波动光学模块 – COMSOL 博客 - //www.denkrieger.com/blogs 发布博客 Thu, 13 Jun 2024 08:56:02 +0000 en-US hourly 1 https://wordpress.org/?v=5.7 理解高阶衍射 //www.denkrieger.com/blogs/understanding-higher-order-diffraction //www.denkrieger.com/blogs/understanding-higher-order-diffraction#respond Tue, 09 Jan 2024 06:03:58 +0000 http://cn.staging.comsol.com/blogs?p=356361 例如光等电磁辐射平面波入射到平面周期性结构上时,可能会发生高阶衍射。根据斯涅耳定律,光不仅会发生反射和折射,而且还会散射到多个不同的方向,称为衍射级。通过几何方法我们可以知道什么时候会出现衍射级,以及光会向哪些方向散射。接下来,让我们了解更多详细内容。

理解平面周期性结构的衍射

本文,我们将以入射到具有无限周期的平面结构上的平面光波为例来说明。该平面上方和下方的介质可以具有不同的折射率,并假定为无损耗和无限域。在这些介质的交界面,可以存在材料性质和形状等复杂的周期性结构。入射到周期性结构上的光线至少会发生镜面反射;也会发生折射(也称为镜面透射),通常还会有一些损耗,因为电磁能会转化为热能。我们可以通过斯涅尔定律计算出反射角和折射角,但入射光在周期性结构中的反射、透射或损耗的部分需要通过数值分析计算。

 突出显示一个基本单元的周期型结构的特写。
以一定角度入射到平面周期性结构上的平面波。突出显示了周期性结构的一个基本单元。

如前所述,也存在高阶衍射的可能性。当周期性结构散射的光被相长干涉到不同的方向时,就会出现这种情况。下面展示了这种结果的一个示例。

周期性基本单元的特写,包含从表面散射出去的黄色、红色和蓝色箭头。
入射到周期性基本单元的线性偏振平面波(黄色)示意图。在反射(红色)和透射(蓝色)中,入射光被散射成几个不同强度和偏振的衍射级。

要确定进入这些其他相似方向的光的比例,同样需要建立一个数值模型,但要了解光会散射到哪些方向,可以通过一种纯几何方法来实现,这种方法被称为埃瓦尔德球结构。在开始数值分析之前,熟悉这种方法是很有帮助的,这也是我们将在这篇文章中介绍的内容。埃瓦尔德球几何结构既可用于单向周期性平面结构,也可用于平面内的双向周期性结构。

单向周期性结构

例如光栅等某些平面周期性结构仅在一个方向上具有周期性变化,即该结构沿三维方向没有变化。当入射光在三维空间的法线平面上传播时,可以被简化模拟为沿一个方向具有周期性的二维平面。

指向一个黄色圆圈的有许多小箭头沿其旋转的大箭头。上部为红色,白色和蓝色梯度组成,底部为蓝色的背景
以一定角度入射到单向周期性结构上的平面波,在结构或场中沿面外方向没有变化。突出显示了一个基本单元。

对于这些结构,我们只需考虑基本单元间距 ,并首先在 倒易空间中绘制一组晶格点,因此下图中的尺寸单位为逆长度。这些晶格点的连线对应于周期性结构的界面平面。晶格点之间的间距为 ,晶格点的索引从第四个晶格点 开始,可将其视看作位于基本单元的中间。然后,在晶格点连线的上方和下方绘制两个半圆。反射侧的半径为 ,透射侧的半径为 ,两侧的折射率分别为 为自由空间波长。对于与法线夹角为 的入射光,这些圆的公共中心与晶格的第零个点偏移了 。位于这些半圆内的晶格点对应于可能的衍射级。

一种几何结构的示意图,用于确定一个方向上具有周期性的平面结构的衍射顺序,该平面结构被以一定角度入射的平面波照射。
用于确定单向周期性平面结构的衍射级的几何结构,该结构受到以一定角度入射的平面波的照射。请注意半圆(白点)的中心是如何偏离第零晶格点的。

这种结构还可用于确定衍射的方向,并为每个方向分配一个索引。从半圆中心投影到晶格点的矢量对应于每个衍射级的 矢量。这些晶格点的索引在两侧的符号相反。指向第零个晶格点的箭头始终存在,代表镜面反射和透射。其他衍射级的存在取决于波长、折射率、间距和入射角度。COMSOL案例库中包含了两个建立此类模型的案例:使用 RF 模块的表面等离激元线光栅(RF)和使用波动光学模块的表面等离激元线光栅分析仪(波动光学)

在一个方向上具有周期性平面结构各种衍射阶的波矢量示意图。
单向周期性平面结构各种衍射级的波矢量。请注意反射衍射级与透射衍射级之间索引符号的转换。

双向周期性结构

现在,我们来看看在两个方向上具有周期性的平面结构的衍射情况。下图显示了构建平面的矩形、菱形和六边形基本单元。这些单元由两个单元矢量定义:,它们从一个点开始,沿着相邻的边到达下一个顶点。虽然我们可以自由使用任何坐标和方向,但在本文中,我们将始终选择 向量与全局笛卡尔 x 轴对齐,并始终从光照方向俯视基本单元。此外,还有两个基向量 ,描述了基本单元在平面上的移动方式,用于构建平面。也就是说,要构建整个平面,需要在 的 基础上复制基本单元,而 的值可以是任意整数。这两个矢量的叉积大小可用于计算基本单元的面积:

矩形、菱形和六边形基本单元构成了二维平面。单元矢量与单元的两条边相对应,而基矢量则描述了如何移动单元来构建平面。

这些基矢量用于定义两个倒易空间衍射矢量:,其中 是周期性平面的法向量,即 +z 轴。这些衍射矢量与基矢量垂直,并通过取整数和在周期性平面上创建衍射晶格:,晶格中的每个点对应于 方向上 的索引对。在基本单元的传输侧,点的位置相同,但索引对调,且符号相反。

在倒易空间绘制的衍射矢量和晶格点。

现在,我们可以在三维空间的周期性平面上将这些衍射点可视化,并在平面上方和下方添加一个半径等于材料中波矢量的半球。通过半球,我们可以得知在反射和透射中存在哪些衍射级。刚开始,我们以点 为半球中心,代表法向入射光线。

法向入射到六边形基本单元上的平面波光。
平面波光(黄色箭头)通常入射到一个周期性六边形单元上。衍射点绘制在周期性平面上,位于反射半球和透射半球内的突出点表示将出现的衍射级。

接下来,我们来看看入射仰角和入射方位角变化时的情况。考虑到我们习惯上选择保持 向量与球坐标的 +x 轴对齐,增大入射仰角意味着入射波矢量首先绕 –y 轴旋转;然后,入射方位角增大,入射波矢量随之绕 +z 轴旋转。因此,入射仰角从 开始,入射方位角从 开始,如下图所示。入射波矢量和周期性平面的法线定义了入射平面。当光从法线入射:,入射平面被定义为 xz 平面。

入射仰角和入射方位角表示入射波矢量(黄色)的一系列连续旋转,先是绕 –y 轴旋转,然后绕 +z 轴旋转。图中也显式了入射平面。

入射角的变化改变了半球中心的位置。从半球中心到 点的倒易空间距离为 ,该位置在平面内的移动量为 ,如下图所示。因此,仰角和方位角的变化往往会导致出现不同的衍射级。

以非零仰角和入射角入射的平面波光的示意图。
以非零仰角和方位角入射的平面波光会移动半球的中心,从而产生不同的衍射级。

通过这些半球,我们还引导每个衍射级的波矢量。将衍射级点投影到半球上,会得到另一组点,而每个衍射级的波矢量等于从半球中心到这些投影点的矢量。

Click or scroll to explore the model
Left-click to rotate, right-click to pan, and scroll to zoom.

将衍射点投影到半球上,就得到了每个衍射级的波矢量。这种几何结构说明了入射光(黄色)在反射(红色)和透射(蓝色)时将衍射到哪个方向。您可以使用鼠标与此三维模型进行交互:左键单击旋转,右键单击平移,滚轮滚动缩放。

最后,通过这些矢量,我们还可以知道偏振状态。对于每个衍射级,偏振状态都会根据琼斯矢量的面内和面外分量表示。每个衍射级的平面都是波矢量和周期性平面的法矢量所描述的平面。对于所有衍射级,琼斯矢量的面外分量对应于电场平行于周期平面的波。

Click or scroll to explore the model
Left-click to rotate, right-click to pan, and scroll to zoom.

衍射级方向描述了一组平面,用于定义每个衍射级的偏振状态。突出显示了入射面和一个衍射级。您可以使用鼠标与该三维模型进行交互:左键单击旋转,右键单击平移,滚轮滚动缩放。

结论

综上所述,我们可以得出以下结论:使用埃瓦尔德球的几何构造可以理解平面性周期结构衍射,并且能够获知在反射和透射中会出现哪些较高的衍射级。我们还可以获知波矢量以及用于定义琼斯矢量方向的平面集。在求解数值模型时,会自动得到这些信息,因此这种几何构造并不是必须的,但它有助于我们建立理解和直觉。

进阶学习

如果您想开始学习高阶衍射建模,下面的示例模型是很好的起点,这些模型可以用 RF 模块或波动光模块建立。

]]>
//www.denkrieger.com/blogs/understanding-higher-order-diffraction/feed/ 0
使用 COMSOL Multiphysics® 开发用于设计超透镜的仿真 App //www.denkrieger.com/blogs/building-a-metalens-design-app-with-comsol-multiphysics //www.denkrieger.com/blogs/building-a-metalens-design-app-with-comsol-multiphysics#comments Thu, 21 Sep 2023 08:39:19 +0000 http://cn.staging.comsol.com/blogs?p=348601 这篇博客,我们将为您介绍如何构建一个简单的教学仿真 App,用于设计金属基底上由不同直径的玻璃纳米柱阵列组成的二维反射超透镜。这个使用 COMSOL Multiphysics® 软件中的 App 开发器构建的仿真应用程序,首先将根据给定波长找到最佳超表面参数,然后计算纳米柱直径与相对相移之间的关系。最后,在此基础上,自动构建超透镜的几何结构,并对最终确定的几何结构进行频域研究,计算焦点周围的电场。

什么是超透镜?

近年来,超材料已经成为涉及波动方程求解的光子学和声学等领域的热门研究课题,这是一种具有人工结构(有时被称为“超原子”)的复合材料,通常小于波长。因此,超材料与电磁场的相互作用就像均质材料一样,具有不同于组成材料的材料特性,例如,微波炉门上的光栅——一块充满空气小孔的金属板,就是一个相当常见的例子,这种超材料具有实心金属板和空气都不具有的特性:对短波长可见光基本上透明,而对长波长的微波则完全屏蔽。

除了具有已知“真实”材料所不具备的潜在定性特性外,超材料的主要优势还在于可以通过改变结构的几何参数,对其特性进行定量调制——通常有很大的可调范围。许多为半导体制造而开发的技术,如光刻技术,也适用于制造超材料。由这种超材料制成的光学元件在显微设备和虚拟现实技术等应用中备受青睐。

微波炉门内部的特写图,显示了它的光栅。
微波炉门上光栅的特写图。

本文我们将重点介绍反射超透镜:这是一种由金属基板上的玻璃纳米柱组成的平面阵列,其工作原理类似凹面镜。虽然听起来“元镜”这个名字更合适它,但重要的是要明白这种设备的工作原理不仅仅是传统的反射,还有一种会发生与坐标相关的相移的反常反射。与透镜和反射镜等传统光学器件相比,超透镜具有以下优点:

  • 超透镜的厚度仅为几分之一微米,实现了光学器件的微型化
  • 超表面可以被设计成不仅能聚焦光,也能将多个传统光学器件整合到一个超薄的元器件中
  • 超材料在特定波长范围内具有更好的性能,例如紫外线(UV)

具体来说,我们将考虑一个放置在平坦的金属衬底上,由二氧化硅纳米柱组成的二维超透镜,如下图所示,纳米柱的高度 和周期 均匀,但直径 变化。为简单起见,我们只考虑法线入射(沿负 y 方向传输)的平面波,在面外方向偏振。

由二氧化硅纳米柱组成的二维超透镜示意图。

从数学角度讲,凹面镜是一种能在平面波入射时局部改变波相位,使其成为汇聚于一点(即焦点)的球面波的装置。直观上,我们可以想象,随着纳米柱厚度的增加,由于柱的折射率比周围空气的折射率高,反射波的相位会发生较大的偏移,但如果我们想建造一个正常工作的超透镜,就需要获得直径与相对相位偏移 之间的精确定量关系,这将在下一节中介绍。本文采用的方法基于参考文献 1。

基本单元模拟

获得 的一个有效方法是计算均匀周期晶格引起的相移,所有纳米柱的直径都是,在直径范围内扫描。(您可以在此了解有关周期结构建模的更多信息。)这样我们就可以使用周期性边界条件,从而只需要模拟晶格的基本单元。使用周期性端口边界条件激励入射波意味着我们可以通过复值 S 参数方便地获取波的相移。

要建立一个正常工作的超透镜,我们需要能够将波的局部相位在 弧度之间任意移动。因此,我们首先需要找到 H 的值,以及最小直径 和最大直径 的值,使得 ,同时尽可能保持较高的反射率。这是一个频域优化问题。优化步骤只需要扫描端点的结果,因此我们可以省去中间步骤,使计算速度更快。我们知道,柱越窄,相位偏移的范围就越大, 就尽可能小的受到制造工艺的限制,因此我们不把作为控制参数。相反, 是一个固定参数,对于大多数波长,其值为 。(对于在 左右及以下的波长,应使用 来代替,以获得良好的结果)我们只对相对相位感兴趣,因此目标函数应该如下所示:

\left| \mathrm{arg} \left[ \frac{S_{11}
( D_\mathrm{max} )}
{S_{11}( D_\mathrm{min} )} \right]-2\pi\right|。

 

不过,这个表达式还不能在用户接口中使用,因为软件使用符号约定 来表示沿正 y 方向传播的平面波,并定义了从复值 的相位。当使用 COMSOL® 的符号约定,并加入所需的运算符来引用 的解后,我们最终得到了下图所示的表达式。我们还在 目标函数 中添加了一个涉及从这两个解中获得的反射率的项,有助于避免共振模式并确保高效。如果您想了解有关优化的更多信息,请查看有关电磁学中形状优化的博客或COMSOL Multiphysics® 学习中心的课程:在 COMSOL Multiphysics® 中执行优化


COMSOL Multiphysics UI显示了选择了优化研究的模型生成器和相应的“设置”窗口。

用于优化研究的设置(研究 1)。优化步骤使用端点处的扫描结果,因此我们需要将 参数扫描步骤放在 优化步骤之后(如模型开发器树所示),并使用 withsol() setind() 算子实现所需的目标函数。我们还在目标函数 设置中添加了表示反射率的第二个表达式。

剩下要做的就是用优化后的参数值进行全扫描,以获得 之间中间值的相移。结果如下图所示:在整个直径范围内,具有较高反射率的相移均匀、单调递增。接下来,就可以根据这些结果制作超透镜了。

x 轴为纳米柱直径(nm),y轴为反射率和吸收率(1)的一维绘图。
波长为 的基本单元扫描结果图,显示相移从 单调增加,同时在整个纳米柱直径范围内保持高反射率。

超透镜仿真

在绘制超透镜几何图形之前,我们需要将相移函数 转化为纳米柱直径分布函数 ,其中 是与光轴的距离。我们知道,理想的聚焦镜会对正常入射的平面波产生以下相移:

\Delta \phi = – \frac{2\pi}{\lambda_0}\sqrt{f^2+x^2}+\frac{2pi}{\lambda_0}\sqrt{f^2+R^2}。

 

其中, 分别为超透镜的焦距和半径。为方便起见,我们选择将 定义为。 剩下的就是少量的数值处理了:假设相移是单调的,我们可以反转 得到 ,加上周期性,得到 ,并与 形成复合函数,得到 。下图是一个示例。

 x (m) 在 x 轴,直径 (nm) 在y轴的一维绘图。
纳米柱直径分布 与焦距为 、半径为 和工作波长为 的超透镜光轴距离的函数关系。

下一个挑战是将这个函数转换为实际几何体。如果我们在全局定义 节点中定义了上述函数,就可以将纳米柱定义为一个几何部件,并将支柱位置 作为输入,同时将宽度设置为 。然后,我们只需将该部件的 (此处, 为超透镜半径, 为超表面周期)添加到几何序列中即可。更妙的是,我们可以使用App开发器编写一个方法来完成这项工作,这将在下一节讨论。

关于仿真App的使用

首先,我们来看看如何自动生成超透镜几何图形。实际上,在 App 开发器中,我们可以使用 model.component().geom().create(, "PartInstance")方法创建一个几何零件实例,然后使用 model.component(<comp>).geom(<geom>).feature(<name>).setEntry
("inputexpr", <expr-name>, <val>)
方法设置输入参数。将这些命令放在 for 循环中就可以得到整个超表面。 需要注意的是,这种方法适用于小型超透镜
() 和教学目的。对于大型超透镜,必须使用分层子模型法,即使用 COMSOL® 模型来计算不同几何参数下的基本单元响应,并使用 Java®方法或 LiveLink™ for MATLAB® 将结果用作大型程序的一部分。现在我们已经掌握了编写方法,可以创建一个按钮,使用 model.result().numerical("gev1").getReal() 获取初始优化的输出,并使用 model.param().set() 将模型参数设置为这些值。此外,我们还使用了 setRibbonItemEnabled() 在前一步完成后启用下一步的按钮。

App开发器不仅可以实现设计过程中繁琐步骤的自动化,还可以实现更多功能。例如,将模型打包成一个仿真 App 意味着我们可以创建一个自定义用户界面(UI),这非常有益,因为用户可以一目了然地监控整个设计过程。下图显示了App 的用户界面。下一步,您当然可以使用 COMSOL Compiler™ 创建一个独立的应用程序。

超透镜仿真App的用户界面,显示了焦点周围的电场模。
超透镜仿真 App 的用户界面设计使设计过程的各个方面都一目了然。

 

超透镜仿真 App 运行时的屏幕录像。

结束语

在这篇博客中,我们总结了如何构建一个用于设计具有指定尺寸、焦距和工作波长的二维反射超透镜的仿真 App。我们看到,使用 COMSOL Multiphysics® 中的 App 开发器通过用户界面简化相对复杂的设计过程,用户能够方便地监控从开始到结束的设计过程。

不过,在这篇文章中我们仅仅触及了超透镜设计的表面。进一步的扩展研究还包括考虑三维透镜,透镜性能分析(如参考文献1中分析的聚焦尺寸和色散特性),以及用多物理场模拟热配置超透镜(如参考文献2)。我们在今后的博客中将探讨其中一些更高级的主题。

下一步工作

点击下面的按钮,进入案例下载页面,亲自动手尝试运行超透镜仿真 App:

参考文献

  1. H. Guo et al., “Design of Polarization-Independent Reflective Metalens in the Ultraviolet–Visible Wavelength Region,” Nanomaterials, vol. 11, no. 5, 2021; https://doi.org/10.3390/nano11051243.
  2. A. Archetti et al., “Thermally reconfigurable metalens,” Nanophotonics, vol. 11, no. 17, pp. 3969–3980, 2022; https://doi.org/10.1515/nanoph-2022-0147.

Oracle 和 Java 是 Oracle 和/或其附属公司的注册商标。MATLAB 是 The MathWorks 公司的注册商标。

]]>
//www.denkrieger.com/blogs/building-a-metalens-design-app-with-comsol-multiphysics/feed/ 5
电磁学中的形状优化:第 1 部分 //www.denkrieger.com/blogs/shape-optimization-in-electromagnetics-part-1 //www.denkrieger.com/blogs/shape-optimization-in-electromagnetics-part-1#comments Tue, 22 Nov 2022 05:32:36 +0000 http://cn.staging.comsol.com/blogs?p=319811 形状优化可以被用来改善许多不同物理领域的设计。在这篇博客中,我们将重点讨论波动光学中的形状优化。我们将复习 COMSOL Multiphysics® 软件中的形状优化功能,并说明当这些功能被用在波动光学类应用时,可以用它实现什么。

电磁学中的形状优化系列博客内容分为两部分,这是第一篇文章。第二篇文章将重点讨论射频(RF)应用中的形状优化。

参数优化与形状优化

形状优化与基于梯度的优化是兼容的,因为几何形状的变化是通过变形网格实现的。这可能是以较低的单元质量为代价的,从而限制几何形状的变化程度,特别是在三维中。参数优化与基于梯度的优化不兼容,因为几何形状的变化是通过重新划分网格实现的,请看下面的动画演示。

 

参数优化涉及重新划分网格,而形状优化则是对网格进行变形处理。

原则上,参数优化是一种比形状优化更通用的技术,但在实践中,由于它与基于梯度的优化不兼容,导致这个方法很慢。这限制了优化变量的数量,从而限制了设计的自由度。我们可以用参数优化来解决本系列博客中的例子。COMSOL® 确实支持这一点,但是,即使这些例子相对简单,这一方法的计算成本却高得惊人。因此,在很多问题上,形状优化比参数优化更适合。

COMSOL Multiphysics 包括一组内置功能,可以简化形状优化问题的设置。多项式壳 自由形状壳 功能是专门为壳设计的,通常是用在结构力学建模中。然而,大多数问题是在域(而不是壳)上定义的,多项式边界 自由形状边界 功能可以用来优化与这些域相邻的边界。就像它的名称所显示的,我们可以选择以多项式或基于自由偏微分方程(PDE)的方法进行正则化处理。变换 功能将形状变化限制在平移、缩放和/或旋转上。这个功能可以在域和边界上使用。该功能将倾向于改变边界的曲率和点的角度,但通过使用一阶多项式或变换 功能可以保持直线。最后,对称/辊支承 功能可以将边限制在平面上,或者将点限制在二维直线上,请看下面的图片示例。

一幅展示了在一个正方形图形上进行的四种不同类型的形状优化的插图,初始设计直接显示在优化设计的上方。
对于改变一个正方形的上边界,使它接近我们的目标边界(橙色)的问题,图中显示了四种不同类型的形状优化。为了优化第一个图的初始设计,将变换 功能与对称性/辊支承功能相结合使用,可以使上边界在 y 方向上移动。第二个图显示的是同时启用了旋转功能的变换,这需要使用一阶多项式,而不是对称性/辊支承功能。最后两个例子分别展示了多项式和自由形状的方法,两者之间没有什么区别。但是请注意,在这些例子中没有与左边边界相关的特征,因此左上角的点是固定的。

与其他功能相比,变换功能与较少的设计自由度有关,但这在将优化设计转换为 CAD 几何图形方面是一个优势。我们的系列博客将重点讨论 2D 中的形状优化,但所有的功能都可以在 3D 中使用。在下面的章节中,我们将举两个波动光学的例子。

示例 1:过滤

第一个例子考虑设计一个有弯曲的光子晶体。这个晶体由砷化镓制成的支柱组成,并使用了变形功能使柱子的位置可以改变。我们的目标是使波长为 1 µm 的光实现高功率传输,而波长为 1.3 µm 的光实现低功率传输。因此,目标函数的表达式将被最大化处理:

\phi_\mathrm
{filter}= \left. P_\mathrm
{out, 1 µm}
\right/ P_\mathrm
{out, 1.3 µm}

 
优化后的几何形状如下图所示,但由于问题的非直观性,我们很难理解它的工作原理。不过,我们可以再看一下输出边界的功率。可以清楚地看到,优化强调的是较大波长处的功率最小化,所以用最小化目标来表达目标函数可能更好。这将在下一个例子中得到证明。

带有弯曲的光子晶体的初始和优化几何形状的图像。初始设计以灰色显示,优化设计以黑色显示。
显示初始设计(蓝线)和优化设计(绿线)的输出功率,作为波长的函数绘制的线图。

左图:初始设计的几何图形用灰色绘制,优化后的设计用黑色绘制。右图:输出功率与波长的函数关系,优化中考虑了两个波长(以点表示)。

示例 2:分离器

第二个例子也考虑了光子晶体,但这次是用于多路分解。我们想设计一个装置,将两个不同的波长()路由到两个不同的输出端口,同时隔直其他波长。你可以把隔直和路由 的目标表达写作:

\phi_R &=& \[\begin{cases}-P^1_\mathrm{out}/P_\mathrm{min},& \text{if } \lambda<\frac{_1}{^2}(\lambda_1+\lambda_2)\\-P^2_\mathrm{out}/P_\mathrm{min},& \text{otherwise}\end{cases}\]
\phi_B &=& (P^1_\mathrm{out}+P^2_\mathrm{out})/P_\mathrm{max}-2

 
其中, 分别是路由和隔直的最小和最大功率。请注意,路由目标的定义取决于它是为  还是为  计算,因此,信号被激励向所期望的输出端口。如果相关的波长达到了所需的功率,则两个目标都等于-1,而如果没有达到所需的功率,则会得到更高的值,所以目标应该是最小化的。这些目标在最小化公式中被结合起来,也就是说,目标被当作几个目标的最大值。一些目标的不同只是因为它们是在不同的波长下计算的,而其他的不同是因为设备的理想行为取决于波长,因此目标的定义也取决于波长。最后的目标表示为:

\phi = \[\max_\lambda \left( \begin{cases} \phi_R & \text{if}\quad 2|\lambda-\lambda_1|<\Delta\lambda\quad\text{or}\quad 2|\lambda-\lambda_2|<\Delta\lambda \\\phi_B & \text{otherwise} %\end{cases}\] \right)

 
如果波长在 ,将使用路由目标;如果不在 ,将使用隔直目标。

与第一个例子类似,我们将使用变换 功能来优化光子晶体中支柱的位置。下面的动画说明了优化设计以及 的情况。电场也是在 的情况下显示的,每次优化迭代共计算了 14 个波长。

 

电场的 Z 分量被绘制为两个波长,并显示了端口的输出功率。

在这个例子中,我们选择了 ,于是产生了下图所示的频谱,但也可以通过改变参数来优先考虑隔直或路由。

显示蓝线;绿线;蓝色,开放方块;绿色,开放方块的图。这些分别代表了电源端口1(重修)、电源端口2(重修)、电源端口1(优化)和电源端口2(优化)的输出端口功率。
在优化(点)中,使用的波长的输出端口功率被绘制出来,并与在变形配置中重新划分网格后的端口功率图相比较。

端口功率在重新划分网格前后存在小的偏差,但只针对少数波长,而且优化结果似乎没有利用数值效应。此外,我们还可以看到,尽管目标只要求在主端口有较高的输出功率,但我们只在副端口得到一个小的输出功率。最后,值得注意的是,在所有的优化迭代中都考虑了每个支柱的位置对每个波长的敏感性。因此,每次迭代都会向优化求解器提供大量高度相关的信息。因此,只需经过 50 次迭代,就有可能找到 234 个控制变量的值。

在选择用于优化的波长时,有一个试验和错误的因素,最后一个例子使用了 31 个波长,这在计算上代价是很高的。计算时间可以通过使用集群来降低,我们将在本系列博客的第二部分中证明这一点,届时我们将研究射频频谱的优化问题。下一篇文章中所有显示的例子都将使用最小化公式与变换多项式边界 功能相结合。

下一步

欢迎下载本博客中介绍的模型,更深入地了解它的设置和结果。

  1. 用于信号滤波的光子晶体的优化
  2. 用于多路分解的光子晶体的优化
]]>
//www.denkrieger.com/blogs/shape-optimization-in-electromagnetics-part-1/feed/ 1
在 COMSOL® 中对表面等离激元进行建模 //www.denkrieger.com/blogs/modeling-surface-plasmon-polaritons-in-comsol //www.denkrieger.com/blogs/modeling-surface-plasmon-polaritons-in-comsol#comments Wed, 12 Oct 2022 06:42:53 +0000 http://cn.staging.comsol.com/blogs?p=317591 人们对被限制在沿表面传播的电磁波,例如表面等离激元(SPPs),有很大的研究兴趣,因为它在纳米级光控制中有着潜在应用。在这篇博客中,我们将讨论如何设置一个仿真来可视化表面等离激元的传播以及频率-传播常数色散关系。

表面等离激元简介

电磁学的控制方程,也就是麦克斯韦方程组,可能看起来很简单,但它们的含义却极为广泛和深刻。因此,传播的电磁波可以以各种众所周知的形式存在,如平面波、球面波、高斯波束,以及一些鲜为人知的形式,包括贝塞尔波束、艾里波束和涡旋波束。还有一些被限制在空间内传播的电磁波,例如在金属或介电波导中传播的波导模式。

此外,还有一种特殊类型的被限制在平面上的电磁波。这种类型的波沿切向表面传播,并在垂直方向上呈指数衰减。与相同频率的自由空间波长相比,它的波长通常更小。因此,这种类型的波为光子的纳米级控制和操作提供了一个潜在的技术平台,从光通信和信息处理到太阳能收集和数字显示,这在许多应用中都是需要的。这种类型的波是在金属-介电界面上发现的,现在被称为表面等离激元(SSP)。等离激元是指金属中电荷的集体振荡。自发现以来,人们已经了解到许多材料系统都支持这种类型的表面波,例如接近其声子共振频率的极性介电材料和接近其激子频率的半导体材料。相应的表面波分别称为表面声子偏振子和表面激子偏振子。

无论支持的介质和微观细节如何,不同类型的表面波背后的宏观物理学是相似的。在下面的章节中,我们将重点讨论介电和金属界面之间的等离激元建模。然而,需要注意的是,本文所涉及的建模技术也可以通过一些适当的修改,以类似的方式应用在其他表面波,如 Sommerfeld-Zenneck 波和 Dyakonov 波。

最简单的表面等离激元色散的推导

为了清楚地了解什么是表面等离激元,让我们研究一下支持表面等离激元的最简单的系统,即体金属-介电界面。想象一个在平面上 的金属-介电界面 。介质区为 ,金属区为 。由于平面内没有首选方向,因此在不丧失一般性的情况下,重点研究在 方向传播的表面波。传播平面被定义为传播方向和表面法线所跨越的平面。在这种情况下,传播的平面就是简单的平面。一般来说,传播的电磁波可以分为 s 偏振和 p 偏振,具体取决于电场或磁场是否垂直于传播平面。我们首先考虑 p 偏振(或 TM 波)的情况。

位于 y = 0 方向的金属-介电界面。
位于 方向的金属介电界面。该系统支持沿 方向传播并在 方向上呈指数衰减的表面等离激元。

由于我们对沿 方向传播并沿 方向衰减的 TM 模表面波感兴趣,因此可以将电介质和金属中的电场和磁场写为

(1)

H^+=(0,0,H_z^+)e^{j(\omega t – k_{SPP}x)}e^{-k_y^+ y}

(2)

E^+=(E_x^+,E_y^+,0)e^{j(\omega t – k_{SPP}x)}e^{-k_y^+ y}

(3)

H^-=(0,0,H_z^-)e^{j(\omega t – k_{SPP}x)}e^{k_y^- y}

(4)

E^-=(E_x^-,E_y^-,0)e^{j(\omega t – k_{SPP}x)}e^{k_y^- y}

其中  上标分别表示 的数量。 是复杂的表面等离激元传播常数。 都是正实数,描述了远离金属介电界面的场衰减。根据边界条件,我们知道电场和磁场的切向分量以及电位移场的垂直分量在金属-介电边界 上是连续的。因此,, , 。根据麦克斯韦方程组,我们知道 。由于没有外部电荷,并且介电常数在 分别是恒定的,因此必须在两种物质中保持 ,将其与等式 2 与等式 4 相结合,得到

(5)

-jk_{SPP}
E_x = k_y^+\frac{D_y}{\varepsilon_d}

(6)

-jk_{SPP}E_x=k_y^-\frac{D_y} {\varepsilon_m}.

可以简化为

(7)

\frac{k_y^+}{\varepsilon_d}=-\frac{k_y^-}{\varepsilon_m}
.

从此关系中,我们可以看到为什么表面等离激元只存在于电介质 和金属 之间。要使场在 方向上衰减, 都必须是正的,这意味着 必须具有相反的符号。为了推导 的表达式,我们使用亥姆霍兹波动方程 ,该方程是从两个麦克斯韦曲线方程导出的。将等式 2 和等式 4 代入亥姆霍兹方程,得到

(8)

k_{SPP}^2=\varepsilon_d k_0^2-k_y^{+2}

(9)

k_{SPP}^2=\varepsilon_m k_0^2-k_y^{-2}

其中, 是自由空间波数。最后,结合等式 7–9,我们得出表面等离激元传播常数的表达式

(10)

k_{SPP}= \sqrt{\frac{\varepsilon_d \varepsilon_m}{\varepsilon_d+\varepsilon_m}}k_0.

实部 通过 与表面等离激元波长相关,而虚部描述了表面等离激元传播损耗。通常, 是频率相关的,因此 也是频率相关的。 和频率的关系通常是我们想要知道的用于在系统中表征表面等离激元。

请记住,上述讨论纯粹基于表面等离激元是 TM 波的假设。对于 TE 波的可能性,可以简单地遵循相同的推导步骤,并证明所有场振幅必须为零。这意味着 表面等离激元 仅以 TM 波的形式存在,这也是表面等离激元的一个显著特征。

模拟表面等离激元的传播和色散

在本节中,我们将讨论如何使用 COMSOL Multiphysics® 软件的仿真和建模功能来可视化上述推导的物理结果。由于表面等离激元是空间受限的传播波,我们可以从其他波导建模示例中得到启发,例如介质平板波导教程模型。为确保我们正确设置了模型,作为有效性检查,将在银(金属)和空气(电介质)的界面中模拟表面等离激元表面等离激元。银的介电函数由等离子体频率值约为 9.6 eV 的 Drude 模型很好地描述。对于此模型,我们可以方便地使用 COMSOL 软件内置材料库中的银材料属性。在模型的左侧和右侧边界上施加一个数值端口。打开激励的左侧端口将启动表面等离激元,而关闭激励的右侧端口将吸收表面等离激元而不反射。为了获取两个端口上的模态场,分别添加了两个边界模式分析 研究步骤和一个频域 研究步骤。

COMSOL Multiphysics用户界面显示了选择了端口节点的模型开发器,相应的设置窗口,以及图形窗口中带有两个强加端口的金属-电介质界面模型。
左右边界分别施加了两个端口,用于表面等离激元的激励和终止。为了获取端口上的模态场,在 频域 研究步骤之前添加了两个边界模式分析 研究步骤。

运行模拟后,我们可以很容易地看到表面等离激元的传播。从左到右,下面的动画分别显示了 3.54 eV、3.1 eV 和 2.07 eV 光子能量下的表面等离激元。正如预期的那样,场沿  方向传播并沿  方向衰减。由于吸收力强,金属侧的衰减更快。值得注意的是,表面等离激元波长(实部 )和传播损耗(虚部 )随光子能量或频率而显著变化。为了捕捉频率和  之间的定量关系,我们使用可变频率作为 y 轴和 ewfd.beta_1 作为 x 轴绘制它们(由下面动画中的圆形标记显示)。 ewfd.beta_1 是一个复数,但在绘制它时,默认只考虑它的实部。在研究表面等离激元时,习惯上将品质因数(通常称为 Q 因子)定义为实部和虚部 的比率。当 具有较小的虚部(相当于较大的 Q 因子)时,表面等离激元可以在衰减之前相对于其波长传播很长的距离。对于生物传感器和光开关等实际应用,通常需要较大的 Q 因子。Q 因子可以方便地绘制为色散曲线的颜色表达式。在这里,我们选择较亮的颜色来表示较高的 Q 因子,选择较深的颜色来表示较低的 Q 因子。此外,还添加了一条虚线 ,通常称为浅色线。浅色线是自由空间光子的频率-波数色散关系。最后,将方程 9 中的解析表达式绘制为实线。从动画中可以看出,模拟色散和解析表达式表现出很好的一致性。

 

 

 

模拟 3.54 eV、3.1 eV 和 2.07 eV 光子能量下的表面等离激元传播。箭头表示电场方向和强度。

下面的色散图非常能代表贵金属中的表面等离激元色散。该图有助于深入了解表面等离激元的特征。最重要的是,它表明表面等离激元的色散曲线始终位于光线的右侧。这意味着表面等离激元波长总是小于自由空间光的波长。这就是为什么表面等离激元可以用作压缩光波长以实现光场更集中的方法。此外,自由空间光波数和表面等离激元传播常数之间的不匹配意味着我们不能仅仅通过将光照射到金属表面来激发表面等离激元,还需要一些外部机制来进行波矢量匹配。表面等离激元的激发通常是通过使用棱镜的全内反射,光栅的衍射,散射体的散射或穿过电子束来完成的。使用这些技术的目的是准备电磁场,使其波矢量与相同频率的表面等离激元的波矢量相匹配。

显示模拟 SPP 色散的图表,用圆圈表示,用虚线表示的光线。
表面等离激元在银和空气界面处的模拟的频率-波传播常数色散图。正如预期的那样,模拟结果(圆)与分析计算(实线)一致。自由空间光色散或光线由虚线表示。颜色表示表面等离激元的 Q 因子。

金属薄膜中的表面等离激元

尽管模拟体金属-介电界面中的表面等离激元可以作为表面等离激元传播和色散的很好的示例,但这是一个相当简单并且在物理上无趣的示例。在本节,我们将介绍一个更有趣的案例,即由介电层覆盖的金属薄膜。在这种系统中,顶面和底面都支持表面等离激元。如果金属膜足够薄,那么顶面的表面等离激元和底面的表面等离激元之间的耦合将导致模式杂化。其结果是形成对称和反对称模式。这种情况下的物理场类似于耦合机械谐波振荡器的物理场。在这种特殊情况下,我们模拟了 12 nm 铝膜,周围环绕着折射率为 2 的 4 nm 介电层。使用边界模式分析 研究步骤,我们在色散曲线中发现了两个表面等离激元分支。Q 因子较大的上分支是对称模式,而 Q 因子较小的下分支是反对称模式。

 

 

模拟表面等离激元在两个介电薄膜之间的铝薄膜上的传播。铝膜顶面和底面中表面等离激元的杂化形成对称(左)和反对称(右)模式。

图形显示了模拟的SPP色散,用圆圈、光线以及虚线表示。
模拟的夹在两个介电薄膜之间的铝薄膜上的表面等离激元色散。两个分支显示了对称(上分支)和反对称(下分支)模式。

虽然在这里没有展示,但我们可以通过仔细匹配每个接口的边界条件来分析推导出这种系统中的表面等离激元色散。随着系统的几何形状变得更加复杂,推导很快就会变得繁琐。使用 COMSOL® 模拟表面等离激元的优势在于它非常灵活,无论几何组成多么复杂,都可以在软件中计算表面等离激元色散。

新型 2D 材料中的表面等离激元

随着电子行业向小型化发展,2D材料越来越受欢迎。在之前的博客文章中,我们介绍了如何在高频电磁学中对一种2D材料(石墨烯)进行建模。事实证明,2D 材料,如石墨烯,也可以支持表面等离激元。毕竟,具有高导电性的石墨烯表现得像金属。主要区别在于贵金属通常在可见光或紫外范围内具有等离子体频率,这意味着金属在光学频率下支持表面等离激元。另一方面,石墨烯在红外状态下支持表面等离激元,使其成为某些应用独特且有利的材料,例如红外收集和超材料。石墨烯的另一个吸引人的特性是它的导电性可以通过化学掺杂或电调谐来改变。这打开了表面等离激元的可调性,这在传统金属中是无法实现的。

通过模拟表面等离激元传播和色散教学模型,我们可以研究沉积在 SiO2 上的石墨烯中的表面等离激元酶作用物。下图显示了石墨烯费米能量设置为 0.2 eV(左)和 0.5 eV(右)时的色散曲线。由于石墨烯电导率的差异,可以观察到明显的差异。与金属中的表面等离激元色散相比,我们可以看到这里的光线非常陡峭,它几乎与 y 轴对齐。这是因为表面等离激元传播常数比自由空间光子波数大得多。换句话说,表面等离激元波长要小得多。在下面的动画中,我们可以看到当费米能量设置为 0.2 eV 时,表面等离激元在 29 THz 的传播。此时,自由空间波长约为 10 m,表面等离激元波长小于 100 nm,实现了神奇的波长压缩!但是,我们确实需要注意,在这种情况下,Q 因子不是很高。等离激元在传播仅几百纳米后就完全衰减了。通过改善石墨烯的晶体质量或将其冷却到低温,可以实现更高的 Q 因子。

显示石墨烯费米能设置为0.2eV时的色散曲线图。
显示石墨烯费米能设置为0.5eV时的色散曲线图。

费米能量为 0.2 eV(左)和 0.5 eV(右)的石墨烯表面等离激元的色散曲线。

 

石墨烯表面等离激元在 29 THz 下的传播。石墨烯的费米能量设置为 0.2 eV。

乍一看,在色散图中,在 33 THz 左右的频率范围内没有表面等离激元,这似乎很奇怪。这是由于衬底材料 SiO2 的介电常数,由于其声子共振变为负值。这种情况可以通过绘制 SiO2 的实部来查看模拟频率范围内的介电常数。

突出显示红外频率下二氧化硅介电常数实部的图表。该图显示介电常数在 33THz 附近变为负。
SiO2 的实部红外频率的介电常数。由于声子共振,介电常数在 33 THz 左右变为负,其中石墨烯表面等离激元不受支持。

在本文的前面,我们简要提到了可用于激励表面等离激元的不同实验技术。 仿真提供了激励表面等离激元的替代方法。一个例子是使用电点偶极子源。回想一下,由于波矢量不匹配,表面等离激元 不能被自由空间光激发。然而,点偶极子产生的近场包含具有矢量的分量,这使得表面等离激元被激发。还可以通过执行此类模拟并从场分布中提取表面等离激元波长来绘制表面等离激元色散。下图突出显示了这种类型的仿真,可以观察到清晰的场振荡。

石墨烯表面等离激元被电偶极激发的模拟,可观察到振荡场。
石墨烯表面等离激元被在 y 方向上取向的电点偶极子激励。

结束语

如前所述,表面等离激元只是众多特殊类别的表面波之一。电磁表面波仍在进行深入研究,其可观察到的现象超出了本文的范围。例如,一些各向异性材料,如 MoO3,可支持单向表面声子偏振子。这是因为在某个频率下,只有一个面内方向的介电常数为负。在下面的动画中,我们可以看到这样的情况,其中SiO2衬底上的MoO3板坯由电点偶极子激励。表面声子偏振以表面等离激元特有的“蝴蝶”模式传播,例如石墨烯,其中发射的表面等离激元各向同性地传播。

 

各向异性表面声子偏振子在 MoO3 中的传播板坯由电点偶极子激励。

通过利用 COMSOL Multiphysics 中的功能,例如电点偶极子节点和 边界模式分析 研究,我们可以通过多种不同的方式对电磁表面波进行建模,并探索相关的丰富现象。

下一步

单击下面的按钮,进入 COMSOL 案例库,亲自尝试模拟表面等离激元传播和色散教程模型:

参考文献

  1. S. A. Maier, Plasmonics: fundamentals and applications. Springer, 2007.
]]>
//www.denkrieger.com/blogs/modeling-surface-plasmon-polaritons-in-comsol/feed/ 34
通过仿真分析光学计算设备 //www.denkrieger.com/blogs/analyzing-an-optical-computation-device-with-simulation //www.denkrieger.com/blogs/analyzing-an-optical-computation-device-with-simulation#respond Thu, 11 Aug 2022 09:43:59 +0000 http://cn.staging.comsol.com/blogs?p=313101 光学计算是替代当前电子计算机的另一种可能形式。在这篇博客中,我们探讨了光学计算的概念,并解释了光学矩阵乘法网络是如何工作的。我们还讨论了如何使用 COMSOL Multiphysics® 软件及其附加产品——波动光学模块对光学计算设备进行建模。结合这些产品的使用,展示了在模拟大型光学系统时应用波束包络法的优势。

光学计算简介

摩尔定律

在过去的几十年里,计算机的能力一直呈指数级增长。这种增长遵循摩尔定律,即集成电路中的晶体管数量每两年翻一番,而计算机的成本将降低。这使得我们今天享有的大部分现代技术成为可能。例如,主流计算机芯片完全基于晶体管等电子元件,每块芯片的晶体管数量几乎每两年就会翻一番。为了跟上这种增长,并在可控的功率效率下提高计算机芯片的性能,芯片上的电子元件(包括晶体管)的小型化既关键又不可避免。尽管工程师们在这方面做了出色的工作,将晶体管从厘米尺度缩小到纳米尺度,但重要的是要认识到,最终基本的限制将阻碍这类设备的发展。例如,当一个电子元件的尺寸接近原子水平时,量子效应将导致其功能不稳定。科学和工程界长期以来一直在考虑电子计算机的替代形式。最近引起广泛关注的一种替代是光学计算——指用光(光子)而不是电流(电子)进行计算。

虽然光学计算是一项新兴技术,但光学在信息技术中的应用已经有相当长的一段时间了,特别是利用光进行信息传输。损耗极低的光纤可以以光速长距离传输信息。光纤网络设备常用于数据中心甚至普通家庭。然而,在商业化方面,利用光进行计算仍处于起步阶段。

光学中的数学计算

众所周知,某些光学过程对应于数学计算。例如,考虑光的衍射。当光通过衍射介质时,本质上是在进行傅里叶变换积分(这个概念我们会在下一篇博客文章中详细地探讨)。然而,光学系统是否可以像我们今天拥有的计算机一样进行通用数学计算,可能还不是很清楚。目前,光学计算有许多不同的形式。已经证明,我们可以使用不同的机制进行简单的算术运算、矩阵乘法、积分和微分,等等。一般来说,模拟计算可以在专门设计的系统中以光的衍射、散射或传播形式发生。

显示 MZI 模型中模拟场分布的图像。
一个集成的 MZI 网络

左图:自由空间马赫曾德尔调制器(MZI)中场分布的模拟。右图:一个集成的马赫曾德尔调制器网络。

这里,我们并不笼统地讨论光学计算,而是深入探讨一个特殊的模拟光学计算系统:基于马赫-曾德尔调制器网络的矩阵乘法设备。这个系统非常有趣和有用,因为以不需要大量能耗的方式快速进行矩阵乘法,对于解决实际问题而言是可行的,这包括与机器学习有关的问题。大多数现代机器学习算法,如深度神经网络,都依赖于大量的矩阵乘法。如果我们可以建立一个能快速进行矩阵乘法的光学系统,就能充分利用机器学习的力量。

光学矩阵乘法

马赫-曾德尔调制器

首先,我们需要了解具有两个输入和两个输出的单个马赫-曾德尔调制器如何进行 2×2 酉矩阵乘法。从由两个 50:50 分束器 (BS)和三个移相器组成的经典 马赫-曾德尔调制器配置开始,如下图所示。当光通过移相器时,相移以 , 的方式移动。我们将输入光束的复振幅标记为 ,输出光束的振幅度标记为

接下来,我们将得到,其中

E= \begin
{bmatrix}E_1 \\E_2\end{bmatrix},
E’= \begin
{bmatrix}E’_1 \\E’_2\end{bmatrix}

是任意酉矩阵,由 , . 控制。 这里,上标 2 表示矩阵的维数。我们将在整篇文章中遵循这个符号约定。通过控制 , 我们可以让这个光学系统以光速进行任何单一的 2×2 矩阵乘法。

具有两个分束器和三个移相器的MZI示意图。
具有两个 50:50 分束器和三个移相器的经典马赫-曾德尔调制器,可将光的相位移动 , M 表示反射镜。

当光束 通过一个对称的 50:50 分束器,传输的光束是 ,反射光束是 。反射光束中虚数 的出现是由于反射相移 ,因为 。 对于通过分束器的光,比如说第一个分束器,它会拾取一个相位因子 。 根据以上讨论的信息,我们可以对经过不同路径的光求 ,得出和:

E’_1=j\frac{\sqrt{2}}

{2}(-j\frac{\sqrt{2}}{2}
E_1+\frac{\sqrt{2}}

{2}E_2)e^{j\theta}e^{-j\alpha}\frac{\sqrt{2}}{2}
(\frac{\sqrt{2}}

{2}E_1-j\frac{\sqrt{2}}{2}
E_2)e^{-j\alpha},

E’_2=-\frac{\sqrt{2}}

{2}(-j\frac{\sqrt{2}}{2}
E_1+\frac{\sqrt{2}}

{2}E_2)e^{-j\theta}e^{-j\beta}+j\frac{\sqrt{2}}{2}
(\frac{\sqrt{2}}

{2}E_1-j\frac{\sqrt{2}}{2}
E_2)e^{-j\beta}

经过一些代数计算,可以得到

E’_1=\frac{e^{-j\alpha}}

{2}[(e^{-j\theta}-1)E_1+j(1+e^{-j\theta})E_2],

E’_2=\frac{e^{-j\beta}}{2}
[j(1+e^{-j\theta})E_1+(1-e^{-j\theta})E_2]

以矩阵形式表示为

\begin

{bmatrix}E’_1\\E’_2\end{bmatrix}
=\frac

{1} {2} \begin{bmatrix}e^{-j\alpha}(e^{-j\theta}-1) & je^{-j\alpha}(1+e^{-j\theta})\\je^{-j\beta}(1+e^{-j\theta}) & e^{-j\beta}(1-e^{-j\theta})\end{bmatrix} \begin{bmatrix}E_1\\E_2\end{bmatrix}

可以看到,矩阵

U^2(\theta,\alpha,\beta)=\begin{bmatrix}e^{-j\alpha}(e^{-j\theta}-1) & je^{-j\alpha}(1+e^{-j\theta})\\je^{-j\beta}(1+e^{-j\theta}) & e^{-j\beta}(1-e^{-j\theta})\end{bmatrix}

是一般复酉 2×2 矩阵的形式。可以很容易地检查到 , 式中 是单位矩阵。从几何上讲,这个矩阵可以解释为输入向量的旋转。那么,我们如何在 COMSOL Multiphysics 中为这样的光学系统建模呢?

我们使用 COMSOL 软件的波动光学模块进行建模的原因有很多。乍一看,射线光学模块似乎也很合适,因为系统的大小比波长大几个数量级。然而,对于马赫-曾德尔调制器,我们主要关注的是干涉效应。射线光学模拟通常不会自动考虑干涉,因此不是理想的方法。

通过使用波动光学模块,干涉将被自动考虑。使用这个模块,我们就可以采用电磁波,波束包络 接口,它非常适合处理这种大小的模型。波束包络法特别适用于模拟长距离光束传播问题,如我们之前的博客文章所述。 通过将场分离为缓慢变化的包络函数和快速变化的相位因子的乘积,我们只需要根据包络函数变化的速度对模型进行网格剖分。这在很多模拟中为我们节省了大量的计算资源,例如上图所示的马赫-曾德尔调制器,因为光束大部分时间都在自由空间中传播,包络函数没有变化。在这个系统中,有两个光束传播方向——水平和垂直。波束包络法的双向公式是完美的选择。我们使用以下设置来设定波矢量:

  • 第一个波:
    • x = ewbe.k
    • y = 0
  • 第二个波:
    • x = 0
    • y = -ewbe.k

如果固定 ,同时 在 0 到 内逐渐变化,就可以研究输出场振幅和。这是通过在输出边界计算 ewbe.Ez 来完成的。然后我们可以在复平面上绘制 ,如下图所示。该路径描绘了一个闭环为 的变化。这是我们之前展示的推导所预期的。图中的星号是使用前面提到的矩阵方程计算的,与输出边界的 ewbe.Ez 一致,正如前面预期的那样。

An MZI with two beam splitters and three phase shifters modeled in 2D.

 

​​​左图:经典马赫曾德尔调制器的二维模型,具有两个 50:50 分束器 (BS) 和三个移相器,可将光的相位移动 , 。M 表示反射镜。右图:模拟 从 0 到 变化的场分布。 输入振幅度

含分量和波矢量项的电磁波、波束包络接口的设置屏幕截图。
电磁波、波束包络的设置。

显示了从 0 到变化,复数的绘图。
显示复数 E'_2 作为 \theta 从 0 变为 2\pi 的图。

从 0 到变化 时,复数 (左图)和 (右图)。实线表示模拟结果,星号表示使用上述解析推导计算的期望值。横轴和纵轴分别是实部和虚部,颜色代表 的变化。

n×n 酉矩阵乘法

我们现在知道如何实现 2×2 酉矩阵乘法是很有成效的,但是要注意,在大多数情况下,我们将使用维数大得多的矩阵。现在,我们来了解如何使用马赫-曾德尔调制器网络执行任意 n×n 酉矩阵乘法。在这里,我们将调用一个定理,即任何 n×n 酉矩阵都可以写成 2×2 酉子矩阵。例如,一个 4×4 酉矩阵 可以写成 ,其中

R_{11} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & U^2_1 \end{bmatrix}
R_{22} = \begin{bmatrix} 1 & 0 & 0\\ 0 & U^2_2 & 0\\ 0 & 0 & 1 \end{bmatrix}
R_{21} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & U^2_3 \end{bmatrix}
R_{33} = \begin{bmatrix} U^2_4 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}
R_{32} = \begin{bmatrix} 1 & 0 & 0\\ 0 & U^2_5 & 0\\ 0 & 0 & 1 \end{bmatrix}
R_{31} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & U^2_6 \end{bmatrix}

这里, 是一个 2×2 酉矩阵,由一个具有三个相移的马赫-曾德尔调制器控制,如前所述。通过将 n 维矢量空间中的一般旋转看作低维中的旋转序列,可以直观地理解这种矩阵分解。从物理上讲,这意味着我们可以按照每个马赫-曾德尔调制器 代表的特定顺序构建马赫-曾德尔调制器网络。 因此,整个系统在光通过时对输入进行任意 n×n 酉矩阵乘法。在 4×4 酉矩阵的情况下,我们总共需要 6 个马赫-曾德尔调制器。

一个标记了电极的位于MZI上方的2×2 酉矩阵乘法核心示意图。

 

马赫曾德尔调制器相当于一个光学 2×2 酉矩阵乘法核心。它对输入矢量进行 2×2 酉矩阵乘法。矩阵 可以通过使用电光效应或热光效应通过施加电压在马赫曾德尔调制器中引起相移来进行编程。在右图中,马赫曾德尔调制器中的第一个移相器是连续调谐的,这会在输出中引起矢量旋转。

原则上,这个系统可以使用自由空间光学技术来实现,如上图所示的经典马赫-曾德尔调制器。然而,自由空间光学技术的可扩展性相当差。分束器和反射镜都很笨重,而且不方便携带。如果我们想构建一个包含大量组件的光网络,就需要一种更具可扩展性的方法。基于目前互补金属氧化物半导体(CMOS)制造平台的集成硅光子学是一个很有前途的候选方案,适合大规模生产高度小型化的光学元件。与自由空间的马赫-曾德尔调制器类似,基于波导耦合器的集成马赫-曾德尔调制器具有相同的光学功能,但体积要小4个数量级。这使得设计光学芯片成为可能。设计一个具有光束 50:50 分割和足够相移的马赫-曾德尔调制器需要进行几何调整和优化。我们在这里不做详述,但您可以阅读这篇博客:如何设计一个使用电光效应作为相移机制的波导马赫-曾德尔调制器

类似地,热光效应也常用于引起折射率调制,从而引起相移。

一个位于6 个 MZI 上方的光学 4×4 酉矩阵乘法核心示意图。

一个光学 4×4 酉矩阵乘法核心。该设备由 6 个马赫曾德尔调制器网络组成。它对输入矢量进行 4×4 酉矩阵乘法。可以通过使用电光效应或热光效应在每个马赫曾德尔调制器中引起相移来对矩阵进行编程。

 

第一个马赫曾德尔调制器中的第一个移相器是连续调谐的。这会在第一和第二输出中引起矢量旋转。

广义 n×m 矩阵乘法

到目前为止,我们已经建立了使用马赫-曾德尔调制器 的光网络来进行任意 n×n 酉矩阵乘法。显然,n×n 酉矩阵是一类非常特殊的矩阵。为了使系统普遍适用,我们需要求解广义的 n×m 矩阵乘法,这不仅限于酉矩阵和方阵的情况。这是可能的,因为有奇异值分解 (SVD)。SVD 表明任何 n×m 矩阵 可以分解为 , 式中 是一个 n×n 酉矩阵, 是一个 n×m 对角矩阵, 是一个 m×m 酉矩阵。 表示复共轭。因此,当计算 时,我们只需要一个用于 的光网络,一个用于 的光网络, 并用代表对角线矩阵 的衰减器阵列连接它们,因为对角矩阵仅表示每个元素按常数缩放。衰减器也可以由具有单输入和单输出的马赫-曾德尔调制器制成。

由一个 m×m 酉矩阵乘法核心,一个 n 衰减器阵列和一个 n×n 矩阵乘法核心组成的光学n×m 矩阵乘法装置的示意图。
一个光学 n×m 矩阵乘法装置由两个酉矩阵乘法核心和一个衰减器阵列组成。

总之,我们拥有构建用于一般 n×m 矩阵乘法的光学系统所需的所有要素。文末将提供一个 n×n 矩阵乘法系统的建模示例链接。该模型可用作构建更复杂的 n×m 矩阵的灵感。

结束语

在这篇博客中,我们为您展示了任何 n×m 矩阵都可以分解为多个 2×2 酉子矩阵和一个对角矩阵的乘积。这样就能够使用一系列马赫-曾德尔调制器构建用于一般矩阵乘法的光网络。另外,我们还介绍了使用集成低损耗硅光子进行光学计算的优势。

未来的手机和电脑会由光学或光子处理器驱动吗?这有待观察,沿途还有许多技术难关需要攻克。可以肯定的是,多物理场仿真是复杂光学计算系统设计和优化的重要组成部分。如本文案例所示,COMSOL Multiphysics 中的波束包络法功能特别适用于模拟时间快速和存储效率良好的大型光学模型。它还能够模拟整个光学系统,这在考虑其它物理效应时至关重要,例如不均匀的温度梯度或机械变形。

下一步

单击下面的按钮,进入 COMSOL 案例库,尝试自己模拟自由空间马赫-曾德尔调制器和光学酉矩阵乘法设备教程模型:

拓展资源

参考文献

  1. J. Cheng, H. Zhou, and J. Dong, “Photonic Matrix Computing: From Fundamentals to Applications”, Nanomaterials, 11(7), 1683, 2021.
]]>
//www.denkrieger.com/blogs/analyzing-an-optical-computation-device-with-simulation/feed/ 0
COMSOL® 中的电磁波导模式分析 //www.denkrieger.com/blogs/mode-analysis-for-electromagnetic-waveguides-in-comsol //www.denkrieger.com/blogs/mode-analysis-for-electromagnetic-waveguides-in-comsol#respond Tue, 05 Jul 2022 05:29:25 +0000 http://cn.staging.comsol.com/blogs?p=307281 模式分析是射频和波动光学计算中的一个重要工具,因为它可以研究复杂波导结构的模式特性。在这篇博文中,我将对模式分析进行介绍,并总结在 COMSOL Multiphysics® 软件中进行这类研究所需的物理场接口、研究步骤和后处理设置。我还将演示几个纯模式分析的例子。最后,我将解释如何利用这些结果进一步计算复杂的射频和光波导系统。

目录

  1. 什么是模式分析?
  2. 模式分析时如何设置模型
  3. 模式分析的教程模型示例
  4. 频域波导计算中传播模式的激发或终止
  5. 结论

什么是模式分析?

在分析任意一个三维波导结构时,了解在给定的频率下允许传播哪些类型的电磁波非常重要。波态是由在波导的二维横向截面上被激发的共振模式决定的。模式可以由全局复值传播常数和电场的所有三个分量的空间分布(也称作振型)完全描述。具有恒定横截面的波导中的传输机制可以完全基于这些电磁特性来定义。我们还可以利用这些信息对更复杂结构中的散射特性进行频域研究。

众所周知,分析解只有在文献中可用于一些射频设计,例如同轴线和具有矩形或圆形截面的空心波导。对于其他具有任意形状和材料组合的任何其他配置,包括所有典型的光纤和集成波导,都必须使用数值模式分析。图1 显示了 COMSOL 软件设置 窗口中方程 部分的数值模式分析 的表述。要进行模式分析,需要将给定的频率代入电场的亥姆霍兹方程中,然后以在面外方向传播的波的形式搜索解。为此,我们可以使用有限元方法(FEM)和一个特征值求解器。

注意:模式分析不应与更一般的模态分析相混淆。后者称为特征频率分析,可用于在任何可能维度(包括二维、二维轴对称和三维)的系统中寻找共振或固有模式和特征频率。

我们可以使用 COMSOL Multiphysics 的附加产品—— RF 模块波动光学模块中的特征:用于二维或二维轴对称几何结构的电磁波、频域 多物理场接口和模式分析 研究进行模式分析。

COMSOL Multiphysics UI 显示带有电磁波的模型开发器,选择的频域节点,相应的设置窗口,以及图形窗口中的光波导模型。
图1. COMSOL ® 中光波导的模式分析。电磁波,频域多物理场接口的 设置窗口中的 方程部分显示了这类研究的描述。

进行模式分析时如何设置模型

几何和材料设置

在建立模式分析模型时,首先应该构建波导结构的横截面。我们可以直接制作二维模型,也可以使用横截面操作 缩小三维模型。

然后,可以指定材料属性并将它们分配给相应的几何部分。对于射频模型,通常需要电导率、相对介电常数和相对磁导率。对于波动光学模型,通常需要折射率。COMSOL® 可以自动将材料数据从一种表示形式转换为另一种表示形式。

使用非零电导率、复值相对介电常数和复折射率将会在模型中引入阻尼,这可以在后处理中观察到。

物理场设置

我们的目标是找到一个在面外方向传播的波。为此,可以使用二维中的电磁波,频域 物理场接口,打开物理场接口的设置 窗口,并确保在组件 部分选择了三分量矢量 选项。

模式分析是一个特征值研究,因此不需要使用任何源条件。但是,我们仍然应该定义适当的边界条件,因为它们会对振型以及振型阻尼和泄漏产生影响。请注意,外部边界可以是金属的或开放的。如果使用金属边界,我们可以使用默认的理想电导体阻抗边界条件。为了描述开放边界,我们可以使用散射边界条件完美匹配层

散射边界条件完美匹配层 的默认设置适用于电磁波沿法线方向朝边界移动的情况。这种默认设置对于模式分析来说不是最优的,因为感兴趣的波矢量由与边界相切的传播常数和剩余的法向分量组成。对于散射边界条件, 我们应该手动调整完美匹配层 特征中有效波长的设置,或者启用设置 窗口的模式分析 部分中的从材料波数中减去传播常数 复选框。您可以在微结构光纤中的漏模教程模型的 PDF 文档中的中找到有关如何执行此操作的详细说明。

COMSOL Multiphysics UI显示选择阻抗边界条件节点的模型开发器,相应的设置窗口,以及图形窗口中的同轴电缆模型。
图2. COMSOL ® 中同轴电缆的模式分析。使用 阻抗边界条件可以计算传播和衰减常数。

使用阻抗边界条件、散射边界条件完美匹配层 特征将在模型中引入阻尼。

网格和研究设置

下面的图3 显示了电磁学问题的模式分析 研究设置的一个变体。默认情况下,选择有效模式折射率 变换,这通常是电磁波的最佳选择。通过这样的变换,我们就可以假设有效模式指数(或有效折射率)将被用作模式的说明性特征。

模式分析频率 字段,我们应该输入要查找谐振模式的频率。如下所示,列出的下一个研究设置是模式搜索方法。如果这里选择了手动 搜索,那么应根据模式搜索基准值 字段中的有效折射率和所需模式数 设置初始猜测。求解器将搜索该猜测附近的模式,并在可能的情况下返回不同模式的预期数量。对于区域 搜索,我们应该指定模式的大致数量和复杂有效折射率的区域。

您可能想知道如何为成功的计算做出一个好的初始猜测。这实际上是因人而异的,但如果你使用由芯和包层组成的典型波导结构,我有一个基本建议:在这种情况下,感兴趣的模式具有介于两种材料的折射系数之间的有效模式折射率,而基模折射率最高。因此,在模式搜索基准值 时,将初始猜测值设置为接近芯层折射率可以保证求解器找到基模。换句话说,典型波导结构基模的有效折射率接近于模式能量受限区域的折射率。

我们可以添加参数化扫描,选择任何预定义参数(例如几何尺寸、材料属性或频率)并在指定范围内更改其值。这样,将获得所谓的色散曲线。我们甚至还可以为不同的模式定义截止条件。

COMSOL Multiphysics UI的两个并排屏幕截图,显示了模式分析节点被选中的模型开发器,相应的设置窗口(左)和参数化扫描的设置窗口,研究设置部分被展开(右)。
图3. 模式分析 参数扫描 研究步骤的设置。可以在展开的求解器 配置 部分看到本研究使用了一个 特征值求解器

虽然我们在这里跳过了网格设置并首先选择了研究设置,但是请注意,在模式分析频率 字段中输入的频率值也用于生成物理场控制的网格。默认情况下,软件为每种材料在每个波长使用五个单元。为了获得更好的分辨率,我们可以对网格进行细化。对于二维模型,网格细化不会消耗过多的内存。

后处理和结果解释

接下来,我们来讨论运行模式分析 研究后可以获得的典型结果。

对于每个计算的模式,我们可以绘制局部场或功率流分布。可以选择 x-、y- 或 z- 分量或模值作为表达式。这将使我们能够轻松地定义场分布和偏振。我们还有几个基于每个模式的特征值 lambda 的全局变量,包括传播常数、衰减常数和有效模式折射率。我们可以通过全局计算功能或使用 1D 全局图获得它们的确切数值。下表总结了可用变量的名称和定义:

姓名 表达式 描述 单位
beta imag(-lambda) 传播常数 rad/m
dampz real(-lambda) 衰减常数 rad/m
dampzdB 20*log10-(exp(1))*dampz 对数尺度的衰减 dB/m
neff j*lambda/k0 有效模式折射率 1

对于 TEM(或准 TEM)模式,我们可以通过电流和电压的积分手动计算特征阻抗。详细信息在之前的一篇关于射频分析中数值端口的使用博客文章中进行了讨论。

通常,模式分析的后处理很简单,但在以下情况经常会出现关于结果正确解释的问题:

  • 模式分析是一种特征值研究,因此确切的场大小是相当随意的,只有相对比例才是重要的。在后处理中,我们可以为每种模式执行额外的归一化。
  • 如果两种不同模式的特征值非常接近,那么计算后会得到它们的任意线性组合。
  • 计算的模式只是按有效模式折射率排序的正交解集。由于软件无法检测模式的确切物理场类型,因此它不“知道”,例如第一个模式是 TE11,第六个模式是 TM20。这意味着我们需要通过手动分析场分布来自己识别模式的物理场类型。
  • 参数化扫描 中对每个参数值进行模式排序,因此可以在从一个参数移动到另一个参数时交换模式顺序。为此,最好将色散曲线绘制为一组点而不是一组线。
  • 有些模式可能是非物理的,但我们可以根据它们的场分布文件来识别它们。在这些情况下,分布可能非常参差不齐,或者可能在外部边界附近具有最大值。
  • 有时,模式具有非常小的传播常数(接近于零)和小的有效折射率。我们可以将它们定义为非传播或消逝。如果通过相关的控制参数(例如频率)执行扫描,那么我们可以跟踪这种模式的截止条件。
  • 有效模式折射率可以是复值。我们可以在两种主要情况下获得较大的虚部:如果模式是衰退的,或者如果系统中有一些阻尼源。阻尼可以通过材料属性、具有有限电导率的金属化和/或开放边界引入。

模式分析的教程模型案例

让我们来看一些模型案例,这些模型演示了在 COMSOL® 中进行模式分析的两种不同方法,包括扩展设置和后处理。我们可以在下面的演示中找到有关这些设置的更多信息。

如果您想直接开始自己构建这些模型,可以点击此处下载:电磁波导的模式分析

示例1:同轴电缆的模式分析

我们从一个RF示例开始,计算一个典型同轴电缆的模式。被观察的电缆内半径 r_i= 0.5 mm;外半径 r_o= 3.43 mm;绝缘体相对介电常数, eps_r= 2.4;包含由铜制成的导体部件。我们的目标是在 10 到 20 GHz 的频率范围内定义主 TEM 模式和第一个高阶 TE11 模式的特性。

设置模型非常简单。首先,我们定义没有金属部件的几何形状。然后,为二维域添加通用绝缘体 材料。接下来,在电磁波,频域 接口中,为外部边界设置阻抗边界条件,并为其指定内置 材料。在模式分析 研究步骤中,我们的设置是:模式分析频率 f0所需的模式数量 2,以及模式搜索基准值 sqrt(eps_r)。我们还添加了一个参数扫描 f0 作为参数并以 0.2 MHz 的小步长输入频率范围。

模式分析为每个频率提供两个解。我们可以通过空间分布和全局变量来研究它们。这两个解中,有效折射率最接近 sqrt(eps_r)≈1.55 的那一个就是 TEM 模式。在我们的频率范围内,它有一个单调增长的传播常数和一个低于 1dB/m 的小衰减。另一个具有较小折射率的解是 TE11 模式。它的有效折射率和传播常数在频率范围的开始阶段都非常小;相反,衰减常数非常高。所有这些因素表明,这种模式在频率范围的开始阶段是不传播的。

模拟了同轴电缆模型中 10 GHz 的 TEM 模式。
模拟了同轴电缆模型中 20 GHz 的 TEM 模式。
模拟了同轴电缆模型中 10 GHz 的 TE11 模式。
模拟了同轴电缆模型中 20 GHz 的 TE11 模式。

图4.同轴电缆几种模式的空间分布。图中我们可以看到 10 GHz(左上)和 20 GHz(右上)的 TEM 模式以及 10 GHz(左下)和 20 GHz(右下)的 TE11 模式。表面图绘制了功率流的 Z分量,红色流线表示电场,蓝色表示磁场。注释用于突出显示传播和衰减常数。请注意,10 GHz 的 TE11 模式具有非常小的有效折射率,它是衰退状态的指标。

为了定义截止频率,我们可以创建 emw.betaemw.dampzdB 的全局一维图,并使用 f0 作为 x-轴数据的表达。TE11 曲线在 15.6GHz 附近的急剧突变是对截止条件的良好估计。

图显示 TEM 模式和 TE11 模式的传播常数作为频率的函数图。
TEM 模式和 TE11 模式的衰减常数作为频率的函数图。

图5.传播常数和衰减常数是 TEM 模式和 TE11 模式的频率函数。

对于 TEM 模式,我们还可以评估特性阻抗。TE11 模式的特征阻抗和截止频率值是 COMSOL® 中数值模式分析的良好验证因素,因为我们可以将它们与大家熟悉的解析表达式 进行比较。

示例2:脊型波导的模态分析

让我们继续以波动光学为例,计算一个典型的集成波导的模式。所观察的脊型波导有一个由 制成的芯、由 SiON 制成的上覆层和由 SiO2 制成的下覆层。这些材料的折射率分别为 n_core= 3.48、n_clad_upper= 1.51 和 n_clad_lower= 1.44。我们的目标是在一定的波长下定义所有可能的模式,lda0= 1.55 um;对于固定的芯层高度,h_core= 700 nm;以及不同的芯层宽度值 w_core

与前面的示例一样,为这个案例设置模型也很简单。首先,我们定义了一个几何结构,其中包含芯层、上覆层和下覆层的三个域。然后,我们将它们指定给具有光学特性的材料(如上一段所述)。接下来,在电磁波,频域 接口,我们为外部边界设置散射边界条件,并启用从材料波数中减去传播常数复选框。在模式分析 研究步骤中,设置模式分析频率 f0= c_const/lda0;10 表示所需的模式数量n_core代表模式搜索基准值。我们还添加了参数化扫描 w_core作为参数,并将其从 300 nm 更改为 1000 nm。

模式分析为每个频率得到十个解,我们可以通过空间分布和全局变量来检查它们。我们可以使用箭头或流线来可视化每种模式的偏振并定义其类型- Ey MN 或 Ex MN。上标表示主要偏振方向,第一和第二下标变量分别表示 xy 方向上峰的数量。对于参数 w_core 较大的值,我们还可以观察高阶模式,例如 Ey 22和 Ey 31

模拟显示了芯层宽度为 400 nm 的脊型波导模型的 Ey11 模式。
模拟显示了芯层宽度为 400 nm 的脊型波导模型的 Ex11 模式。
模拟显示了芯层宽度为 1000 nm 的脊型波导模型的 Ex11 模式。
模拟了芯层宽度为 1000 nm 的脊型波导模型中的 Ey21 模式。

图6. 几种脊型波导模式的空间分布。上排是芯宽为 400 nm 的 Ey11 模(左)和芯宽为 400 nm 的 E x11模(右),下排是芯宽为 1000 nm 的 Ex11 模(左)和的芯宽为 1000 nm 的 Ey21 模(右)。表面图是功率流的 Z 分量,黑色箭头代表电场。注释用于突出显示有效模式折射率和传播常数。

我们还可以使用带 w_core*ewfd.k0ewfd.neff 的全局一维图作为x 轴数据 的表达式来获得典型的色散曲线。使用这些图,我们可以跟踪脊型波导中非常复杂的行为。可以定义不同模式发生“交换”的确切点;例如,Ey11 和 Ex11(大约w_core*ewfd.k0= 2)、Ey 21 和 Ex 21(大约 w_core*ewfd.k0= 3.5)等。

显示脊型波导中色散曲线的绘图。
图7. 脊型波导的色散曲线。许多模式“交换”是可见的,例如,E11 和 Ex11w_core*ewfd.k0= 2 附近以及 Ey21 和 Ex21 w_core*ewfd.k0 = 3.5 附近有偏移。

请注意,对于较小的芯宽值,我们还获得了几种有效折射率低于覆层折射率的模式。它们的空间分布表明,能量并不局限于芯内部和周围。我们可以忽略非物理模式,甚至可以通过删除解研究功能将其删除。

其他模型案例

除了上面介绍的两个模型之外,你还可以从 COMSOL 案例库中探索以下示例:

频域波导计算中传播模式的激发或终止

找到传播模式后,我们可能希望在频域分析中在一个波导横截面激发或终止一个或几个传播模式。这样,我们就能够计算复杂电磁设备中的反射和传输特性。使用 COMSOL 软件的 RF 模块或波动光学模块,我们可以进行这些操作。

对于这些类型的建模场景,我们可以使用电磁波、频域电磁波、波束包络 物理场接口。然后,通常会在每个相关模式的每个相关横截面上添加端口边界条件。之后,我们将为每个端口 启用数值 选项。为简单起见,我们将具有此类修改的端口 特征称为数值端口。计算时,对于每个数值端口和频域研究,我们可以结合使用边界模式分析

使用数值端口意味着模式剖面及其传播常数将在边界模式分析 研究步骤中计算,这与模式分析几乎相同。还有一个额外的端口名称 设置,我们应该在其中指定确切的端口名称,并且研究将对此端口 的所有边界进行模式分析。请注意,我们需要为每个端口找到一种确切的模式,因此应该将所需模式数 设置为 1,并在模式搜索基准值 场中输入一个非常准确的有效模式折射率估计值。如果我们对模式特征没有任何先验知识,最好进行初步模式分析并为所有需要的模式定义全局值——这在使用多模态时尤其重要,也可能是在自动化端口的后续设置中。

这个设置非常强大。首先,我们可以直接在三维中使用它而无需创建二维横截面,此外,还可以在二维中将其用于一维端口。其次,在后处理中,我们会收到 S 参数以及设备的反射和透射系数。第三,我们可以为完美匹配层 定义典型波长,或使用直接来自边界模式分析 的传播常数在电磁波、波束包络 物理场接口的波矢量 设置中指定相位。

注意:对于微带线或共面线等射频设备,为了接收 TEM 或准 TEM 模式,数值端口有一些特殊设置。

COMSOL Multiphysics UI显示了选中的边界模式分析节点的模型开发器,相应的设置窗口,以及图形窗口中带有散射体模型的光波导。
图8. 带有散射体的光波导频域分析。这个模型中使用了 4 个数值端口。您可以看到用于终止基本模式的第二个数值端口的 边界模式分析设置窗口。通过初步研究获得有关其有效折射率的信息。

COMSOL 案例库中有几个很好的示例演示了数值端口条件和边界模式分析 研究的使用,例如:

结论

在这篇博文中,我们介绍了如何使用RF模块或波动光学模块在波导结构的横截面中找到谐振模式并获得它们的定性和定量特征,这些特征可用于进一步的全波研究,用于激发或终止这些模式。此外,我们通过模式分析 研究和数值端口查看了模型的典型设置。有了这些信息,我们可以提高RF和波动光学计算的效率。

这里讨论的技术还可以用于研究声学和力学应用中的波行为。有关详细信息,请查看以下模型:具有刚性弹性壁的消声器横截面的模式分析、弹性波在铝板中的传播研究以及航空发动机导管气动声学计算。

下一步

尝试使用电磁波导模式分析教程模型自己对同轴电缆或脊型波导模型进行模式分析:

]]>
//www.denkrieger.com/blogs/mode-analysis-for-electromagnetic-waveguides-in-comsol/feed/ 0
通过射线光学仿真研究彭罗斯房间 //www.denkrieger.com/blogs/investigating-the-penrose-unilluminable-room-with-ray-optics //www.denkrieger.com/blogs/investigating-the-penrose-unilluminable-room-with-ray-optics#respond Thu, 23 Jun 2022 07:00:33 +0000 http://cn.staging.comsol.com/blogs?p=306611 20 世纪 50 年代,数学家恩斯特·施特劳斯(Ernst Straus)提出了一个有趣的问题:在一个侧壁由理想反射镜构成的任意形状的空房间里,一个点光源是否总能照亮整个房间?诺贝尔奖获得者罗杰·彭罗斯(Roger Penrose)爵士优雅地回答了这个问题。他设计了一个包含不能被照亮区域的房间,因此被称为“无法全屋照亮的彭罗斯房间”(以下简称“彭罗斯房间”)。然而,彭罗斯房间真的不能被完全照亮吗?在今天这篇博客中,我们将使用 COMSOL Multiphysics® 软件进行模拟,看看情况是不是像他所回答的那样,并讨论了射线光学的基本假设。

照明问题

当你第一次听到这个问题时,可能不能立即明白它到底在问什么。我们以下图中的示例来说明。如左图所示,一个二维房间的镜面墙可以是任意形状,光源可以位于房间内的任何位置。在这种特殊情况下,很容易想象整个房间都会被光源照亮,这一点不出所料地也在右图中的射线追踪模拟中得到了证实。本质上,施特劳斯的问题是:是否存在这样一种房间形状设计,当在其中放置点光源时,某些区域不会被照亮。

左边的图像显示了一个空的、任意形状的房间,它的侧壁是由完美的镜子制成的,里面有一个点光源。右边的图像显示了同一房间的射线追踪模拟,整个房间都被点光源照亮。
一个任意形状的空房间,周围是完美的镜子,房间内放有一个点光源(左)。射线追踪模拟显示整个房间都被点光源照亮(右)。

看到这个问题,我立刻想到,也许一个拐角很尖的房间可以阻止某些区域被照亮。但是,你可能已经猜到了:如果可以这么容易地计算出一个不能被照亮的房间的形状,那么对于科学界来说,这就不是一个有趣的问题了。我们可以看到,只要有足够的时间,灯光总会照亮整个房间。在这一点上,你可能不相信并认为你可以设计一个不能被照亮的房间。如果你准备接受这个挑战,欢迎你随时使用 COMSOL 射线光学模块来试一试。

 

带有尖角的房间完全被点光源照亮。

无法被完全照亮的彭罗斯房间

这个棘手的问题最终被杰出的 2020 年诺贝尔物理学奖得主罗杰·彭罗斯解决了。如下图所示,他的设计初看并不显眼。这个房间由上下两个椭圆形墙壁和一个带有两个“伞”形切口的矩形区域组成。设计的唯一要求是,将上下墙壁描述为椭圆 ,并且椭圆的焦点与伞形切口的角点重合。一些细节,诸如 的具体值、伞的形状和宽度等,都不会改变房间的属性。

这幅图描绘了彭罗斯不透光的房间,标记了值A、b和c。
无法被完全照亮的彭罗斯房间设计。

让我们使用射线光学模块来看看它是否有效!在下面的动画中,我们将点光源放置在一些具有代表性的位置——中心、上半部分和左边伞的左侧(如果我们假设伞是直立的,那么光源就位于伞的下方)。光线从这些点各向同性地发射。显然,在任何情况下,都存在未被光照亮的区域。当光源被放置在伞的下方时,光线甚至不会传播到房间的下半部分。请注意,这并不是因为时域仿真运行时间不够长。即使时间接近无限长,这些阴影区域仍然没有被照亮。

 

 

 

将点光源放置在彭罗斯房间的不同位置进行射线追踪模拟。在任何情况下,总是存在未照亮的区域。

彭罗斯房间的独特性来自于椭圆镜的特殊性。你可能还记得,在大学光学课上学过,从椭圆镜的一个焦点发出的光将聚焦在另一个焦点上,下面左下方的动画演示了这一特性。椭圆镜另一个鲜为人知的特性是,当光线从椭圆的一个焦点和其最近的顶点之间发出时,它只会到达另一个焦点和另一个顶点之间的一点,永远不会与焦点之间的长轴相交。这个特性在下面中间的动画中进行了演示。此外,从两个焦点之间发出的光永远不会与每个焦点和其最近的顶点之间的长轴相交,如下面右边的动画所示。

 

 

 

左:在焦点处发射的光线只会在焦点处与长轴相交。中:在焦点和最近的顶点之间发射的光线不会与焦点之间的长轴相交。右:在两个焦点之间发射的光线只会与焦点之间的长轴相交。

考虑到这些特性,我们可以将彭罗斯房间划分为如下所示的区域。再次提醒,在彭罗斯的设计中,椭圆的焦点与伞的边缘重合。因此,我们知道:

  • 放置在 里面的一个点光源,只会照亮 ,因为它永远不能与焦点之间的椭圆长轴相交并进入 区域。
  • 放置在 的一个点光源,不能照亮 ,因为光线只能进入下椭圆的两个焦点之间的下半部。因此,它们永远不能与焦点和顶点之间的长轴相交并进入
  • 同样的原因,放置在 的一个点光源,不能照亮 , ,

由于对称性,放置在房间下半部分相应区域的光源也会产生相同的效果。因此,我们可以得出结论,无论点光源放置在房间内的哪个位置,彭罗斯房间都会存在不能被照亮的区域。

描绘了被分成不同区域的彭罗斯不透光房间。
将房间划分为不同的区域。放置在 区域的一个光源只会照亮 , 区域;放置在 区域的一个光源不会照亮 。放置在 的一个光源不会照亮 , ,

让光存在:照亮没有照亮的区域

上文中的射线追踪模拟似乎显示了令人信服的结果,证实了房间无法被照亮,但真的是这样吗?我们不能忘记射线光学的基本假设:光的波长远远小于与光相互作用的物体的大小,因此,衍射效应可以完全忽略。我们记得 是描述房间顶部和底部墙壁的椭圆的长轴。射线光学模拟本质上是假设波长 𝜆 <<𝑎。如果我们有一个大小在米级尺度的真实房间,光源在可见光谱范围内(约 500 nm 波长),这个假设是成立的。但是,如果我们缩小房间或者增加光的波长,使 大小相当,那会怎样?

为了测试这一点,我们现在使用波动光学模块进行全波模拟。在房间左上角的伞下方( 区域)放置一个点[线电流(面外)],类似于上面显示的房间的第三个射线追踪动画。线电流 用作点源,发射出电场指向面外方向的圆柱形波。在频域中模拟波长增加时的场分布,如下图所示。正如预期的那样,在 (左上)时,场分布与射线追踪模拟相似。场似乎没有穿过房间的下半部分。然而,随着波长变长,衍射更加突出,场渗入到房间的下半部分。在 (左下)和 (右下)时,很明显之前没有被照亮的区域被照亮了!

这张图片显示了彭罗斯不透光房间模型的4种不同的频域中的模拟场分布。
, , 时,模拟的频域中的场分布。在较短的波长下,场分布与射线追踪结果类似。然而,在较长的波长下,场会穿透到之前由于衍射而没有被照亮的区域。图中绘制了电场的模。

除了使用电磁波,频域 接口来展示达到稳态时的场分布外,使用 电磁波,瞬态 接口运行时域仿真可以通过视图查看波的传播和衍射过程。

 

由位于房间上半部的左侧伞的“下方”(左侧)的线电流发出的面外电场,并在时域中进行了模拟。由于衍射,电场渗入到房间的下半部分。波长为

波干涉

到目前为止,我们的模拟似乎表明彭罗斯房间只有在完全忽略衍射效应的前提下才能不被照亮。但是,我们必须意识到,不能这么快就得出这个结论。实际上情况更加复杂。当光的波动性出现时,需要考虑另一个重要现象——干涉。通过查看频域仿真结果,我们可以看到,在许多区域,电场的模实际上为零。这是因为出射波和衍射波相互干涉,形成一个场强存在零的节点的驻波模式。因此,从某种意义上说,这些区域在达到稳态时并未被被照亮。如果等待足够长的时间,总会有没有光线的区域。另一方面,我们可以在时域中考虑它。当光波第一次传播到这些区域时,它们在一段时间内被照亮,直到衍射波到达后抵消电场。从这个意义上说,整个房间至少在一段时间内都被照亮了。总之,整个房间有没有被照亮取决于你的解释。最重要的是,我们可以看到,在不同的尺度上,光学现象看起来可能大不相同。作为仿真工作者,我们始终需要牢记波动光学和射线光学之间的根本区别,以及与之相关的独特现象。

结语

除了这个有意思的数学谜题之外,彭罗斯房间是展示波动光学和射线光学之间根本区别的一个很好的例子。在不同的假设下,同一个问题的结论可能完全不同。它还回答了很多初学者提出的问题:COMSOL® 软件有两个光学模块。我应该使用波动光学模块还是射线光学模块来模拟我的光学问题?简单的回答是:我们研究的几何尺寸是否是远大于相关波长。例如,模拟可见光与相机透镜系统的交互或街道上运行的激光雷达相互作用,那么使用射线光学模块就非常合适。另一方面,如果我们关注的是尺寸更小或与波长相当的纳米粒子的光散射,那么使用波动光学模块或 RF 模块进行全波模拟是不可避免的。同时,模块的选择还取决于你感兴趣的物理量和过程。例如,射线光学模拟可以生成光传播路径,而波动光学模拟可以渲染完整的电场分布。

为你的仿真选择合适的模块不仅可以确保仿真结果的准确性,还可以节省大量的仿真时间。

下一步

单击下面的按钮,进入 COMSOL 案例库,尝试自己模拟无法全屋照亮的彭罗斯房间模型:

更多资源

  • 想了解更多关于这个照明问题的信息吗?请观看下面这些视频,视频中使用了动画、绘图和 3D 打印机深入讨论了无法全屋照亮的彭罗斯房间:
]]>
//www.denkrieger.com/blogs/investigating-the-penrose-unilluminable-room-with-ray-optics/feed/ 0
在高频电磁学中模拟石墨烯材料 //www.denkrieger.com/blogs/modeling-graphene-in-high-frequency-electromagnetics //www.denkrieger.com/blogs/modeling-graphene-in-high-frequency-electromagnetics#comments Wed, 15 Jun 2022 08:28:16 +0000 http://cn.staging.comsol.com/blogs?p=306291 石墨烯等二维材料具有良好的性能,因此成为研究和应用的热点。在这篇博客中,我们将以石墨烯基太赫兹超材料完美吸收体为例,演示如何在高频电磁学中精确、高效地对二维材料进行建模。本文所讨论的技术同样适用于其他薄层的模拟,例如光学器件上的涂层。

简介

石墨烯是一种仅由单层碳原子组成的材料,这些碳原子以六边形晶格的形式排列。长期以来,物理学家一直假设存在一种具有单个原子层的材料。几十年前,人们普遍认为,由于热力学不稳定性,像石墨烯这样的材料不可能在自然界中存在。2004年,由曼彻斯特大学的 Konstantin Novoselov 和 Andre Geim领导的一个物理学家团队首次通过实验证明了石墨烯的存在。这一发现被认为是非常重要并具有革命性,因此很快在 2010 年获得了诺贝尔奖

当前,这种材料已经被全球的物理学、材料学等领域科学家和工程师广泛研究。此外,越来越多的单层材料,如六方氮化硼、黑磷、二硫化钨等,多年来相继被发现。如今,对包含二维材料器件的需求持续上升,因此需要对这些材料进行多物理场建模。

在此,我们将讨论在高频电磁场中对石墨烯等非常薄的材料建模的不同方法。如果你对包含二维材料或其他薄层的光电或光子器件的模拟感兴趣,应该会从以下讨论中受益。

左边的图示显示了石墨烯的六边形结构。右边的插图显示了石墨烯的线性能量-动量弥散关系。
左图显示了石墨烯的六边形晶格结构,其中灰色圆圈代表碳原子。右图显示了石墨烯中的线性能量动量色散关系,通常被称为 狄拉克锥。带内和带间电子跃迁都对石墨烯的导电性有贡献。

石墨烯的光学电导率

由于线性能量-动量色散,石墨烯中的电子表现得好像没有质量,这使其具有非常独特的光学和电子特性。石墨烯层的电磁特性可以通过其二维表面电导率来表征。带内和带间电子跃迁都对总电导率有贡献,即。使用 Kubo 公式,带内跃迁贡献由下式给出

\sigma_{2D}^{intra}=\frac{2k_BTe^2} {\pi\hbar^2}\ln(2\cosh\frac{E_f}{2k_BT})\frac{-j}{\omega-j/\tau},

其中, 是玻尔兹曼常数, 是简化的普朗克常数, 是温度, 是电子电荷, 是费米能量, 是角频率。这种贡献在光子能量较低(射频、微波和太赫兹范围)时占主导地位。当光子能量增加到红外和光学频率时,电子带间跃迁开始。带间电导率由下式给出

\sigma_{2D}^{inter} = \frac{e^2}{4\hbar}[H(\frac{\omega}{2})-j\frac{4\omega}{\pi}] \int_{0}^{\infty} \frac{H(\Omega)-H(\frac{\omega}{2})}{\omega^2-4\Omega^2} \,d\Omega,

函数可以写为

H(\Omega)=\sinh\frac{\hbar\Omega}{k_BT}/[\cosh\frac{\hbar\Omega}{k_BT}+\cosh\frac{E_f} {k_BT}
].

COMSOL Multiphysics® 软件内置众多物理常数,例如 。这些常数可以写为 k_B_consthbar_const e_const。此外,当在一个方程中使用不同单位系统中的不同量时,在 COMSOL 中也可以很方便地进行单位自动转换。带间电导率的积分可以使用 COMSOL® 中的内置积分算子计算。请注意,积分的上限是无穷大。在数值上,我们必须把它截断为一个有限值。在该模型中,数值取 rad/s 时结果趋于稳定。

COMSOL Multiphysics 软件中的变量、定义、单位和绘图参数部分放大的截图。
用于计算石墨烯电导率的变量和解析函数。内置常量和算子的使用大大简化了实现。

下图显示了在低频 (THz) 和高频 (IR) 下不同费米能量的石墨烯表面电导率计算结果。在低频下,带内跃迁占主导,电导率遵循-Drude 响应。在非常高的频率下,电导率接近普遍值 是普朗克常数。在这里,我们还可以通过电调控或化学掺杂改变费米能量,可以看到石墨烯出色的可调性。这使得石墨烯成为电子和光电器件中非常理想的材料。最后,如果我们想将石墨烯视为三维平板,则可以由二维表面电导率计算出三维电导率 是石墨烯的(有效)厚度。

图中显示了石墨烯在太赫兹频率范围内不同费米能级的电导率。图中描绘的实线代表电导率的实部,虚线代表电导率的虚部。
一张显示石墨烯在红外频率范围内不同费米能级的电导率的图。实线代表电导率的实数部分,虚线代表电导率的虚数部分。

左图显示了在太赫兹频率范围内具有不同费米能量值的石墨烯电导率,其中带内跃迁是主要效应。右图显示了在红外频率范围内具有不同费米能量值的石墨烯电导率,其中带间跃迁的贡献变得很重要。在这两个图中,实线代表电导率的实部,虚线代表电导率的虚部。

在射频和波动光学模块中对石墨烯进行建模

那么,我们应该如何在电磁仿真中模拟石墨烯呢?由于其原子厚度,将它明确建模为实际厚度约为 0.34 nm 的三维薄板,计算量很大,而且很可能是不必要的。接下来,我们将演示三种不同的方法:分别使用过渡边界条件表面电流密度 边界条件和一个有效厚度的三维板。我们发现,就远场光谱而言,这三种方法都能得到几乎相同的结果。请注意,这里所讨论的技术是通用的。它们不仅适用于石墨烯,而且适用于任何几何薄层。作为一个具体的例子,我们将构建一个参考文献1中提出的基于石墨烯的太赫兹超材料吸收器。

在下图所示的吸收器结构中,由两个石墨烯层制成的网状图案被嵌入聚合物介质中。结构底部的金属接地层用作反射面。地平面和石墨烯之间有效地形成了一个 Fabry–Perot 谐振器。我们很容易注意到,单元格中有两个镜像对称。因此,可以使用 COMSOL 中的完美电导体完美磁导体 边界条件来描述这些对称平面,因此只需对四分之一的单元格进行建模。当我们考虑太赫兹辐射的法向入射时,这是适用的,在这个示例模型中就是这种情况。

基于石墨烯的太赫兹超材料吸收器的图示,标注了其各个部分,包括由两层石墨烯组成的网状结构,聚合物介质和底部接地面。
基于石墨烯的太赫兹超材料吸收器,由石墨烯层制成的网装结构被嵌入聚合物介质中。模型的底部是金属接地层。

在 COMSOL 软件的 RF 模块波动光学模块中,内置的过渡边界条件 可用于模拟内部边界上的几何薄层。在物理上,它表示由于感应表面电流密度导致的切向电场的不连续性

J_{s1}=\frac{Z_S E_{t1}-Z_TE_{t2}}{Z_S^2-Z_T^2},

J_{s2}=\frac{Z_S E_{t2}-Z_TE_{t1}}{Z_S^2-Z_T^2},

其中,。指数 1 和 2 指的是表面的两侧。默认情况下,过渡边界条件 假设薄层中的正常传播,这在我们的模型中得到满足,同时仍然假设层具有有限的厚度。石墨烯的(有效)厚度 可以设置为任意小的值,例如 1 nm,只要将三维电导率相应地缩放为 。由于在这个特定模型中有两层石墨烯,我们将在过渡边界条件设置中输入厚度 (详情请见相关模型,链接在本文的末尾)时,三维电导率计算为 。(有关详细信息,请参阅本博文末尾链接的相关模型)。请注意,两个单独的石墨烯层紧密放置在一起,与双层石墨烯之间存在明显差异。当两个单独的石墨烯层紧密地放置在一起时(如该模型),每一层的电导率都不会改变。另一方面,双层石墨烯是由范德华力限制的两个石墨烯层。这种边界可以明显改变石墨烯的性质,有多个影响因素,例如堆叠顺序、扭转角度等。也就是说,在对双层石墨烯或三层石墨烯进行建模时,需要以不同的方式计算电导率。

我们模拟的器件在不同费米能量下的模拟吸收光谱如下图所示。结果与参考文献1一致。在 0.5 eV 费米能量下,存在宽吸收带,在 2.8 THz 附近获得完美吸收。高吸收是由石墨烯和底部接地平面之间形成的 Fabry–Perot 谐振器引起的。当满足共振条件时,在石墨烯中获得高吸收。该器件的吸收可以主动调整,例如通过调整石墨烯上的栅极电压。

显示石墨烯基超材料在不同费米能量下的吸收光谱的图。
石墨烯基超材料在各种费米能量下的吸收光谱。使用 过渡边界条件对石墨烯进行建模。

作为使用过渡边界条件 的替代方案,我们可以使用 表面电流密度边界条件 直接对石墨烯进行建模,如上一篇博文中所简要讨论的那样。这样,我们可以真正将石墨烯视为没有任何厚度的二维层。这里,xy 方向上的电流密度分别设置为 的吸收光谱与过渡边界条件 示例的结果相同,如下图所示。

前面讨论的侧重点是通过特定边界条件对石墨烯进行建模,避免对石墨烯层进行全尺寸三维建模。这样,模拟速度和 RAM 使用率都大大提高了。原则上,我们也可以对石墨烯进行三维建模。为了使模型尽可能逼真,一种选择是将石墨烯创建为厚度为 0.34 nm 的三维平板。然而,在这个特定模型中,我们关注的是太赫兹辐射,其波长约为 100 μm。只要石墨烯的厚度远小于波长,就其光学响应而言,没有实际差异。同样,假设三维电导率与有效厚度适当缩放。为方便演示,我们在模拟中使用了 100 nm 的有效厚度(结果可以在下面的散点图中看到)。我们可以看到,即使我们使用了比例放大的厚度,结果仍然与正确的值基本相同。选择一个较大有效厚度是合理的,因为它有助于网格剖分并避免过度网格奇异。但是对 CPU 时间和 RAM 的要求仍然比之前的方法要大得多。

用三种不同的方法模拟的石墨烯基超材料的吸收光谱图,包括过渡边界条件(用蓝色实线表示)、表面电流密度(用绿色虚线表示)和有效厚度的三维体积(用卦形表示)。
使用三种不同方法: 过渡边界条件表面电流密度和具有有效厚度的三维体积,模拟石墨烯基超材料的吸收光谱。结果基本一致,三维体积需要更长的模拟时间。

结语

总之,几何薄层在电磁建模中无处不在。除了二维材料,常见的薄层还包括光学元件上的抗反射涂层、电子元件上的导电涂层、PCB 上的薄金属层等。COMSOL 软件的 RF 模块和波动光学模块内置了过渡边界条件表面电流密度 等功能,可以帮助降低几何薄层建模时的计算复杂性。适当使用这些功能可以大大加快仿真速度,同时确保准确性。

下一步

单击下面的按钮,进入 COMSOL 案例库下载教程模型,动手尝试自己建立石墨烯超材料完美吸收器模型。

参考文献

  1. A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach”, Opt. Express, vol. 21, pp. 9144–9155, 2013.
]]>
//www.denkrieger.com/blogs/modeling-graphene-in-high-frequency-electromagnetics/feed/ 10
二维轴对称模型中的电磁散射 //www.denkrieger.com/blogs/electromagnetic-scattering-in-2d-axisymmetric-models //www.denkrieger.com/blogs/electromagnetic-scattering-in-2d-axisymmetric-models#comments Tue, 12 Apr 2022 06:49:58 +0000 http://cn.staging.comsol.com/blogs?p=304871 具有连续旋转对称性的物体的电磁散射模拟可以在二维轴对称模型中进行,而不需要建立三维模型,从而大大减少了计算时间和资源。在这篇博文中,我们讨论了如何利用柱坐标中的平面波展开,在二维轴对称模型中模拟任意的平面波入射。

电磁模拟中的散射场公式

当传播的电磁波撞击到一个物体时,与物体的相互作用通常会改变原始波的传播特性。这种散射事件在射频、微波和光学工程中往往会引起极大的兴趣。为了准确地模拟电磁散射,COMSOL Multiphysics® 软件的附加模块——RF 模块和波动光学模块提供了一个 散射场 公式,其中总场被写为用户定义的背景场和将被模拟求解的散射场之和,背景场的常见选项包括平面波和高斯光束。还可以灵活地定义一个任意的背景场。

 

柱坐标中的平面波展开

在不同的背景场中,平面波是最常用的。然而,与二维和三维模型不同,我们不能简单地将二维轴对称模型中的背景场设置为沿任意方向传播的平面波,因为它破坏了旋转对称性。但是,通过接下来介绍的建模技巧,我们可以在二维轴对称模型中实现平面波背景场。

现在,让我们考虑一个由下式给出的一般平面波背景场

\bm{E_b}=\bm{E_0}e^{i(\omega t-\bm{k} \cdot \bm{r})}

在不失一般性的情况下,假设 在 xz 平面上, z 轴的角度由 给出。为了简单起见,我们只考虑 p 偏振入射,但 s 偏振也可以用类似的方式实现。对于 p 偏振,,其中 。因此,平面波可以被写成

\bm{E_b}
= E_0 ( cos\theta e^{-ikrsin\theta cos\phi} e^
{ikzcos\theta} \bm{\hat{x}} + sin\theta e^{-ikrsin\theta cos\phi} e^{ikzcostheta}
\bm{\hat{z}})

其中, 是方位角,并且 。这里, 为了简单起见,我们忽略了因子 ,但是还隐含在其中。实现扩展需要两个关键成分:平面波和柱坐标中的部分波展开

e^{-i k r cos\phi} = \sum_{m=-\infty}^{\infty} (-i)^m J_m(kr)e^{-im\phi}

以及从笛卡尔坐标到柱坐标的变换

\bm{\hat{x}} = \frac{1}{2} [e^{i\phi} (\bm{\hat{r}} + i\bm{\hat{\phi}}) + e^{-i\phi} (\bm{\hat{r}} – i\bm{\hat{\phi}})]

其中, 是一阶贝塞尔函数, 。结合上述方程和一些代数可得

\bm{E_b} = E_0e^{ikzcos\theta} \{ \frac{1}{2}cos\theta \sum_{m=-\infty}^{\infty} [(-i)^{m-1} J_{m-1} (krsin\theta) + (-i)^{m+1}J_{m+1}(krsin\theta)]e^{-im\phi} \bm{\hat{r}} \\
-\frac{i}{2}cos\theta \sum_{m=-\infty}^{\infty} [(-i)^{m-1} J_{m-1} (krsin\theta) – (-i)^{m+1}J_{m+1}(krsin\theta)] e^{-im\phi}\bm{\hat{\phi}} \\
+sin\theta \sum_{m=-\infty}^{\infty} (-i)^m J_m (krsin\theta)e^{-im\phi} \bm{\hat{z}} \}

现在,我们终于可以把平面波背景场写成一个无限的方位角模数之和,其中柱坐标模数为 ,这意味着它可以进行二维轴对称模拟。此外,正 和负 只相差一个相因子,因此原则上,求和只需要从 进行。例如,背景场的 分量可以写为

\bm{E_r} = \frac{1}{2} E_0 e^{ikzcos\theta} cos\theta \sum_{m=0}^{\infty} \chi(m)[(-i)^{m-1}J_{m-1}(krsin\theta) + (-i)^{m+1} J_{m+1} (krsin\theta)]cos(m\phi) \bm{\hat{r}}

其中, 是一个阶跃函数,因此对于 ,对于 。虽然求被展开到无穷大,但如果散射的大小与波长相当,那么结果将仅在几个项之后收敛。

研究长椭球体的散射

来看一个具体的例子,我们使用 COMSOL Multiphysics 来研究一个银质长椭球体在 5 THz 到 50 THz 的红外频率范围内的散射。首先,我们创建一个含半轴 的长椭球体。银在相关频率范围内的光学特性可以从材料库中找到。我们可以在球体的表面施加 阻抗边界条件,因为在这个频率范围内,银的导电性很高,我们仍然要考虑小的损失。在外部边界上添加完美匹配层(PMLs),用于吸收出射的辐射。

接下来,我们定义之前在固定方位角模数 下得出的背景场的每个分量,并在散射公式中将它们作为背景电场使用。在 变量 子节点中,我们还定义了散射截面,它是坡印廷矢量的表面积分。(我们将在后面进一步讨论这个问题。)

变量子节点的屏幕截图,显示了名称、表达式、单位和描述字段.
背景场的每一个分量都被定义为一个变量。

散射场公式的屏幕截图,显示了背景波类型和背景电场的设置。
使用了一个 散射场公式。阶跃函数考虑了正负

最后,我们设置了频率扫描,以 0.25 THz 的增量在 5 THz ~ 50 THz 频率范围内扫描,并使用辅助扫描从 0 到 扫描 。使用频率和辅助扫描,而不是更常见的参数扫描可以提高仿真速度。

频率扫描和辅助扫描设置的截图。
频率扫描和辅助扫描的设置

即使对单元大小进行了非常精细的设置,宽带模拟也只需大约 5 分钟就可以完成了。在后处理中,我们将使用一些技巧来可视化总散射场和总背景场,以确保它与平面波非常相似。为此,我们利用了二维镜像 数据集(详见相关模型)。我们可以在同一幅图中绘制 场分布。总散射场是每个展开项的散射场之和。例如,在 30 THz 及 处的总散射场的模可以计算为

sqrt(abs(sum(withsol('sol1', ewfd.relEz*cos(m*0), setind(m,index),setval(freq,30[THz])), index, 1, N+1))^2 + abs(sum(withsol('sol1', ewfd.relEr*cos(m*0), setind(m,index),setval(freq,30[THz])), index, 1, N+1))^2 + abs(sum(withsol('sol1', j*ewfd.relEphi*sin(m*0), setind(m,index),setval(freq,30[THz])), index, 1, N+1))^2)

这里,使用 withsol 算子挑选出频率为 30 THz ,方位角模数 的散射场,算子用于对每个解的贡献进行求和。

 具有一个彩色标尺的总散射场的二维图,显示了一个白色的椭圆形,蓝色的背景和一些绿色和红色的背景。
通过对每个展开项的贡献求和,在 30 THz 处的总散射场模的二维图。

另外,我们可以利用二维旋转 数据集来绘制三维散射场。请注意,在默认情况下,二维旋转 数据集只是实现了一个体旋转,其中的方位角依赖性被忽略了。因此,我们首先在二维旋转 数据集的设置中启用高级 标签下的定义变量,然后可以手动添加正确的 依赖。这样就可以为方位角启用一个名为 rev1phi 的变量。最终,三维总散射场模的正确表达就是:

sqrt(abs(sum(withsol('sol1', ewfd.relEz*cos(m*rev1phi), setind(m,index),setval(freq,30[THz])), index, 1, N+1))^2 + abs(sum(withsol('sol1', ewfd.relEr*cos(m*rev1phi), setind(m,index),setval(freq,30[THz])), index, 1, N+1))^2 + abs(sum(withsol('sol1', j*ewfd.relEphi*sin(m*rev1phi), setind(m,index),setval(freq,30[THz])), index, 1, N+1))^2)

一个蓝色的三维曲面图,显示出一个底部为红色,充满了浅蓝色、绿色和黄色的椭圆形。
二维旋转数据集的同一场的三维表面图

背景场可以用与散射场相同的方式来绘制。我们可以看到,只有 展开时,散射周围的背景场才与平面波无异。

整个背景场的二维绘图,显示出白色椭圆和彩色背景。
通过对每个展开项的贡献求和,得到总背景场的 z 分量

最后,我们想将散射截面绘制为频率的函数。请注意,在变量 中,我们定义了散射截面的表达式。总散射截面可以计算为

-withsol('sol1', sigma_sc, setval(m,0),setval(freq, freq))-sum(withsol('sol1', 0.5*sigma_sc, setval(m,val),setval(freq, freq)),val,1,N)

减号是由于球状体表面的法线指向内部。 对于 的项,乘性系数 0.5 是为了补偿能量的加倍,因为每个项都是正负之和。通常,总的散射截面不是简单的每个展开项的计算之和。这是因为散射截面和坡印廷矢量直接与能量相关,而不是与场相关。能量是与场的平方成正比的。因此,当对许多项的总和进行平方时,除了平方的总和之外,还出现了交叉项。幸运的是,在我们的例子中,由于方位角模数的正交性,交叉项都消失了,也就是说,当积分到超过 ,交叉项都是零。因此,总的散射截面只是每个展开项的总和。我们可以看到,长椭圆球体的散射截面在质量上与球体的散射截面相似,这是著名的米氏计算的结果。

一幅显示了银质椭圆长球形的散射截面和红外频率
银质长椭圆球体在红外频率下的散射截面。

结论

在这篇博文中,我们介绍了一种使用二维轴对称模型模拟平面波激励下的旋转体散射特性的方法。与完整的三维模拟相比,使用这种方法进行模拟可以获得巨大的回报。计算的内存和时间成本至少要小一个数量级。因此,可以使用非常精细的网格实现非常高的模拟精度。此外,由于 RAM 的要求很小,而需要扫描的参数很多,因此使用批量扫描功能在同一时间同时运行多个模拟具有明显的优势,尽管我们在这里并没有在示例模型中演示。我们演示了散射场和散射截面的计算,但也可以得出与散射问题相关的其他数量,如远场辐射模式。最后,需要注意的是,在计算各种物理量时,必须注意追踪与模数相关的相因子。

动手尝试

点击下面的按钮,进入 COMSOL 案例库。尝试自己动手模拟平面波散射展开 模型:

]]>
//www.denkrieger.com/blogs/electromagnetic-scattering-in-2d-axisymmetric-models/feed/ 1
设计用于红外应用的抗反射微结构 //www.denkrieger.com/blogs/designing-antireflecting-microstructures-for-infrared-applications //www.denkrieger.com/blogs/designing-antireflecting-microstructures-for-infrared-applications#comments Tue, 29 Jun 2021 02:55:42 +0000 http://cn.staging.comsol.com/blogs?p=286931 红外光在各种领域都有着广泛的应用,包括热成像仪、夜视仪、生物医学传感器,等等。制造红外相机镜头和窗口的材料折射率非常高,相当一部分光会被反射回来(硅约 30%,碲化镉约 21%)。传统上解决这一难题的方法是使用多层电介质涂层,但仍存在一定的困难,如有限的带宽、狭窄的接受角度,以及在高温(例如激光)下工作时薄层之间的黏性会失去。克服这些困难的一个方法是在透镜或窗口的顶部表面蚀刻特定的图案,来提高红外光谱内的透射率。然而,在最终确定产品之前,分析透镜和窗口上不同蚀刻图案的透光率需要多次设计迭代。

编者按:本文于 2021 年 11 月 9 日更新,包括对微结构宽带优化的讨论。

模拟抗反射微结构的不同设计图案

仿真是解决高制造费用问题最明智的方法之一。我们可以通过模拟不同或更复杂的图案来提高最终原型的透射率,再进行制造。在这篇博文中,我们探讨了如何通过两种微结构设计将硅(约70%)和碲化镉(约79%)的体透射率在特定波长光谱内提高到 90% 以上。这两种微结构设计是:

  1. 矩形
  2. 金字塔形

如下图所示,可以在块状硅(或体硅)顶部蚀刻矩形微结构阵列。然而,与其在体硅上建立矩形微结构阵列的模型,不如模拟具有周期性条件的简单基本单元。这种方法不仅大大减少了模型的计算时间,又不会影响结果的准确性。虽然我们可以在 COMSOL Multiphysics® 软件中分析 3D 基本单元,但为了保持分析的简单性,同时仍能获得更多的细节,我们将介绍一种对 3D 单元格的 2D 横截面进行建模的简单方法。

三幅并排的图像将体硅显示为蓝色立方体,体硅上的矩形微结构阵列显示为绿色矩形,以及整个结构中的一个晶胞,其周期性条件被标记。
可以用体硅上的矩形微结构阵列代替体硅结构建模。具有周期性条件的晶胞模型复制了体硅上的矩形微结构阵列。

含硅衬底的矩形微结构

据估计,硅的体积透射率约为 70%。另外 30% 被反射并在环境中流失。本节,我们将讨论蚀刻在硅衬底顶部的矩形微结构阵列在 2.6μm ~ 4.5μm 红外光谱下如何将透射率提高 90% 以上。还分析了在不同的入射角(0°- 80°)下,蚀刻矩形微结构硅的透射率。

矩形图案被蚀刻在完整的硅块衬底上,然而为了简单起见,我们建立一个 2D 截面的基本单元模型,如下图所示。我们可以通过改变矩形图案的高度和宽度以及基本单元的间距,来改变 2.6μm ~ 4.5μm 的透射率曲线。

在这个模型中,我们将基本单元的间距设置为 780nm,矩形的高度和宽度分别为 450nm 和125nm。在单元格的两侧施加 Floquet 周期性条件。将端口类型设置为周期性,选择端口 条件用于发射在 z 方向(平面外)的偏振以及在 y 方向(向下)传播的电磁平面波。在端口2 中添加平面外(m=±1)的衍射阶数,用于考虑高阶衍射。

矩形微结构晶胞的边界条件示意图,其中标记了周期性条件、端口、空气和硅
建立矩形微结构基本单元的边界条件。

首先,在 2.6μm ~ 4.5μm 波长内,以 0.1μm 的步长进行波域研究。然后,在入射角(在端口 边界条件中提到的)为 0° ~ 80° 以 1° 的步长进行入射角的研究,工作波长为 3μm。可以看出,在 2.6μm ~ 4.5μm 的正常入射角范围内,体硅的透射率(约 69%)可以提高到 92% 以上。在入射角扫描研究中,40° 之后的透射率明显下降。

绘制硅衬底(一种抗反射微结构)在工作波长变化时的透射率的折线图
硅矩形微结构在变化的工作波长下的 0th 阶透射率。

绘制在 3 um 操作时硅微结构的透射率的折线图
在 3μm波长,不同的入射角下,硅矩形微结构的 0th 阶透射率。

含碲化镉锌衬底的金字塔形微结构

据估计,碲化镉锌的体透射率约为 79%。另外的 21% 被反射并流失在环境中。本节,我们将讨论蚀刻在碲化镉锌衬底上的金字塔形微结构将 7μm ~ 14μm 的红外光谱中的透射率提升至90%以上。我们还分析了在不同入射角(0°~80°)下,用金字塔形微结构蚀刻的碲化镉锌的体透射率。

在这个模型中,基本单元的间距被设置为 2.4μm,金字塔的高度被设置为 5μm。金字塔顶部边缘的宽度被设置为 100nm。同样,在单元格的两侧施加 Floquet 周期性,选择端口 条件,周期性 类型,用于发射在 z 方向(平面外)的偏振,以及在 y 方向(向下)传播的电磁平面波。在端口2 中添加平面外(m=±1)的衍射阶数,用于考虑到高阶衍射。

金字塔形微结构晶胞的边界条件示意图,其中标记了周期性条件、端口、空气和硅
建立金字塔形微结构基本单元的边界条件。

首先,在 7μm ~ 14μm 的波长内,用 0.2μm 的步长进行波长域研究。然后,在入射角(在端口 边界条件中提到的)为 0° ~ 80° 以 1° 的步长进行工作波长为 7.5μm 的波长域研究。可以看出,在波长为 7μm ~ 14μm 且为正入射光时,可以将硅的透射率(~79%)可以提高到 94% 以上。在入射角扫描研究中,27° 之后的透射率明显下降。

绘制工作波长变化时 CZT 微结构的透射率的折线图
碲化镉锌金字塔形微结构在变化的工作波长下的 0th 阶透射率。

绘制 CZT 微结构在 7.5um 下操作时的透射率的线图
在 7.5μm 的波长,不同入射角下,碲化镉锌金字塔型微结构的 0th 阶透射率。

微结构的宽带优化

此外,是否可以进一步提高矩形和金字塔形几何体的宽带透射率也是一个问题。为了解决这个问题,我们通过定义以下目标函数,为矩形和金字塔形微结构设置了无梯度宽带优化:

\[ \text{目标函数} = \sum_{\lambda=\lambda_{min}}^{\lambda=\lambda_{max}} \left( \frac{T_e – T_t}{T_e} \right)
^2 \]

其中, 分别是最小和最大工作波长,= 100*realdot(ewfd.S21,ewfd.21) = 100*|ewfd.S21| 2 , = 100。目标函数试图优化整个光谱中的透射率,使其接近 100% 的目标透射率。

对于矩形微结构,使用2个受以下条件约束的控制参数: (柱宽)和  (柱高)设置上面的目标函数:

w_{pillar}^L < w_{pillar}< w_{pillar}^U

 

h_{pillar}^L < h_{pillar} < h_{pillar}^U

对于金字塔形微观结构,同样使用受约束的3个控制参数:  (金字塔底宽),  (金字塔顶部宽度),和  (金字塔高度)设置目标函数:

wb_{pyramid}^L < wb_{pyramid} < wb_{pyramid}^U

 

wt_{pyramid}^L < wt_{pyramid}< wt_{pyramid}^U

 

h_{pyramid}^L < h_{pyramid} < h_{pyramid}^U

下标 L 和 U 表示约束的下限和上限。

COMSOL 案例库中的教程模型描述了宽带优化的完整细节。设置优化研究,是为了在下限到上限的范围内改变控制参数来最小化目标函数。对于矩形微结构,在 2.5μm ~ 4.5μm进行宽带优化,而对于金字塔形微结构,在 7μm ~ 14μm 进行宽带优化。

原始几何结构和优化几何结构的无梯度宽带优化结果,如下面的图表所示。

比较矩形微结构的原始几何形状和优化几何形状的透射率的图表。
COMSOL Multiphysics 中金字塔形微观结构的原始几何形状和优化几何形状的透射率对比图。

矩形(左)和金字塔形(右)微结构的原始几何结构和优化几何结构的透射率比较。

下表总结了矩形微结构的几何参数:

参数 原始几何 优化几何
立柱厚度 50nm 111.32nm
立柱高度 100nm 461.67nm

下表总结了金字塔形微结构的几何参数:

参数 原始几何 优化几何
金字塔的顶部宽度 50nm 50nm
金字塔的底部宽度 0.5μm 0.9μm
金字塔的高度 0.5μm 2.25μm

总结

通过仿真,我们能够确定硅衬底矩形微结构可以将体硅的透射率(~70%)在 2.6μm 和 4.5μm 光谱之间提高到 90% 以上,而金字塔形 碲化镉锌微结构可以将体碲化镉锌的透射率(~79%) 在 7μm ~ 14μm 光谱范围内提升到 94% 以上。我们还可以观察到,当矩形硅和金字塔形碲化镉锌微结构的入射角增加时,透射率会降低。如文中所述,我们还可以通过执行无梯度宽带优化来进一步提高这些微结构的宽带透射率。

下一步

想尝试模拟红外波长的微结构抗反射涂层吗?单击下面的按钮可以访问本文讨论的模型的 MPH 文件。

您还可以尝试动手模拟这些相关的教程模型:

参考资料

  1. D.S. Hobbs, B.D. MacLeod, “Design, fabrication, and measured performance of anti-reflecting surface textures in infrared transmitting materials,” Proc. SPIE 5786, Window and Dome Technologies and Materials IX, pp. 349–364, 2005.
]]>
//www.denkrieger.com/blogs/designing-antireflecting-microstructures-for-infrared-applications/feed/ 3