传热模块 – COMSOL 博客 - //www.denkrieger.com/blogs 发布博客 Fri, 08 Nov 2024 09:40:53 +0000 en-US hourly 1 https://wordpress.org/?v=5.7 模拟准直光的吸收和散射 //www.denkrieger.com/blogs/modeling-absorption-and-scattering-of-collimated-light //www.denkrieger.com/blogs/modeling-absorption-and-scattering-of-collimated-light#respond Thu, 24 Oct 2024 02:16:11 +0000 http://cn.staging.comsol.com/blogs?p=376511 当一束准直光(如激光)入射到半透明介质上时,会发生吸收和散射,即一部分入射光被转化为热能,一部分被改变方向。在特定条件下,这两种现象都可以通过 COMSOL Multiphysics® 软件中的扩散近似来模拟。这种模拟方法在激光加热活体组织和材料加工中均有应用。接下来,我们来了解更多内容!

定义半透明介质

半透明介质是指光在其中能传播相当长一段距离,直至在吸收和散射的作用下逐渐消失的任意一种材料。吸收是通过将光能转化为热能,从而导致温度升高的机制。散射是通过将光重新定向到其他方向的机制。光的散射有多种形式:一种极端情况是发生在镜子和电介质表面的镜面反射和折射,而另一种极端情况则是几乎都为各向同性散射,如在非常浑浊的水等浑浊介质中观察到的散射,其中浑浊是由一些形状和方向随机的小悬浮颗粒造成的。

一束光在半透明介质中传播了一段相当远的距离,并且光均匀地向各个方向散射。
一束准直光入射到半透明介质时,会发生各向同性散射,这意味着光会被等量地重新定向到各个方向。这种散射发生在任一光束路径,而且散射光本身也会立即重新散射,因此这幅图呈现的是这一过程的简化视图。

需要注意的是,基本上所有真实材料都会展现出一定程度的各向异性散射,也就是说,光会被优先定向到某些方向。不过,在一些应用中,散射可以被近似为各向同性,这就是我们今天要讨论的情况。考虑一束入射到材料上的准直光(激光束),其中光强的变化通过各向同性散射系数和各向同性吸收系数量化。

建模方法

为了理解建模方法,我们首先假设材料没有散射只有吸收。对于这种情况,我们可以使用传热模块的 吸收介质中的辐射束 接口模拟,即在材料内部求解比尔-朗伯定律。使用该接口时,假定光束在受照边界的强度已知。也就是说,考虑一束已知功率的光通在自由空间中传播,并基于传播到材料中的光的比例指定光强度。

该接口求解以下方程:

\frac{\mathbf{e}_i}{||\mathbf{e}_i||} \cdot \nabla I_i = -\kappa I_i

 

式中, 是描述光束方向的矢量,在垂直于光束路径的平面上测量的 是光的强度,用单位面积上的功率表示。可能存在多种不同空间的重叠入射光束,每个入射光束都需要求解一个以 为指数的方程。 为吸收系数,用于量化这些光束的吸收情况。吸收的能量为所有入射光束的总和 。该接口假设所有吸收的光能都转化为热能,但我们通过简单地修改接口设置,可以将散射也考虑在内。

我们可以将非零散射系数 添加到 吸收介质中的辐射束 接口使用的吸收系数中,因此 。吸收的能量便可以分解为吸收部分 和散射部分

接下来,我们需要计算散射部分的光如何在介质中传播,同时考虑光在各处都会被吸收和再散射。这时,可以使用传热模块的 吸收-散射介质中的辐射 接口中的P1 近似解方程求解:

\nabla \cdot\left( -\frac{1}{3\left( \kappa + \sigma_s \right)} \nabla G \right) = -\kappa G + Q

 

式中, 为每单位立体角的光辐射强度,也就是说它包含所有方向的光,而不仅仅是单一方向的光。光能向热能的转换由等式右边导致辐射强度降低的 量化。源项 导致辐射强度的体积增加,在这种情况下,源项来自 吸收介质中的辐射束 接口计算的散射损耗部分;因此,

在求解散射光时,除了控制方程,还需要设置一系列材料的边界条件。鉴于入射激光可以进入建模域,因此可以合理假设散射光能离开建模域。对于这种情况,可以使用 半透明表面 功能求解,该功能允许输入发射率 和漫透射率 。这两个量必须小于或等于 1,并可以定义漫反射率 。如果 ,入射到该边界上的散射光将完全穿过该边界;如果 ,则入射光将部分漫反射回域中。

建模细节

为了在 COMSOL Multiphysics® 中建立这样的模型,我们可以将 吸收介质中的辐射束 接口和 吸收-散射介质中的辐射 接口耦合使用。前一个接口只需在入射光路径周围的子域中求解。使用 吸收介质中的辐射束 接口,需要对吸收系数进行修改,以同时包含散射和吸收系数。因此,在计算结果时,减去吸收部分的吸收热量非常重要。

COMSOL Multiphysics 用户界面显示了模型开发器,突出显示了吸收介质节点,和相应的设置窗口,其中域选择、模型输入和吸收介质部分被展开。
通过 吸收介质中的辐射束 接口中的 吸收系数 计算准直光的吸收和散射。

吸收-散射介质中的辐射 接口允许:1) 分别添加吸收系数和散射系数 2)使用 辐射源 功能添加一个源项,用于表征 吸收介质中的辐射束 接口吸收热量的散射部分。

COMSOL Multiphysics 用户界面显示了包含突出显示的辐射源节点的模型开发器和相应的设置窗口,其中域选择和辐射源部分被展开。
吸收介质中的辐射束 接口的散射光与 吸收-散射介质中的辐射 接口相耦合。

在模拟结果方面,计算入射光的热损耗、散射光的热损耗以及入射光和散射光离开建模域的比例的积分有助于深入理解所模拟的现象。下图和表格显示了这些损耗和积分的分布,损耗分布随后可用于传热分析中计算温度的变化。

两个并排的模拟结果图,左侧的模拟显示了入射光束产生的热源的分布,右侧的模拟显示了散射光产生的热源。
入射光(左)和散射光(右)的热源分布。这些热源的总和导致温度的升高。

入射光,吸收功率 0.49 W
散射光,吸收功率 0.35 W
散射光,出射功率 0.14 W
入射光,出射功率 0.02 W
总和 1.00 W

热损耗和辐射损耗的积分表。损耗的总和应该等于入射光的功率。

注意事项和结束语

如上所述,在COMSOL 中建立光的吸收和散射模型非常容易,但需要强调的是,这种方法有两个局限性。首先,材料内部的任何镜面反射或折射(例如由于镜子或透镜引起的反射或折射)都无法求解,因此只能模拟非常均匀的材料。其次,假定介质内部的散射是各向同性的。这些局限可以通过简单计算的优势来弥补:通过求解两个标量方程组计算平行光和散射光的强度,计算成本非常低。此外,还可以轻松地将源项与热分析相结合来计算温度上升。因此,如果您要模拟激光与半透明材料的均匀样品的相互作用,并且可以假设为各向同性散射,这种高效的方法将非常有吸引力。

下一步

点击下方按钮,进入 COMSOL 案例库,尝试自己动手模拟文中介绍的接口功能:

]]>
//www.denkrieger.com/blogs/modeling-absorption-and-scattering-of-collimated-light/feed/ 0
高温来袭:桑拿房内的传热仿真 //www.denkrieger.com/blogs/the-heat-is-on-modeling-temperature-distribution-in-a-sauna //www.denkrieger.com/blogs/the-heat-is-on-modeling-temperature-distribution-in-a-sauna#respond Fri, 31 Mar 2023 01:46:31 +0000 http://cn.staging.comsol.com/blogs?p=333591 芬兰是桑拿的故乡。其实,“桑拿(sauna)”这个词是芬兰语,在英语和其他语言中用于表示一个体验热的小房间。除了在芬兰受欢迎之外,桑拿在世界上许多地方都很受欢迎。传统的桑拿房使用电炉或燃木炉加热,提供的干热可能达到或超过 100°C(212°F)。在这篇博客中,我们将使用 COMSOL Multiphysics® 软件创建的模型来研究这种桑拿房的加热和温度分布。

桑拿的物理特性

干式桑拿房通常是一个覆盖着如杨木、雪松或松木之类木材的小房间,房间内至少配置了两个不同高度的木凳。房间通过火炉加热。由于热空气膨胀导致其密度较低,所以桑拿房内最热的部分是靠近天花板的位置。如果你想体验温和一点的热量,可以坐在较低的长凳上,这样更接近地面。

一个老式的干桑拿,有两个不同高度的木凳。
一个传统的桑拿房。

通常炉子的顶部会覆盖一些石头(桑拿石),它们的温度会升高并向房间辐射热量。这些石头能够吸收并保持热量,发挥着重要的作用。你也可以向热石头上加水(这在北欧国家很常见),来释放蒸汽。这样可以增加湿度,并在在人的皮肤上短时间内引起强烈的热感,但皮肤的温度仍保持在露点以下。然而,只有在干热的环境下,才有可能享受超过几分钟的真正的热桑拿(高达或超过 100°C)。干热的环境能使更多的水分从皮肤上蒸发,防止身体过热。

桑拿房内发生的物理现象主要包括传热和流体动力学:传热是通过对流和辐射产生的,而热对流是由通风和浮力引起的空气运动驱动产生。桑拿房通常包含使空气流通的进气口和出气口。在湿式桑拿房中,水分含量和湿度也是很重要的物理特性,但在这篇博客中,我们将重点讨论干式桑拿房及其加热和温度分布。

桑拿炉有许多不同的类型和尺寸,使用什么型号的桑拿炉取决于桑拿房的大小。从小型家用桑拿房使用的约 5kW 功率到大型商业桑拿房使用的高达 20kW 功率,桑拿炉的功率范围变化较大。有时,烧木材的桑拿炉可以产生比电动桑拿炉更高的加热功率。然而,燃木桑拿炉的实际加热功率取决于用来生火的木材的数量、类型和质量。现代电热桑拿炉内置有恒温器,因此温度可以保持在一个理想的数值。

一个点燃的桑拿炉特写。
一个桑拿炉。

以下是桑拿炉加热过程中,我们关注的一些特性:

  • 从开启或点燃桑拿炉到桑拿房达到所需温度需要的时间。如果知道需要多长时间,就会知道你有多少时间为体验桑拿浴做准备。
  • 桑拿房内的热量分布,特别是凳子上。这样蒸桑拿的人就能找到一个舒适的温度。

模拟桑拿房的热分布

作为基准模型,我们对博客作者家里的桑拿房做了一些测量,这个房内刚好有一个烧木柴的炉子,但没有恒温器。点燃柴火后,通常需要 35~40 分钟(在正常室温下),顶层长凳的温度可达到 70°C 左右(158°F)。

桑拿模型

桑拿房内的传热物理模型本质上是一个多物理场模型,它的模型域(桑拿房内的空气、桑拿房的炉子和桑拿房的墙壁)中包括以下类型的物理场:

  • 流体(空气)中的热传递:桑拿房内空气中的温度场。包括该模型的主要物理量,即空气温度。
  • 湍流:桑拿房内流动的空气。它是对流传热的驱动力,使用一个湍流模型计算空气的速度场。
  • 表面对表面辐射:来自炉子和桑拿房墙壁的热辐射(即通过电磁波传递热量),对桑拿房的整体温度有所贡献。用于计算出表面辐射率,即来自表面的热辐射,单位是 W/m2(SI 单位)。

还包括以下边界条件:

  • 一个空气流出口。为了通风,桑拿房通常包括一个使空气流向建筑物外的小出风口。
  • 一个空气流入口。来自通风或向周围房间的一些开口的空气流入。
  • 通过墙壁的热通量。通过墙壁的热通量将取决于墙壁的类型和周围的温度。大多数情况下,桑拿浴室的墙壁是用木板覆盖的,但部分也可以是纯混凝土墙。有时,至少有一面墙壁是与外部空气接触的外壁面,外面的空气可能明显更冷(例如,在北欧国家的冬季)。在这个模型中,使用单独的热通量-外部热通量-内部 节点来考虑较冷的外部温度(10°C; 50°F)。室内温度被设定为 20°C (68°F)。
  • 在加热器(桑拿炉)的顶部有一个使用了 10kW 加热功率的边界热源,但加热器的启动时间只有 10 min。使用一个表达式来描述恒温器边界,如果天花板的平均温度达到 100° C,就会关闭加热器,但在这个桑拿房模型中,以及在现实中并不会达到这样的高温。

这个模型必须考虑的物理参数包括材料属性、桑拿炉特性、整个桑拿房内部的尺寸和位置以及炉子和长椅。获取这些信息后,我们就可以开始使用 COMSOL Multiphysics 和传热模块来建立桑拿房模型,这个产品模块是建立湍流和表面对表面辐射模型所必需的。

在 COMSOL Multiphysics® 中创建模型

设置模型

第一步是创建一个代表桑拿房的内部和周围的墙壁的三维几何结构,也就是模型的外部边界。下图所示就是包含桑拿炉、长椅、进气口和出气口的三维桑拿房几何结构:

桑拿浴室几何形状的侧视图。
桑拿浴室几何形状的鸟瞰图

桑拿房的几何结构,其中天花板和门被隐藏起来。加热器和进水口位于右侧,长椅和出水口位于左侧。左边的墙是外墙;其他墙是内墙。

在桑拿房温度计所在的后墙上的一个点上定义了一个域点探针 功能,以便在瞬态模拟中能直观地看到温度计位置的温度上升。

接口

将要设置的COMSOL Multiphysics 模型必须能实现上述所有物理场,这可以通过三个物理场接口完成。第一个是固体和流体传热 接口,用于包括桑拿房内的对流传热,其中墙壁是固体,桑拿房内的空气是流体。

第二个接口是湍流,代数 y+ 接口,用于描述桑拿房内空气的湍流情况。该接口使用了一个代数 y+ 湍流模型,即一个基于近壁距离的代数湍流模型。代数 y+ 湍流模型基于普郎特混合长度理论建立,适用于内部流动建模。

最后,使用表面对表面辐射 接口来实现炉子和墙体边界之间的辐射热交换(内部空气并不显著参与辐射热交换)。

节点和材料

使用两个多物理场特征节点来耦合空气流动和热传递(非等温流动),以及表面到表面辐射和空气中的热传递。一个是非等温流动节点。这个节点耦合了湍流、k-ε流体传热 接口,用于模拟流体属性取决于温度的流体流动。另一个节点是表面对表面辐射传热,它耦合了墙体的表面对表面辐射和空气中的对流传热。在这个示例中,需要考虑到边界上的辐射传热,而周围的介质不参与辐射。

此外,模型中还使用了以下四种材料:

  1. 空气,包含了与温度和压力有关的空气材料属性(COMSOL内置材料库中包含这些参数)。
  2. 混凝土,用于桑拿房墙壁的材料
  3. 木材(松木),覆盖桑拿房墙壁内部的材料,也是长椅的材料。
  4. 辐射墙,一个额外的用户定义的材料,用于定义边界上的表面辐射率。

添加了流出流入 节点,分别代表热量的流入和流出。另外,在墙体边界上有一个热通量 节点,用于添加由外部温度和传热系数定义的热通量。最后,使用边界热源 节点模拟桑拿炉。为了对加热过程进行建模,使用了一个温度一旦超过 100°C 时就会关闭加热器的恒温器和一个持续 10min 左右的平滑启动阶段的表达式。用于描述边界热源的表达式是 10[kW]*flc2hs(100[degC]-aveop1(T),10)*flc2hs(t-t_heater/2,t_heater/2),其中第一个系数 10[kW],代表炉子的额定加热功率。第二个系数使用内置函数 flc2hs,这是一个平滑的 Heaviside 函数,具有连续的二次导数,没有过冲,用于确保如果平均天花板温度接近 100°C,加热器就会关闭。在我们的例子中,没有达到这个温度,所以第二个系数等于 1。最后,第三个系数, flc2hs(t-t_heater/2,t_heater/2),用于描述一个围绕 t_heater 的平滑启动,在启动时间之前和之后的 t_heater/2 之间持续平滑。下图显示了热功率与时间的关系:

显示热功率与时间关系的 1D 图。
加热器的功率在大约 10min 内从 0 上升到其额定值 10kW。

研究

使用该模型进行了三项研究。第一项是含初始化的稳态研究,包括用于计算湍流的壁距离倒数的壁距离初始化 研究步骤,以及用于计算气流的稳态起始解的稳态 研究步骤。在这个步骤中,固体和流体传热 以及表面到表面辐射接口 没有被激活。

第二项研究包含主要的瞬态 研究步骤。该研究包括前面提到的三个物理场接口和两个多物理场耦合。在瞬态 研究步骤的设置中,用分钟作为时间单位,输出时间设置为 range(0,0.5,60),这是 COMSOL Multiphysics 的表达方式,即每 30s 输出一次解,持续一小时。(求解器的实际时间步长由容差控制,与选择的输出时间无关)。计算不是从零速度开始,而是从第一次研究得到的速度场开始,它计算了通风引起的初始速度场。这个研究步骤在一台性能好的电脑上计算大约需要 45~55min。在此期间,可以利用 COMSOL Multiphysics 中的求解时绘图和探针功能监测域内的气流和温度,以及桑拿房内温度计位置的温度。

第三项研究是为了方便运行而添加的。它包含两个研究引用 节点,一个引用研究1 ,另一个引用研究2 。因此,通过运行第三项研究,可以按顺序运行前两项研究。

模型开发器中扩展的三个研究节点的特写
桑拿模型中的三项研究:第一项用于壁距离初始化;第二项用于瞬态模拟;第三项是为了方便地运行这两项研究。

温度分布结果

我们要看的主要结果是 60min 后桑拿房内的温度变化,可以在下面的切面图中看到:

用 HeatCamera 的颜色表显示加热60分钟后桑拿房内的温度分布图。桑拿房中加热器的顶部是橙黄色,桑拿房的其他部分则主要是紫色。
加热 60min 后,桑拿房内的温度分布。最高温度为 339° C (642°F),是在加热器的顶部,而进风口则保持在 10°C(外部温度)。

为了更好地了解桑拿房内的垂直温度差异,我们可以限制数据和颜色范围,只显示 10 到 100°C 之间的温度。下图显示,从地板到顶部的长凳有一个明显的温度梯度:

用 HeatCamera 的颜色表显示桑拿房加热60分钟后的温度分布图。桑拿房的底部主要是紫色,中间是紫粉色,而顶部主要是黄色
该图显示,顶部长凳的温度约为 70°C,但底部长凳的温度只有 30-40°C(86-104°F),因此,如果你愿意,可以移到较低的位置避免过热。

域点探针 功能的温度折线图显示,在安装桑拿温度计的地方温度是如何上升的:

显示温度与时间关系的一维图。
桑拿房温度计位置的温度与时间的关系。温度上升得相当快,但如果你想在享受桑拿浴前使温度上升到70°C,必须等待 30min 以上,这与作者的经验相一致。

为了进一步探索这个多物理场模型,还可以尝试改变炉子的加热功率、环境温度、材料属性、长凳位置以及其他可能影响桑拿房内加热和温度分布的参数。

结语

文章介绍了如何利用 COMSOL Multiphysics 模型解释和探索桑拿房的加热问题。还可以使用类似的模型模拟热量和水分传输(HAM),用于改善和优化一般建筑物的供热以及其他供热应用。以下是使用 COMSOL Multiphysics 和传热模块建立的基于热量的模型的例子:

]]>
//www.denkrieger.com/blogs/the-heat-is-on-modeling-temperature-distribution-in-a-sauna/feed/ 0
模拟半透明材料的脉冲激光加热 //www.denkrieger.com/blogs/modeling-the-pulsed-laser-heating-of-semitransparent-materials //www.denkrieger.com/blogs/modeling-the-pulsed-laser-heating-of-semitransparent-materials#comments Tue, 03 Jan 2023 05:10:23 +0000 http://cn.staging.comsol.com/blogs?p=323931 使用聚焦激光快速加热材料常被用在在各种应用中,包括半导体加工行业。这篇博客,我们将研究具有周期性脉冲强度的高斯轮廓激光束,来加热沉积在硅衬底上的两种不同的半透明材料。为了建立此模型,我们将使用温度场和比尔-朗伯定律求解一个多物理场建模问题。接下来,让我们进一步探讨这个模型,看看如何设置它。

高斯轮廓激光束照亮硅晶圆

我们将以一个直径为 2 英寸(约 5cm)的硅晶圆为例,如下图所示,该晶圆的中心有两种不同的材料,每种材料厚度为 100μm,半径为 1cm。晶圆从顶部被一束高斯轮廓激光热源照射,该热源在时间上被快速脉冲化。这两种材料在 700nm 的激光波长下都是半透明的,但在更长波长的红外辐射下是不透明的。硅衬底是掺杂的并且在所有波长下都是高吸收性的。

高斯分布激光束照亮了硅晶圆上的两层半透明材料。
脉冲激光在不透明晶圆上照亮了两层半透明材料。

由于所有材料都具有与入射光束垂直的平面边界,所有入射光都将沿平行于入射光束的均匀方向传播。材料之间的界面会有反射,但没有折射或衍射。两层材料的厚度都远大于波长,因此我们可以假设相干长度远小于层厚度。我们可以使用比尔-朗伯定律来解决这个问题,该定律描述了半透明介质中光的衰减。该方程使用 COMSOL Multiphysics® 软件中的吸收介质中的辐射束 接口求解。但是,由于存在反射,我们需要仔细研究一些细微差别。

了解物理场并设置模型

由于沉积层是圆形的,并且由于激光聚焦在中心上,我们可以忽略晶圆平面并将模型视为完全轴对称的。这使我们能够将模型简化为 2D 轴对称建模平面。在这个平面中,我们简单地绘制三个矩形来定义晶圆和两个沉积层,并为这三个矩形分配不同的材料属性。这样,几何形状和材料就定义好了,我们可以专注于物理场的研究。

首先,沿着光束路径穿过自由空间,从晶圆上方的激光源沿着 z 轴向下。我们有一个 40W、700nm 波长的激光器,并且光束具有标准偏差为 1.5mm 的高斯轮廓。激光器开启 75ms,然后关闭 25ms,或者激光器使用占空比为 75%,周期为 100ms 的脉冲加热。这种时间上的阶梯式加载是通过事件 接口解决的,该接口用于引入一个 离散状态 变量 ONOFF,即时间为 0 1

我们不会明确地模拟激光源或通过自由空间的光束路径;我们将只对与材料相互作用的光进行建模。在顶层的边界处,折射率为 的材料会因为折射率的差异而有一些反射,如菲涅耳方程所示:

R = \left| \frac{n_{1}-n_{2}}{n_{1}+n_{2}}\right|^2

 
虽然这个方程适用于复值折射率,但在我们的计算中只考虑折射率的实值分量是合理的,因为折射率的虚部非常小。在界面上没有任何吸收的附加假设下(例如由于吸收材料的非常薄的涂层),透射率为 。这样就完成了我们在吸收介质中辐射束 接口设置入射强度 功能所需的信息,如下面的屏幕截图所示。

COMSOL 多物理界面显示了模型开发器,突出显示了入射强度1特征,并展开了相应的设置窗口,其中包括光束方向和光束轮廓部分。在这里,光束轮廓选项被设置为内置光束轮廓。
入射强度功能的设置。

当光束穿过材料的第一层时,其强度与吸收系数成比例减小,吸收系数 由下式确定:

\kappa = 4 \pi k /\lambda_0

 
其中, 是折射率的虚部, 是自由空间激光波长。吸收系数可能与温度有关,但我们将从它是一个常数开始。给定光束轮廓在顶面上的强度分布,剩下整个域的光束强度通过计算获得。

在沉积材料的顶层和底层之间的介电界面,将再次存在菲涅耳方程描述的反射和透射。光束的反射分量使用已有的 吸收介质中的辐射光束 接口进行处理,只需添加第二个入射强度 功能就可以了。可以向这个界面添加任意数量的入射强度 功能;每个都将引入一个额外的变量来求解,这些变量将被命名 rbam.I1, rbam.I2, …, 依此类推。在第二个入射强度 功能中,我们可以引入基于第一个光束强度和菲涅耳反射系数的用户定义的光束轮廓。通过改变光束方向的符号,可以完全考虑光在此接口上的部分反射,如下面的屏幕截图所示。从理论上讲,在顶部边界会有一个额外的光束反射,但是这个二次反射足够小,所以我们将忽略它。

COMSOL 多物理界面显示了模型开发器,突出显示了入射强度2特征,并展开了相应的设置窗口,其中包括光束方向和光束轮廓部分。在这里,光束配置文件选项被设置为用户定义。
第二个 入射强度功能的屏幕截图,考虑了介电界面处的反射。

接下来,我们跟随光束穿过介电界面进入第二层半透明材料。由于跨越此边界的光强度发生了变化,因此必须添加第二个 吸收介质中的辐射束 接口,并根据菲涅耳透射率和来自第一个吸收介质中的辐射束 接口的第一束光束来定义入射强度。

COMSOL多物理界面显示了模型开发器,突出显示了入射强度1特性,并展开了相应的设置窗口,其中包括光束方向和光束轮廓部分。在这里,光束配置文件选项被设置为用户定义。
吸收介质中的辐射束接口中第二个辐射束的 入射强度特征的屏幕截图,用于底部域中的强度。

最后,让我们讨论当光线到达第二层底部并击中硅晶圆衬底时会发生什么。我们将假设硅晶片是掺杂的,因此它具有高度吸收性和非反射性。由于所有到达这个边界的光都将在足够小的距离内被吸收,因此可以说光在边界处被吸收。对于这种情况,不透明表面 边界条件将在所选边界处沉积所有能量,这就完成了激光在结构中传播时的建模。通过这些功能的组合,我们已经完全模拟了入射激光束穿过模型。现在我们可以将注意力转向热模型。

模拟温度随时间的变化

晶圆最初处于 300K 的均匀温度。所有域都有传导传热,我们假设材料之间的界面没有明显的热阻,即材料界面之间没有温差,磁通量是连续的。这种情况是软件的默认假设,但如果我们确实希望覆盖它,可以添加薄层热接触 功能。

在 100μm 处,层厚已经足够适用经典的傅里叶传热定律,值得一提的是,纳米级传热是 COMSOL 用户研究的一个活跃领域;例如,请参阅我们的特邀博客“动力学集体模型中的流体动力热输送”。

至于热边界条件,我们将假设晶圆位于完全绝缘的底座上,并且位于一个近真空的工艺室内。这意味着不会有传导或对流传热冷却,但会向腔室壁进行辐射传热,假设保持在 300K。接着,我们假设晶圆温度只会上升几百K,因此与入射激光相比,辐射发射将处于一个更长的波长带。这意味着,从概念上讲,我们可以使用双波段模型进行辐射传热。来自激光的入射辐射已经通过吸收介质中的辐射束 接口完全处理。较长波段的发射辐射(由于晶圆相对于工艺室壁的温度升高)可以使用单波段表面对表面辐射 接口与固体传热 接口进行建模。表面到表面辐射  接口计算所有暴露表面与周围空间之间的角系数

值得一提的是,在这种情况下,只有在晶圆上方的小内角附近存在表面对表面辐射;其他地方对环境的角系数都是统一的。如果我们想稍微简化一下,可以不使用表面对表面辐射 接口,而是在固体传热 接口中使用表面到环境辐射 边界条件。计算时间和结果的差异可以忽略不计,因此这里我们使用更准确的方法,即使用表面对表面辐射 接口计算角系数。

我们还需要特别注意这个装置的网格划分。吸收介质中的辐射束 接口求解的是一阶偏微分方程,默认情况下使用场的线性离散化。根据吸收系数,我们知道强度会随着两层的厚度发生明显变化。我们还知道,激光束轮廓在表面上的强度变化是相当渐进的。这证明了层内具有高纵横比矩形单元的映射网格是合理的。当然,随着建模复杂性的提高,我们总是希望研究网格和求解器的相对公差细化,就像我们之前的博客文章“在 COMSOL Multiphysics® 中模拟固体瞬态加热简介“所讨论的那样。

设置完成后,我们将使用随时间变化的求解器解决这个问题,并按照求解器采取的步骤保存数据。然后,我们可以绘制出温度曲线和吸收的热量,以及一段时间内中上部点的温度,如下图所示。

沿 z 轴的高度与温度的关系绘图。
沿 z 轴的高度与温度的关系

最后,为了说明,我们将介绍一种非线性材料,使底层的吸收系数随着温度的升高而上升。两种半透明材料的吸收系数比较如下图所示。随着非线性吸收系数的升高,材料的加热更大。由于这种材料的非线性,我们还需要细化具有非线性属性的层中的网格。

绘图比较了常数吸收和非线性吸收的随时间变化的温度。
使用两种不同的材料模型比较温度随时间的变化。

结束语

我们介绍了一种解决半透明材料的加热问题的建模方法。准直辐射热源(激光)通过一组吸收介质中的辐射束 接口进行建模,该接口可以处理材料在激光波长下的半透明性质以及介电界面处的反射。脉冲热源通过事件 接口处理,较长波长的红外再辐射通过表面对表面辐射 接口处理。这种建模方法适用于半导体加工领域或准直光入射到半透明材料上的任何情况。

如果你对这些类型的模拟感兴趣,请随时单击下面的按钮下载文中讨论的示例模型:

]]>
//www.denkrieger.com/blogs/modeling-the-pulsed-laser-heating-of-semitransparent-materials/feed/ 11
COMSOL Multiphysics® 中的固体瞬态加热建模介绍 //www.denkrieger.com/blogs/intro-to-modeling-transient-heating-of-solids-in-comsol-multiphysics //www.denkrieger.com/blogs/intro-to-modeling-transient-heating-of-solids-in-comsol-multiphysics#comments Mon, 12 Dec 2022 00:32:12 +0000 http://cn.staging.comsol.com/blogs?p=321891 COMSOL Multiphysics® 软件经常被用来模拟固体的瞬态加热。瞬态加热模型很容易建立和求解,但它们在求解时也不是没有困难。例如,对瞬态加热结果的插值甚至会使高级 COMSOL® 用户感到困惑。在这篇博客中,我们将探讨一个简单的瞬态加热问题的模型,并利用它来深入了解这些细微差别。

一个简单的瞬态加热问题

图1显示了本文所讨论主题的建模场景。在这个场景中,将一个空间上均匀分布的热载荷施加在一个具有均匀初始温度的圆柱体材料顶面的圆形区域内。最开始载荷很高,但在一段时间后会逐渐下降。除了施加热载荷外,还添加了一个边界条件来模拟整个顶面的热辐射,它使零件重新冷却。假设材料属性(热导率、密度和比热)和表面辐射率在预期温度范围内保持不变,并且假设没有其他作用的物理场。我们的建模目标是用它来计算圆柱体材料内随时间变化的温度分布。

在 COMSOL 案例库中的硅晶片激光加热教程模型中,有一个类似的建模场景,但请记住,本文讨论的内容适用于任何涉及瞬态加热的情况。

一个三维模型,显示了施加在圆柱体材料顶面的空间均匀的热载荷。
图1.顶面有一个热源的圆柱体材料几何模型。

尽管我们很想通过绘制图1中所示的精确几何结构开始建立模型,但我们可以从一个更简单的模型开始。在图1中,可以看到几何体和载荷是围绕中心线轴向对称的,所以我们可以合理地推断,解也将是轴向对称的。因此,我们可以将模型简化为二维轴对称建模平面。(点击此处,了解如何使用对称性来减小模型尺寸。)

在中间的圆形区域内,热通量是均匀的。最简单的建模方法是通过在二维域的边界上引入一个点来修改几何形状。这个点将边界划分为受热和未受热的部分。在几何形状上增加这个点,可以确保所产生的网格与热通量的变化完全一致。考虑到这些,我们可以创建一个等效于三维模型的二维轴对称计算模型(图2)。

一个等效于三维模型的二维轴对称模型
图2.相当于三维模型的二维轴对称模型。显示的是默认网格。

此外,我们还考虑了施加的热通量大小的瞬时变化的情况;在 t=0.25s 时,它的值变得较低。载荷的这种阶梯式变化应该通过使用事件 接口来解决,如 COMSOL 知识库中关于求解包含时变载荷阶跃变化的模型一文所述。简单来说,事件 接口会准确地告诉求解器载荷的变化什么时候发生,求解器将相应地调整时间步长。我们可能也想知道求解器采取的时间步长,这可以通过修改求解器的设置,按求解器的步长输出结果,然后就可以绘制零件顶部中心点的温度,如图3所示。

曲线图显示了模型顶部中央某点的温度随时间变化。
图3.某一点的温度随时间变化的曲线图,各点显示了求解器在载荷突然变化的附近采取的步长较短。

接下来,我们用不同的求解器相对容差值重新运行该模型,并在图中进行比较(图4)。这类图表明,像预期的那样,随着公差变小,解迅速向同一个值收敛。

显示模型顶部中心点的温度随时间变化的图,用三种不同的相对容差求解。
图4. 用不同的相对容差求解出的随时间变化的某一点的温度图。

另一个可以计算的量是进入该域的总能量。我们可以对通过边界的总热通量的表达式 ht.nteflux 进行积分,使用 timeint() 算子对时间进行积分,得到总能量。积分的结果在下面的表格中列出,用于增加时间步长的相对容差。(提示:你可以在 COMSOL 知识库中了解更多关于计算空间和时间积分的信息,在这篇关于如何计算质量守恒和能量平衡的博客中了解更多关于计算能量平衡的信息)。

求解器相对容差 通入域的通量的时间积分(J)
1e-2 32.495
1e-3 32.469
1e-4 32.463

从数据中我们可以观察到,进入系统的总能量实际上几乎与时间步长容差无关。乍一看,这似乎是对我们模型的一个奇妙的验证。然而,需要指出的是,我们在这里观察到的是有限元法(FEM)的基本数学特性。简单说,就是总能量总是会很好地平衡。这并不意味着模型中没有错误,错误只是出现在不同的地方……接下来,我们就去寻找错误。

错误:很容易产生,但很难定义

我们应该在这里暂停一下,来非常谨慎地处理上文中提到的一个词,即错误 这个提示,它在建模和仿真的世界中经常被使用,但没有固定出现的场合。在本节的后面部分,我们将对各种建模案例中可能出现的不同错误进行一些详细描述。(如果你想直接跳到与模型中的错误有关的部分,请点击这里)。

输入错误

输入错误,顾名思义,是指模型输入中的错误,如材料属性输入不正确或几何形状绘制错误。最有危害的一个输入错误就是遗漏错误,例如忘记添加一个边界条件。输入错误与输入中的不确定性是不同的,例如,当不知道确切的材料属性时,就会出现不确定性。前者输入错误只能通过仔细检查来解决,而后者输入中的不确定性可以通过 COMSOL 软件的不确定性量化模块来解决。对于我们的例子,我们确定没有输入错误或不确定因素。

几何体的离散化错误

当通过有限元网格离散几何体时,特别是在对非平面边界进行网格划分时,会产生一个几何体的离散错误。这些错误随着网格细化程度的增加而减少,并且可以在不实际求解有限元模型的情况下进行计算。本文示例中的二维轴对称建模域没有弯曲的边界,不必担心这种类型的错误。

解的离散化错误

解离散错误是由于有限元基函数不能完全代表真实的解场及其在此域内的导数。它从根本上存在于有限元方法中。这种与几何离散误差有内在联系的误差总是存在的,对于任何良好的有限元问题来说,它总是随着网格的细化而减少。

时间步长误差

了解时域模型中的误差传播是相当复杂的。这篇博客,我们只要说在任何一个时间步长中引入的或已经存在的任何误差都会向前传播就足够了,但对于文中讨论的扩散类问题,它们会逐渐衰减。这种类型的误差总是存在的,而且这些误差的大小是由瞬态求解器容差和网格控制的。

插值错误

还有一种类型的错误是比较定性的,那就是插值错误。这些错误发生在对结果的意义和产生方式没有准确理解的情况下。其中最著名的是尖角处的奇异性,这种情况经常出现在结构力学以及电磁场建模中。当存在输入错误时,插值错误尤其经常出现。因此,如果你对你的结果有任何不确定的地方,一定要回去仔细检查(甚至三番五次检查!)你模型的所有输入。

上面列举的错误清单并不完整。例如,我们还可以谈一谈由于线性系统求解器的有限精度算术、非线性系统求解器和数值积分误差而产生的数值误差。然而,这些以及其他类型的误差,基本上规模都小得多的。

有了上述的这组定义,现在准备回到我们的模型了。

追踪空间和时间中的错误

到目前为止,我们已经观察了模型中某一点的解,并观察到随着我们完善瞬态求解器的相对容差,解似乎收敛得很好,所以我们应该已经理解了收紧瞬态求解器的相对容差将减少时间步长误差的想法。现在,我们来看看空间温度分布。我们将从沿中心线的温度开始,对于最宽松的容差 1e-2,看初始时间的解以及求解器采取的第一个时间步长,如下图所示。

显示初始时间和第一个时间步长的中心线温度的图。
图5.初始时间和第一个时间步长的中心线温度图。

从初始值图中,我们可以看到,沿中心线的温度与规定的初始温度不一致——有些地方甚至低于初始值。这是由于 COMSOL Multiphysics 使用了所谓的一致初始化,即调整初始时间的解场,使其与初始时间的边界条件和初始值一致。一致初始化包括采取一个额外的非常小的人工时间步长,我们可以认为是在零时刻发生的。一致性初始化可以在求解器的初始时间步长设置中关闭,也可以在显式事件隐式事件 功能中关闭,但是这样做的时候应该谨慎。在常见的的多物理场模型中,尤其是涉及到流体流动的模型,默认情况下要让它处于可能更稳健的启用状态,所以我们在这里将讨论这种情况。

在这种情况下,考虑一致初始化的方式是,调整温度场使之与施加的载荷和边界条件相一致。由于施加的热载荷最初是不为零的,温度场的梯度与热通量成正比,最初也必须不为零。我们还需要考虑,这个场是用有限元基函数离散的。沿着中心线,这些基函数是多项式,但多项式不可能完全匹配真实的解;因此,在一致初始化步骤之后,我们最终得到的是一个会略微超过或低于预期结果的解。从第一个时间步长的解中,我们还可以看到,零件远端的温度已经在上升,这是意料之外的。虽然这些与预期的变化幅度非常小,但我们还是希望将它们降到最低。

在通过修改模型来减少这些解的离散化误差之前,让我们应用一点物理上的直觉来解决这个问题。在模拟时间开始时,沿中心线的温度分布将与涉及模拟通过一维板块的传热建模方案相当类似。对于这种类型的建模方案,已经存在一个分析解,这在许多关于传热分析的书籍中经常会谈到(实际上,这个例子被用作我桌上的一本教科书 Fundamentals of Heat and Mass Transfer的封面插图)。

为了简洁起见,我们将跳过分析解法直接陈述结果。当对表面零件施加热量时,表面的温度将开始上升,最终内部区域也会变暖。请注意,离边界较远的点需要更多的时间来加热。板块内的温度是不会均匀变化的。在内部更远的点,与靠近表面的点相比,需要更长的时间才能使温度开始变化。值得注意的是,由于传热方程的扩散性质,空间温度变化将随着时间的推移而趋于平稳。有了这种认识,让我们再回到我们的模型,看看如何改进它。

简单来说,为了使这个解的离散化误差最小化,我们需要在场变化剧烈的位置划分更精细的网格。根据我们的经验(或者分析解,如果我们想查的话),我们知道,在非常接近表面和边界的法线方向上,场的变化非常大,但在内部则变得更加平滑。这正是需要边界层网格划分的情况,如图6所示,它在边界的法线上创建薄的单元。

COMSOL Multiphysics 用户界面的特写图,上面显示的是模型开发器,网格节点已经展开,下面显示的是晶圆的网格。
图6.通过沿着晶圆顶部的一个边界添加一个边界层来修改网格划分序列。

现在,我们可以重新运行模拟,并绘制出初始时间和下一个时间步长的解。

使用边界层网格时,显示初始和第一个时间步长的中心线温度的图。
图7.使用边界层网格时,初始和第一个时间步长的中心线温度图。

在图7中,我们可以观察到,在初始值时,温度的下调在空间上更为局部。事实证明,使用更精细的网格也会导致随时间变化的求解器采取更小的时间步长。因此,通过这种细化的网格,我们减少了空间离散和时间步长误差。

我们还可以看一下沿建模域顶部边界的结果,代表暴露表面的温度分布。图8中显示的是使用 1e-2 的容差绘制的初始时间和第一个时间步长。在这些图中,我们可以观察到空间中相当剧烈的震荡场。这是空间离散化的一个表现。请记住,热载荷沿着径向轴经历了大小的阶跃变化,我们在这里观察到的有点类似于吉布斯现象。

在初始值和第一个时间步长时沿模型顶面的温度图。
图8.使用边界层网格绘制的在初始值和第一个时间步长中沿顶面的温度图。

解与之前类似,但现在我们必须在过渡的位置细化网格。对于这个问题,可以对划线点应用更加精细的大小设置,从而得到如下所示的网格。

COMSOL Multiphysics用户界面的特写,上面显示的是网格节点展开后的模型开发器,下面显示的是在划定热载荷分布的点上细化的网格。
图9.网格设置和网格的图示,在划定热载荷分布的点上应用较小的网格大小。

从图10的温度结果中,我们可以看到,现在解中的振荡已经减少了,在空间和时间上的传播也没有那么多。即使求解器的相对容差为 1e-2,求解的结果也已经有了很大的改善。

沿模型顶面的温度图,在初始值和第一个时间步长的情况下,对细化网格进行求解。
图10.在细化网格后,使用0.01的相对容差,在初始值和第一个时间步沿顶面的温度要准确得多。

我们可以使用更多的网格和求解器容差细化来继续这个练习。但通过我们目前所做的细化,已经开始看到误差迅速减少–由于瞬态传热方程的扩散性质,即使是仍然存在的误差也会在空间和时间上被平滑掉。实际上,我们应该花同样多的精力来研究模型输入中的不确定性的影响。

还有什么可以发挥作用?

在这个例子中,施加在边界上的热载荷并没有及时移动,所以划分边界的方法是合理的。如果热载荷分布要移动,那么受热面的整个网格就需要更加精细。(你可以在这篇博客中了解在 COMSOL® 中对移动载荷和约束进行建模的 3 种方法)。

在这篇博客的前面部分,我们假设材料属性随温度的变化而保持不变,并且不依赖于任何其他物理场。这是一个重大的简化,因为所有的材料属性都会随温度变化。材料甚至可以经历相变,如融化。模拟相变可以用几种不同的方法,包括表观热容法,它是使用高度非线性的比热来说明相变的潜热。我们也可以很容易地预见到这是一个多物理场问题,如涉及热固化的方程式,甚至是材料非线性电磁加热问题。在这种情况下,我们不仅需要监测温度场的收敛性,还需要监测所有其他正在求解的场变量,甚至可能是它们的时间和空间导数。这些情况可能都需要在建模域的所有地方采用非常精细的网格,所以从本例这种简单情况中得到的经验可能并不适用。然而,即使在对更复杂的模型进行网格划分和求解时,记住最简单的情况总是好的(即使它只是作为一个概念性的起点)。

此外,我们应该强调的是,这篇文章只是关于固体材料的时变传热。如果有一个移动的流体,控制方程将发生重大变化;流体流动模型的网格划分是一个单独的、相对更复杂的话题。对于波动型问题,网格的选择和求解器的设置就变得相当简单了。

结束语

在这篇博客中,我们复习了一个典型的传热建模问题。我们注意到,在空间和时间上,在载荷突然变化的情况下,解会出现某些错误。读者现在应该对这些错误类型有所了解,并知道它们是有限元方法的固有结果,就像所有的数值方法一样,只是对现实的一种近似。尽管这些误差看起来很大,但由于瞬态传热方程的扩散性,它们的大小在空间和时间上都会衰减。我们已经表明,网格细化将减少空间离散误差,同时隐含着减少时间步长误差的效果。最后,我们讨论了如何通过求解器相对容差细化来进一步减少时间步长误差。

还值得做一个更简短的总结:如果你主要对一个相对长的时间后的解感兴趣,使用相当粗的网格和默认的求解器相对容差是完全可以接受的。另一方面,如果你对短时和小范围的温度变化感兴趣,那么必须研究求解器相对容差和网格细化。

理解了这些,我们就可以避免犯解释错误。这将使我们能够自信和轻松地从简单的模型中建立更复杂的模型。

下一步

点击下面的按钮,你将进入 COMSOL 案例库,可以尝试自己模拟这篇博客中提到的示例模型。

]]>
//www.denkrieger.com/blogs/intro-to-modeling-transient-heating-of-solids-in-comsol-multiphysics/feed/ 2
使用 COMSOL Multiphysics® 计算轨道热载荷 //www.denkrieger.com/blogs/computing-orbital-heat-loads-with-comsol-multiphysics //www.denkrieger.com/blogs/computing-orbital-heat-loads-with-comsol-multiphysics#comments Wed, 23 Nov 2022 06:40:47 +0000 http://cn.staging.comsol.com/blogs?p=319571 COMSOL Multiphysics® 6.1 版本中增加了一个新的接口,可以计算在轨卫星的辐射热载荷。这个轨道热载荷 接口是传热模块的一部分,用于定义卫星的轨道和方向、轨道机动和变化的行星属性。我们可以使用这个接口计算太阳、反照率和地球红外热载荷,然后计算卫星温度随时间的变化。接下来,让我们了解更多详细内容!

背景知识

卫星热设计是一个具有挑战性的问题。一颗卫星是由许多对温度敏感的部件组成的。传感器、照相机、收音机、电子器件、电池、姿态控制系统和太阳能电池板都需要保持在一定的温度范围内,甚至卫星结构本身也必须保持在一定的温度范围内,以防止过度的热变形。许多组件都会散发热量,卫星也会经受来自环境的多种不同的红外(IR)热载荷。设计一颗卫星需要了解如何最好地将所有这些热量辐射出去,并使卫星保持在理想的工作条件下。

各种电子元件产生的热量通常很容易定义,但环境热载荷可能出奇地复杂。首先,在面向太阳的任意表面上,有直接入射的准直太阳光通量。其次,对于近地轨道上的卫星,入射到地球日光侧的太阳光通量会被漫反射到卫星朝向地球一侧的表面。这些反射的大小取决于地球的局部表面特性以及不断变化的大气条件。总的来说,漫反射太阳光通量大约是直接太阳光通量的三分之一,被称为反照率通量。当卫星进入日食时,这些直接的太阳光通量和反照率载荷下降为零,但有一个第三环境热源始终存在。地球是温暖的,相当于一个漫射器,其红外辐射的大小是纬度和经度的函数。

知道这些随时间变化的环境通量,以及它们在卫星表面的分布,是计算卫星温度所需要的输入,这涉及到求解固体部分的热传导和所有暴露表面的辐射。通常将这些环境通量分为两个波段:太阳波段和环境波段。这样做的原因是,太阳温度在 5780K 左右,主要发出短波长的辐射,而卫星和地球温度都在 300K 左右,主要发出长波长的红外辐射。这种划分是很重要的,因为为了热管理,卫星外部涂层的表面吸收性能往往是专门定制的,是波长的函数。例如,为了使卫星的工作温度尽可能低,一种方法是使用在太阳波段具有低吸收率(发射率)但在环境波段具有高发射率的表面涂层。

显示卫星在轨道上相对于地球和太阳的位置和方向如何影响其经历的辐射传热的示意图。
卫星在轨道上经历的辐射传热取决于它相对于地球和太阳的位置和方向。地球图片来源:可视地球和美国国家航空航天局。

一颗质量恒定的卫星围绕着一颗质量大得多的球形行星运行时,会沿着一条椭圆的路径,这条路径可以用开普勒轨道根数来描述,它描述了一个周期性的轨道。轨道根数被用来计算(通过中心方程)卫星在赤道坐标系(ECS)中的坐标。

在了解卫星随时间变化的位置的同时,也有必要了解它的方向性。这首先要通过一组卫星轴来定义卫星坐标系。根据任务参数,这些卫星轴是朝向特定方向的,如朝向地球、太阳、前进方向,或天球上的一个固定点。有时候也会想要改变这些轴的定义和它们的方向,例如为了使仪器朝向一个地理位置。卫星也可能围绕一个或多个轴缓慢旋转或相对快速地翻滚。方向的变化会影响热载荷以及卫星的阴影。例如,卫星上的一个突出物,如太阳能电池板或仪器,将对它后面的表面产生阴影。如果有旋转的太阳能电池板或其他铰接元件,这也将改变阴影和热载荷。另一方面,如果卫星在快速翻滚,这意味着环境热载荷是均匀的。

一旦获取了所有的任务参数,就有可能计算出所有的环境热载荷,然后就可以很直接地计算出卫星在一段时间内的温度曲线。现在,让我们看一下轨道热载荷 的用户界面,探索在设置卫星热分析时它是如何帮助输入数据的。

轨道热载荷用户界面概述

轨道热载荷 接口的工作方式与 COMSOL Multiphysics 产品库中的其他接口类似,并使用一致的工作流程。您可以从以下两个方面入手:

  • 使用核心 CAD 建模功能或设计模块在软件中创建自己的结构 CAD 描述
  • 导入一个 CAD 文件,例如 Parasolid®、ACIS® 或 STEP 文件
  • 使用 LiveLink™ for CAD 产品之一,将 COMSOL® 与您的 CAD 平台双向连接。

从这里开始,您将使用与其他工作流程类似的 CAD 简化清理以及网格划分、求解和结果评价功能。因此,如果你已经是 COMSOL 用户,你将很快掌握这个新接口。

作为典型工作流程的一部分,轨道热载荷 接口分三个步骤使用,对应于三种不同的研究类型。首先,定义轨道根数、卫星轴和方向,并使用轨道计算 研究步骤解决一个或几个轨道周期的问题。这让我们在通过轨道热载荷 研究步骤计算所有环境来源的辐照度之前,快速验证任务参数。一旦这些辐照度被求解并存储,它们就被用来计算结构的温度和所有暴露表面之间随着时间推移的表面对表面辐射,使用轨道温度 研究步骤。对于每个轨道的环境热载荷相同的情况,可以只计算一个轨道的热载荷,并在热分析中及时重复计算。

轨道热载荷 接口可以单独用于计算环境热载荷,但更多的是与固体传热事件 接口一起使用。固体传热接口计算卫星固体结构内的温度分布,而事件 接口则跟踪日食和调整方向,以及任何其他状态的瞬时变化,如仪器的开启和关闭。

COMSOL Multiphysics用户界面显示了模型开发器,其中突出显示了轨道热载荷接口,并有相应的设置窗口。
截图显示了轨道热载荷接口,以及三种相关的研究类型。

该接口的设置如上图所示,其与表面对表面辐射 接口的设置类似,但默认使用太阳光和环境 双波段模型。辐射总是存在于所有暴露的表面之间,包括卫星的外部和内部。

现在,让我们看一下接口内的默认功能。

首先,太阳属性 功能定义了入射的太阳光在 ECS 中的方向,以及太阳光通量。太阳方向 有四个预定义的选项。这些选项是根据地球的二分时刻和至点来定义的,这将控制太阳光矢量和太阳光通量。你也可以输入你自己的太阳光矢量,使它成为一个随时间变化的表达式。如果使用多波段光谱模型,太阳可以被看作是一个黑体发射器,在每个波段内有一个确定的通量,或者通过通量的分布作为波长的函数。通常把太阳当作黑体发射体就足够了,这是默认行为。

COMSOL Multiphysics 用户界面显示了模型开发器,突出显示了太阳属性功能和相应的设置窗口。
太阳属性特征指定了太阳光矢量的方向和太阳光通量。

接下来,行星属性 功能指定了计算轨道和日食所需的几个参数。开始时间的行星经度 使卫星下的行星定向,当以地面上的位置指定轨道机动时,或者当行星属性是纬度和经度的函数时,这很重要。辐射属性 部分可以用来启用反照率和行星红外载荷,反照率和行星红外通量 都可以成为经纬度的函数。这些数据可以从电子表格或图像数据中读入。行星是通过离散化处理的,即行星的可见部分被细分为一组具有相等角系数的斑块。当反照率或行星的红外特性变化很大时,以及对于低空轨道,可能需要更精细的离散化。

COMSOL Multiphysics用户界面显示了模型开发器,突出显示行星属性功能和相应的设置窗口。
行星属性功能在启动时将行星定位在卫星下方,并描述行星的辐射属性。

下一个默认功能,轨道参数,提出了在六个开普勒轨道要素方面定义轨道的设置:半长轴、离心率、倾角、升交点经度、近心点角和起始时间的真近点角。圆形赤道椭圆形赤道圆形 轨道也可以用一组减少的参数来定义。

COMSOL Multiphysics用户界面显示了模型开发器,突出显示了轨道参数功能和相应的设置窗口。
轨道参数功能是用来输入轨道单元的。

航天器轴 特征定义了卫星坐标系的轴方向。这些轴可以在 CAD 坐标中指定,也可以选择卫星的一个面,在这种情况下,使用面的法线方向。当把仪器指向一个特定的方向时,这很有用。选择的次要指向方向不需要与主要方向垂直;采用次要矢量对主要方向的法线平面的投影。第三个轴完成了一个右手坐标系。可以定义不同的坐标系,与航天器方向 特征一起使用。

COMSOL Multiphysics 用户界面显示了模型开发器,突出显示了航天器轴功能和相应的设置窗口。
航天器轴 特征定义了主要和次要的指向性方向。

航天器方向 特征定义了航天器的主轴和次轴方向,以及围绕主轴、次轴和第三个方向的旋转(如果有的话)。方向可以是天顶/天底、太阳/与太阳相反、速度/与速度方向相反、轨道法向/与轨道法向相反、天体点或地面站中的任何一个。卫星将精确地朝向主轴方向并旋转,以使航天器的第二指向方向指向第二个方位方向。

COMSOL Multiphysics用户界面显示了模型开发器,突出显示了航天器方向功能和相应的设置窗口。
航天器方向特征与 航天器轴特征一起,定义了卫星在一段时间内的定位方式。

如果只有一个航天器轴航天器方向 特征,那么这些特征将在整个分析中使用。可以有这些特征的多个实例,并可以在它们之间进行切换,以引入各种轨道机动。为了在各种定义的组合之间进行切换,使用了生成事件接口 特征,它允许轨道机动的序列,例如在卫星处于射程内时指向一个特定的地理位置。

事件接口 还有另一个目的,在所有用例中都是持续的:追踪日食。卫星进入和离开日食的时间(如果它们发生的话)被用来向求解器表明热载荷正在发生变化。

COMSOL Multiphysics 用户界面显示了模型开发器,突出显示了生成事件接口功能和相应的设置窗口。
生成事件接口特征将填充事件接口中的 轨道热载荷事件节点。始终考虑日食。

COMSOL Multiphysics 用户界面显示了模型开发器,突出显示了地面指向功能和相应的设置窗口。
地面指向特征可用于设置额外的事件,根据不同的条件将卫星指向某个地理位置。

接口中的其余特征,即漫反射表面初始值不透明度 特征,都与各种建模表面的发射反射的建模有关。

从热建模的角度来看,一旦环境热载荷被计算出来,工作流程与任何其他涉及热传导和辐射的模型是相同的。轨道热载荷 接口解决了辐射传热问题,并与固体传热 接口相耦合,后者考虑了卫星固体结构内的热传导,也允许你定义体积或表面内的热载荷,这些热载荷可以是恒定的或时间变化的。除此之外,你还拥有传热模块的完整功能集,包括:

  • 薄壁部件的传导传热
  • 交界面处的接触热阻
  • 相变材料
  • 流体中的对流传热
  • 集总热连接和组件

一旦完全定义了问题并解决了轨道热载荷以及温度问题,将得到一组默认的图表,也可以创建任何数量的其他数据的可视化图表。让我们看一下其中的一些…

4998.3 秒后卫星绕地球轨道运行的模拟。显示围绕地球的轨道、太阳光矢量和卫星方向的图。地球图片来源:Visible Earth 和 NASA。

777 秒后来自所有环境的外部辐射的模拟。所有来自环境源的总辐照量,以及太阳矢量随时间变化和天底方向的图。

21548 秒后小卫星内几个部件温度场的模拟。
显示一个小卫星内几个部件的温度的图。一些外部表面被隐藏起来。

卫星传感器、主板和仪器在几个轨道上的温度图。
在几个轨道上收敛到周期性状态的几个组件的温度图。

结束语

有了新的轨道热载荷 接口,现在就可以快速建立一个在轨卫星的热模型,用于预测运行性能。该接口对于从事卫星规划和设计的工程师来说是一个很好的工具。对于那些想马上开始使用传热模块的用户,请看下面的例子:

LiveLink 是 COMSOL AB 的商标。Parasolid 是 Siemens Product Lifecycle Management Software Inc. 或其在美国和其他国家的子公司的商标或注册商标。ACIS 是 Spatial Corporation 的注册商标。

]]>
//www.denkrieger.com/blogs/computing-orbital-heat-loads-with-comsol-multiphysics/feed/ 3
COMSOL Multiphysics® 在食品工业中的应用 //www.denkrieger.com/blogs/the-use-of-comsol-multiphysics-in-the-food-industry //www.denkrieger.com/blogs/the-use-of-comsol-multiphysics-in-the-food-industry#respond Thu, 13 Oct 2022 05:51:11 +0000 http://cn.staging.comsol.com/blogs?p=318011 在过去的几十年里,无数的食品和饮料出现在杂货店的货架上,然而在几年后它们就停产了。你甚至可以想到您最喜欢的零食或饮料似乎突然消失了。这种食物消失的行为可以用一个非常简单的答案来解释:如果一种产品不畅销,那么它被补货的机会就比较少。

在这篇博客中,我们将探讨失败的产品和多物理场仿真的使用如何激发食品行业内创新器具、产品和工艺流程的开发。

从失败中孕育成功的食品

停产或失败的产品不一定是坏事,因为从它们的衰落中可以学到很多东西,它们还可以激发出生产畅销产品的灵感。美国早餐麦片品牌 Wheaties® 公司的起源就是这样一个例子。在 20 世纪 20 年代初,Washburn Crosby® 公司(即今天的通用磨坊公司)的一名员工正在准备一种麦麸混合物时候,不小心将一部分半液体混合物掉到了热炉子上,很快混合物就变脆片状了(参考文献1)。从此,我们今天所熟知的麦片诞生了,但故事并没有就此结束。这种片状谷物并非一夜成名,自 1924 年首次亮相以来,多年来它一直是一个失败的产品。当在美国各地的广播电台播放有关麦片的广告词后,它最终成为了家喻户晓的名字。麦片的名气的进一步扩大要归功于它与体育界的密切联系。(超过 850 名运动员曾在 Wheatiesbox® 的封面上出现过)。

食品工业中另一个类似的从失败到成功的故事是微波炉发明背后的故事。和麦片一样,微波炉也是一个偶然的发现。物理学家兼发明家 Percy Spencer 在实验室测试磁控管时,注意到他口袋里的花生糖开始融化。为了进一步研究磁控管的烹饪能力,Spencer 将爆米花粒和鸡蛋暴露在里面。他发现爆米花爆裂了,鸡蛋爆炸了。Spencer 从这些观察结果中得出结论:磁控管产生的低密度微波能量不仅加热了食物,而且加热速度很快。1945 年,Spencer 和他的雇主 Raytheon 公司根据这一发现,为一项发明申请了专利,他们称之为“Radarange®”。

一艘轮船上的 Radarange。
一艘轮船上的Radarange。图片来源:Acroterion — 自己的作品。根据CC BY-SA 3.0 授权,通过 Wikimedia Commons 共享。

Radarange 的早期版本由于其尺寸、价格和重量而未能成功量产(它比冰箱还大,以今天的货币计算价值超过 50,000 美元,重量可能超过 750 磅!)。随着对其设计的重大修改,它变得更加适合家庭使用,这项发明的销售额急剧上升,后来被称为微波炉。今天,超过 90% 的美国家庭都拥有一台微波炉,其中包含基于 Percy Spencer 发现的技术。

这些故事告诉我们,从失败中学习,从失败中建立并保持灵感是很重要的。仿真实现这一点的一种方法,它可以轻松优化旧的设计和测试新设计。接下来,我们来看看在食品工业中使用仿真可以实现什么。

食品工业中的仿真

工程师和研究人员使用仿真能够获得有关他们正在研究的产品、过程或设备性能的宝贵见解。通过仿真,用户可以测试那些具有挑战性甚至不可能进行的物理测试的参数。他们还可以使用仿真来提出新设计、优化设备并加速原型制作过程。可以研究产品质量对不同参数的敏感性,以实现产品的可重复性。对于在食品行业工作的工程师来说,通过仿真深入了解产品、过程或设备尤为重要,因为食品生产需要密切关注细节。食品特性的微小变化都能被消费者的嗅觉和味觉检测出来。

借助 COMSOL Multiphysics 软件,工程师可以在一个直观的软件环境中分析影响食品的各种物理现象(包括传热、流体流动、化学反应、固体力学和电磁学)。这种多功能性使 COMSOL Multiphysics® 成为一个可以使食品生产链的所有阶段受益的平台,包括生产、加工、分销、零售和餐厅。在下一节中,我们将探讨五个具体的示例,来重点说明在食品行业中使用仿真的好处。

教程模型示例

COMSOL Multiphysics 及其附加模块包含对食品和饮料行业中常用的各种流程、工业设备和家用电器进行建模的功能。让我们回顾这些众多示例中的几个…..

过程

冷冻干燥

冷冻干燥是一种干燥热敏性材料的工艺,被广泛应用于各个行业,从用于保存抗生素和疫苗的制药行业到用于修复浸水书籍、艺术品、照片等的文件修复行业等。然而,这个过程因它在食品工业中的使用而最广为人知,因为它能够保存食品长达 30 年。当一种物质,如食物,被冷冻干燥时,它首先被冷冻,然后通过升华 的过程直接变成气态。在之前的博客文章中,我们讨论了如何使用相图来显示固体,以及如何跳过液相直接进入气态阶段。

冷冻咖啡的特写图。
冻干咖啡的特写图。图片来源:Pleple2000 — 自己的作品。根据CC BY-SA 3.0授权,通过Wikimedia Commons 共享

为了深入了解冷冻干燥工艺,可以使用传热仿真对其进行建模和分析。例如,使用 COMSOL Multiphysics 和它附加的传热模块中的特性和功能,可以模拟冰在真空室条件下通过小瓶的多孔介质升华,这是许多冷冻干燥设置的常见测试用例。你可以查看冷冻干燥教程模型,获取执行此操作的分步说明。

冷冻干燥工艺后期的温度和热通量仿真。
冷冻干燥模型的图像。

啤酒酿造中的发酵

食品和饮料行业使用的另一种工艺是发酵工艺,通常用于生产啤酒。在啤酒酿造过程中,发酵用于将麦芽汁中的糖转化为乙醇和二氧化碳气体,从而使啤酒具有酒精含量和碳化作用。当冷却的麦芽汁(<20°C)和酵母被添加到发酵容器中时,这个过程就开始了,发酵容器通常是处于厌氧条件下的封闭罐。这个操作会导致麦芽汁发酵。发酵完成后,我们就得到了啤酒这一产品。(提示:在我们的博客文章“通过模拟啤酒酿造中的发酵建提升啤酒的品质”中了解有关发酵工艺的更多信息。

一组间隔紧密的发酵罐。
一组发酵容器。图片来源:Antoine Taveneaux – 自己的作品。根据CC BY-SA 3.0授权,通过Wikimedia Commons共享

发酵过程的结果可能是不可预测的,因为它依赖许多不同的因素,包括初始糖含量、酵母类型和选择的过程温度。通过啤酒酿造发酵教程模型,你可以进一步分析此过程,并通过化学建模更好地预测其结果。该教程分两步对发酵过程进行建模。第一步,使用反应工程 接口在完美混合的罐中对发酵过程进行建模。第二步,模型被扩展为一个考虑了传质、传热和自然对流的球形罐几何结构。这两种模型都可以评估可能影响发酵过程中产生的最终酒精含量的各种参数。点击此处,查看此教程的 MPH 文件和 PDF 说明。

啤酒发酵反应器中局部偏差平均浓度的模拟。
啤酒发酵反应器中平均浓度的局部偏差。该模型可以了解产品对发酵反应器中局部温度和流量的敏感性。

工业设备

搅拌器

在食品工业中,工业搅拌器用于将两种或多种独立的成分结合起来生产各种食品和饮料,包括但不限于:

  • 糖果
  • 口香糖
  • 咖啡
  • 敷料
  • 果汁
  • 酱汁
  • 糖浆

这些机器在确定食品的特性方面发挥着关键作用,例如味道和质地。如前所述,消费者可以很容易地检测到它们的变化。因此,搅拌器在不同批次之间高效、一致地运行非常重要。(在大多数情况下,它们不仅是搅拌器,也是反应器。)仿真可以设计搅拌器,他们可以及时生产出高质量、均匀且安全消费的产品。

工业搅拌器的特写。
工业搅拌器。图片来源:Erikoinentunnus — 自己的作品。根据CC BY-SA 3.0授权,通过Wikimedia Commons共享

模块化搅拌器模型教程提供了有关如何对三种混合过程场景进行建模的详细说明:

  1. 带有 Rushton 涡轮的平底搅拌器中的层流混合问题
  2. 使用 k-epsilon k-ε 湍流模型的带斜叶片叶轮的平底搅拌器中的湍流混合问题
  3. 使用 k-omegak-ω湍流模型的带斜叶片叶轮的平底混合器中的湍流混合问题

使用这个教程模型,可以轻松修改搅拌器的几何形状,以更好地满足其特定的搅拌器应用和建模需求。可以访问 COMSOL 案例下载页面,深入了解此模型,并下载相关的 MPH 文件。

带 Rushton 涡轮机的挡板平底混合器的模型几何结构。
带有四个斜叶片叶轮的平板搅拌器的几何模型。

带有 Rushton 涡轮机的档板平底搅拌器(左)和带四个斜叶片叶轮的挡板平底搅拌器(右)的模型几何形状。

意大利面挤出机

意大利面挤出机经常出现在工业化的意大利面工厂中,它们可以提供一种高效、简单和快速的方式,来生产不同形状和大小的意大利面。这些机器能够通过它们的许多组件将粗面粉(一种面粉)和水的混合物塑造成不同形状的生意大利面(如意大利细面条)。挤出螺杆是一个特别重要的组件,它在运动时将粗面粉和水转化为面团,并将其推入机器的挤出钟罩,该罩由带有许多毫米大小的孔的筛网组成。面团通过两个不同的出口,以意大利面的形式离开机器。下面最右边的图片为这种意大利面挤出机的模型。

不同形状和大小的干意大利面条的特写图。
一个面食挤出机模型显示了彩虹色表的流场,其中模型的左端是深蓝色;中间是黄色和蓝色;喷嘴的颈部是浅蓝色,底部和末端是深蓝色。

左图:不同形状和大小的干意大利面。摄影:Karolina Kołodziejczak,图片来源 Unsplash。右图:面食挤出机的流场和几何形状,包括挤出螺杆、钟罩、毫米大小的孔和两个出口。

尽管意大利面挤出机的历史很悠久,但这些机器的效率并不完美。挤出机设计可能出现的问题包括:

  • 面粉和水混合不完全
  • 压力分布和挤出速度不均匀
  • 面团循环不良

使用意大利面挤出教程模型,可以预测挤出机内部的条件如何导致不同面团配方出现此类问题。点击此处,详细了解此模型以及如何设置它。

家电

微波炉

在 Percy Spencer 发现微波炉多年后,其设计仍在研究和改进中。其中一个原因是,使这种普通家用电器在几分钟内煮出一顿饭的技术并非没有缺陷。许多微波炉用户普遍感到烦恼的是,该设备不能一致均匀地加热食物。当微波炉对食物的加热不均匀时,消费者就只能吃下部分冷冻、部分煮熟的早餐、午餐、晚餐或小吃。某些食物在微波炉中煮得不均匀,因为它的成分含水量不同;食物的含水量越多,加热的速度就越快。饭菜不能均匀的加热的另一个原因是由于设备在使用时会出现复杂的振荡模式。

通过 RF 建模,可以更好地了解工作中的微波炉的物理场。例如,微波炉教程模型可用于模拟微波炉烹饪马铃薯时的加热过程。在这个示例中,微波炉被模拟为一个连接到 2.45 GHz 微波源的铜盒。模型中的矩形波导将微波引向微波炉的中心。点击此处,深入探索该教程模型。

一个加热马铃薯的微波炉模拟。
微波炉型号。

延伸阅读

想了解更多关于仿真在食品行业的应用吗?浏览以下案例,了解如何使用 COMSOL Multiphysics 研究膨化零食生产、开发屡获殊荣的大比目油炸鱼卷配方和模拟世界著名的糖果棒生产过程中所涉及的相互作用的物理现象。

参考文献

  1. “Wheaties®,” Wikipedia, Wikimedia Foundation, 8 September 2022; https://en.wikipedia.org/wiki/Wheaties

Wheaties 是 General Mills IP Holdings II, LLC 的注册商标。

]]>
//www.denkrieger.com/blogs/the-use-of-comsol-multiphysics-in-the-food-industry/feed/ 0
通过模拟热平衡烤出更美味的苹果派 //www.denkrieger.com/blogs/model-balanced-heat-transfer-bake-a-better-apple-pie //www.denkrieger.com/blogs/model-balanced-heat-transfer-bake-a-better-apple-pie#comments Mon, 14 Mar 2022 02:26:52 +0000 http://cn.staging.comsol.com/blogs?p=295711 苹果是制作甜点(比如苹果派)的常见原料,但有一种苹果是许多烘焙师都避免使用的。在这篇博客中,我们将探讨这种备受争议的原料在烘焙中的应用,并将通过一个案例模型来展示如何模拟正在烘烤的苹果派中的传热过程。

烤还是不烤

各种各样的苹果

网上有很多苹果派的食谱,关于这款甜点的做法各有不同。但是大多数人都认为,一些苹果更适合制作苹果派,包括但不限于青苹果(Granny Smith)、金冠苹果(Golden Delicious)、蜜脆苹果(Honeycrisp)和布瑞本苹果(Brae burn)。这些苹果酸甜适中,因此成为烘焙的理想选择。

如果想制作出美味的苹果派,大多数厨师会建议你避免使用蛇果(Red Delicious),因为这种苹果在高温下很容易碎裂并且失去风味。在一篇名为 Serious Eats 的博客中,使用蛇果制作的苹果派被评为 1 分,成为榜单上排名最低的苹果派。

了解到蛇果在烘焙界的名声后,我很想亲自看看它的表现。接下来,我将对用青苹果制作的苹果派和用蛇果制作的苹果派进行比较。制作这两种苹果派使用的配方、配料和烘焙程序均相同。(如果您想跳过这部分,请单击此处,直接阅读模拟烤箱中的苹果派相关内容。)

食谱

制作苹果派有两种必需材料:饼皮和馅料。我按照一个简单的食谱来制作饼皮,其中需要用到面粉、黄油、盐、糖和水。按照这个食谱制作馅料,需要用到以下材料:

  • 6 个中等大小的苹果
  • 150 克(3/4 杯)糖
  • 2 汤匙通用面粉
  • 3/4 茶匙肉桂粉
  • 1/4 茶匙盐
  • 1/8 茶匙肉豆蔻粉
  • 1 汤匙柠檬汁

制作蛇果苹果派的步骤如下:首先把一张饼皮放在一个椭圆形的玻璃烤盘里。然后,把馅料的所有配料放在一个大碗里。接着将馅料添加到铺着饼皮的烤盘中。将馅料铺满整张饼皮后,再在馅料上放一张饼皮,然后将两张饼皮的边缘压在一起。最后,在最上面的一层饼皮上开几个小口,将整个馅饼放入烤箱,温度约为 220 ℃。烘烤 45 min。

然后,用同样的方法制作青苹果派。制作两个苹果派的唯一区别是烤盘的形状。

4张照片组成的网格显示了苹果派烘焙过程的不同阶段。
使用蛇果制作苹果派的步骤(按顺时针方向,从开始到准备烘烤阶段)。

蛇果派与青苹果派,哪个更好吃?

蛇果做的派不好吃吗?青苹果是烘焙用苹果的黄金标准吗?

对我来说,用蛇果制作的苹果派颜色更深,但正如美食评论家所说,它缺乏风味。与青苹果派相比,蛇果派吃起来水分更多,熟得不够透,而且有轻微的颗粒感。

两张并排的图片是一个苹果派,由红色美味的苹果(左)和几个红色美味的苹果(右)做成。
一个用蛇果制作的苹果派(左)和几个蛇果(右)。

用青苹果制作的派则有经典的苹果派风味:酸甜可口,并且有浓郁的柠檬味。

两张并排的苹果派图片,由史密斯奶奶的苹果(左)和几个史密斯奶奶的苹果(右)做成。
一个用青苹果制成的苹果派(左)和几个青苹果(右)。

两种苹果派各有优点和缺点,像许多人一样,我也建议在烘焙时使用青苹果。但是,如果你的任务是消耗掉那些在苹果采摘季剩下的蛇果,那么使用它们制作派也很不错。

现在,我们知道哪种苹果制作的派味道更好了,接下来让我们研究一下它们在烘焙时发生的传热过程吧!

模拟烤苹果派时烤箱中的传热

无论你选择哪种苹果制作派,稳定的热量传递对于烘焙过程都是必不可少的。

在烤箱内部,热量通过三种传热过程传递:

  1. 对流:烤箱后部的风扇将热空气吹入烤箱。
  2. 传导:热量从派边缘传递到派中间的方式。这也是空气和派在它们的交界处进行热量交换的方式。
  3. 辐射:热电阻向烤箱壁和派辐射热量。

图中显示了烤箱内发生的热传递过程,烤饼上标注了对流、传导和辐射。
烤箱中的传热过程。

现代烤箱有几种加热模式,可以慢烹、烧烤、上部加热或下部加热。选择的加热模式决定了是激活上部电阻、后风扇还是后部电阻。

假设将烤箱设置为风扇烧烤模式,则激活上部电阻 (1000 W)、后部电阻 (1500 W) 和后风扇。烤箱的目标温度设置为 220°C。那么,派中的温度分布均匀性如何?距离目标温度有多近?烹饪它需要多少能量?让我们通过仿真来寻找答案。

基于直觉建模

对需要模拟的应用进行初步了解后,我们发现需要考虑派周围的流体流动、空气和派内部的热量传递以及表面对表面辐射才能完整地描述传热过程。在 COMSOL Multiphysics® 软件中,我们可以使用传热模块中的非等温流动表面对表面辐射传热将所有这些物理场耦合在一起。

在烤箱中烘烤 45 min 后,派的温度不均匀,温度从 140°C(中间) 到 210°C(边缘)不等。平均温度约为 160°C。

一个模型显示了在设定为 220°C 的家用烤箱中烘焙45分钟后馅饼内部的温度。烤箱内的速度流线也显示出来。
家用烤箱内的温度和速度流线图(按温度着色)。

烤箱工作一小时后,消耗了 0.26 kWh 的能量,内部空气温度保持在 220°C。

现在,我们已经回答了上文提到的问题,但还没有深入探讨模拟过程。如果讨论的更详细一点呢?上述设置是否过于简单而不能准确模拟这个过程?

高级建模

了解建模和仿真的应用场景中涉及的物理场,对于快速获得准确的结果至关重要。对于在这个应用中要评估的内容,第一个建模过程没有遗漏任何一个物理场,但实际上过于宽泛了。在这个模拟中,我们可以忽略自然对流,因为强制对流占主导地位。这意味着流体流动和传热的耦合很弱,也意味着空气可以被认为是不可压缩的。基于这两点,我们可以简化模型,从而减少计算时间。简化后的模型计算速度实际上比第一个模拟示例快了 4 倍。

两个模型的仿真结果呢?几乎一模一样!

一个比较单向非等温流动法(单向NITF)和非等温流动法(NITF)的图表,用于计算烤箱中烘焙的馅饼内部的平均温度。使用单向NITF方法获得的结果用蓝线表示,而使用NITF方法获得的结果用绿色虚线表示。
比较单向非等温流动法(单向NITF)和非等温流动法(NITF)的图表,用于计算烤箱烘焙馅饼所消耗的总能量。使用单向 NITF 方法获得的结果用蓝线表示,而使用 NITF 方法获得的结果用绿色虚线表示。

随着时间的推移,派的平均温度(左)和烤箱消耗的总能量(右)。

动手尝试

烘焙是传热物理学的一个常见应用,这也是为什么它是说明如何使用 COMSOL Multiphysics 模拟流体流动和传热耦合的完美示例。在这篇博客中,我们通过模拟了家用烤箱中馅饼的传热过程,并考虑了传导、对流和辐射作用。

想尝试自己动手模拟相关的模型吗?单击下列按钮至 COMSOL 案例库,下载案例模型。

注意:使用案例模型,您可以更新烤箱的温度和烘烤食物(例如馅饼)的持续时间,以符合您的实际建模需求。在这篇文章中,我们让烤箱在 220°C 下运行 45 min,以匹配苹果派的平均烘焙过程。

相关阅读

想了解更多关于食品仿真的相关信息吗?请阅读以下博客:

]]>
//www.denkrieger.com/blogs/model-balanced-heat-transfer-bake-a-better-apple-pie/feed/ 1
介绍几种计算辐射传热的方法 //www.denkrieger.com/blogs/introduction-to-computing-radiative-heat-exchange //www.denkrieger.com/blogs/introduction-to-computing-radiative-heat-exchange#comments Thu, 10 Feb 2022 07:33:41 +0000 http://cn.staging.comsol.com/blogs?p=291581 模拟辐射传热时,需要考虑辐射是如何从一个表面发射并被其他表面吸收的,以及表面与表面之间交换了多少辐射热。在辐射传热仿真系列博客的前两篇文章中,我们已经讨论了发射、反射和透射仿真,今天我们将通过介绍角系数的概念,以及计算表面与表面之间辐射传热的各种方法,来学习辐射传热仿真的基础知识。

这篇博客是辐射传热仿真系列博客的第3部分。点击此处,阅读第 1 部分第 2 部分内容。

快速了解角系数

考虑两个薄且扁平的物体,如下图所示。假设红外辐射 (IR) 光可以在这些物体表面周围的空间内自由传播。这在真空中是成立的,并且在空气以及许多其他室温气体下也是合理的。假设无衰减传播可能不合理的情况包括:

  • 吸收红外光的气体,例如水蒸气
  • 高温气体
  • 包含细小分散颗粒的气体
  • 发生化学反应的气体

位于封装环境表面内的两个扁平矩形物体之间的辐射传热图。
在不同温度下,两个等温物体之间会发生辐射传热。这两个物体可以被认为放置在一个封闭的环境内,热量传递的多少取决于物体的尺寸和方向,并且只会发生在彼此相对的表面之间。

假设这两个物体处于不同的恒定温度下。除了这两个物体之外,我们关注的模型中没有其他任何内容,但仍需要定义所有未模拟的周围空间。我们需要定义一个恒定的温度,称为环境温度或背景温度。虽然我们不会明确地模拟这个环境空间,但为了方便器件,通常假设一个温度恒定的封闭表面。

考虑第一个物体及其发出的所有辐射能,其中一部分辐射热通量流向环境,另一部分流向第二个物体。现在我们引入 角系数 的概念,它是从表面 1 () 发射到表面 2 ()的辐射分量,记作 。假设辐射度均匀且没有中间阻挡面,那么表面 1 与表面 2 的角系数为:

F_{12}
=\frac{1} {A_1} \int_{A_1}\int_{A_2}\frac{\cos\theta_1 \cos \theta_2 } {\pi R^2}dA_1 dA_2

当系统中有两个以上的表面时,表面之间可能存在直接辐射传热的情况,因此我们将角系数写为 ,其中 是模型中所有 个相互作用的表面的指数。在任意两个表面之间,互易关系: 成立。

注意,如果一个表面是凹的,那么 。此外,辐射到环境的热通量是通过环境角系数: 定义的。对于封闭的空腔,环境角系数为零。

计算辐射传热的三种方法

有三种方法可以计算辐射传热:

  1. 直接面积积分法
  2. 半立方体法
  3. 射线发射法

1. 直接面积积分法

直接面积积分方法的原理是对所有相对的表面对进行双重积分,只要表面之间没有障碍物或阴影,就可以使用它。这种方法已被证明是准确的,其准确度仅由辐射积分阶次控制。

这种方法始终满足互易关系,但如果离散化太低并且网格非常粗,那么对于封闭空腔,环境角系数可能不为零。如果单元很多,直接面积积分会使计算量增大。此外,由于不考虑阴影,它主要用于模拟小型凹腔,因此在实践中很少使用。

2.半立方体法

如下图所示,我们可以从概念上来理解半立方体方法。考虑一个表面单元,围绕该单元绘制五个边界,并将它们均一像素化。然后,将环绕该单元面投影到这些像素化边界上,并计算与每个面相关联的像素数,确定来自环绕面的辐射热通量以及辐照到该单元的热通量有多少,并对每个表面重复此操作。

半立方体方法的图示,该方法将周围的面投影到一组像素化边界上。
半立方体方法通过将环绕单元的面投影到一组像素化边界上来计算辐照度。

环绕面的阴影可以通过 z-buffering 高效地求解,因此计算成本很低。这种方法的单一设置,即 辐射分辨率 控制着像素数。互易关系的精度会随着辐射分辨率的提高而提高,封闭空腔环境的角系数将始终为零。

3. 射线发射法

射线发射方法适用于存在角度相关的发射率镜面反射率或半透明的表面。射线发射法,顾名思义,就是在空间中发出射线。但需要注意的是,这是一种 反向 射线追踪方法。从每个单元的评估点出发,向外投射一组光线,用于确定该方向的辐照度。因此,可以将这些射线想象成与入射辐射方向相反。这些射线代表对环绕半球形空间内总辐照度的有限采样。

两个并排的插图显示了 3D 半球离散化的光线拍摄方法。
根据一个辐射分辨率为4 的三维半球体的离散化来说明射线发射方法。基础棋盘格(左)被细分为 16 个面积相等的图块。箭头指向每个图块在半球上的角落位置(右)。

射线发射法有 6 个可以更改的设置以及单元阶次。其中最重要的是要理解 辐射分辨率,它定义了光线在半球体(三维)或半圆(二维)上的初始分布,如上图所示,辐射分辨率为

该方法首先将周围环境在三维中细分为 个(或者在二维中细分为 个)图块,然后在每个图块的角绘制一条射线。这些图块具有相同的角系数,也就是说通过努塞尔数类比,每个图块在下平面上的投影面积是相等的。对于半圆(二维),如下图所示,将周围环境分为 个图块,每个图块在平面上的具有相同的投影面积。请注意这如何导致光线的角度分布不均匀,如下图所示。

两个并排的插图展示了 2D 案例的光线拍摄方法。
二维情况下的射线发射法。半圆(左)的每个扇区在下平面的线上的投影面积都相等。箭头指向每个图块的角(右)。

当光线向外投射时,本质上是查询来自该方向的热通量,然后将其与来自相邻光线的热通量进行比较。如果按照容差 设置所定义的,热通量存在差异,那么射线发射方法将在两条光线之间引入额外的光线,最多可达到最大自适应数 选项中指定的数量。当光线碰到镜面反射或透射表面时,还会从该表面发射出额外的光线,直到达到最大反射次数。将最大反射次数的默认值设为 1000 是合理的,除非是在镜面反射率大于 0.99 的空腔内进行多次反射。

仅当存在与角度相关的发射率表面时,角相关属性 设置才适用。与 插值函数 选项相比,默认的 分辨率设置不仅最准确,而且计算量最大,您可以在其中指定角度相关函数的采样精度。

首先,为确保结果的可靠性,我们需要研究辐射分辨率最大自适应数,因此了解这些设置之间的相互作用非常重要。让我们看一个二维示例,并考虑从中心单元发出的射线。应该注意的是,这只是一个可视化视图,计算射线本身是不可绘制的。假设存在一个单位发射率不变(相当于零反射率和温度恒定的半圆,这意味着每条射线探测到的辐射负载相同。在这种情况下,即使是最小的辐射分辨率也会得到正确的热通量。更高的分辨率(更多的光线)并不会获得更高的精度,也不会触发任何自适应。

二维光线拍摄法的绘图,用蓝色半圆表示;灰色箭头;还有一个黑色的圆形元素。

接下来,我们在刚好与其中一个射线方向重合的角度引入一个小物体,它也有单位发射率但温度不同。此时,这条射线与相邻射线将探测到不同的负载,并且角空间被细分,如下图所示。增加最大自适应次数将会提高精度,但不需要提高射线分辨率,因为其中一条初始射线已经探测到了小物体。射线的这种自适应性是基于从不同射线感应到的辐照度不同而进行的,因此,如果一个单一表面的辐射通量在空间变化,这种自适应性也会起作用。

当引入一个小物体时,二维光线拍摄方法的绘图。
引入一个可被其中一条射线探测到的小物体,将导致相邻空间中的射线自适应。设置更高的自适应数将会提高精度。

最后,我们来看另一个与初始辐射分辨率方向不重合的另一个角度上的小物体。对于这种情况,最大自适应数是多少无关紧要。第二个小物体永远不会被任何初始光线“探测到”。要探测到第二个物体,必须提高辐射分辨率。

当引入两个小物体时,二维光线拍摄方法的一个图。
按照分辨率的定义,如果一个小物体没有被任何一个初始射线看到,附近的射线就不会进行任何自适应,它将被错过,这时就需要提高辐射分辨率。

使用辐射组

除了所有上述方法外,我们还可以使用 辐射组。通过选择只能相互看到的边界集可以降低计算成本,尤其是在一个包含多个不同空腔的模型中。但是,必须小心使用组功能,因为如果分组不正确,可能会产生错误的结果。

合理分组(左)和不太合适分组(右)的示例。
当一组不同的表面无法相互看见时,使用 功能是合理的。左图中不同的颜色表示合理的分组。右图显示的情况不太适合使用组功能

其他表面对表面设置

对于包含移动或变形物体的模型,有必要更新角系数,由角系数更新阈值 设置控制。虽然每次非线性迭代中的默认更新设置提供了最准确的结果,但计算成本可能较高。可以完全关闭角系数更新,这对于一个正在移动或变形的物体(它对角系数的影响可忽略不计)来说是可行的,也可以定义更新周期或通过用户自定义的表达式进行更新。

定义视图因子、雅可比贡献和离散化选项的“面对面辐射界面设置”窗口的屏幕截图。
表面对表面辐射 接口的 角系数 设置。

角系数 设置还允许用户将计算出的角系数存储到磁盘。对于较大的模型,这可以节省时间,但会大大增加磁盘上模型文件的大小,尤其是使用 Hemicube 方法时。此设置只能在几何体不变的情况下使用。

如果几何形函数高于线性,就可以使用 几何表示 设置。如果增加离散化,这些选项将考虑单元的曲率。

最后,雅可比矩阵 默认设置为 仅对辐射的局部贡献。自 COMSOL Multiphysics® 软件 6.0 版本开始,这个默认设置将降低内存使用率并加快求解速度。但是,如果模型是纯粹的辐射冷却,并且表面之间的温度变化很大时,它可能会求解失败。如果您观察到不收敛,请将这个设置更改为 包含总辐射的贡献

计算和绘制角系数

我们在之前的博客中提到过,如果有几组表面,如何计算它们之间的角系数?有时,绘制从一个表面到模型中所有其他单元的角系数也很有帮助。这可以通过 element(order,expression) 算子对每个单元执行高斯积分的来实现。积分的阶次由第一个参数给出,为了计算角系数,我们使用表达式中的 radopu() and radopd() 算子。例如,绘制表达式:

element(1,comp1.rad.radopu(S1,0))/intS1(1)/dvol

将逐个单元地计算由积分算子 intS1() 定义的一组从表面到模型中其他所有表面的角系数。

变量 S1 应在辐照的表面集上被定义为 1,在所有被辐照的表面上被定义为 0。下图就是一个这样的示例。通过额外除以被辐照单元的大小,即变量 dvol,会得到一个对应于一组表面的辐照强度的图,如下图所示。

两个相互阴影的块上的球体照明的图示。
从一个球体到两个块状物体的辐照图,这两个块状物体有一部分相互遮挡。

结束语

在这篇博客中,我们研究了模拟无参与介质包围的表面对表面辐射传热的三个关键概念。首先,我们研究了由热表面发出热辐射的不同方式。接着,研究了入射到表面的辐射是如何被吸收、反射和传递的。最后,讨论了角系数,以及如何计算和更新它们。学习完这些,我们就可以非常自信地对热辐射问题进行模拟了!

]]>
//www.denkrieger.com/blogs/introduction-to-computing-radiative-heat-exchange/feed/ 4
模拟辐射传热中的入射辐射 //www.denkrieger.com/blogs/modeling-incident-radiation-in-radiative-heat-transfer //www.denkrieger.com/blogs/modeling-incident-radiation-in-radiative-heat-transfer#respond Thu, 03 Feb 2022 03:34:27 +0000 http://cn.staging.comsol.com/blogs?p=291801 在模拟热模型中的辐射热载荷时,我们需要仔细考虑入射的热辐射如何与表面相互作用。如果要模拟一个没有任何折射的系统,我们可以使用 COMSOL® 软件传热模块中的 表面对表面辐射 接口,该接口具有模拟漫反射和镜面反射、吸收和透射的能力。本文,我们将了解更多辐射传热模拟的详细内容。

本文是使用 COMSOL Multiphysics® 软件模拟辐射传热系列博文的第2部分。点击此处阅读第 1 部分第 3 部分

模拟入射到表面的红外辐射

我们模拟的是灰体辐射,所以存在关系式 ,并根据下面两个属性描述表面行为:

  1. 发射率 ,表面辐射与理想辐射体的比率。在关于模拟发射率的博客文章中介绍过
  2. ,漫反射率

表面吸收率等于发射率,,因此镜面反射率为 。吸收率为零意味着所有辐射都被反射了, 意味着所有的辐射都被吸收了。虽然在现实情况下,我们的材料只能无限接近完全吸收的假定,但有时全吸收或全反射(漫反射或镜面反射)的概念在建模时很有用。

下图显示了准直入射辐射通量的几种情况:

  • 被完美吸收
  • 被漫反射,有可能被吸收
  • 被镜面反射,有可能被吸收
  • 被吸收、漫反射和镜面反射

该图显示了表面上入射准直辐射通量的各种吸收率和漫反射率组合的情况。
入射在表面上的准直辐射束的吸收率(发射率)和漫反射率的各种组合。图中省略了由于表面温度非零引起的发射。

需要在表面对表面辐射接口中使用射线发射 方法来模拟镜面反射使用这种方法时,不透明表面 特征允许输入漫反射率和表面发射率,并且表面发射率(吸收率)可以随角度变化。其他方法,直接面积分 方法(仅用于没有任何视线阻碍因素的较小模型)和Hemicube方法,不能模拟镜面反射。因此使用这些方法时,漫反射表面 特征仅允许我们输入发射率并计算漫反射率 。对于本文介绍的示例,我们将仅使用射线发射 方法,因为它可以模拟我们想要研究的所有情况。

为了直观起见,我们以下图所示的真空腔室热模型为例来说明。这个腔室由两个部分组成,较小的部分包含一个发出热辐射的热物体,即红外 (IR) 光。两个腔室之间有一个狭窄的开口,可以通过一小部分辐射,来照射腔室的其他部分。我们将研究这个入射辐射是如何被放置在中心的物体吸收和反射的。由于开口又长又窄,通过的辐射几乎是准直的。

由两个部分和一个小开口组成的真空室示意图。
一个由两个部分组成的真空腔室,中间有一个允许一些几乎准直的热辐射通过的小开口。

将腔室壁的发射率(吸收率)设置为 1,并保持温度固定在 0 K ,这样就能完全吸收从中心物体反射过来的辐射。由于我们只想计算入射辐射与表面的相互作用,不想模拟任何其他传热模式,例如固体内的传导传热,我们可以只使用 表面对表面辐射 接口,并从我们的模型中删除 固体传热 接口。

我们还将目标物体的温度固定在 0 K,这样它就不会发出任何辐射。虽然这是一种理想情况,但这可以让我们只关注从高温腔室发射出来的辐射如何被目标物体吸收和反射。

左侧是模型树的屏幕截图,右侧是不透明表面设置窗口,温度选项设置为 0 K。
混合镜面/漫反射表面的设置。将温度设置为 0 K 意味着表面本身不会辐射。

下图显示了在不同设置组合下从底面反射并被腔壁吸收的辐射。正如我们所见,仿真结果因吸收率和漫反射率而不同。

四幅图描绘了腔室壁上的热辐射。 从左到右:完美吸收、漫反射、镜面反射和混合漫/镜面反射。
腔室壁上的热辐射图。这说明了热辐射是如何从目标物体反射出来的。从左到右:完美吸收、漫反射、镜面反射和混合漫/镜面反射。

模拟曲面的镜面反射

接下来,修改我们的模型并在中心放置一个完美镜面反射的圆形物体,如下图所示。入射辐射将被反射到周围腔室的壁上,但要准确地模拟这种反射,需要增加离散化阶次表面对表面辐射 接口的默认线性离散化会将圆形物体视为多面体,每个单元边界代表一个小平面镜。这样会场仅在几个方向上产生反射。随着单元阶次的增加,反射辐射的分布变得更加平滑。

三幅图描绘了从腔室中心的一个小的圆形物体反射的辐射。
使用线性、二次和三次离散化绘制远离小圆形物体的反射辐射图。

模拟半透明物体

最后,将我们的示例模型修改为一个半透明的薄而扁平的物体,这意味着它会吸收、反射和透射辐射。在折射可以忽略且物体很薄的情况下,我们可以使用 射线发射 方法,通过半透明表面 特征来求解。此特征还引入了表面透射率 属性 ,它描述了入射辐射的镜面透射率:。附加的 临界角 设置提供了一个阈值,低于该阈值不会发生透射,只会发生镜面反射。

左侧是模型树的屏幕截图,右侧是半透明表面设置窗口。
半透明表面 特征将入射辐射分成反射和透射分量。

由下图我们可以观察到,将发射率和漫反射率设置为 0 、透射率设置为 0.5 的镜面反射界面如何导致入射的辐射以 50/50 的比例分离。如果界面本身有任何吸收,将被视为边界热负荷。

描绘半透明表面上的入射辐射被分成反射和透射实体的图。
半透明表面上的入射辐射被分成反射和透射分量。

这里很重要的一点是,需要注意我们不考虑折射,因此不能模拟透镜效应。如果要模拟通过电介质材料的反射和折射射线,我们可以使用COMSOL软件中的射线光学模块的功能。

结束语

今天这篇博文,我们研究了不透明和半透明表面的辐射反射,以及模拟弯曲反射边界的建模注意事项。请记住,在有限温度下,辐射的吸收和反射与表面的辐射发射同时发生,您可以查阅本系列博客中关于辐射传热建模的第 1 部分内容:“模拟辐射传热中的发射率”。

到目前为止,我们还没有讨论如何使用 COMSOL 软件计算表面与表面之间的辐射传热。如果您想进一步理解这种计算,敬请关注本系列的最后一篇博文!

]]>
//www.denkrieger.com/blogs/modeling-incident-radiation-in-radiative-heat-transfer/feed/ 0
辐射传热发射率模拟 //www.denkrieger.com/blogs/modeling-emissivity-in-radiative-heat-transfer //www.denkrieger.com/blogs/modeling-emissivity-in-radiative-heat-transfer#comments Thu, 27 Jan 2022 04:12:23 +0000 http://cn.staging.comsol.com/blogs?p=291211 在模拟辐射传热时,我们需要了解表面发射率的概念,它可能与温度、波长、角度和其他变量有关。在辐射传热系列博客中,我们将研究如何使用 传热模块对这些相关项进行建模,以及为什么它们对传热模拟很重要。

本文是模拟无参与介质包围的表面之间的辐射传热系列博文的第 1 部分。点击阅读第 2 部分第 3 部分

背景

普朗克定律是现代物理学的基本定理之一。它描述了一个已知温度下来自理想黑体的辐射光谱密度。我们可以使用普朗克定律来绘制自由空间中随温度升高的黑体光谱辐射功率。这表明,当温度升高,不仅发射增加,而且发射峰值会出现在较短的波长处。绘制与峰值发射率相关的归一化功率很有帮助。

A graph plotting blackbody emissive power in log scale.
A graph plotting normalized emissive power with respect to peak emission in linear scale.

黑体发射功率的对数比例图(左),以及相对于峰值发射功率归一化线比例图(右),以对数尺度表示波长。

如果在所有波长范围内对普朗克定律进行积分,得到黑体在自由空间中的总发射率 ,其中 斯蒂芬-玻尔兹曼常数。现在,虽然黑体的概念肯定与工程相关,但所有材料都偏离了这一点,所以我们引入发射率的概念 ,即在已知温度下材料的辐射与理想黑体的发射之间的比率。该比率必须始终在 0 和 1 之间,在这里我们仅讨论不透明材料的情况,在这种情况下发射是从材料表面辐射的。

虽然发射率通常被称为材料属性,但它是材料和表面形态的函数:与光滑表面相比,粗糙表面具有不同的发射率。一层薄薄的油漆、涂层或氧化层可以显著改变发射率,但对其他热行为的影响可以忽略不计。虽然经不同表面处理的常见工程材料有一些参考表格(例如,由 Incropera 和 DeWitt 编著的 Fundamentals of Heat and Mass Transfer),但是在开始任何计算建模之前,收集覆盖完整工作条件范围的高质量数据是一个重要的步骤。在收集这些数据之前,细心的分析人员还应该知道哪些建模变量会影响发射率,以及这将如何改变建模程序。

最简单的建模方法是将发射率看作常数。这对于最大温度变化小于几十开尔文的工程应用来说通常已经足够了。然而,随着材料温度的明显变化,其材料特性也会发生变化,因此需要考虑发射率随温度的变化: 。对于某些材料,发射率也会随波长 显著变化。尽管发射率会随波长连续变化,但是对于建模,将光谱划分为有限数量的离散波长带就足够了。这些波段的选择取决于被建模材料的发射率以及热环境。例如,如果考虑太阳能环境载荷,典型的做法是将波长分为两个波段,即太阳光波段和环境波段,但也可以考虑任意数量的波段。

Top image: A graph displaying emissivity as a function of wavelength. Bottom image: A graph showing that this material could be modeled using three bands.
发射率与波长的函数示例(上图)。这种材料可以使用三个波段进行建模(下图)。

注意最左边或最右边的光谱带上的平均方法也很重要。与其对这些波段采用简单的平均发射率,不如根据预期温度范围引入加权更为合理;例如,忽略不考虑辐射波长上的发射率。在实践中,可能涉及许多不同的材料,因此在选择波段时,需要进行大量的工程判断和近似作为预分析步骤。

Top image: A figure depicting a two-band model where emissivity is average within each band. Bottom image: A figure depicting a two-band model where the material emissivity at very short wavelengths within the left band is not considered.
与波长相关的发射率被简化为双波段模型。在上图中,发射率只是在每个波段内取平均值。在下图中,未考虑左侧波段内极短波长的材料发射率。

发射率也可能随角度的函数而变化。尽管理想的黑体将在所有方向上等效的发射,但真实表面将与方向有关,通常仅与法线的角度有关,但在三维空间中建模时也可能与方位角有关。

A figure depicting how emissivity can vary as a function of angle.
发射率可以是各向同性的,也可以与角度有关。

因此,发射率可能是温度、波长、极角和方位角的函数:。此外,作为 COMSOL Multiphysics® 软件接口的灵活性,您还可以将发射率设为与空间位置或任何其他模型变量相关的函数关系。同样重要的是,对于任何真实材料,发射率在所有波长和角度上的积分总是小于1。

接下来,让我们看看如何在 COMSOL 软件中对一些典型案例进行建模。

示例:零件冷却

以下图所示的简单零件为例来说明。一个热的材料样品位于一个圆形腔室的中心,该腔室壁保持在 0K 的固定温度。腔室内为真空,因此零件仅通过辐射散热冷却。我们想计算零件冷却的速度并观察入射到腔室壁上的辐射通量。假设腔室的壁是理想的黑体,因此它们可以被建模为具有单位发射率,并且由于它们处于 0K,这暗示了它们完美地吸收了来自零件的热辐射。

该图描绘了真空室内的高温部件,该部件仅因辐射传热而冷却。
真空室内的热零件仅通过辐射散热冷却。

首先,我们考虑最简单的恒定发射率的情况。为此,我们采用与快速热退火案例模型的类似方法,使用 表面对表面辐射传热接口 建立了一个传热模型。此接口的默认设置假定单个波带并使用 Hemicube 方法计算角系数。

我们利用对称性仅对整个结构的 ¼ 进行建模,并为 固体传热 接口指定适当的热初始条件和边界条件,该接口仅在热零件的域内求解。表面对表面辐射 接口在零件的暴露(非对称)边界以及腔室壁上处于激活状态。使用漫反射表面 特征将腔室的壁建模为具有恒定的发射率 1,代表完美的吸收器。在漫反射表面 特征中,我们还通过模型输入 设置将壁温固定在 0K,如下面的截图所示。也就是说,我们固定了室壁的温度,这个特征提供了一种计算辐射热通量的方法。

A screenshot of a Settings window showing the Diffuse Surface feature defining the walls of the chamber.
漫反射表面特征定义了腔室的壁。

现在可以关注对热零件本身的发射进行建模。首先,使用漫反射表面 特征为样品指定恒定的发射率,如下面的截图所示。对于此边界条件,模型输入 设置通过多物理场>表面到表面辐射传热 特征定义了边界温度。也就是说,通过 固体传热 接口计算的温度定义了表面温度,通过表面对表面辐射接口计算的热通量 对固体传热 接口中的边界通量有贡献。

设置窗口的屏幕截图显示了定义零件恒定发射率的漫反射表面特征。
漫反射表面 特征定义了零件的恒定发射率。模型输入部分反映了温度是通过 固体传热接口定义的。

接下来,为了将发射率修改为温度的函数,最简单的方法是输入与温度变量有关的表达式,如下面的屏幕截图所示。也可以定义取决于温度的材料属性

设置窗口的屏幕截图,显示了具有与温度相关的发射率的漫反射表面特征。
具有与温度相关的发射率的 漫反射表面特征

为了使发射率成为多个波段的函数,我们修改了 辐射 设置并指定波长来划分波段。在本例中,我们将只使用两个波段,如下面的屏幕截图所示,以 5 um 波长划分,并在每个波段上指定不同的恒定发射率。

设置窗口的屏幕截图,显示了地对地辐射界面中的多光谱带设置。
多光谱波段设置。

设置窗口的屏幕截图,显示了地对地辐射界面中的多光谱带设置。
在每个波段内指定发射率。

最后,为了考虑随角度变化的发射率,计算表面对表面辐射的方法必须从 Hemicube 方法更改为 射线发射 方法。在下面的屏幕截图中,辐射模型被转换为单波段模型。

设置窗口的屏幕截图,显示表面对表面辐射界面中的射线射击方法设置。
默认的 射线发射方法设置。

使用射线发射 方法时,也可以使用不透明表面 特征。此特征提供了在整个表面上定义单个定向发射率函数的能力,该函数仅是角度的函数。然而,表面的总发射率通过表面发射率表达式定义,可以是温度 位置 或任何其他变量的函数。总发射率是方向发射率函数和表面发射率表达式 之和:如果使用多个光谱带,则可以使用不同的表达式和函数。

显示定义角度相关发射率的不透明表面特征的设置窗口。
不透明表面特征的设置。使用 全局定义函数定义方向发射率

所有这些不同的方法都会导致零件随时间变化的冷却曲线略有不同,如下图所示。就腔室壁的辐射通量而言,将恒定发射率与角度相关发射率进行比较也很有趣。

显示固定温度室中高温部件的温度随时间衰减的图表。
使用不同的表面发射率模型计算的恒定温度室中热零件的温度随时间变化曲线。

描绘具有恒定发射率的热部件(左)与具有定向发射率的热部件(右)的模型
具有恒定发射率(左)与定向发射率(右)的热零件。绘制了腔壁上的通量,突出显示了发射辐射的方向性。

重要的是,在这个例子中,腔室壁在 0K 时是完美吸收体,没有热辐射返回到零件。为了完善我们对辐射传热的理解,了解热辐射撞击在非完美吸收体表面上会发生什么也很重要。这就是我们接下来要讨论的主题——敬请期待!

]]>
//www.denkrieger.com/blogs/modeling-emissivity-in-radiative-heat-transfer/feed/ 2