众所周知,高尔夫球的凹痕对它的空气动力学特性非常重要,因为它们会产生能够减少球阻力的湍流。然而,这听起来是不是违反直觉?一般来说,光滑的物体比粗糙的物体更遵循空气动力学原理。在今天的博客中,我们将深入探讨这个看起来有明显悖论的问题,并学习如何在 COMSOL Multiphysics®软件中模拟高尔夫球的轨迹,最终找到击球的最佳角度。继续阅读,了解如何获得一杆进洞的机会……
从观察到数学模型
小时候,我偶尔会在下雨天和家人一起在附近的高尔夫球场散步,那是唯一没有高尔夫球手敢打球的时候。我们经常玩的游戏是寻找一些不幸的球手丢失的球,找到球最多的人将获胜。无数个阴雨天后,我们收集的高尔夫球越来越多!虽然我们不知道如何打高尔夫球,但是都认为球凹痕的存在是有原因的,可能是为了美观或者让球在空中飞得更快。
有没有想过为什么高尔夫球有凹痕?
很多年过去了,现在我是那个在高尔夫球场丢球的不幸的高尔夫球手了(我想生活已经轮回了)。然而,现在我有机会通过工程师的视角再看一遍那些熟悉的球:为什么它们有凹痕?我可以使用 COMSOL Multiphysics 模拟高尔夫球吗?我可以优化我的击球方式以减少丢球,并有可能打出标准杆吗?上一篇篇博客已经帮助我改进了我的高尔夫挥杆方式,但我需要更多可以帮助我的信息,所以我找到了我的教科书……
对阻力危机的观察
历史上,科学家们研究了许多不同形状周围的流动。例如,涡街是由圆柱体绕流产生的。虽然球体不会产生这种大的交替流动结构,但流动特性也可以与雷诺数联系起来。对于一个直径为d的球体,在密度为\rho, 动力黏性为\mu, 速度为U的流体中,雷诺数 Re 由下式定义:
(1)
低雷诺数的流动被称为层流,黏性力占主导地位。反之,如果雷诺数很大,流动则是湍流,惯性力占主导地位。与其比较阻力的绝对值D,即物体对流动的阻力,较为常规的做法是定义无量纲阻力系数C_D:
(2)
其中,A= \dfrac{1}{4} \pi d^2是球的横截面积。
Gustave Eiffel和 Ludwig Prandtl 几乎同时观察到,根据流态的不同,球体的阻力系数不是恒定的,甚至在很小的雷诺数范围内也有显著的差异。这种阻力系数的突然下降通常被称为阻力危机,在其他类型的球(如足球和橄榄球)中也可以观察到这一点。唯一的区别是阻力危机发生的位置,如下图所示。
一个光滑的球和一个高尔夫球的阻力系数分布比较。高尔夫球的凹痕已将阻力危机转向较低的雷诺数值,但与光滑的球相比,其下降幅度较小。另请注意,仅在有限的雷诺值范围内,高尔夫球的阻力系数较小。
已知球手击出的高尔夫球的典型速度约为 260 公里/小时(160 英里/小时),考虑一个官方高尔夫球设计(d=42.67 毫米),可以得到一个典型的雷诺数2\cdot10^5。从上图可以看出,高尔夫球的阻力系数落在雷诺数的理想范围内,其阻力系数大约是光滑球阻力系数的一半。这就解释了高尔夫球上有凹痕的原因。对于特定的雷诺数范围,高尔夫球受到的阻力较低。因此,球可以运动的更远。
你可能对这个答案不满意。我们观察到,有凹痕的高尔夫球具有较低的阻力,但我们还没有解释为什么阻力危机发生在较低的速度下。要理解这种现象,我们必须仔细观察球体周围的流动。
产生阻力危机的原因
首先,我们复习一下物体的阻力,它有两个来源:
- 由物体周围的压力分布产生的压差阻力,也称为型阻,
- 沿边界的剪切应力产生的黏性阻力
对于钝体,例如光滑的球,压差阻力在所研究的雷诺数范围内最为明显。因此,球体周围的压力分布将决定其总阻力。
在不涉及湍流理论的情况下,首先在球体的前部形成层流边界层(流动在几乎不交换质量或动量的不同层中被分离)。从这个角度来看,有两种分离,具体取决于流动的类型:
- 如果流动是充分的层流(低雷诺数),边界层将没有时间过渡到湍流边界层,就会由于不利的压力梯度在大约 82° 的角度处分离,并在球体后面产生大的尾流。
- 如果流动是充分的湍流,边界层将有时间在临界 的82°之前过渡到湍流边界层。在这种情况下,流动能更好地混合,使边界层顶部的动量交换成为可能。这样,边界层底部将获得能量,从而增加壁面附近的速度梯度,并将流动分离延迟到大约 120°的角度。这看起来更像是流动 “黏”在表面上。
高尔夫球和光滑球体后面的湍流尾流的比较。雷诺数约为 1e5。
由湍流边界层分离产生的带凹痕的高尔夫球(上部)的湍流尾流和由层流边界层分离产生的光滑球(底部)的湍流尾流比较。请注意,高尔夫球的分离点位于更远处的下游,尾流也更小。
大量能量在湍流尾流中损失,从而使压力显著下降。因此,作为球体的主要阻力,压差阻力主要受尾流区域大小的影响。根据这些信息,理解阻力系数图更容易了。对于高尔夫球来说:
- 由于凹痕诱导产生小涡流,雷诺数较低时发生层流边界层到湍流边界层的过渡,从而会产生较小的尾流,以及较小的阻力。
- 与光滑球相比,带凹痕的高尔夫球的阻力危机并不深。对于相似的尾流大小,粗糙的表面使来自前方球体的黏性阻力变得不可忽略。
高尔夫球的空气动力仿真
现在,我们第一次明白了为什么高尔夫球会有凹痕,因为阻力更低,球可以走得更远。为了知道球可以走多远,我们首先需要计算它的轨迹。作用在球上的力和初始条件如下图所示,忽略浮力的影响,因为球几乎比相应体积的空气重 1000 倍。
初始条件和作用在高尔夫球上的力。
在之前的文章中我们用 7 号铁杆以 145 公里/小时(90 英里/小时)的轴速击打球,并从最终结果中获知以下初始条件:
- 初始球速:187 公里/小时(116 英里/小时)
- 初始转速:6113 转/分
- 初始发射角度:17.4°
使用牛顿第二运动定律对一个质量为m,加速度为\overrightarrow{a}和重力为\overrightarrow{F_g}的球进行分析:
(3)
重新排列方程2,计算阻力模:
(4)
同样,用取决于球的旋转速度\omega的升力系数C_L来定义因马格努斯效应而产生的升力L:
(5)
Bearman 和 Harvey 在 1976 年对升力系数与高尔夫球旋转速率的相关性进行了广泛的研究(参考文献 1)。他们还观察到阻力系数也应该取决于旋转(第一幅图的曲线对于特定的旋转速率是有效的)。为了更普遍的描述,引入了一个无量纲自旋因子, 即圆周速度与流速之比S:
(6)
虽然说这个结果通过研究老式高尔夫球获得的,而且现在的曲线可能有所不同,但 Bearman 和 Harvey 的结果适用于现有文献中最大范围内的雷诺数和自旋因子。因此,本博客中获得的结果不应该看作是现代高尔夫球的真实值。通过结合使用 COMSOL 模型和曲线拟合 App教学案例中对参考文献1中图 9 使用曲线数字化仪 App获得的数据进行三次多项式曲线拟合获得下图所示曲线:
以自旋因子计算的阻力和升力系数分布。
光滑球的阻力系数取自标准阻力相关性(见第一幅图),升力系数近似等于旋转高尔夫球的升力系数(实际上更小)。
最后,由于摩擦会减慢旋转速度,因此可以使用指数衰减对旋转速率进行建模,如 Smits 和 Smith 提出的(参考文献2)。
(7)
式中,c=10^{-4}是一个实验常数。
考虑到阻力与球的运动方向相反,升力与球的运动方向垂直,我们通过在x轴和y轴上的投影得到以下方程组:
(8)
\ddot{x} = -\dfrac{\rho AU}{2m} \left( C_D \dot{x} + C_L \dot{y}\right)\\
\\
\ddot{y} = \dfrac{\rho AU}{2m} \left( C_L \dot{x} – C_D \dot{y} \right) -g
\end{array}\right.
其中,U=\sqrt{\dot{x}^2+\dot{y}^2}.
该方程组由一组常微分方程 (ODE) 组成,由于所有变量之间的依赖关系,它可能看起来很复杂。然而,使用 COMSOL Multiphysics 来实现和求解实际上很简单。
在 COMSOL Multiphysics®中建立高尔夫球模型
实现这个问题的最简单的方法是在一个 0 维组件中使用事件接口,它既能使用全局方程节点求解方程8,又可以在球落地时(y=0)停止计算。
第一步是设置研究使用的不同变量。在软件中,它们是通过不同的函数和全局参数来计算的。特别的,smooth
参数决定了被发射球的类型:
- 带凹痕的高尔夫球 (
smooth=0
) - 光滑的球 (
smooth=1
)
变量xt
和yt
是位置的时间导数,由事件接口计算。
第二步是使用相应的初始条件建立方程8的方程组。由于已经定义了所有参数和变量,因此这一步很简单。
离散状态接口用于定义球是否已经落地。
与上一篇博客一样,添加一个最适合开/关条件的离散状态变量,代表球的整体状态:它要么已经着陆,要么没有。刚开始,认为球没有落地,所以landed=0
。
指示器状态接口可以简单看作当前高度。一旦球落地,离散状态就会打开。
只有当球接触地面时,离散状态才会更新。我们不知道这个事件什么时候会发生,但可以用数学方法来翻译它(高度变成负数)。这正是隐式事件节点目的:当指示器状态(此处为当前高度)满足特定条件时,事件就被触发。
最后一步是创建研究节点。可以使用参数研究依此计算高尔夫球和光滑球,瞬态研究可以用于求解球的轨迹。当事件被激活时,需要修改瞬态研究中的求解器序列,以停止计算。
仿真结果
现在,一切都设置好了,让我们开始研究吧!
高尔夫球和被 7 号铁杆击中的光滑球的轨迹的实时动画。与光滑球相比,有凹痕高尔夫球受到的阻力要小得多(颜色图例显示了阻力系数)。请注意,球在轨迹的顶部受到阻力危机,因此速度(或雷诺数)变低。
请注意,人们可能会发现,如果忽略阻力或升力,轨迹的形状不是抛物线。球首先几乎直线上升,然后在达到最大高度后突然下降。从结果可以看出,与光滑的球相比,带凹痕的高尔夫球前进了 25%(30 米或 33 码)。换句话说,现在离草地更近了,并且不需要额外的力!
这个解释来自这样一个事实:在整个飞行过程中,对抗球运动的阻力对于高尔夫球来说非常小(原因在开头已经提到)。当球达到其最大高度时,与高度成正比的势能也达到最大值。这种能量转移是在损失动能的情况下进行的;所以球走得更慢。因此,雷诺数减少(或等效地,自旋因子增加),阻力因此增加。
绝对运球距离 150m(165 码)远大于普通球员的典型高尔夫击球距离(128 m 或 140 码),但处于职业高尔夫球员典型击球距离的下限。考虑到阻力和升力数据并非源自现代高尔夫球,该结果是合理的。
寻找最佳发射角度
凹痕对高尔夫球的影响现在应该很清楚了:它们使球飞得更远。然而,实际上,这并没有说明我应该如何击球。假设杆身速度和攻角恒定,我应该给球一个什么发射角度,才能使运球距离最佳?第一种方法是运行参数研究甚至是优化研究,来找到该值。下图显示了在给定攻角和旋转速率下,由发射角度决定的运球距离。
使用 7 号铁杆在 -4.3° 的攻角和 6113转/分的初始旋转下进行的参数研究的结果。最佳发射角度似乎应该在 20° 左右。
从上图中可以看出,最佳攻角似乎在 20° 左右。然而,职业高尔夫球手(理论上,他们应该平均接近最佳角度)平均以 16° 的角度射击。出了什么问题?这是因为我们关于恒定旋转速率的假设是错误的:以更大的发射角度击球意味着击球时杆面需要“更加水平”。就像网球中的球被“切割”一样,由于摩擦力变大,高尔夫球旋转得更快,但速度变慢。
在恒定攻角下,两个动态杆面倾角的比较。角度是基于水平线测量的。当动态杆面倾角增加时,发射角增加。由于动态杆面倾角和攻角(通常称为“旋转倾角”)之间的角度变大,球会旋转得更快。
找到发射角度、旋转速率和球速之间的关系并不直接,而且实验或模拟结果并不重要。那么,既然我们已经建立了一个高尔夫球模型,就对它进行参数化吧!
教学案例模型的参数化结果。使用三次样条对这些点进行插值以获得更平滑的曲线。正如预期的那样,较大的发射角会增加旋转速率,而速度则会减小。
我们必须谨慎对待结果,并应该进行更详细的研究,包括网格收敛研究,与其他轴的曲线比较等。尽管如此,此结果仍然与现相当一致。
7 号球杆的运球距离,取决于非恒定旋转的 -4.3° 攻角的发射角度。曲线已转移到较低的发射角度值,以更好地表征真实情景。
现在,我们可以使用正确的自旋和速度值再次运行参数研究。请注意,曲线已向左移动。换句话说,似乎减小发射角度(即动态杆面倾角)有助于减少自旋,并为球提供更高的平移动能。与预期一样,该曲线并没有以 16° 为中心。然而,为了获得这个结果,人们提出了许多假设(例如阻力和升力的分布,以及自旋速率的相关性),这些假设对最终结果有很大影响。关于现代高尔夫球和球撞击分析的数据越多,越有助于获得更准确的结果。
结论
在这篇博客中,我们回答了一个看似简单的,与特定雷诺数范围内球体湍流边界层的行为有关的高尔夫球凹痕的问题。同时对工程中的一个经典过程进行了介绍。对普通物体的观察使我们对复杂的物理现象有了更深入的理解,反之我们也能够使用 COMSOL Multiphysics 对其进行建模和验证。最后,我们找到了一个最佳的发射角度,并提取了对真实击球有用的信息。
很多高尔夫球观众可能也问过和我一样的问题。要记住的教训是,请尽量降低动态倾角,同时保持相同的攻角,以降低旋转速度。虽然仿真结果看似简单,但我不确定如何在球道上做到这一点。所以,如果要打好高尔夫球,需要请教专业的高尔夫教练,而不是模拟工程师!
动手尝试
单击下面的按钮,访问文中的模型文件,尝试自己动手 COMSOL Multiphysics 中计算高尔夫球的轨迹。
参考文献
- P. Bearman and J.K. Harvey, “Golf ball aerodynamics”,Aeronautical Quarterly, vol. 27, no., pp. 112–122, 1976.
- A.J. Smits and D.R. Smith, “A new aerodynamic model of a golf ball in flight”,Science and Golf II, Taylor & Francis, pp. 433–442, 2002.
评论 (2)
春霖居士
2021-11-02你好,能给我发一下这个MPH文件吗?
hao huang
2021-11-02 COMSOL 员工案例模型请查看://www.denkrieger.com/model/golf-ball-trajectory-102521