU Free Documentation License许可,通过 Wikimedia Commons 共享

研究人员在研究 DNA 时面临许多挑战,因为 DNA 在细胞死亡后会开始降解。此外,它还可能受到细菌和人类活动的污染。研究团队将该古老DNA与大象DNA和人类 DNA 进行比较,去除了所有可能与人类相关的数据。他们从最古老的猛犸象遗骸样本中获取了 DNA 核的4,900 万个碱基对,从第二古老的样本中获得了 8.84 亿个碱基对,从最年轻的样本中获得了 37 亿个碱基对。

在对 DNA 进行研究后,研究团队对猛犸象的进化有了一些突破性的发现。他们了解到,研究中最古老的样本来自一个未知的猛犸象谱系,并将其命名为Krestovka 谱系(该名称是根据发现遗骸的地点命名的)。他们相信,这一谱系与最后一个冰河时代的著名猛犸象物种——哥伦布猛犸象的诞生有关。

该团队的研究还让人们对猛犸象如何以及何时适应寒冷的栖息地有了新的认识。根据他们的研究,与寒冷气候生活相关的如毛发生长、体温调节、脂肪沉积、耐寒性和昼夜节律等基因变异,早在标志性的披毛猛犸象出现之前就已经存在了。这些结果表明,猛犸象谱系中的大多数适应性变化都是渐进的过程

除了展示对猛犸象进化的新认识外,这项工作还强调了提取和研究数百万年前 DNA 的可行性,而这曾经被认为是不可能完成的任务。这不禁让我们思考:我们能追溯到多远的过去?

相关资源

在这篇博客中,我们讨论了如何通过一个简单的实验从蔬菜中提取 DNA,以及科学家们如何正在 DNA 提取领域取得巨大进步。

想进一步了解 DNA?请查看这些资源:

]]>
//www.denkrieger.com/blogs/extracting-dna-from-pumpkins-to-mammoths/feed/ 0
如何建立电化学模型——以柠檬电池为例 //www.denkrieger.com/blogs/approaching-an-electrochemical-model-from-scratch-lemon-battery //www.denkrieger.com/blogs/approaching-an-electrochemical-model-from-scratch-lemon-battery#comments Tue, 05 May 2020 07:33:46 +0000 http://cn.staging.comsol.com/blogs?p=227911 在本篇博客文章中,我们将讨论如何从头开始建立电化学和电池模型的一般过程,并以柠檬电池为示例来演示建模过程。

柠檬电池简介

柠檬电池是学校化学课中的一个经典实验。使用一个柠檬、一块铜(例如,一枚硬币或一些铜线)和一块锌(例如,镀锌的钉子),可以制造一个能为小型电子设备供几分钟电的电池。但是,众所周知,这种电池的适用性受到限制,因为它的功率只有几毫瓦(mW)左右。

具有铜和锌电极的柠檬电池模型。
带有两个电极的柠檬(左:铜;右:锌)。

建模目标

在建模之前,建模人员应该提出的第一个问题是:我们这个项目的建模目标是什么?这看似微不足道,但如果在这个问题上花点时间,通常可以节省很多时间。

对于本文的示例,我们将解决以下问题:柠檬电池随时间的输出功率受到什么限制,如何加以改进?

换句话说,就是我们希望把这个模型用作一个设计工具,以将电池功率提高到 1 mW 以上。而其他常见的建模目标可能是减少体积、重量和(或)成本。

功率输出与电极终端上的电压和电流直接相关。这意味着我们的模型需要包括电池中电压源和引起电压损耗的主要来源,而估算电流意味着也需要以某种方式考虑电荷(离子和电子)的传输。此外,时间 也是必不可少的,这意味着我们需要包括瞬态变化。

我们可以采取什么措施来提高功率?有时一开始很难知道,但考虑到材料(柠檬、铜和锌)本身就是设计的约束,因此我们可以做出一个可能的假设:提高柠檬电池性能的唯一方法是改变电极的几何结构

综上可知,我们需要定义一个与时间和空间有关的 模型。

化学物质和反应

现在,我们来讨论要在模型中添加哪些化学物质和反应。

在查看柠檬的营养信息后,我们发现电解液由柠檬酸(300 mM = 0.3 mol/L)和抗坏血酸(3 mM)组成,它们都是弱酸,缓冲至 pH 值在 2 左右(对应质子浓度为 10 mM)。电解液中还有其他离,最主要的阳离子是钾(35 mM)和钙(7 mM)。在插入电极之前,柠檬中已经存在痕量的锌(9μM)和铜(6μM)离子。除此之外,因为存在大量阴离子(例如氯离子)与阳离子匹配,所以本体电解液经常是呈现电中性的。

鉴于两个电极分别由金属铜和锌组成,并且它们可能会溶解,因此以下电极反应似乎值得进一步分析:

\mathrm{Cu}^{2+}+2e^- \Leftrightarrow \mathrm{Cu(s)} \qquad E_\mathrm{eq}=0.19\mathrm{\;V\;vs\;SHE}
\mathrm{Zn}^{2+}+2e^- \Leftrightarrow \mathrm{Zn(s)} \qquad E_\mathrm{eq}=-0.98\mathrm{\;V\;vs\;SHE}

 
接下来,我们将根据柠檬的营养信息使用能斯特方程 计算指定浓度下的平衡电位,Eeq。电极反应式中我们用了双向箭头,表明反应是完全可逆的,并且可以在任何方向进行。

由于电解液是含水的,而水在整个柠檬中均匀地发生自电离作用,因此存在质子氢氧离子:

\mathrm{H}_{2}\mathrm{O} \Leftrightarrow \mathrm{H}^+ + \mathrm{OH}^-

 
但是,由于 pH 值是酸性的,我们认为氢氧根离子浓度可以忽略不计。

在水性体系中,可能会形成金属氢氧化物。但是,查阅锌和铜的 Pourbaix 可以发现,由于 pH 值较低,不太可能在柠檬中形成金属氢氧化物。

电解液是水性的,这意味着由于电极电势的存在, 都可能在电极上形成或消耗:

\mathrm{O}_{2}+4\mathrm{H}^{+} + 4e^- \Leftrightarrow 2\mathrm{H}_{2}\mathrm{O} \qquad E_\mathrm{eq}=1.11\mathrm{\;V\;vs\;SHE}
2\mathrm{H}^{+} + 2e^- \Leftrightarrow \mathrm{H}_{2} \qquad E_\mathrm{eq}=-0.12\mathrm{\;V\;vs\;SHE}

 
这两个反应都可能在两个电极上发生,尽管我们通常假设铜电极上的动力学更快。

在柠檬的营养信息清单中,我们发现钾和钙的标准溶出电位远低于锌和铜的溶出电位,这意味着它们不会大量沉积在任何电极上。同样,氯气析出的标准电位要高于氧气,因此在本模型中也可以忽略不计。

多种不同金属离子的存在与混合电极电位的结合,导致可能产生相当复杂的金属沉积副反应系统,特别是在锌电极上。例如,柠檬中的痕量铜离子或任何其他贵金属离子可能会沉积在锌电极上。这可能会改变该电极的电催化性能,例如,沉积的铜可能会显著增加析氢的活性。在这一点上,我们选择忽略这些影响,并假设金属铜和锌的沉积溶解仅在其各自的电极上发生。

弱酸(柠檬酸和抗坏血酸)分子相对较大且复杂,通常会导致动力学变慢,我们简单地假设它们在电极上不发生反应。此外,我们还忽略了弱酸与金属阳离子络合物的形成。至于营养清单上的其他种类(糖、脂肪等),我们也予以忽略。

电解液传输

现在,我们来看看电解液中的传输过程。

首先,我们需要确定电解液中电荷传输和电位的模型,因为电解液电位和金属电位之间的电位差是电极反应的主要驱动力。

由上文可知,大量的离子(K+, Cl等)不参与电极反应,这允许我们进行支持电解质假设,即电解液的电导率不随着电极反应而显著变化。因此,我们可以假设电导率恒定(0.35 S/m),并使用欧姆定律的偏微分方程求解电解液电位。

参与电极反应的离子包括 Cu 2+,Zn 2+,H+,H2 和 O2,因此需要在模型中以某种方式定义这些物质的浓度(化学活度)。

Zn(s) 和 Cu(s) 的化学活度为常数 1,无需进一步处理。我们还假设电极的形状不会由于金属的溶解而改变。

与纯水(55.5 M)相比离子浓度低,我们可以假设电解液被稀释了。这意味着我们可以假设电解质仅与作为溶剂的水分子相互作用。

使用稀溶液假设,可以使用 Nernst–Planck(能斯特-普朗克)方程定义 Zn2+ 和 Cu2+ 的传输,这里我们只需要为每个离子设定一个扩散率/迁移率参数。

由于弱酸(柠檬酸和抗坏血酸)具有 pH 缓冲能力且不参与电极反应,因此我们假定 pH 值恒定(氢浓度)。

柠檬外表面周围的空气中的气体(氮气、氧气、二氧化碳等)可能溶解并扩散到电解液中。这里,我们将除氧气以外的所有气体视为惰性气体。假定氧气与柠檬外表面的周围空气处于平衡状态,它可以从表面扩散到电极,在电极处被还原。氧的扩散过程也可以用 Nernst–Planck 方程来描述(相当于不带电物质的菲克扩散定律)。在本系统所有的化学反应中,由于氧气还原反应具有最高的平衡电势,因此我们不必考虑氧气的析出。

对氢的传输过程进行建模有些困难。氢的还原/氧化反应平衡电位处于本反应系统的中间值,这意味着该反应可以沿任何方向进行(取决于局部电极电位)。如果在电极上形成氢气气泡,则会使建模复杂化,因为这会在系统中引入第二相(除了液相)。两相系统的建模通常很复杂,对于柠檬果肉,没有直接的方法来描述气泡传输。因此,我们假设所有氢均以气体形式(活度为1)形成,并且假定任何形成的气体在被氧化之前会立即被排出,以简化此过程。在方程式方面,就只能通过假设氢气反应为不可逆的还原反应(析氢)来实现。对于正(氧化/阳极)极过电位,将反应速率设置为 0。这样,模型无需求解氢浓度。

系统边界和几何选择

当包含锌和铜片时,由于这些金属相对于柠檬果肉具有很高的电导率,因此只要将金属的电位建模为边界条件就足够了。结合上文中的讨论可知,所建电池模型完全由电解液(柠檬的果肉)中发生的物理化学现象以及电极表面上的反应决定。因此,我们选择柠檬的外表面(不包括金属域)作为系统边界。

在构建模型几何时,考虑到对称性,我们将柠檬取一半建模以节省计算资源。

应用对称条件以节省计算资源后,柠檬电池的计算域。
考虑电极的对称性和高电导率后的计算域。

注意:我们始终建议使用尽可能低的维度,因为这通常可以节省模型开发和计算时间。对于实际的柠檬,我们可以考虑围绕中心轴具有轴向对称性的二维几何。由于我们要完全自由地放置电极,因此必须在三维中构建模型。但是,即使在我们的示例中,仍建议以较小的维度开始建模项目,以测试不同的域方程和边界条件并确保它们收敛。例如,该模型适合首先在一维中建模,模拟在电解液中插入两个平面电极,但是在本博客文章中我们省略了此步骤。

在 COMSOL Multiphysics® 中模拟柠檬电池

我们使用 COMSOL Multiphysics 中的 三次电流分布,支持电解质 接口对柠檬电池进行建模,下文显示了建模结果。我们使用恒定的电导率定义电荷传输,通过 Nernst–Planck 方程定义物质传输,基于软件内置的质量作用定律 Butler–Volmer 方程定义电极反应,以及基于 Nernst 方程计算平衡电位。

此处请注意:大多数参数值,尤其是电极动力学的参数值,仅出于示范目的,并非基于文献。

在模拟中,使用的负载循环包括:在初始条件(柠檬营养成分列表值)下搁置 1 min,然后在 0.5 mA 的负载下放电 1 min 分钟,再搁置 1 min。

解释电池运行期间的电压曲线

下图显示了仿真的电压和电流结果。

在COMSOL Multiphysics 中建模的柠檬电池的电压和电流图。
电压和电流。

最初,当将电极插入柠檬中时,似乎会发生某种弛豫,电池电压缓慢升高至 0.9 V。当在 t=1min 时接通电流时,电流会从开路电压下降到约 0.1V 的工作电压。我们还注意到,2min 后电流被切断会有某种弛豫。

将电池电压乘以电流,还可以绘制出电池的功率输出图。

柠檬电池的输出功率图。
电池输出的功率。

由上图可知,负载接通后仅几秒钟,功率就从 0.3 mW 降低到 0.06 mW,这与电压大幅下降相有关。

当有电流通过时,电池电压下降大约 0.75V。如此巨大的下降(对于电化学家而言)意味着什么?下面,我们通过绘制两个电极端部的电极电位(相对于 SHE)与时间的关系来分析:

该图比较了柠檬电池的铜和锌电极的电极电位。
电极电位与 SHE 的关系。注:SHE-标准氢标参比电极

我们注意到,静止时电池电压的初始升高,似乎与负锌电极上发生的现象有关,但是当电流负载开启时,电池电压下降的 0.75 V 似乎大部分都来自于正铜电极。

下图中绘制的铜钉表面的平均氧气浓度与时间的关系揭示了这一现象。

柠檬电极在铜电极上的平均浓度图。
铜电极上的平均氧浓度。

当电流接通时,铜电极上的氧浓度迅速降至零,并在电流再次断开时开始弛豫并恢复到较高的值。原因是一旦打开负载,氧气从柠檬表面到铜电极的缓慢扩散不足以维持电池电流。也就是说,我们在高于氧气还原极限电流的条件下操作电池。

通过绘制整个铜钉表面不同电极反应的局部电流密度的积分,可以进一步解释该现象。

柠檬电池模型正电极上的集成局部电流密度图。
正极的局部电流密度积分。

仔细查看上图中初始搁置期间的电流,我们会发现:铜的溶解速度(小的正电流)与氧的还原速率(小的负电流)相同。这表明在搁置期间会发生持续的铜腐蚀。在最初的搁置期间不存在氢逸出。这是由于析氢的平衡电位低于此时的混合电极电位,其值位于铜溶解和氧还原的平衡电位之间。(但是,如果电极上已经存在氢气,则该氢气会被氧化。不过如前文所述,在任何时候我们都不会假定柠檬中存在氢气。)

接通电流后,我们会看到氧气还原电流出现初始激增,然后随着氧气耗尽而回落。由于我们操作电池的方式,所有电流总和被限制为总计 0.5mA 的电池负载,因此当电极中的氧气用尽时,电位会下降,直到达到低于析氢的电极电位,然后析氢反应才可以介入提供所需的还原电流。由于水的自电离作用和高的水浓度,在电极上有大量的氢离子供应,氢析出的极限电流比氧还原的极限电流高几个数量级。我们还注意到,当负载期间电极电位下降时,铜开始沉积。

因此,我们可以从由搁置状态下的铜溶解-氧还原控制的电极电位过渡到接通负载时析氢控制的电极。从搁置时约 0.2 V vs. SHE 的电极电位到接通时约 -0.45 V vs. SHE 的电极电位,这一较大的电位降可以通过氢气析出的平衡电势显著低于氧气还原的平衡电势来解释。动力学也影响着结果,但这里我们暂时不分析。

负极自放电和电池容量

下图显示了负极上各个电极反应的局部电流密度积分。

柠檬电池模型负极上的集成局部电流密度图。
负极上的局部电流密度积分。

在负极上,氧气还原和氢气释放都会导致锌在搁置状态下溶解(最初的弛豫现象与所有这些反应之间的相互作用有关,但在此我们将不再进一步讨论)。

在负载期间,锌的溶出度增加,以匹配 0.5 mA 的电池电流,此外还要加上氧气还原和析氢电流

锌的连续溶解表明,我们放入柠檬中的金属锌的初始质量决定了电池的容量。因为在正极,水的自电离作用将为我们提供几乎无限量的氢离子来源来进行析氢反应。但是,电池能够放电的时长将取决于负载和自放电反应之间的相互作用。

评估电压损失

在负载期间,模型中存在三种主要的电压损耗源:

  1. 电解液中的欧姆压降
  2. 驱动锌在负极上溶解的活化过电位
  3. 驱动正极上析氢反应(或氧还原)的活化过电位

首先,我们绘制了负载脉冲30秒后电解液中的欧姆电压降。

仿真结果显示,电解液在30秒内欧姆电阻下降到充电脉冲中。
进入充电脉冲 30 秒后,电解液的欧姆电压降(mV)。

40 mV 的电压降很明显,但并不大。

接下来,我们绘制了锌在负极上溶解和氢气在正极上析出的局部过电位。

一个流线图,显示了柠檬电池模型在充电脉冲后 30 秒内氢和锌的溶解活化过电位。
进入充电脉冲 30s 后,氢(左)和锌溶解(右)活化过电位(mV,绝对值)。流线描绘了沿对称平面的电解液电流。

两个电极上的活化过电位在负载脉冲中持续了 30s,总计约 0.5V。远高于电解液中电荷传输的欧姆损耗。

提高功率输出

现在,我们返回到最初的项目建模目标,查看是否可以提高电池的输出功率。

在不更改电极或电解液的情况下,很难实现改善锌电极上固有的电极动力学,以及对电池极化贡献最大的一组参数值。但是,我们可以通过增加可用的电极-电解液界面面积来改善催化活性。这样做的原因是,所有电流都必须通过每个电极上的电极-电解液界面,并且与电极反应相关的电压损耗越高,局部电流密度就越高。通过增加用于电极反应的可用面积,减小了每个电极面积的局部电流密度,进而也减小了相关的电压损耗。

由于柠檬中有大量的可用空间,因此,较大的电极几何区域(或只是更多的电极)应该是提高性能的可行方法。然而,这也将增加自放电,因为这也与活性电极面积直接相关。

如果可以减少电解液中的欧姆压降,电池性能也会稍微提升。实现此目的的一种方法是简单地将电极彼此靠近放置。但是,我们必须谨慎行事,因为这样可能会增加在锌电极上沉积铜的影响——而这可能会使锌电极的动力学降低。但是,我们尚未在模型中包括此类影响。

还有一种方法是,如果能通过某种方式利用铜电极上的氧还原而不是析氢反应放出 0.5 V 的电压(参见上图),则可以使电池性能提升。一种可能的方法是将铜电极放置在更靠近柠檬表面的位置,以缩短氧的扩散距离。

根据上面的建模结果,我们提出以下针对柠檬电池的功率优化设计。

柠檬电池设计已通过增加便士来优化输出功率。
功率优化后的柠檬电池设计。

在此设计中,我们用铜硬币替换了铜钉,还引入了多个电极(柠檬的每个楔形区域配一对电极,总共 12 对)。这里也许应该指出的是,新设计的布线工作将需要相当灵活的手指。

引入多个金属电极会增加电极的总表面积,应该可以以更高的总电流运行电池(原则上,我们现在并行运行了 12 个电池)。引入铜硬币而不是钉子,进一步增加了电极面积,但更重要的是,还增加了位于柠檬表面附近的铜电极表面数量,可以得到更高的氧气还原极限电流。

运行新设计模型的仿真,当总电流为 6 mA(每个楔形区域为 0.5 mA)时,电池电压如下图所示:

优化的柠檬电池设计的电压和电流图。
新设计电池的电压和电流。

相应的电池功率结果表明,现在我们能够在高于 1 mW 的功率水平上运行电池:

优化的柠檬电池设计的功率输出图。
新设计电池的功率。

使功率提升的一个主要的贡献是使用了多个电极,但是绘制电极电位图表明,我们已经设法在输出电压超过 0.5 V 的情况下增加了正极电位。

该图比较了优化的柠檬电池设计的电极电位。
对于新设计电池,电极端部的电极电位与 SHE 的关系。

再次检查铜电极上的氧浓度,我们发现在任何时候都没有将电极上的氧完全耗尽。

优化的柠檬电池设计的铜电极上平均氧气浓度的曲线图。
新设计电池铜电极上的平均氧浓度。

相应地,正电极反应电流的曲线表明,负载期间的主要电极反应是氧还原反应。

优化的柠檬电池模型的正极反应电流图。

然而,氧浓度和电流都随着时间连续下降。进一步改进的方法是引入疏水性多孔气体扩散介质,以促进氧气在柠檬表面和铜电极之间的传输。由于气相扩散通常比液体扩散快约4~5个数量级,因此这将显著增加氧气的传输。如何执行此操作的详细信息非常适合使用模型来探索。也许,我们还必须将铜金属替换为对氧还原更有活性的物质,例如铂。但是,铂金硬币往往很难获得。

如今,人们已经发明了以这种方式设计的柠檬电池,它被称为锌空气电池,但其电解液是碱性的。

后续操作

对电化学建模的其他示例感兴趣吗?请单击下面的按钮,在 COMSOL “案例库”中探索更多电化学模型。

]]>
//www.denkrieger.com/blogs/approaching-an-electrochemical-model-from-scratch-lemon-battery/feed/ 2
仿真助力环境保护的 6 种行业应用 //www.denkrieger.com/blogs/6-ways-engineers-are-using-simulation-to-help-the-environment //www.denkrieger.com/blogs/6-ways-engineers-are-using-simulation-to-help-the-environment#respond Wed, 22 Apr 2020 01:47:59 +0000 http://cn.staging.comsol.com/blogs?p=290631 2020 年 4 月 22 日是第 50 个世界地球日。本文我们整理了 8 个仿真案例,展示多物理场仿真如何帮助保护环境,让地球变得更加可持续发展。文章重点介绍了仿真在电动汽车、节能烤箱、生物燃料等生产中的重要性。

1. 设计电动汽车零部件

近年来,您可能已经注意到,电动汽车的充电桩数量正在激增——几乎每个停车场都有充电桩。随着电动汽车有望超越传统内燃机汽车成为人们首选的交通方式,这一趋势会继续增长。消费者对环境的关注度也在逐渐增加,他们希望购买有助于减少空气污染的车辆。

大众汽车是推动电动汽车发展的公司之一,其位于德国的卡塞尔工厂专门从事电动汽车的设计和生产。大众汽车使用 COMSOL Multiphysics® 软件分析了转子叠片的强度,转子是所有电动机中必不可少的关键部件。该团队还在整个组织内构建和分发仿真 App,用于:

  • 自动化转子的测试过程
  • 提高产品质量
  • 帮助更快地开发商用电动汽车

用于研究电动汽车驱动器转子应力的仿真应用程序的屏幕截图。
转子的标准化应力结果。

点击此处阅读全文:“仿真 App 加速电动汽车电机的开发

2. 保护湖泊水环境

全球的湖泊是地球淡水资源的一个重要组成部分。无论炎热或寒冷的环境,都存在这些水体。湖泊还是成千上万野生动物的家园,包括鱼类、乌龟、青蛙和短吻鳄鱼。

每年这些宁静的水域环境都是倍受人们欢迎的度假胜地。人类活动的增加导致湖泊中的含氧量降低,而缺氧的水中通常含有较高水平的有毒物质。处理湖泊和水坝中被污染水的一种环保的方法,是向水中注入充满氧气的微气泡。

一位来自立命馆大学(Ritsumeikan University)的研究人员借助仿真研究了将微气泡注入日本 Sounoseki 大坝的最优并且成本最低的方案。在找到解决方案之前,他们需要预测影响大坝行为的不同环境因素,包括:

  • 水流
  • 温度
  • 化学反应
  • 扩散作用

研究人员使用 COMSOL Multiphysics 确定了将微气泡引入大坝的位置、深度和速度。

在 COMSOL Multiphysics® 中显示油藏中微气泡的流线图,这是使用仿真来帮助环境的一个示例。
模拟水库中的微气泡。图片由 Shuya Yoshioka 博士提供。

点击此处阅读全文:“湖泊水环境修复

3. 提高建筑物的能源效率

加热和冷却系统

世界上很大一部分能源消耗来自建筑物的供暖和制冷。吸附式加热和冷却系统是加热和冷却建筑物时帮助节约能源的一种方法。该系统由热量而不是电力驱动。吸附式气候控制系统可以减少电力使用和相关的 CO2 排放。然而,开发这些系统具有挑战性,因为它们具有:

  • 不连续的运行周期
  • 变化的峰值能量通量
  • 动态行为,由复杂的耦合传热传质现象决定

Fraunhofer ISE 的研究人员使用数值仿真和实验来分析和优化这些吸附式系统的热交换器设计。研究人员使用 COMSOL Multiphysics 对流过固体的水蒸气和热传递进行模拟,从而优化了交换器的几何结构。

热交换器模型的速度流线图。
热交换器设计的温度分布图。

模拟结果显示了空气、管道和电线(左)中的速度流线和温度分布以及空气中的速度大小(右)。版权所有 © Fraunhofer ISE

点击此处阅读完整的用户案例:“制热与冷却建筑物的更好方法

门窗系统

门窗或建筑物围护结构中的任何开口,涉及窗户、门和天窗的安装。门窗非常重要,它有助于提高居住者的舒适度,增强建筑物的整体美感,并提供了进出建筑物的场所。门窗系统的组件,例如框架、玻璃和遮阳附件,甚至可以提高建筑物的能源效率。例如,这些组件可以帮助控制阳光和热量的增加,从而有助于减少建筑物中对供暖、制冷和人造光的需求。

Eurac 研究中心的科学家使用传热和流体流动仿真来帮助优化门窗系统设计。研究人员发现 COMSOL Multiphysics 是分析通过复杂门窗系统热流的准确且有用的工具。他们对门窗系统的研究有助于提高建筑物的能源效率,以及居住者的视觉和热舒适度。

四个并排图显示标准和复杂开窗系统设计的 CFD 结果
CFD 结果显示了对流如何影响标准门窗系统(左)和复杂门窗系统(右)中窗户的温度。

点击此处阅读全文:“提高能源效率的复杂门窗系统

4. 保护核废料储存设施

核废料会对地球上的生命造成危害。高水平的核废料暴露尤其危险,因为它可能导致出生缺陷、癌症甚至死亡。放射性废物的危害可以持续数千年,这就是为什么必须安全储存核废料。核废料储存设施通常将这种危险材料封闭在用混凝土包裹的紧密钢桶中。然而,这些钢桶不可避免地会被腐蚀,因此保护这些设施免受腐蚀非常重要。

Sogin S.p.A. 是一家意大利公司,其主要业务是管理核退役和放射性废物,它们借助仿真来设计节能除湿系统。该系统用于防止低放射性废物储存桶的腐蚀。该公司使用 COMSOL Multiphysics 软件及其附加的传热模块设计开发了两种除湿机,用于

  • 减少停滞的气穴
  • 使设备以最高效率运行
  • 帮助降低筒腐蚀的风险

结果图显示了核废料储存区的气流速度
模拟结果显示存储区域的气流速度。

点击此处阅读全文:“与核废料储存设施中的腐蚀作斗争

5. 减少食品行业的能源消耗

食品运输车辆

在全球范围内,食品行业是五大能源消耗行业之一,其能源消耗占温室气体排放量的 37%。食品运输车辆,如冷藏卡车拖车是食品行业不断增长的能源消耗的主要因素之一。冷藏车的能效通常较低,并且依赖于传统的柴油发动机驱动的制冷装置。最大程度地减少食品运输对环境的影响的一种方法是,设计使用清洁能源技术运行的冷藏系统。

Sunwell 公司是全球领先的食品保鲜和冷却先进技术供应商,它开发了使用 Deepchill™ 热电池运行的制冷系统。Deepchill™ 热电池是一种可充电且比传统方法更环保的方法。为了帮助他们优化热电池设计,Sunwell 公司与麻省大学达特茅斯分校(University of Massachusetts Dartmouth)的计算多相流小组进行了合作。

计算多相流小组使用多物理场仿真帮助 Sunwell 公司完成了涉及热电池技术的实验工作。该小组使用 COMSOL Multiphysics 对制冷系统中的传热和流体动力学进行了模拟。在他们的模型可以研究:

  • 特定的设计标准
  • 特定领域的平均和最高温度
  • 绝缘性能和自然对流

制冷机组自然对流和温度分布的模拟结果。
使用 Deepchill™ 热电池冷却制冷装置期间的自然对流和温度分布。

点击此处阅读全文:“制冷系统的集群仿真

高能效的烤箱

烘焙饼干必需使用的是什么?一些支架,以及消耗大量的能量?如果你猜出是传统烤箱,恭喜你答对了!这种厨房用具仅10%-12%的输入功率被用来加热食物。幸运的是,我们还可以选择越来越多能效更高的烤箱。

世界上最大的家电制造商惠而浦(Whirlpool Corporation)是一家致力于提高家用烤箱能效的公司。Whirlpool 的研发人员通过研究以下传热过程来研究烤箱的能耗:

  • 对流
  • 传导
  • 辐射

研发人员使用 COMSOL Multiphysics 能够观察到家用烤箱内部发生的传热过程,并测试提高烤箱设计能效的新策略。

节能烤箱的温度分布图。
Whirlpool 的 Minerva 烤箱模型显示了烤箱表面的预测温度分布。

点击此处阅读全文:“惠而浦公司利用仿真改进热量和能量利用效率

6. 加速生物燃料生产

化石燃料的潜在替代品是一种可再生能源:生物燃料。这种可再生能源产生的污染较少,同时还能为建筑物供暖、发电和为运输业提供燃料。由植物基材料(也称为生物质)生产的生物燃料的特点是:

  • 可再生
  • 清洁燃烧
  • 碳中和

然而,生物燃料的广泛使用因其复杂的生产过程等因素而部分停止。为了加速生物燃料的生产过程,美国国家可再生能源实验室 (NREL) 的研究人员转向了多物理场仿真。通过仿真,研究人员能够分析热解——一种用于将生物质颗粒转化为液体生物燃料的热化学过程。

NREL 的主要工作包括研究生物质颗粒的大小、形状和内部微观结构。研究人员使用 COMSOL Multiphysics 创建了一个模型来表示生物质颗粒的内部微观结构,从而深入了解生物质中的传热和传质。

硬木生物质颗粒的模型几何形状和温度分布的并排图形。
包含周围流体域的硬木生物质颗粒的模型几何结构(左)。共轭传热瞬态模拟的温度分布(右)。

点击此处阅读全文:“将生物燃料变为低成本的可再生能源

更多使用仿真来帮助环境的案例

想了解更多关于仿真如何帮助保护环境的应用案例吗?您可以阅读以下相关博客文章:

 

]]>
//www.denkrieger.com/blogs/6-ways-engineers-are-using-simulation-to-help-the-environment/feed/ 0
通过仿真分析蛋糕烘焙过程中传热和传质现象 //www.denkrieger.com/blogs/analyzing-heat-and-mass-transfer-during-cake-baking-with-simulation //www.denkrieger.com/blogs/analyzing-heat-and-mass-transfer-during-cake-baking-with-simulation#comments Wed, 26 Apr 2017 01:28:01 +0000 http://cn.staging.comsol.com/blogs?p=181861 在烘焙蛋糕时,成品的效果有时总是达不到预期。一部分的原因是烘焙过程中发生的传热和传质现象影响了最终的结果。借助类似于 COMSOL Multiphysics® 软件的工具,您可以研究并预测上述工作原理,并利用获取的知识烘焙出更加美味的蛋糕。

烘焙蛋糕的艺术和科学

烘焙的目的不仅是要对蛋糕等食物进行加热,还要促进配方原料之间的生物化学反应。干湿原料组合形成的混合物赋予了蛋糕柔韧性,即使蛋糕膨胀变大,混合物仍然会粘连在一起。

烤箱中烘焙的蛋糕面糊照片。
烘焙好的奶油蛋糕照片。

烤箱中的蛋糕面糊(左)和烘焙好的蛋糕(右)。

对于蛋糕烘焙过程而言,重要的是保证每种原料的适量加入,不过烘焙过程中的传热和传质现象也是一个关键性因素。这些基本原理对蛋糕的温度、含水量以及膨胀程度产生了极大的影响,进而影响烘焙蛋糕的整体质量和口感。

为了更清楚地理解和预测蛋糕烘焙过程中的传热和传质现象,一个研究团队使用 COMSOL Multiphysics 开发了一个数值模型,并进行了了一系列模拟研究。下接下来,我们一起来“品味”他们的研究成果。

模拟蛋糕烘焙过程中的传热和传质现象

研究人员开发了一个用于分析研究的二维轴对称模型。他们假设此模型是一个可变形的多孔模型,且包含了气液固三相:

  1. 固体(面糊)
  2. 液体(水)
  3. 气体(蒸汽和二氧化碳组合)

为了研究这个问题,他们求解了由五个偏微分方程组耦合而成的系统。分析涉及下列五个变量:

  • 温度
  • 含水量
  • 总气压
  • 孔隙率
  • 位移

为了预测面糊的膨胀(由于总气压的增加)状况,研究人员使用了黏弹性模型,此模型可在 COMSOL Multiphysics 的附加产品——“结构力学模块”中获取。

蛋糕烘焙过程中物理现象的示意图。
蛋糕烘焙过程中发生的物理现象。图片来源于 R. Cutté、P. Le Bideau、P. Glouannec 以及 J.F. Le Page,摘自他们在 COMSOL 用户年会 2016 慕尼黑站展示的作品

为了验证模型,研究人员进行了一系列实验测试,实验包括在烤箱中烘焙蛋糕 18 分钟,同时将烤箱内胆的底壳温度设定为 175ºC,顶壳温度设为 195ºC。烤箱内安装了仪器,以监测收集有关面糊的热量、含水量以及边界条件的信息。此外,他们使用了照相机来追踪蛋糕的膨胀过程。

在仿真分析中,研究人员绘制了三个不同的时间段时蛋糕内的温度和含水量:

  1. 初始状态
  2. 烘焙中途
  3. 最终状态

下图显示了三个阶段的计算结果,以及蛋糕的膨胀过程。结果表明,蒸发冷凝现象使蛋糕心的含水量增加;另一方面,蛋糕外层的含水量逐渐降低。正如我们在其他烘焙过程中观察到的一样,这种物理现象会推动蛋糕形成很大的含水量梯度。这些梯度造成了孔隙率、热属性、含水量和力学性质的不均匀性,而加热方式又进一步加剧了这种不均匀性。

一组六张 COMSOL Multiphysics® 绘图显示了不同时间间隔下蛋糕内的温度和含水量。
不同时间间隔下,蛋糕内的温度和含水量。图片来源于 R. Cutté、P. Le Bideau、P. Glouannec 以及 J.F. Le Page,摘自他们在 COMSOL 用户年会 2016 慕尼黑站发表的论文摘要

研究人员随后对比了模拟结果和实验数据,证实了二者在温度、质量损失和整体变形方面是一致的。需要注意一点:考虑到所使用的模型,此示例忽略了膨胀和压缩的影响。不过,研究人员下一阶段计划通过测试其他力学本构法则来改进模型。为了提高模型的精确性,他们还计划在模型中加入含有三种物质(水、二氧化碳和空气)的气相;并考虑反应动力学的影响;以及预测蛋糕的焦黄度。

两张图片分别展示了温度和含水量的仿真结果和实验数据。
仿真结果和实验数据显示了蛋糕内的温度(左图)和含水量(右图)。图片来源于 R. Cutté、P. Le Bideau、P. Glouannec 以及 J.F. Le Page,摘自他们在 COMSOL 用户年会 2016 慕尼黑站发表的海报作品

A plot comparing simulation results and experimental data for the cake swelling next to a photograph of a baked cake with an overlay of the final deformed meshing from the simulation.
左图:关于蛋糕膨胀过程的仿真结果和实验数据。右图:最终的网格剖分变形结果与实际几何形状的对照图。图片来源于 R. Cutté、P. Le Bideau、P. Glouannec 以及 J.F. Le Page,摘自他们在 COMSOL 用户年会 2016 慕尼黑站发表的展示作品。

利用仿真更好地理解蛋糕烘焙的物理原理

烘焙蛋糕不只是一门艺术,它还是一门科学。借助 COMSOL Multiphysics,您可以开发一个简单而逼真的模型来描述这一复杂过程,尤其是重点分析烘焙过程中的传热和传质现象,模型的计算结果可以帮助您更加准确全面地理解完整的蛋糕烘焙过程。

]]>
//www.denkrieger.com/blogs/analyzing-heat-and-mass-transfer-during-cake-baking-with-simulation/feed/ 3
油脂浸洗鸡尾酒工艺在工业上的应用 //www.denkrieger.com/blogs/fat-washing-cocktails-on-an-industrial-scale //www.denkrieger.com/blogs/fat-washing-cocktails-on-an-industrial-scale#comments Thu, 02 Feb 2017 01:33:41 +0000 http://cn.staging.comsol.com/blogs?p=233751 近十年以来,油脂浸洗鸡尾酒逐渐成为一种流行风潮。调酒师使用这项技术可以制作各种各样的鸡尾酒饮料,例如 Benton 老式培根波旁威士忌(Benton’s Old-Fashioned, a bacon-infused bourbon cocktail)和温和山核桃黄油波旁威士忌(milder pecan-butter-infused bourbon)。本篇博客文章,我们介绍了这种创新的鸡尾酒技术的制作步骤以及如何将其应用于工业中。实际上,许多行业的很多化学过程已经使用了类似的方法。

油脂浸洗鸡尾酒:乙醇释放香料的能力

油脂浸洗的目的是从肉类和蔬菜中提取油脂中的香料。在油脂浸洗过程中,一些香料可溶于乙醇,乙醇具有溶解亲水性和疏水性溶质的能力。例如,乙醇可以将水溶性柠檬汁与山核桃黄油中的脂肪酸混合以产生新的风味。

乙醇具有的溶解极性和非极性溶质的能力使葡萄酒具有浓郁的风味。这也是使用乙醇作为溶剂时可获得多种口味的主要原因。例如,由于乙醇溶解了橡木桶中的溶质,因此使用橡木桶蒸馏威士忌酒和酿造葡萄酒会增加其口味的复杂性。这些溶质不能被水溶解。

从吸移管出来的油滴的照片
可以通过将乙醇等溶剂与油类混合来提取香料和香精。

在家居用品、化妆品、制药和食品工业的工业制造过程中,我们也可以发现油脂浸洗酒的现象和过程,包括回收维生素、分离香精和香料、脱咖啡因的方法以及更多应用。

下面,我们来了解一下油脂浸洗酒的步骤,以及如何将其应用到工业生产过程。

步骤1:准备油脂

脂肪洗涤过程的第一步是融化或溶解肉或植物脂肪。如果存在固体基质,我们还必须从基质中提取脂肪风味。从橡木桶中提取香料就是一个很好的示例,此过程称为浸出。

为了在工业过程中融化脂肪,我们可以使用配有加热罩的混合器。至于浸出提取,可以使用类似于制作威士忌的方法,但是在大多数情况下,我们可以简单地研磨固体以提高提取率。例如,用烤橡木片制作橡木味的伏特加酒

如果需要,第二步是从熔融脂肪或油中去除固体。调酒师可以使用过滤器来完成这一过程,该过程称为过滤。在工业规模上,我们用滤饼可以去除的带式过滤器代替过滤器。为了避免油固化成脂肪,需要在高温下进行过滤。

一组鸡尾酒工具的照片,包括霍桑过滤器。
Hawthorne 过滤器是用于鸡尾酒制作过程的重要器具。

油经过滤后,调酒师将其倒入振动筛,然后与酒混合。为了扩大此过程,我们将必须将液体和油送入萃取塔。

步骤2:液-液萃取

在香味的提取过程中,存在一个两相系统:能够溶解疏水性香味的油(熔融脂肪)相和包含疏水性和亲水性风味的乙醇相。现在,我们必须将香味从油相转移到乙醇相,这一过程称为液-液萃取。在液-液萃取过程中,我们需要使每单位体积的相边界最大。这一目标可以通过在乙醇中产生尽可能小的油滴来实现,因此在提取过程中进行混合非常重要。

调酒师只需摇晃油和乙醇的混合物。该过程中会产生大量的液滴,并增强每个相中溶质的传输。

乙醇溶液中的油滴照片
为了对油中的香味进行有效的液-液萃取,我们需要在乙醇溶液中产生小油滴。图片由 JD 提供。在 CC BY 2.0 下获得许可,通过Flickr Creative Commons共享。

在工业生产过程中,由于使用的容器体积较大,我们可以使油和乙醇流过液-液萃取塔(例如脉冲塔)来代替振动。调酒过程中会扩大的一个复杂因素是温度。在工业萃取塔中,一些油会固化成脂肪。这意味着萃取塔必须保持足够高的温度,以防止油凝固。

为了将油滴分解成较小的油滴,我们需要施加一个超过将每个油滴维持在一起的表面张力的力。我们可以通过在萃取塔中从顶部到底部均匀振动乙醇相,和从底部到顶部均匀振动油相来实现这一目标。就像调酒师的摇晃动作一样,均匀振动增强了溶质与液滴表面之间的传输。

在油和乙醇的交界处,溶质交换非常快。这个过程是如此之快,以至于通常被认为处于平衡状态。相界面两侧的油相和乙醇相中的溶质浓度取决于分配常数:
 

{P_{oil/ethanol}} = \frac{c_{oil,eq}}{c_{ethanol,eq}}

 
其中 P 表示分配系数,c 是溶质的浓度。

如果我们在微观尺度上查看一个液滴,溶质在各相之间的传输速率取决于从油滴的本体到相边界,以及从相边界到乙醇相的迁移。我们需要一个非常大的表面积作为相边界,以获得较大的横截面积,使溶质通量往返于该边界。

根据吉布斯的研究,存在一个包含油和乙醇分子的混合物的表面相,如下图所示。在该表面相的每一侧,油相和乙醇相中具有平衡的溶质浓度。每个溶质的两个平衡浓度之间的关系由分配系数给出。

当开始提取时,油滴内和液滴周围的乙醇相中的溶质浓度都有很大的梯度,如下图左所示。提取完成后,液滴和乙醇相中各处的浓度根据分配系数等于平衡浓度,如下图右所示。

提取过程开始时乙醇中的油滴示意图
该图显示提取后乙醇中的油滴

萃取开始时(左)和萃取完成后(右),乙醇(蓝色)中的油滴(绿松石)。该图显示了沿垂直于相界面并穿过界面沿线的浓度。油相和乙醇相之间被表面相分开,该表面相包含两个相的分子。

下面的动画显示了一个油滴在上升的过程中,将溶质转移到连续相(本例为乙醇)中。当气泡上升时,沿路径会留下一丝溶质。顶部的静置油中也含有溶质,但是运输过程非常缓慢直到液滴碰到表面,这会在相边界处发生一些混合。

在乙醇中上升的油滴。随着油滴的移动,溶质从液滴中提取到连续的乙醇相。在乙醇的顶部还有一层油。

研究一个液滴(例如上方的上升油滴)可以使我们更好地了解微观尺度下发生的过程。但是,即使是制作鸡尾酒,我们也要处理数千滴油滴。在这种情况下,我们需要使用分散两相流模型研究液-液萃取。

在这些模型中,我们不处理油和乙醇之间界面的确切形状,而是将体积分数、气泡大小以及两相之间的特定界面面积作为变量。根据相之间的速度差,每个相内的速度梯度、体积分数、液滴数和尺寸分布,我们可以估算出油相和乙醇相之间的传质系数。这些类型的分散模型用于工业液-液萃取塔的建模和仿真。

液-液萃取塔的两相流混合模型图像,可用于研究洗脂鸡尾酒
液萃取塔的两相流混合模型,显示出油组分在何处是高(红色)和低(蓝色)的。一般而言,塔中的油组分是均衡的,在油相入口和出口的中心聚集。流动是逆向的,乙醇向下流动,而油向上流动。油和乙醇之间有足够的时间来提取香料。

当两个相中溶解的物质的分配可能处于平衡状态时,液-液萃取过程结束。这并不意味着香料的浓度在两相中相等,因为疏水性物质在油相中的浓度始终较高,而亲水性物质在乙醇相中的浓度较高。

萃取完成后,必须让两相系统静置,以使油相作为连续相(而不是液滴在乙醇中的分散相)分离到乙醇顶部。调酒师可以通过让振动筛休息一会来实现这一目标。

步骤3:清除油脂(或其他脂肪)

在工业塔中,油相在顶部作为液相分离,而乙醇可以在塔的底部分离。乙醇中可能仍包含少量分散的油滴,但我们可以使用沉降池将剩余的油分离出来。

一旦调酒师的振动筛中出现两个连续的分离相,他就可以将两相液体放入冰箱。然后,可以将冷冻的脂肪作为固体饼除去。最后,调酒师用滤茶器除去酒中残留的脂肪,剩下清澈的酒作为制作鸡尾酒的基础。

在工业规模上,仅将两相液体冷冻以除去脂肪是无效的。取而代之的是,我们可以使用沉降池,不断地除去池底的液体,并通过溢流口去除顶部的脂肪。在稳定状态下,沉淀池的乙醇上有一层薄薄的油膜,这对减缓乙醇的蒸发也有积极作用。如果某些油凝固成脂肪,可以用刮板将其轻轻刮掉,而无需搅动油槽。

结语

我必须承认我没有尝试过自己浸洗白酒。我强烈反对将完美的威士忌或波旁威士忌与煎培根或火腿中的脂肪混合。也许我会用加入橡木味的伏特加代替。这实际上听起来很美味,并且感觉更接近威士忌和葡萄酒中已经存在的橡木味。

一杯威士忌的照片
注入橡木味的生命之水-或威士忌。

再说一次,也许我将会喝一杯威士忌加冰块,一边用雪茄研究卡门涡街

]]>
//www.denkrieger.com/blogs/fat-washing-cocktails-on-an-industrial-scale/feed/ 3