sr!com.femlab.server.ModelFileHeaderD%LtagstLcom/femlab/util/FlStringList;Ltypesq~LvrsntLcom/femlab/util/FlVersion;xpwsrcom.femlab.util.FlVersion%/B = IbuildImajorLdatetLjava/lang/String;Lextq~Lnameq~Lrcsq~L reactionExtq~L reactionNameq~L scriptExtq~L scriptNameq~xpwtCOMSOL Script 1.3tt#COMSOL Reaction Engineering Lab 1.5q~t COMSOL 3.5q~wt $Name: $t$Date: 2008/09/19 16:09:48 $xur[Ljava.lang.String;V{Gxpt modelinfotxfemtguitfem0tg7tfem1tfem1.0tg1tfem6tfem6.0q~q~tfem80tfem80.0tfem81tfem81.0q~q~t mfileinfouq~ q~t femstructt guistructq~tdrawtgeomtmeshq~!q~"q~#tsolutiontxmeshq~"q~#q~"q~#q~$q~%q~xsrcom.femlab.api.client.ModelInfo^%Ldescrq~LdocURLq~[imaget[Bxpwptpxuq~ t(clear xfem clear vrsn vrsn.name = 'COMSOL 3.5'; vrsn.ext = ''; vrsn.major = 0; vrsn.build = 494; vrsn.rcs = '$Name: $'; vrsn.date = '$Date: 2008/09/19 16:09:48 $'; xfem.version = vrsn; clear fem fem.id = 5; fem.geomdata = 'geom'; fem.eqvars = 'on'; fem.cplbndeq = 'on'; fem.cplbndsh = 'off'; fem.drawvalid = 'on'; fem.geomvalid = 'on'; fem.solvalid = 'on'; fem.linshape = 'on'; fem.linshapetol = 0.1; fem.meshtime = 't'; clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.dim = {'T'}; appl.sdim = {'r','phi','z'}; appl.name = 'ht'; appl.shape = {'shlag(2,''T'')'}; appl.gporder = 4; appl.cporder = 2; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_ht'; clear prop prop.elemdefault='Lag2'; prop.analysis='time'; prop.frame='ref'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1'}; prop.weakconstr = weakconstr; prop.constrtype='ideal'; appl.prop = prop; clear bnd bnd.name = {'','',''}; bnd.q0 = {'0','0','0'}; bnd.h = {'St*M*d/2','0','0'}; bnd.Tinf = {'F','273.15','273.15'}; bnd.Const = {'0','0','0'}; bnd.Tamb = {'0','0','0'}; bnd.T0 = {'1','273.15','1'}; bnd.kbnd = {'0','0','0'}; bnd.d = {'1','1','1'}; bnd.type = {'q','q0','T'}; bnd.relExpr = {{},{},{}}; bnd.style = {{{'0'},{'0','0','0'},{'solid'}},{{'0'},{'0','0','0'},{'solid'}}, ... {{'0'},{'0','255','0'},{'solid'}}}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.shape = {[1]}; equ.gporder = {{1}}; equ.cporder = {{1}}; equ.init = {{'1'}}; equ.usage = {1}; equ.k = {'400'}; equ.ktensor = {{'1','0';'0','L^2'}}; equ.ktype = {'aniso'}; equ.Dts = {'d'}; equ.rho = {'1'}; equ.C = {'1'}; equ.Q = {'0'}; equ.relExpr = {{}}; equ.style = {{{'0'},{'193','193','193'}}}; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.geom = flbinary('fem1','geom','non-dimensional_heat_transport_2_geometries.mph'); fem.mesh = flbinary('fem1.0','mesh','non-dimensional_heat_transport_2_geometries.mph'); fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.shape = {'shlag(2,''T'')'}; fem.gporder = 4; fem.cporder = 2; fem.sshape = 2; fem.simplify = 'on'; fem.border = 1; fem.outform = 'general'; fem.form = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; clear equ equ.shape = {[1]}; equ.gporder = {{1}}; equ.cporder = {{1}}; equ.init = {{'1'}}; equ.dinit = {{'0'}}; equ.weak = {{'0'}}; equ.dweak = {{'0'}}; equ.constr = {{'0'}}; equ.constrf = {{'0'}}; equ.c = {{{'-diff(-r*krr_ht*Tr,Tr)','-diff(-r*krr_ht*Tr,Tz)';'-diff(-r*kzz_ht*Tz,Tr)', ... '-diff(-r*kzz_ht*Tz,Tz)'}}}; equ.a = {{'0'}}; equ.f = {{'0'}}; equ.ea = {{'0'}}; equ.da = {{'r*Dts_ht*rho_ht*C_ht'}}; equ.al = {{{'-diff(-r*krr_ht*Tr,T)';'-diff(-r*kzz_ht*Tz,T)'}}}; equ.be = {{{'0';'0'}}}; equ.ga = {{{'-r*krr_ht*Tr';'-r*kzz_ht*Tz'}}}; equ.sshape = {[1]}; equ.sshapedim = {{1}}; equ.ind = [1]; equ.dim = {'T'}; equ.var = {'fluxr_ht',{'-krr_ht*Tr-krz_ht*Tz'}, ... 'fluxz_ht',{'-kzr_ht*Tr-kzz_ht*Tz'}, ... 'gradT_ht',{'sqrt(Tr^2+Tz^2)'}, ... 'flux_ht',{'sqrt(fluxr_ht^2+fluxz_ht^2)'},'k_ht',{'1'}, ... 'Dts_ht',{'d'}, ... 'rho_ht',{'1'}, ... 'C_ht',{'1'}, ... 'Q_ht',{'0'}, ... 'krr_ht',{'1'}, ... 'kzr_ht',{'0'}, ... 'krz_ht',{'0'}, ... 'kzz_ht',{'L^2'}}; equ.expr = {}; equ.bnd.weak = {{'0'}}; equ.bnd.gporder = {{1}}; equ.bnd.ind = [1]; equ.bnd.var = {}; equ.bnd.expr = {}; equ.lock = [0]; equ.mlock = {[0]}; fem.equ = equ; clear bnd bnd.weak = {{'0'},{'0'},{'0'}}; bnd.dweak = {{'0'},{'0'},{'0'}}; bnd.constr = {{'0'},{'0'},{'0'}}; bnd.constrf = {{'0'},{'0'},{'0'}}; bnd.q = {{'-diff(r*h_ht*(-T+Tinf_ht),T)'},{'0'},{'0'}}; bnd.h = {{'0'},{'0'},{'-diff(-T+T0_ht,T)'}}; bnd.g = {{'r*h_ht*(-T+Tinf_ht)'},{'0'},{'0'}}; bnd.r = {{'0'},{'0'},{'-T+T0_ht'}}; bnd.shape = {[1],[1],[1]}; bnd.sshape = {[1],[1],[1]}; bnd.sshapedim = {{1},{1},{1}}; bnd.gporder = {{1},{1},{1}}; bnd.cporder = {{1},{1},{1}}; bnd.init = {{''},{''},{''}}; bnd.dinit = {{''},{''},{''}}; bnd.ind = [1,2,2,3]; bnd.dim = {'T'}; bnd.var = {'nflux_ht',{'nr_ht*fluxr_ht+nz_ht*fluxz_ht','nr_ht*fluxr_ht+nz_ht*fluxz_ht', ... 'nr_ht*fluxr_ht+nz_ht*fluxz_ht'},'q0_ht',{'0','0','0'}, ... 'h_ht',{'0.5*St*M*d','0','0'}, ... 'Tinf_ht',{'F','273.15','273.15'}, ... 'Const_ht',{'0','0','0'}, ... 'Tamb_ht',{'0','0','0'}, ... 'T0_ht',{'1','273.15','1'}, ... 'kbnd_ht',{'0','0','0'}, ... 'd_ht',{'1','1','1'}, ... 'nr_ht',{'nr','nr','nr'}, ... 'nz_ht',{'nz','nz','nz'}}; bnd.expr = {}; bnd.lock = [0,0,0,0]; bnd.mlock = {[0,0,0,0]}; fem.bnd = bnd; clear pnt pnt.weak = {{'0'}}; pnt.dweak = {{'0'}}; pnt.constr = {{'0'}}; pnt.constrf = {{'0'}}; pnt.shape = {[1]}; pnt.sshape = {[1]}; pnt.sshapedim = {{1}}; pnt.init = {{''}}; pnt.dinit = {{''}}; pnt.ind = [1,1,1,1]; pnt.dim = {'T'}; pnt.var = {}; pnt.expr = {}; pnt.lock = [0,0,0,0]; pnt.mlock = {[0,0,0,0]}; fem.pnt = pnt; fem.var = {}; fem.expr = {}; clear elemcpl clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; clear draw draw.p.objs = {}; draw.p.name = {}; draw.c.objs = {}; draw.c.name = {}; draw.s.objs = {flbinary('g7','draw','non-dimensional_heat_transport_2_geometries.mph')}; draw.s.name = {'R1'}; fem.draw = draw; xfem.fem{1} = fem; clear fem fem.id = 6; fem.geomdata = 'geom'; fem.eqvars = 'on'; fem.cplbndeq = 'on'; fem.cplbndsh = 'off'; fem.drawvalid = 'on'; fem.geomvalid = 'on'; fem.solvalid = 'on'; fem.linshape = 'on'; fem.linshapetol = 0.1; fem.meshtime = 't'; clear appl appl.mode.class = 'FlPDEC'; appl.mode.type = 'cartesian'; appl.dim = {'F','F_t'}; appl.sdim = {'x','y','z'}; appl.name = 'c'; appl.shape = {'shlag(2,''F'')'}; appl.gporder = 4; appl.cporder = 2; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_c'; clear prop prop.elemdefault='Lag2'; prop.wave='off'; prop.frame='ref'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1','lm2'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.name = {'',''}; bnd.weak = {{'0'},{'0'}}; bnd.dweak = {{'0'},{'0'}}; bnd.constr = {{'0'},{'0'}}; bnd.constrf = {{'0'},{'0'}}; bnd.constrtype = {'ideal','ideal'}; bnd.q = {{'0'},{'1'}}; bnd.h = {{'1'},{'1'}}; bnd.g = {{'0'},{'2'}}; bnd.r = {{'0'},{'0'}}; bnd.type = {'neu','neu'}; bnd.style = {{{'0'},{'0','0','0'}},{{'0'},{'0','0','255'}}}; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.shape = {[1]}; equ.gporder = {{1}}; equ.cporder = {{1}}; equ.init = {{'1';'0'}}; equ.usage = {1}; equ.dinit = {{'0';'0'}}; equ.weak = {{'0'}}; equ.dweak = {{'0'}}; equ.constr = {{'0'}}; equ.constrf = {{'0'}}; equ.constrtype = {'ideal'}; equ.bndweak = {{'0'}}; equ.bndgporder = {{1}}; equ.c = {{{'1/Pe'}}}; equ.a = {{'St'}}; equ.f = {{'St*T'}}; equ.ea = {{'0'}}; equ.da = {{'1'}}; equ.al = {{{'0'}}}; equ.be = {{{'1'}}}; equ.ga = {{{'0'}}}; equ.style = {{{'0'},{'0','0','0'},{'solid'}}}; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.geom = flbinary('fem6','geom','non-dimensional_heat_transport_2_geometries.mph'); fem.mesh = flbinary('fem6.0','mesh','non-dimensional_heat_transport_2_geometries.mph'); fem.sdim = {'x'}; fem.frame = {'ref'}; fem.shape = {'shlag(2,''F'')'}; fem.gporder = 4; fem.cporder = 2; fem.sshape = 2; fem.simplify = 'on'; fem.border = 1; fem.form = 'coefficient'; clear units; units.basesystem = 'SI'; fem.units = units; clear equ equ.shape = {[1]}; equ.gporder = {{1}}; equ.cporder = {{1}}; equ.init = {{'1'}}; equ.dinit = {{'0'}}; equ.weak = {{'0'}}; equ.dweak = {{'0'}}; equ.constr = {{'0'}}; equ.constrf = {{'0'}}; equ.c = {{{'1/Pe'}}}; equ.a = {{'St'}}; equ.f = {{'St*T'}}; equ.ea = {{'0'}}; equ.da = {{'1'}}; equ.al = {{{'0'}}}; equ.be = {{{'1'}}}; equ.ga = {{{'0'}}}; equ.sshape = {[1]}; equ.sshapedim = {{1}}; equ.ind = [1]; equ.dim = {'F'}; equ.var = {}; equ.expr = {}; equ.bnd.weak = {{'0'}}; equ.bnd.gporder = {{1}}; equ.bnd.ind = [1]; equ.bnd.var = {}; equ.bnd.expr = {}; equ.lock = [0]; equ.mlock = {[0]}; fem.equ = equ; clear bnd bnd.weak = {{'0'},{'0'}}; bnd.dweak = {{'0'},{'0'}}; bnd.constr = {{'0'},{'0'}}; bnd.constrf = {{'0'},{'0'}}; bnd.q = {{'1'},{'0'}}; bnd.h = {{'0'},{'0'}}; bnd.g = {{'2'},{'0'}}; bnd.r = {{'0'},{'0'}}; bnd.shape = {[1],[1]}; bnd.sshape = {[1],[1]}; bnd.sshapedim = {{1},{1}}; bnd.init = {{''},{''}}; bnd.dinit = {{''},{''}}; bnd.ind = [1,2]; bnd.dim = {'F'}; bnd.var = {'nx_c',{'nx','nx'}}; bnd.expr = {}; bnd.lock = [0,0]; bnd.mlock = {[0,0]}; fem.bnd = bnd; fem.var = {}; fem.expr = {}; clear elemcpl clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; clear draw draw.p.objs = {}; draw.p.name = {}; draw.s.objs = {flbinary('g1','draw','non-dimensional_heat_transport_2_geometries.mph')}; draw.s.name = {'I1'}; fem.draw = draw; xfem.fem{2} = fem; xfem.const = {'St','10','Pe','200','L','1/1000','M','998.2071*4181.8/(2611*840)','d','0.001'}; xfem.globalexpr = {}; clear fcns xfem.functions = {}; clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; xfem.sol = flbinary('xfem','solution','non-dimensional_heat_transport_2_geometries.mph'); xfem.xmcases = [0]; xfem.mcases = [0]; flbinary clear; xfem.rulingmode = 'ht'; xfem.solform = 'weak'; clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; uq~ t`gui.solvemodel.toutcomp='off'; gui.solvemodel.currsolver='time'; gui.solvemodel.solveroption=''; gui.solvemodel.postsolver='time'; gui.solvemodel.nonlin='auto'; gui.solvemodel.ntol='1.0E-6'; gui.solvemodel.maxiter='25'; gui.solvemodel.segterm='tol'; gui.solvemodel.maxsegiter='100'; gui.solvemodel.segiter='1'; gui.solvemodel.manualdamp='off'; gui.solvemodel.damping='on'; gui.solvemodel.hnlin='off'; gui.solvemodel.initstep='1.0'; gui.solvemodel.minstep='1.0E-4'; gui.solvemodel.rstep='10.0'; gui.solvemodel.useaugsolver='off'; gui.solvemodel.autoaugcomp='on'; gui.solvemodel.augcomp=''; gui.solvemodel.augtol='0.0010'; gui.solvemodel.augmaxiter='25'; gui.solvemodel.augsolver='lumped'; gui.solvemodel.nlsolver='automatic'; gui.solvemodel.timenonlin='auto'; gui.solvemodel.useratelimit='on'; gui.solvemodel.timentolfact='1'; gui.solvemodel.timemaxiter='4'; gui.solvemodel.timesegterm='tol'; gui.solvemodel.timemaxsegiter='10'; gui.solvemodel.timesegiter='1'; gui.solvemodel.timemanualdamp='off'; gui.solvemodel.timedtech='const'; gui.solvemodel.timedamp='1.0'; gui.solvemodel.timejtech='minimal'; gui.solvemodel.timeinitstep='1.0'; gui.solvemodel.timeminstep='1.0E-2'; gui.solvemodel.timerstep='10.0'; gui.solvemodel.atol='0.0010'; gui.solvemodel.rtol='0.01'; gui.solvemodel.tlist='0:1:10'; gui.solvemodel.tout='tlist'; gui.solvemodel.tsteps='free'; gui.solvemodel.odesolver='bdf_ida'; gui.solvemodel.timestep='0.01'; gui.solvemodel.incrdelay='off'; gui.solvemodel.incrdelaysteps='15'; gui.solvemodel.manualreassem='off'; gui.solvemodel.emassconst='on'; gui.solvemodel.massconst='on'; gui.solvemodel.loadconst='on'; gui.solvemodel.constrconst='on'; gui.solvemodel.jacobianconst='on'; gui.solvemodel.constrjacobianconst='on'; gui.solvemodel.manualstep='off'; gui.solvemodel.maxstepauto='on'; gui.solvemodel.initialstepauto='on'; gui.solvemodel.initialstep='0.0010'; gui.solvemodel.maxorder='5'; gui.solvemodel.minorder='1'; gui.solvemodel.maxstep='0.1'; gui.solvemodel.rhoinf='0.75'; gui.solvemodel.predictor='linear'; gui.solvemodel.timeusestopcond='off'; gui.solvemodel.timestopcond=''; gui.solvemodel.paramusestopcond='off'; gui.solvemodel.masssingular='maybe'; gui.solvemodel.consistent='bweuler'; gui.solvemodel.estrat='0'; gui.solvemodel.complex='off'; gui.solvemodel.neigs='6'; gui.solvemodel.shift='0'; gui.solvemodel.maxeigit='300'; gui.solvemodel.etol='0.0'; gui.solvemodel.krylovdim='0'; gui.solvemodel.eigname='lambda'; gui.solvemodel.eigref='0'; gui.solvemodel.pname=''; gui.solvemodel.plist=''; gui.solvemodel.pdistrib='off'; gui.solvemodel.porder='1'; gui.solvemodel.manualparam='off'; gui.solvemodel.pinitstep='0.0'; gui.solvemodel.pminstep='0.0'; gui.solvemodel.pmaxstep='0.0'; gui.solvemodel.autooldcomp='on'; gui.solvemodel.oldcomp=''; gui.solvemodel.outform='auto'; gui.solvemodel.symmetric='auto'; gui.solvemodel.symmhermit='auto'; gui.solvemodel.method='eliminate'; gui.solvemodel.nullfun='auto'; gui.solvemodel.blocksize='1000'; gui.solvemodel.blocksizeauto='on'; gui.solvemodel.uscale='auto'; gui.solvemodel.manscale=''; gui.solvemodel.rowscale='on'; gui.solvemodel.conjugate='off'; gui.solvemodel.complexfun='off'; gui.solvemodel.matherr='on'; gui.solvemodel.solfile='off'; gui.solvemodel.adaptgeom='currgeom'; gui.solvemodel.eefun='l2'; gui.solvemodel.eefunc=''; gui.solvemodel.maxt='10000000'; gui.solvemodel.rmethod='regular'; gui.solvemodel.resmethod='weak'; gui.solvemodel.resorderauto='on'; gui.solvemodel.resorder='0'; gui.solvemodel.l2scale='1'; gui.solvemodel.l2staborder='2'; gui.solvemodel.eigselect='1'; gui.solvemodel.tpfun='fltpft'; gui.solvemodel.ngen='5'; gui.solvemodel.tpmult='1.7'; gui.solvemodel.tpworst='0.5'; gui.solvemodel.tpfract='0.5'; gui.solvemodel.autosolver='on'; gui.solvemodel.varcomp=''; gui.solvemodel.oldvarcomp=''; gui.solvemodel.manualhessupd='off'; gui.solvemodel.manuallimitexpr='off'; gui.solvemodel.designsolver='sensitivity'; gui.solvemodel.sensmethod='adjoint'; gui.solvemodel.sensfunc=''; gui.solvemodel.sensfuncauto='on'; gui.solvemodel.qpsolver='cholesky'; gui.solvemodel.gradient='analytic'; gui.solvemodel.limitexpr=''; gui.solvemodel.nsolvemax='500'; gui.solvemodel.hessupd='10'; gui.solvemodel.opttol='1.0e-6'; gui.solvemodel.feastol='1.0e-6'; gui.solvemodel.majfeastol='1.0e-6'; gui.solvemodel.funcprec='1.0e-6'; gui.solvemodel.callblevel=''; gui.solvemodel.callblevelshow=''; gui.solvemodel.callbfreq=''; gui.solvemodel.callbackrough='0'; gui.solvemodel.callbclose='off'; gui.solvemodel.solcomp='T,F'; gui.solvemodel.outcomp='T,F'; gui.solvemodel.reacf='on'; gui.solvemodel.inittype='init_expr_currsol_radio'; gui.solvemodel.initsolnum='Automatic'; gui.solvemodel.inittime='0'; gui.solvemodel.utype='u_init_radio'; gui.solvemodel.usolnum='Automatic'; gui.solvemodel.utime='0'; gui.solvemodel.scriptcommands=''; gui.solvemodel.usescript='off'; gui.solvemodel.autoscript='off'; gui.solvemodel.sameaxis='off'; gui.solvemodel.linsolvernode.currlinsolver='umfpack'; gui.solvemodel.linsolvernode.type='linsolver'; gui.solvemodel.linsolvernode.droptol='0.0'; gui.solvemodel.linsolvernode.thresh='0.1'; gui.solvemodel.linsolvernode.umfalloc='0.7'; gui.solvemodel.linsolvernode.preorder='nd'; gui.solvemodel.linsolvernode.preroworder='on'; gui.solvemodel.linsolvernode.pivotstrategy='off'; gui.solvemodel.linsolvernode.pardreorder='nd'; gui.solvemodel.linsolvernode.pardrreorder='on'; gui.solvemodel.linsolvernode.pivotperturb='1.0E-8'; gui.solvemodel.linsolvernode.errorchk='on'; gui.solvemodel.linsolvernode.errorchkd='off'; gui.solvemodel.linsolvernode.termination='tol'; gui.solvemodel.linsolvernode.iter='2'; gui.solvemodel.linsolvernode.itol='1.0E-6'; gui.solvemodel.linsolvernode.rhob='400.0'; gui.solvemodel.linsolvernode.maxlinit='10000'; gui.solvemodel.linsolvernode.prefuntype='left'; gui.solvemodel.linsolvernode.prefuntype2='right'; gui.solvemodel.linsolvernode.iluiter='1'; gui.solvemodel.linsolvernode.itrestart='50'; gui.solvemodel.linsolvernode.seconditer='1'; gui.solvemodel.linsolvernode.relax='1.0'; gui.solvemodel.linsolvernode.amgauto='3'; gui.solvemodel.linsolvernode.mglevels='6'; gui.solvemodel.linsolvernode.mgcycle='v'; gui.solvemodel.linsolvernode.maxcoarsedof='5000'; gui.solvemodel.linsolvernode.oocmemory='512.0'; gui.solvemodel.linsolvernode.oocfilename=''; gui.solvemodel.linsolvernode.modified='off'; gui.solvemodel.linsolvernode.fillratio='2.0'; gui.solvemodel.linsolvernode.respectpattern='on'; gui.solvemodel.linsolvernode.droptype='droptol'; gui.solvemodel.linsolvernode.vankavars=''; gui.solvemodel.linsolvernode.vankasolv='gmres'; gui.solvemodel.linsolvernode.vankatol='0.02'; gui.solvemodel.linsolvernode.vankarestart='100'; gui.solvemodel.linsolvernode.vankarelax='0.8'; gui.solvemodel.linsolvernode.vankablocked='on'; gui.solvemodel.linsolvernode.sorblocked='on'; gui.solvemodel.linsolvernode.sorvecdof=''; gui.solvemodel.linsolvernode.mgauto='shape'; gui.solvemodel.linsolvernode.rmethod='regular'; gui.solvemodel.linsolvernode.coarseassem='on'; gui.solvemodel.linsolvernode.meshscale='2'; gui.solvemodel.linsolvernode.mgautolevels='2'; gui.solvemodel.linsolvernode.mgkeep='off'; gui.solvemodel.linsolvernode.mggeom='Geom1 Geom2'; gui.solvemodel.linsolvernode.mcase0='on'; gui.solvemodel.linsolvernode.mgassem0='on'; gui.solvemodel.solversegmodel.seggrps{1}.segcomp='T'; gui.solvemodel.solversegmodel.seggrps{1}.ntol='1e-3'; gui.solvemodel.solversegmodel.seggrps{1}.timentol='1'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.currlinsolver='umfpack'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.type='linsolver'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.droptol='0.0'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.thresh='0.1'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.umfalloc='0.7'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.preorder='nd'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.preroworder='on'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.pivotstrategy='off'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.pardreorder='nd'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.pardrreorder='on'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.pivotperturb='1.0E-8'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.errorchk='on'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.errorchkd='off'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.termination='tol'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.iter='2'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.itol='1.0E-6'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.rhob='400.0'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.maxlinit='10000'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.prefuntype='left'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.prefuntype2='right'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.iluiter='1'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.itrestart='50'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.seconditer='1'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.relax='1.0'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.amgauto='3'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.mglevels='6'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.mgcycle='v'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.maxcoarsedof='5000'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.oocmemory='512.0'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.oocfilename=''; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.modified='off'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.fillratio='2.0'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.respectpattern='on'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.droptype='droptol'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.vankavars=''; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.vankasolv='gmres'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.vankatol='0.02'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.vankarestart='100'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.vankarelax='0.8'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.vankablocked='on'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.sorblocked='on'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.sorvecdof=''; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.mgauto='shape'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.rmethod='regular'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.coarseassem='on'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.meshscale='2'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.mgautolevels='2'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.mgkeep='off'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.mggeom='Geom1 Geom2'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.mcase0='on'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.mgassem0='on'; gui.solvemodel.solversegmodel.seggrps{2}.segcomp='F'; gui.solvemodel.solversegmodel.seggrps{2}.ntol='1e-3'; gui.solvemodel.solversegmodel.seggrps{2}.timentol='1'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.currlinsolver='umfpack'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.type='linsolver'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.droptol='0.0'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.thresh='0.1'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.umfalloc='0.7'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.preorder='nd'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.preroworder='on'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.pivotstrategy='off'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.pardreorder='nd'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.pardrreorder='on'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.pivotperturb='1.0E-8'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.errorchk='on'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.errorchkd='off'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.termination='tol'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.iter='2'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.itol='1.0E-6'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.rhob='400.0'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.maxlinit='10000'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.prefuntype='left'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.prefuntype2='right'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.iluiter='1'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.itrestart='50'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.seconditer='1'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.relax='1.0'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.amgauto='3'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.mglevels='6'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.mgcycle='v'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.maxcoarsedof='5000'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.oocmemory='512.0'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.oocfilename=''; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.modified='off'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.fillratio='2.0'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.respectpattern='on'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.droptype='droptol'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.vankavars=''; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.vankasolv='gmres'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.vankatol='0.02'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.vankarestart='100'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.vankarelax='0.8'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.vankablocked='on'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.sorblocked='on'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.sorvecdof=''; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.mgauto='shape'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.rmethod='regular'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.coarseassem='on'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.meshscale='2'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.mgautolevels='2'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.mgkeep='off'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.mggeom='Geom1 Geom2'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.mcase0='on'; gui.solvemodel.solversegmodel.seggrps{2}.linsolvernode.mgassem0='on'; gui.solvemodel.solversegmodel.segsteps{1}.segorder='1'; gui.solvemodel.solversegmodel.segsteps{1}.subterm='iter'; gui.solvemodel.solversegmodel.segsteps{1}.subdamp='0.5'; gui.solvemodel.solversegmodel.segsteps{1}.timesubdamp='1'; gui.solvemodel.solversegmodel.segsteps{1}.subiter='1'; gui.solvemodel.solversegmodel.segsteps{1}.maxsubiter='20'; gui.solvemodel.solversegmodel.segsteps{1}.timemaxsubiter='10'; gui.solvemodel.solversegmodel.segsteps{1}.subntol='1.0E-2'; gui.solvemodel.solversegmodel.segsteps{1}.subntolfact='1'; gui.solvemodel.solversegmodel.segsteps{1}.subdtech='const'; gui.solvemodel.solversegmodel.segsteps{1}.submandamp='off'; gui.solvemodel.solversegmodel.segsteps{1}.subinitstep='1.0'; gui.solvemodel.solversegmodel.segsteps{1}.subminstep='1.0E-4'; gui.solvemodel.solversegmodel.segsteps{1}.timesubminstep='1.0E-2'; gui.solvemodel.solversegmodel.segsteps{1}.subrstep='10.0'; gui.solvemodel.solversegmodel.segsteps{1}.timesubjtech='minimal'; gui.solvemodel.solversegmodel.segsteps{1}.subjtech='onevery'; gui.solvemodel.solversegmodel.segsteps{2}.segorder='2'; gui.solvemodel.solversegmodel.segsteps{2}.subterm='iter'; gui.solvemodel.solversegmodel.segsteps{2}.subdamp='0.5'; gui.solvemodel.solversegmodel.segsteps{2}.timesubdamp='1'; gui.solvemodel.solversegmodel.segsteps{2}.subiter='1'; gui.solvemodel.solversegmodel.segsteps{2}.maxsubiter='20'; gui.solvemodel.solversegmodel.segsteps{2}.timemaxsubiter='10'; gui.solvemodel.solversegmodel.segsteps{2}.subntol='1.0E-2'; gui.solvemodel.solversegmodel.segsteps{2}.subntolfact='1'; gui.solvemodel.solversegmodel.segsteps{2}.subdtech='const'; gui.solvemodel.solversegmodel.segsteps{2}.submandamp='off'; gui.solvemodel.solversegmodel.segsteps{2}.subinitstep='1.0'; gui.solvemodel.solversegmodel.segsteps{2}.subminstep='1.0E-4'; gui.solvemodel.solversegmodel.segsteps{2}.timesubminstep='1.0E-2'; gui.solvemodel.solversegmodel.segsteps{2}.subrstep='10.0'; gui.solvemodel.solversegmodel.segsteps{2}.timesubjtech='minimal'; gui.solvemodel.solversegmodel.segsteps{2}.subjtech='onevery'; gui.solvemodel.solversegmodel.manualsteps='off'; gui.solvemodel.solversegmodel.llimitdof=''; gui.solvemodel.solversegmodel.llimitval=''; gui.solvemodel.paramsweep.pname=''; gui.solvemodel.paramsweep.plist=''; gui.solvemodel.paramsweep.pdistrib='off'; gui.solvemodel.paramsweep.savefiles='off'; gui.solvemodel.paramsweep.varnames=''; gui.solvemodel.paramsweep.logfile=''; gui.registry.general_currentmodel='Geom2'; gui.registry.general_currmeshcase='0'; gui.registry.general_savedonserver='off'; gui.registry.general_savedchanges='off'; gui.registry.general_rulingmode=''; gui.registry.general_incompletemfilehistory='off'; gui.registry.saved_license='1048245'; gui.registry.saved_version='COMSOL 3.5.0.494'; gui.registry.info_modelname=''; gui.registry.info_author=''; gui.registry.info_company=''; gui.registry.info_department=''; gui.registry.info_reference=''; gui.registry.info_url=''; gui.registry.info_saveddate='1275424684175'; gui.registry.info_creationdate='1274285775304'; gui.registry.info_modelresult=''; gui.registry.spice_netlist=''; gui.registry.spice_forceac='off'; gui.reportregistry.report_contents=''; gui.reportregistry.report_outputformat='html'; gui.reportregistry.report_filename=''; gui.reportregistry.report_autoopen='off'; gui.reportregistry.report_paperformat='a4'; gui.reportregistry.report_includedefaults='off'; gui.reportregistry.report_template='full'; gui.reportregistry.report_showemptysections='off'; gui.flmodel{1}.modelname='Geom1'; gui.flmodel{1}.currmode='post'; gui.flmodel{1}.currappl='0'; gui.flmodel{1}.axis.xmin='-1.5'; gui.flmodel{1}.axis.xmax='53.49999999999999'; gui.flmodel{1}.axis.ymin='-0.050000000000000044'; gui.flmodel{1}.axis.ymax='1.05'; gui.flmodel{1}.axis.zmin='-1.0'; gui.flmodel{1}.axis.zmax='1.0'; gui.flmodel{1}.axis.xspacing='5.0'; gui.flmodel{1}.axis.yspacing='0.1'; gui.flmodel{1}.axis.zspacing='0.2'; gui.flmodel{1}.axis.extrax=''; gui.flmodel{1}.axis.extray=''; gui.flmodel{1}.axis.extraz=''; gui.flmodel{1}.camera.xmin='-2.75'; gui.flmodel{1}.camera.xmax='2.75'; gui.flmodel{1}.camera.ymin='-0.05500000000000001'; gui.flmodel{1}.camera.ymax='0.05500000000000001'; gui.flmodel{1}.camera.camposx='2.5999999999999996'; gui.flmodel{1}.camera.camposy='0.05'; gui.flmodel{1}.camera.camposz='27.5'; gui.flmodel{1}.camera.camtargetx='2.5999999999999996'; gui.flmodel{1}.camera.camtargety='0.05'; gui.flmodel{1}.camera.camtargetz='0.0'; gui.flmodel{1}.camera.camupx='0.0'; gui.flmodel{1}.camera.camupy='1.0'; gui.flmodel{1}.camera.camupz='0.0'; gui.flmodel{1}.lightmodel.headlight.type='point'; gui.flmodel{1}.lightmodel.headlight.name='headlight'; gui.flmodel{1}.lightmodel.headlight.enable='on'; gui.flmodel{1}.lightmodel.headlight.colorr='255'; gui.flmodel{1}.lightmodel.headlight.colorg='255'; gui.flmodel{1}.lightmodel.headlight.colorb='255'; gui.flmodel{1}.lightmodel.headlight.xpos='2.6'; gui.flmodel{1}.lightmodel.headlight.ypos='0.05'; gui.flmodel{1}.lightmodel.headlight.zpos='27.5'; gui.flmodel{1}.lightmodel.scenelight{1}.type='directional'; gui.flmodel{1}.lightmodel.scenelight{1}.name='light 1'; gui.flmodel{1}.lightmodel.scenelight{1}.enable='on'; gui.flmodel{1}.lightmodel.scenelight{1}.colorr='255'; gui.flmodel{1}.lightmodel.scenelight{1}.colorg='255'; gui.flmodel{1}.lightmodel.scenelight{1}.colorb='255'; gui.flmodel{1}.lightmodel.scenelight{1}.xdir='1.0'; gui.flmodel{1}.lightmodel.scenelight{1}.ydir='-1.0'; gui.flmodel{1}.lightmodel.scenelight{1}.zdir='1.0'; gui.flmodel{1}.lightmodel.scenelight{2}.type='directional'; gui.flmodel{1}.lightmodel.scenelight{2}.name='light 2'; gui.flmodel{1}.lightmodel.scenelight{2}.enable='on'; gui.flmodel{1}.lightmodel.scenelight{2}.colorr='255'; gui.flmodel{1}.lightmodel.scenelight{2}.colorg='255'; gui.flmodel{1}.lightmodel.scenelight{2}.colorb='255'; gui.flmodel{1}.lightmodel.scenelight{2}.xdir='-1.0'; gui.flmodel{1}.lightmodel.scenelight{2}.ydir='1.0'; gui.flmodel{1}.lightmodel.scenelight{2}.zdir='-1.0'; gui.flmodel{1}.lightmodel.scenelight{3}.type='directional'; gui.flmodel{1}.lightmodel.scenelight{3}.name='light 3'; gui.flmodel{1}.lightmodel.scenelight{3}.enable='on'; gui.flmodel{1}.lightmodel.scenelight{3}.colorr='255'; gui.flmodel{1}.lightmodel.scenelight{3}.colorg='255'; gui.flmodel{1}.lightmodel.scenelight{3}.colorb='255'; gui.flmodel{1}.lightmodel.scenelight{3}.xdir='-1.0'; gui.flmodel{1}.lightmodel.scenelight{3}.ydir='-1.0'; gui.flmodel{1}.lightmodel.scenelight{3}.zdir='1.0'; gui.flmodel{1}.lightmodel.scenelight{4}.type='directional'; gui.flmodel{1}.lightmodel.scenelight{4}.name='light 4'; gui.flmodel{1}.lightmodel.scenelight{4}.enable='on'; gui.flmodel{1}.lightmodel.scenelight{4}.colorr='255'; gui.flmodel{1}.lightmodel.scenelight{4}.colorg='255'; gui.flmodel{1}.lightmodel.scenelight{4}.colorb='255'; gui.flmodel{1}.lightmodel.scenelight{4}.xdir='1.0'; gui.flmodel{1}.lightmodel.scenelight{4}.ydir='-1.0'; gui.flmodel{1}.lightmodel.scenelight{4}.zdir='-1.0'; gui.flmodel{1}.registry.axis_visible='on'; gui.flmodel{1}.registry.axis_auto='on'; gui.flmodel{1}.registry.axis_autoy='on'; gui.flmodel{1}.registry.axis_autoz='on'; gui.flmodel{1}.registry.axis_box='off'; gui.flmodel{1}.registry.axis_equal='off'; gui.flmodel{1}.registry.axis_csys='on'; gui.flmodel{1}.registry.grid_visible='on'; gui.flmodel{1}.registry.grid_auto='on'; gui.flmodel{1}.registry.grid_autoz='on'; gui.flmodel{1}.registry.grid_labels='on'; gui.flmodel{1}.registry.labels_object='on'; gui.flmodel{1}.registry.labels_vertex='off'; gui.flmodel{1}.registry.labels_edge='off'; gui.flmodel{1}.registry.labels_face='off'; gui.flmodel{1}.registry.labels_subdomain='off'; gui.flmodel{1}.registry.symbols_vertexscale='1.0'; gui.flmodel{1}.registry.symbols_edgescale='1.0'; gui.flmodel{1}.registry.symbols_facescale='1.0'; gui.flmodel{1}.registry.select_draw2d='size'; gui.flmodel{1}.registry.select_adj='cycle'; gui.flmodel{1}.registry.light_headlight='off'; gui.flmodel{1}.registry.light_scenelight='off'; gui.flmodel{1}.registry.light_shininess='0.5'; gui.flmodel{1}.registry.camera_mouse='orbit'; gui.flmodel{1}.registry.camera_camconstr='none'; gui.flmodel{1}.registry.camera_mouseconstr='none'; gui.flmodel{1}.registry.camera_perspective='off'; gui.flmodel{1}.registry.camera_moveasbox='off'; gui.flmodel{1}.registry.draw_assembly='off'; gui.flmodel{1}.registry.draw_dialog='off'; gui.flmodel{1}.registry.draw_keepborders='on'; gui.flmodel{1}.registry.draw_keepedges='off'; gui.flmodel{1}.registry.draw_multi='off'; gui.flmodel{1}.registry.draw_snap2grid='on'; gui.flmodel{1}.registry.draw_snap2vtx='on'; gui.flmodel{1}.registry.draw_solid='on'; gui.flmodel{1}.registry.draw_workplane_coordsys='on'; gui.flmodel{1}.registry.draw_workplane_showgeom='on'; gui.flmodel{1}.registry.draw_repair='on'; gui.flmodel{1}.registry.draw_repairtol='1.0E-6'; gui.flmodel{1}.registry.draw_projection='intersection'; gui.flmodel{1}.registry.transparency_value='1.0'; gui.flmodel{1}.registry.mesh_geomdetail='normal'; gui.flmodel{1}.registry.mesh_showquality='off'; gui.flmodel{1}.registry.post_cameraview='2'; gui.flmodel{1}.registry.graphics_scale='0.1'; gui.flmodel{1}.registry.render_mesh='off'; gui.flmodel{1}.registry.render_bndarrow='on'; gui.flmodel{1}.registry.render_vertex='off'; gui.flmodel{1}.registry.render_edge='on'; gui.flmodel{1}.registry.render_face='off'; gui.flmodel{1}.registry.highlight_vertex='off'; gui.flmodel{1}.registry.highlight_edge='on'; gui.flmodel{1}.registry.highlight_face='on'; gui.flmodel{1}.meshparam.hauto='5'; gui.flmodel{1}.meshparam.usehauto='on'; gui.flmodel{1}.meshparam.hmax=''; gui.flmodel{1}.meshparam.hmaxfact='1'; gui.flmodel{1}.meshparam.hcurve='0.3'; gui.flmodel{1}.meshparam.hgrad='1.3'; gui.flmodel{1}.meshparam.hcutoff='0.001'; gui.flmodel{1}.meshparam.hnarrow='1'; gui.flmodel{1}.meshparam.hpnt='10'; gui.flmodel{1}.meshparam.xscale='1.0'; gui.flmodel{1}.meshparam.yscale='1.0'; gui.flmodel{1}.meshparam.jiggle='on'; gui.flmodel{1}.meshparam.mcase='0'; gui.flmodel{1}.meshparam.rmethod='regular'; gui.flmodel{1}.meshparam.hmaxvtx={'','','',''}; gui.flmodel{1}.meshparam.hgradvtx={'','','',''}; gui.flmodel{1}.meshparam.hmaxedg={'0.001','','',''}; gui.flmodel{1}.meshparam.hcutoffedg={'','','',''}; gui.flmodel{1}.meshparam.hcurveedg={'','','',''}; gui.flmodel{1}.meshparam.hgradedg={'','','',''}; gui.flmodel{1}.meshparam.hgradsub={''}; gui.flmodel{1}.meshparam.methodsub={'triaf'}; gui.flmodel{1}.meshparam.hmaxsub={''}; gui.flmodel{1}.postmodel.postplot.triplot='on'; gui.flmodel{1}.postmodel.postplot.tridata={'T'}; gui.flmodel{1}.postmodel.postplot.trirangeauto='on'; gui.flmodel{1}.postmodel.postplot.trirangemin='0.9991082124716596'; gui.flmodel{1}.postmodel.postplot.trirangemax='1.0214552324720043'; gui.flmodel{1}.postmodel.postplot.tricont='on'; gui.flmodel{1}.postmodel.postplot.trirecover='off'; gui.flmodel{1}.postmodel.postplot.triunit='K'; gui.flmodel{1}.postmodel.postplot.triheightdata={'T'}; gui.flmodel{1}.postmodel.postplot.triheightdatacheck='off'; gui.flmodel{1}.postmodel.postplot.triheightunit='K'; gui.flmodel{1}.postmodel.postplot.trimap='jet'; gui.flmodel{1}.postmodel.postplot.trimapreverse='off'; gui.flmodel{1}.postmodel.postplot.tribar='on'; gui.flmodel{1}.postmodel.postplot.triusemap='on'; gui.flmodel{1}.postmodel.postplot.tricolor='255,0,0'; gui.flmodel{1}.postmodel.postplot.tricoloring='interp'; gui.flmodel{1}.postmodel.postplot.trifill='fill'; gui.flmodel{1}.postmodel.postplot.contplot='off'; gui.flmodel{1}.postmodel.postplot.contdata={'T'}; gui.flmodel{1}.postmodel.postplot.contcont='on'; gui.flmodel{1}.postmodel.postplot.contrecover='off'; gui.flmodel{1}.postmodel.postplot.contunit='K'; gui.flmodel{1}.postmodel.postplot.contheightdata={'T'}; gui.flmodel{1}.postmodel.postplot.contheightdatacheck='off'; gui.flmodel{1}.postmodel.postplot.contheightunit='K'; gui.flmodel{1}.postmodel.postplot.contcolordata={'T'}; gui.flmodel{1}.postmodel.postplot.contcolorrangeauto='on'; gui.flmodel{1}.postmodel.postplot.contcolorrangemin=''; gui.flmodel{1}.postmodel.postplot.contcolorrangemax=''; gui.flmodel{1}.postmodel.postplot.contcolordatacheck='off'; gui.flmodel{1}.postmodel.postplot.contcolorunit='K'; gui.flmodel{1}.postmodel.postplot.contmap='jet'; gui.flmodel{1}.postmodel.postplot.contmapreverse='off'; gui.flmodel{1}.postmodel.postplot.contbar='on'; gui.flmodel{1}.postmodel.postplot.contusemap='on'; gui.flmodel{1}.postmodel.postplot.contcolor='255,0,0'; gui.flmodel{1}.postmodel.postplot.contlevels='20'; gui.flmodel{1}.postmodel.postplot.contvectorlevels=''; gui.flmodel{1}.postmodel.postplot.contisvector='off'; gui.flmodel{1}.postmodel.postplot.contlabel='off'; gui.flmodel{1}.postmodel.postplot.contfill='off'; gui.flmodel{1}.postmodel.postplot.linplot='off'; gui.flmodel{1}.postmodel.postplot.lindata={'T'}; gui.flmodel{1}.postmodel.postplot.linrangeauto='on'; gui.flmodel{1}.postmodel.postplot.linrangemin=''; gui.flmodel{1}.postmodel.postplot.linrangemax=''; gui.flmodel{1}.postmodel.postplot.lincont='on'; gui.flmodel{1}.postmodel.postplot.linrecover='off'; gui.flmodel{1}.postmodel.postplot.linunit='K'; gui.flmodel{1}.postmodel.postplot.linheightdata={'T'}; gui.flmodel{1}.postmodel.postplot.linheightdatacheck='off'; gui.flmodel{1}.postmodel.postplot.linheightunit='K'; gui.flmodel{1}.postmodel.postplot.linmap='jet'; gui.flmodel{1}.postmodel.postplot.linmapreverse='off'; gui.flmodel{1}.postmodel.postplot.linbar='on'; gui.flmodel{1}.postmodel.postplot.linusemap='on'; gui.flmodel{1}.postmodel.postplot.lincolor='255,0,0'; gui.flmodel{1}.postmodel.postplot.lincoloring='interp'; gui.flmodel{1}.postmodel.postplot.arrowplot='off'; gui.flmodel{1}.postmodel.postplot.arrowploton='sub'; gui.flmodel{1}.postmodel.postplot.arrowdata={'fluxr_ht','fluxz_ht'}; gui.flmodel{1}.postmodel.postplot.arrowrecover='off'; gui.flmodel{1}.postmodel.postplot.arrowunit='W/m^2'; gui.flmodel{1}.postmodel.postplot.arrowbnddata={'',''}; gui.flmodel{1}.postmodel.postplot.arrowbndrecover='off'; gui.flmodel{1}.postmodel.postplot.arrowheightdata={'T'}; gui.flmodel{1}.postmodel.postplot.arrowheightdatacheck='off'; gui.flmodel{1}.postmodel.postplot.arrowheightunit='K'; gui.flmodel{1}.postmodel.postplot.arrowxspacing='15'; gui.flmodel{1}.postmodel.postplot.arrowxvectorspacing=''; gui.flmodel{1}.postmodel.postplot.arrowxisvector='off'; gui.flmodel{1}.postmodel.postplot.arrowyspacing='15'; gui.flmodel{1}.postmodel.postplot.arrowyvectorspacing=''; gui.flmodel{1}.postmodel.postplot.arrowyisvector='off'; gui.flmodel{1}.postmodel.postplot.arrowtype='arrow'; gui.flmodel{1}.postmodel.postplot.arrowlength='proportional'; gui.flmodel{1}.postmodel.postplot.arrowcolor='255,0,0'; gui.flmodel{1}.postmodel.postplot.arrowautoscale='on'; gui.flmodel{1}.postmodel.postplot.arrowscale='1'; gui.flmodel{1}.postmodel.postplot.princplot='off'; gui.flmodel{1}.postmodel.postplot.princdata={'','','','','','','','','','','',''}; gui.flmodel{1}.postmodel.postplot.princrecover='off'; gui.flmodel{1}.postmodel.postplot.princheightdata={'F/T'}; gui.flmodel{1}.postmodel.postplot.princheightdatacheck='on'; gui.flmodel{1}.postmodel.postplot.princxspacing='8'; gui.flmodel{1}.postmodel.postplot.princxvectorspacing=''; gui.flmodel{1}.postmodel.postplot.princxisvector='off'; gui.flmodel{1}.postmodel.postplot.princyspacing='8'; gui.flmodel{1}.postmodel.postplot.princyvectorspacing=''; gui.flmodel{1}.postmodel.postplot.princyisvector='off'; gui.flmodel{1}.postmodel.postplot.princtype='arrow'; gui.flmodel{1}.postmodel.postplot.princlength='proportional'; gui.flmodel{1}.postmodel.postplot.princcolor='0,153,0'; gui.flmodel{1}.postmodel.postplot.princautoscale='on'; gui.flmodel{1}.postmodel.postplot.princscale='1'; gui.flmodel{1}.postmodel.postplot.flowplot='off'; gui.flmodel{1}.postmodel.postplot.flowdata={'fluxr_ht','fluxz_ht'}; gui.flmodel{1}.postmodel.postplot.flowunit='W/m^2'; gui.flmodel{1}.postmodel.postplot.flowuseexpression='off'; gui.flmodel{1}.postmodel.postplot.flowcolor='255,0,0'; gui.flmodel{1}.postmodel.postplot.flowcolordata={'T'}; gui.flmodel{1}.postmodel.postplot.flowcolorunit='K'; gui.flmodel{1}.postmodel.postplot.flowmap='jet'; gui.flmodel{1}.postmodel.postplot.flowmapreverse='off'; gui.flmodel{1}.postmodel.postplot.flowbar='on'; gui.flmodel{1}.postmodel.postplot.flowheightdata={'T'}; gui.flmodel{1}.postmodel.postplot.flowheightdatacheck='off'; gui.flmodel{1}.postmodel.postplot.flowheightunit='K'; gui.flmodel{1}.postmodel.postplot.flowlines='20'; gui.flmodel{1}.postmodel.postplot.flowstart='sub'; gui.flmodel{1}.postmodel.postplot.flowstartx=''; gui.flmodel{1}.postmodel.postplot.flowstarty=''; gui.flmodel{1}.postmodel.postplot.flowisstartvector='off'; gui.flmodel{1}.postmodel.postplot.flowtol='0.001'; gui.flmodel{1}.postmodel.postplot.flowstattol='0.01'; gui.flmodel{1}.postmodel.postplot.flowlooptol='0.01'; gui.flmodel{1}.postmodel.postplot.flowmaxtime='Inf'; gui.flmodel{1}.postmodel.postplot.flowmaxsteps='5000'; gui.flmodel{1}.postmodel.postplot.flowback='on'; gui.flmodel{1}.postmodel.postplot.flownormal='off'; gui.flmodel{1}.postmodel.postplot.flowdistuniform='0.05'; gui.flmodel{1}.postmodel.postplot.flowlinesvel='20'; gui.flmodel{1}.postmodel.postplot.flowseedmanual='off'; gui.flmodel{1}.postmodel.postplot.flowseed1=''; gui.flmodel{1}.postmodel.postplot.flowseed2=''; gui.flmodel{1}.postmodel.postplot.flowinitref='1'; gui.flmodel{1}.postmodel.postplot.flowignoredist='0.5'; gui.flmodel{1}.postmodel.postplot.flowsat='1.3'; gui.flmodel{1}.postmodel.postplot.flowdistend='0.5'; gui.flmodel{1}.postmodel.postplot.flowdens='none'; gui.flmodel{1}.postmodel.postplot.partplot='off'; gui.flmodel{1}.postmodel.postplot.partmasstype='mass'; gui.flmodel{1}.postmodel.postplot.partplotas='lines'; gui.flmodel{1}.postmodel.postplot.predefforces=''; gui.flmodel{1}.postmodel.postplot.partmass='1'; gui.flmodel{1}.postmodel.postplot.partforce={'','',''}; gui.flmodel{1}.postmodel.postplot.part_massless_flowdata={'fluxr_ht','fluxz_ht'}; gui.flmodel{1}.postmodel.postplot.part_massless_flowunit='W/m^2'; gui.flmodel{1}.postmodel.postplot.parttstartauto='on'; gui.flmodel{1}.postmodel.postplot.parttstart=''; gui.flmodel{1}.postmodel.postplot.partvelstart={'0','0','0'}; gui.flmodel{1}.postmodel.postplot.partstartptssel='partstart_explicit'; gui.flmodel{1}.postmodel.postplot.partstartdl=''; gui.flmodel{1}.postmodel.postplot.partstartedim1levels='10'; gui.flmodel{1}.postmodel.postplot.partstartedim1vectorlevels=''; gui.flmodel{1}.postmodel.postplot.partstartedim1isvector='off'; gui.flmodel{1}.postmodel.postplot.explicitcoord={'0','0'}; gui.flmodel{1}.postmodel.postplot.partuseexpression='off'; gui.flmodel{1}.postmodel.postplot.partcolor='255,0,0'; gui.flmodel{1}.postmodel.postplot.partcolordata={'T'}; gui.flmodel{1}.postmodel.postplot.partcolorunit='K'; gui.flmodel{1}.postmodel.postplot.partmap='jet'; gui.flmodel{1}.postmodel.postplot.partmapreverse='off'; gui.flmodel{1}.postmodel.postplot.partbar='on'; gui.flmodel{1}.postmodel.postplot.partpointcolor='255,0,0'; gui.flmodel{1}.postmodel.postplot.partpointautoscale='on'; gui.flmodel{1}.postmodel.postplot.partpointscale='1'; gui.flmodel{1}.postmodel.postplot.partdroptype='once'; gui.flmodel{1}.postmodel.postplot.partdroptimes=''; gui.flmodel{1}.postmodel.postplot.partdropfreq=''; gui.flmodel{1}.postmodel.postplot.partbnd='stick'; gui.flmodel{1}.postmodel.postplot.partmasslessrtol='0.001'; gui.flmodel{1}.postmodel.postplot.partmasslessatolmanual='off'; gui.flmodel{1}.postmodel.postplot.partmasslessatol={''}; gui.flmodel{1}.postmodel.postplot.partmasslessatolexpanded={''}; gui.flmodel{1}.postmodel.postplot.partmasslessstepsizemanual='off'; gui.flmodel{1}.postmodel.postplot.partmasslesstendauto='on'; gui.flmodel{1}.postmodel.postplot.partmasslessmaxstepsauto='on'; gui.flmodel{1}.postmodel.postplot.partmasslessedgetol='0.001'; gui.flmodel{1}.postmodel.postplot.partmasslesstvar='partt'; gui.flmodel{1}.postmodel.postplot.partmasslessstatic='off'; gui.flmodel{1}.postmodel.postplot.partmasslessres='5'; gui.flmodel{1}.postmodel.postplot.partrtol='0.001'; gui.flmodel{1}.postmodel.postplot.partatolmanual='off'; gui.flmodel{1}.postmodel.postplot.partatol={'',''}; gui.flmodel{1}.postmodel.postplot.partatolexpanded={'',''}; gui.flmodel{1}.postmodel.postplot.partstepsizemanual='off'; gui.flmodel{1}.postmodel.postplot.parttendauto='on'; gui.flmodel{1}.postmodel.postplot.partmaxstepsauto='on'; gui.flmodel{1}.postmodel.postplot.partedgetol='0.001'; gui.flmodel{1}.postmodel.postplot.partvelvar={'partu','partv','partw'}; gui.flmodel{1}.postmodel.postplot.parttvar='partt'; gui.flmodel{1}.postmodel.postplot.partstatic='off'; gui.flmodel{1}.postmodel.postplot.partres='5'; gui.flmodel{1}.postmodel.postplot.maxminplot='off'; gui.flmodel{1}.postmodel.postplot.maxminsubdata={'T'}; gui.flmodel{1}.postmodel.postplot.maxminsubrecover='off'; gui.flmodel{1}.postmodel.postplot.maxminsubdatacheck='on'; gui.flmodel{1}.postmodel.postplot.maxminsubunit='K'; gui.flmodel{1}.postmodel.postplot.maxminbnddata={'T'}; gui.flmodel{1}.postmodel.postplot.maxminbndrecover='off'; gui.flmodel{1}.postmodel.postplot.maxminbnddatacheck='off'; gui.flmodel{1}.postmodel.postplot.maxminbndunit='K'; gui.flmodel{1}.postmodel.postplot.geom='on'; gui.flmodel{1}.postmodel.postplot.roughplot='off'; gui.flmodel{1}.postmodel.postplot.autorefine='on'; gui.flmodel{1}.postmodel.postplot.refine='2'; gui.flmodel{1}.postmodel.postplot.geomnum={'Geom1'}; gui.flmodel{1}.postmodel.postplot.phase='0'; gui.flmodel{1}.postmodel.postplot.solnum='10'; gui.flmodel{1}.postmodel.postplot.selectvia='stored'; gui.flmodel{1}.postmodel.postplot.autotitle='on'; gui.flmodel{1}.postmodel.postplot.customtitle=''; gui.flmodel{1}.postmodel.postplot.smoothinternal='on'; gui.flmodel{1}.postmodel.postplot.useellogic='off'; gui.flmodel{1}.postmodel.postplot.ellogic=''; gui.flmodel{1}.postmodel.postplot.ellogictype='all'; gui.flmodel{1}.postmodel.postplot.complexfun='on'; gui.flmodel{1}.postmodel.postplot.matherr='off'; gui.flmodel{1}.postmodel.postplot.deformplot='off'; gui.flmodel{1}.postmodel.postplot.deformsub='on'; gui.flmodel{1}.postmodel.postplot.deformbnd='on'; gui.flmodel{1}.postmodel.postplot.deformsubdata={'fluxr_ht','fluxz_ht'}; gui.flmodel{1}.postmodel.postplot.deformsubunit='W/m^2'; gui.flmodel{1}.postmodel.postplot.deformbnddata={'',''}; gui.flmodel{1}.postmodel.postplot.deformautoscale='on'; gui.flmodel{1}.postmodel.postplot.deformscale='1'; gui.flmodel{1}.postmodel.postplot.animate_solnum='0,1,2,3,4,5,6,7,8,9,10'; gui.flmodel{1}.postmodel.postplot.animate_selectvia='stored'; gui.flmodel{1}.postmodel.postplot.outputtype='moviefile'; gui.flmodel{1}.postmodel.postplot.filetype='AVI'; gui.flmodel{1}.postmodel.postplot.width='640'; gui.flmodel{1}.postmodel.postplot.height='480'; gui.flmodel{1}.postmodel.postplot.fps='10'; gui.flmodel{1}.postmodel.postplot.statfunctype='full'; gui.flmodel{1}.postmodel.postplot.statnframes='11'; gui.flmodel{1}.postmodel.postplot.reverse='off'; gui.flmodel{1}.postmodel.postplot.movieinmatlab='off'; gui.flmodel{1}.postmodel.postplot.copyaxis='off'; gui.flmodel{1}.postmodel.intdata{1}.intdata={'T'}; gui.flmodel{1}.postmodel.intdata{1}.intrecover='off'; gui.flmodel{1}.postmodel.intdata{1}.intunit='K'; gui.flmodel{1}.postmodel.intdata{1}.phase='0'; gui.flmodel{1}.postmodel.intdata{1}.solnum='10'; gui.flmodel{1}.postmodel.intdata{1}.selectvia='stored'; gui.flmodel{1}.postmodel.intdata{2}.multiplyexpr='off'; gui.flmodel{1}.postmodel.intdata{2}.method='auto'; gui.flmodel{1}.postmodel.intdata{2}.order='4'; gui.flmodel{1}.postmodel.intdata{2}.autoorder='on'; gui.flmodel{1}.postmodel.intdata{2}.intdata={'T'}; gui.flmodel{1}.postmodel.intdata{2}.intrecover='off'; gui.flmodel{1}.postmodel.intdata{2}.intunit='m*K'; gui.flmodel{1}.postmodel.intdata{2}.phase='0'; gui.flmodel{1}.postmodel.intdata{2}.solnum='10'; gui.flmodel{1}.postmodel.intdata{2}.selectvia='stored'; gui.flmodel{1}.postmodel.intdata{3}.multiplyexpr='off'; gui.flmodel{1}.postmodel.intdata{3}.method='auto'; gui.flmodel{1}.postmodel.intdata{3}.order='4'; gui.flmodel{1}.postmodel.intdata{3}.autoorder='on'; gui.flmodel{1}.postmodel.intdata{3}.intdata={'T'}; gui.flmodel{1}.postmodel.intdata{3}.intrecover='off'; gui.flmodel{1}.postmodel.intdata{3}.intunit='m^2*K'; gui.flmodel{1}.postmodel.intdata{3}.phase='0'; gui.flmodel{1}.postmodel.intdata{3}.solnum='10'; gui.flmodel{1}.postmodel.intdata{3}.selectvia='stored'; gui.flmodel{1}.postmodel.domainplot.colordata={'T'}; gui.flmodel{1}.postmodel.domainplot.colorrangeauto='on'; gui.flmodel{1}.postmodel.domainplot.colorrangemin=''; gui.flmodel{1}.postmodel.domainplot.colorrangemax=''; gui.flmodel{1}.postmodel.domainplot.colorcont='on'; gui.flmodel{1}.postmodel.domainplot.colorrecover='off'; gui.flmodel{1}.postmodel.domainplot.colorunit='K'; gui.flmodel{1}.postmodel.domainplot.surfacesurfacemap='jet'; gui.flmodel{1}.postmodel.domainplot.surfacesurfacemapreverse='off'; gui.flmodel{1}.postmodel.domainplot.surfacesurfacebar='on'; gui.flmodel{1}.postmodel.domainplot.surfacesurfaceusemap='on'; gui.flmodel{1}.postmodel.domainplot.surfacesurfacecolor='255,0,0'; gui.flmodel{1}.postmodel.domainplot.surfacesurfacecoloring='interp'; gui.flmodel{1}.postmodel.domainplot.surfacesurfacefill='fill'; gui.flmodel{1}.postmodel.domainplot.extrusion='off'; gui.flmodel{1}.postmodel.domainplot.lineyaxisdata={'T'}; gui.flmodel{1}.postmodel.domainplot.lineyaxiscont='on'; gui.flmodel{1}.postmodel.domainplot.lineyaxisrecover='off'; gui.flmodel{1}.postmodel.domainplot.lineyaxisunit='K'; gui.flmodel{1}.postmodel.domainplot.linexaxisxaxistype='arc'; gui.flmodel{1}.postmodel.domainplot.linexaxisuseexpr='off'; gui.flmodel{1}.postmodel.domainplot.linexaxisdata={'T'}; gui.flmodel{1}.postmodel.domainplot.linexaxisunit='K'; gui.flmodel{1}.postmodel.domainplot.linelinestyle='solid'; gui.flmodel{1}.postmodel.domainplot.linelinecolor='cyclecolor'; gui.flmodel{1}.postmodel.domainplot.linelinemarker='none'; gui.flmodel{1}.postmodel.domainplot.linelegend='off'; gui.flmodel{1}.postmodel.domainplot.linelinelabels='off'; gui.flmodel{1}.postmodel.domainplot.linecolor='255,0,0'; gui.flmodel{1}.postmodel.domainplot.linesurfacemap='jet'; gui.flmodel{1}.postmodel.domainplot.linesurfacemapreverse='off'; gui.flmodel{1}.postmodel.domainplot.linesurfacebar='on'; gui.flmodel{1}.postmodel.domainplot.linesurfaceusemap='on'; gui.flmodel{1}.postmodel.domainplot.linesurfacecolor='255,0,0'; gui.flmodel{1}.postmodel.domainplot.linesurfacecoloring='interp'; gui.flmodel{1}.postmodel.domainplot.linesurfacefill='fill'; gui.flmodel{1}.postmodel.domainplot.pointyaxisdata={'T'}; gui.flmodel{1}.postmodel.domainplot.pointyaxisrecover='off'; gui.flmodel{1}.postmodel.domainplot.pointyaxisunit='K'; gui.flmodel{1}.postmodel.domainplot.pointxxaxistype=''; gui.flmodel{1}.postmodel.domainplot.pointxuseexpr='off'; gui.flmodel{1}.postmodel.domainplot.pointxdata={'T'}; gui.flmodel{1}.postmodel.domainplot.pointxunit='K'; gui.flmodel{1}.postmodel.domainplot.pointlinestyle='solid'; gui.flmodel{1}.postmodel.domainplot.pointlinecolor='cyclecolor'; gui.flmodel{1}.postmodel.domainplot.pointlinemarker='none'; gui.flmodel{1}.postmodel.domainplot.pointlegend='off'; gui.flmodel{1}.postmodel.domainplot.pointlinelabels='off'; gui.flmodel{1}.postmodel.domainplot.pointcolor='255,0,0'; gui.flmodel{1}.postmodel.domainplot.crossdispcolor='255,0,0'; gui.flmodel{1}.postmodel.domainplot.phase='0'; gui.flmodel{1}.postmodel.domainplot.solnum='0,1,2,3,4,5,6,7,8,9,10'; gui.flmodel{1}.postmodel.domainplot.selectvia='stored'; gui.flmodel{1}.postmodel.domainplot.autotitle='on'; gui.flmodel{1}.postmodel.domainplot.customtitle=''; gui.flmodel{1}.postmodel.domainplot.autolabelx='on'; gui.flmodel{1}.postmodel.domainplot.customlabelx=''; gui.flmodel{1}.postmodel.domainplot.autolabely='on'; gui.flmodel{1}.postmodel.domainplot.customlabely=''; gui.flmodel{1}.postmodel.domainplot.axistype={'lin','lin'}; gui.flmodel{1}.postmodel.domainplot.smoothinternal='on'; gui.flmodel{1}.postmodel.domainplot.autorefine='on'; gui.flmodel{1}.postmodel.domainplot.refine='1'; gui.flmodel{1}.postmodel.domainplot.plottypeind='0'; gui.flmodel{1}.postmodel.crossplot.extrusion='off'; gui.flmodel{1}.postmodel.crossplot.lineyaxisdata={'T/F'}; gui.flmodel{1}.postmodel.crossplot.lineyaxisrecover='off'; gui.flmodel{1}.postmodel.crossplot.linexaxisxaxistype='arc'; gui.flmodel{1}.postmodel.crossplot.linexaxisuseexpr='off'; gui.flmodel{1}.postmodel.crossplot.linexaxisdata={'T'}; gui.flmodel{1}.postmodel.crossplot.linexaxisunit='K'; gui.flmodel{1}.postmodel.crossplot.linelinestyle='solid'; gui.flmodel{1}.postmodel.crossplot.linelinecolor='cyclecolor'; gui.flmodel{1}.postmodel.crossplot.linelinemarker='none'; gui.flmodel{1}.postmodel.crossplot.linelegend='off'; gui.flmodel{1}.postmodel.crossplot.linelinelabels='off'; gui.flmodel{1}.postmodel.crossplot.linecolor='255,0,0'; gui.flmodel{1}.postmodel.crossplot.linesurfacemap='jet'; gui.flmodel{1}.postmodel.crossplot.linesurfacemapreverse='off'; gui.flmodel{1}.postmodel.crossplot.linesurfacebar='on'; gui.flmodel{1}.postmodel.crossplot.linesurfaceusemap='on'; gui.flmodel{1}.postmodel.crossplot.linesurfacecolor='255,0,0'; gui.flmodel{1}.postmodel.crossplot.linesurfacecoloring='interp'; gui.flmodel{1}.postmodel.crossplot.linesurfacefill='fill'; gui.flmodel{1}.postmodel.crossplot.lineresolution='200'; gui.flmodel{1}.postmodel.crossplot.linecoord={'50.5','50.5','0','1'}; gui.flmodel{1}.postmodel.crossplot.linelevels='5'; gui.flmodel{1}.postmodel.crossplot.linevectorlevels=''; gui.flmodel{1}.postmodel.crossplot.lineisvector='off'; gui.flmodel{1}.postmodel.crossplot.lineactive='off'; gui.flmodel{1}.postmodel.crossplot.pointyaxisdata={'T'}; gui.flmodel{1}.postmodel.crossplot.pointyaxisrecover='off'; gui.flmodel{1}.postmodel.crossplot.pointyaxisunit='K'; gui.flmodel{1}.postmodel.crossplot.pointxxaxistype=''; gui.flmodel{1}.postmodel.crossplot.pointxuseexpr='off'; gui.flmodel{1}.postmodel.crossplot.pointxdata={'T'}; gui.flmodel{1}.postmodel.crossplot.pointxunit='m^2*K'; gui.flmodel{1}.postmodel.crossplot.pointlinestyle='solid'; gui.flmodel{1}.postmodel.crossplot.pointlinecolor='cyclecolor'; gui.flmodel{1}.postmodel.crossplot.pointlinemarker='none'; gui.flmodel{1}.postmodel.crossplot.pointlegend='off'; gui.flmodel{1}.postmodel.crossplot.pointlinelabels='off'; gui.flmodel{1}.postmodel.crossplot.pointcolor='255,0,0'; gui.flmodel{1}.postmodel.crossplot.pointcoord={'1','0.5'}; gui.flmodel{1}.postmodel.crossplot.crossdispcolor='255,0,0'; gui.flmodel{1}.postmodel.crossplot.phase='0'; gui.flmodel{1}.postmodel.crossplot.solnum='0,1,2,3,4,5,6,7,8,9,10'; gui.flmodel{1}.postmodel.crossplot.selectvia='stored'; gui.flmodel{1}.postmodel.crossplot.autotitle='on'; gui.flmodel{1}.postmodel.crossplot.customtitle=''; gui.flmodel{1}.postmodel.crossplot.autolabelx='on'; gui.flmodel{1}.postmodel.crossplot.customlabelx=''; gui.flmodel{1}.postmodel.crossplot.autolabely='on'; gui.flmodel{1}.postmodel.crossplot.customlabely=''; gui.flmodel{1}.postmodel.crossplot.axistype={'lin','lin'}; gui.flmodel{1}.postmodel.crossplot.smoothinternal='on'; gui.flmodel{1}.postmodel.crossplot.plottypeind='0'; gui.flmodel{1}.postmodel.dataexport.pntdata={'T'}; gui.flmodel{1}.postmodel.dataexport.pntrecover='off'; gui.flmodel{1}.postmodel.dataexport.pntunit='K'; gui.flmodel{1}.postmodel.dataexport.pntlocation='element'; gui.flmodel{1}.postmodel.dataexport.pntlagorder='2'; gui.flmodel{1}.postmodel.dataexport.bnddata={'T'}; gui.flmodel{1}.postmodel.dataexport.bndcont='off'; gui.flmodel{1}.postmodel.dataexport.bndrecover='off'; gui.flmodel{1}.postmodel.dataexport.bndunit='K'; gui.flmodel{1}.postmodel.dataexport.bndlocation='element'; gui.flmodel{1}.postmodel.dataexport.bndlagorder='2'; gui.flmodel{1}.postmodel.dataexport.subdata={'T'}; gui.flmodel{1}.postmodel.dataexport.subcont='off'; gui.flmodel{1}.postmodel.dataexport.subrecover='off'; gui.flmodel{1}.postmodel.dataexport.subunit='K'; gui.flmodel{1}.postmodel.dataexport.subxspacing='10'; gui.flmodel{1}.postmodel.dataexport.subxvectorspacing=''; gui.flmodel{1}.postmodel.dataexport.subxisvector='off'; gui.flmodel{1}.postmodel.dataexport.subyspacing='10'; gui.flmodel{1}.postmodel.dataexport.subyvectorspacing=''; gui.flmodel{1}.postmodel.dataexport.subyisvector='off'; gui.flmodel{1}.postmodel.dataexport.sublocation='element'; gui.flmodel{1}.postmodel.dataexport.sublagorder='2'; gui.flmodel{1}.postmodel.dataexport.phase='0'; gui.flmodel{1}.postmodel.dataexport.solnum='0,1,2,3,4,5,6,7,8,9,10'; gui.flmodel{1}.postmodel.dataexport.selectvia='stored'; gui.flmodel{1}.postmodel.dataexport.smoothinternal='on'; gui.flmodel{1}.postmodel.dataexport.exportformat='ptd'; gui.flmodel{1}.postmodel.dataexport.struct='off'; gui.flmodel{1}.postmodel.dataexport.exportedim='2'; gui.flmodel{1}.postmodel.dataexport.plotexportformat='coorddata'; gui.flmodel{1}.postmodel.dataexport.plotstruct='off'; gui.flmodel{1}.postmodel.datadisplay.fullprecision='off'; gui.flmodel{1}.postmodel.datadisplay.smoothinternal='on'; gui.flmodel{1}.postmodel.datadisplay.phase='0'; gui.flmodel{1}.postmodel.datadisplay.solnum='10'; gui.flmodel{1}.postmodel.datadisplay.selectvia='stored'; gui.flmodel{1}.postmodel.datadisplay.interpdata={'T'}; gui.flmodel{1}.postmodel.datadisplay.interprecover='off'; gui.flmodel{1}.postmodel.datadisplay.interpunit='K'; gui.flmodel{1}.postmodel.datadisplay.coord={'0','0'}; gui.flmodel{1}.postmodel.globalplot.globalyaxisexprs={}; gui.flmodel{1}.postmodel.globalplot.globalyaxisexprsdisp={}; gui.flmodel{1}.postmodel.globalplot.linexaxisxaxistype=''; gui.flmodel{1}.postmodel.globalplot.linexaxisuseexpr='off'; gui.flmodel{1}.postmodel.globalplot.globallinestyle='solid'; gui.flmodel{1}.postmodel.globalplot.globallinecolor='cyclecolor'; gui.flmodel{1}.postmodel.globalplot.globallinemarker='none'; gui.flmodel{1}.postmodel.globalplot.globallegend='off'; gui.flmodel{1}.postmodel.globalplot.globallinelabels='off'; gui.flmodel{1}.postmodel.globalplot.globalcolor='255,0,0'; gui.flmodel{1}.postmodel.globalplot.autotitle='on'; gui.flmodel{1}.postmodel.globalplot.customtitle=''; gui.flmodel{1}.postmodel.globalplot.autolabelx='on'; gui.flmodel{1}.postmodel.globalplot.customlabelx=''; gui.flmodel{1}.postmodel.globalplot.autolabely='on'; gui.flmodel{1}.postmodel.globalplot.customlabely=''; gui.flmodel{1}.postmodel.globalplot.axistype={'lin','lin'}; gui.flmodel{1}.postmodel.globalplot.phase='0'; gui.flmodel{1}.postmodel.globalplot.solnum='0,1,2,3,4,5,6,7,8,9,10'; gui.flmodel{1}.postmodel.globalplot.selectvia='stored'; gui.flmodel{1}.geommodel.suppressed{1}=[]; gui.flmodel{1}.geommodel.suppressed{2}=[]; gui.flmodel{1}.geommodel.suppressed{3}=[]; gui.flmodel{1}.workplane.type='0'; gui.flmodel{1}.workplane.wrkpln='0,1,0,0,0,1,0,0,0'; gui.flmodel{1}.workplane.localsys='0,1,0,0,0,0,1,0,0,0,0,1'; gui.flmodel{1}.workplane.model2d='Geom1'; gui.flmodel{1}.workplane.quicktype='10'; gui.flmodel{1}.workplane.parameter='0'; gui.flmodel{1}.workplane.zdir='up'; gui.flmodel{1}.meshmodel.meshplot.subplot='on'; gui.flmodel{1}.meshmodel.meshplot.meshsubuseexpression='off'; gui.flmodel{1}.meshmodel.meshplot.meshsubcolor='128,128,128'; gui.flmodel{1}.meshmodel.meshplot.meshsubbordercheck='off'; gui.flmodel{1}.meshmodel.meshplot.meshwiresubplot='on'; gui.flmodel{1}.meshmodel.meshplot.meshwiresubcolor='192,192,192'; gui.flmodel{1}.meshmodel.meshplot.bndplot='on'; gui.flmodel{1}.meshmodel.meshplot.meshbndcolor='0,0,0'; gui.flmodel{1}.meshmodel.meshplot.useellogic='off'; gui.flmodel{1}.meshmodel.meshplot.ellogic=''; gui.flmodel{1}.meshmodel.meshplot.ellogictype='all'; gui.flmodel{1}.meshmodel.meshplot.meshkeepfraction='1'; gui.flmodel{1}.meshmodel.meshplot.meshkeeptype='random'; gui.flmodel{1}.meshmodel.meshplot.meshmap='jet'; gui.flmodel{1}.meshmodel.meshplot.meshmapreverse='off'; gui.flmodel{1}.meshmodel.meshplot.meshbar='on'; gui.flmodel{2}.modelname='Geom2'; gui.flmodel{2}.currmode='subdomain'; gui.flmodel{2}.currappl='0'; gui.flmodel{2}.axis.xmin='-0.05'; gui.flmodel{2}.axis.xmax='1.05'; gui.flmodel{2}.axis.ymin='-0.011000000000000001'; gui.flmodel{2}.axis.ymax='0.011000000000000001'; gui.flmodel{2}.axis.zmin='-1.0'; gui.flmodel{2}.axis.zmax='1.0'; gui.flmodel{2}.axis.xspacing='0.1'; gui.flmodel{2}.axis.yspacing='0.0020'; gui.flmodel{2}.axis.zspacing='0.2'; gui.flmodel{2}.axis.extrax=''; gui.flmodel{2}.axis.extray=''; gui.flmodel{2}.axis.extraz=''; gui.flmodel{2}.camera.xmin='-0.55'; gui.flmodel{2}.camera.xmax='0.55'; gui.flmodel{2}.camera.ymin='-1.0741981625556947'; gui.flmodel{2}.camera.ymax='1.0741981625556947'; gui.flmodel{2}.camera.camposx='0.5'; gui.flmodel{2}.camera.camposy='0.9765437841415405'; gui.flmodel{2}.camera.camposz='10.741981625556946'; gui.flmodel{2}.camera.camtargetx='0.5'; gui.flmodel{2}.camera.camtargety='0.9765437841415405'; gui.flmodel{2}.camera.camtargetz='0.0'; gui.flmodel{2}.camera.camupx='0.0'; gui.flmodel{2}.camera.camupy='1.0'; gui.flmodel{2}.camera.camupz='0.0'; gui.flmodel{2}.lightmodel.headlight.type='point'; gui.flmodel{2}.lightmodel.headlight.name='headlight'; gui.flmodel{2}.lightmodel.headlight.enable='on'; gui.flmodel{2}.lightmodel.headlight.colorr='255'; gui.flmodel{2}.lightmodel.headlight.colorg='255'; gui.flmodel{2}.lightmodel.headlight.colorb='255'; gui.flmodel{2}.lightmodel.headlight.xpos='0.5'; gui.flmodel{2}.lightmodel.headlight.ypos='0.9765438'; gui.flmodel{2}.lightmodel.headlight.zpos='10.7419815'; gui.flmodel{2}.lightmodel.scenelight{1}.type='directional'; gui.flmodel{2}.lightmodel.scenelight{1}.name='light 1'; gui.flmodel{2}.lightmodel.scenelight{1}.enable='on'; gui.flmodel{2}.lightmodel.scenelight{1}.colorr='255'; gui.flmodel{2}.lightmodel.scenelight{1}.colorg='255'; gui.flmodel{2}.lightmodel.scenelight{1}.colorb='255'; gui.flmodel{2}.lightmodel.scenelight{1}.xdir='1.0'; gui.flmodel{2}.lightmodel.scenelight{1}.ydir='-1.0'; gui.flmodel{2}.lightmodel.scenelight{1}.zdir='1.0'; gui.flmodel{2}.lightmodel.scenelight{2}.type='directional'; gui.flmodel{2}.lightmodel.scenelight{2}.name='light 2'; gui.flmodel{2}.lightmodel.scenelight{2}.enable='on'; gui.flmodel{2}.lightmodel.scenelight{2}.colorr='255'; gui.flmodel{2}.lightmodel.scenelight{2}.colorg='255'; gui.flmodel{2}.lightmodel.scenelight{2}.colorb='255'; gui.flmodel{2}.lightmodel.scenelight{2}.xdir='-1.0'; gui.flmodel{2}.lightmodel.scenelight{2}.ydir='1.0'; gui.flmodel{2}.lightmodel.scenelight{2}.zdir='-1.0'; gui.flmodel{2}.lightmodel.scenelight{3}.type='directional'; gui.flmodel{2}.lightmodel.scenelight{3}.name='light 3'; gui.flmodel{2}.lightmodel.scenelight{3}.enable='on'; gui.flmodel{2}.lightmodel.scenelight{3}.colorr='255'; gui.flmodel{2}.lightmodel.scenelight{3}.colorg='255'; gui.flmodel{2}.lightmodel.scenelight{3}.colorb='255'; gui.flmodel{2}.lightmodel.scenelight{3}.xdir='-1.0'; gui.flmodel{2}.lightmodel.scenelight{3}.ydir='-1.0'; gui.flmodel{2}.lightmodel.scenelight{3}.zdir='1.0'; gui.flmodel{2}.lightmodel.scenelight{4}.type='directional'; gui.flmodel{2}.lightmodel.scenelight{4}.name='light 4'; gui.flmodel{2}.lightmodel.scenelight{4}.enable='on'; gui.flmodel{2}.lightmodel.scenelight{4}.colorr='255'; gui.flmodel{2}.lightmodel.scenelight{4}.colorg='255'; gui.flmodel{2}.lightmodel.scenelight{4}.colorb='255'; gui.flmodel{2}.lightmodel.scenelight{4}.xdir='1.0'; gui.flmodel{2}.lightmodel.scenelight{4}.ydir='-1.0'; gui.flmodel{2}.lightmodel.scenelight{4}.zdir='-1.0'; gui.flmodel{2}.registry.axis_visible='on'; gui.flmodel{2}.registry.axis_auto='on'; gui.flmodel{2}.registry.axis_autoy='on'; gui.flmodel{2}.registry.axis_autoz='on'; gui.flmodel{2}.registry.axis_box='off'; gui.flmodel{2}.registry.axis_equal='on'; gui.flmodel{2}.registry.axis_csys='on'; gui.flmodel{2}.registry.grid_visible='on'; gui.flmodel{2}.registry.grid_auto='on'; gui.flmodel{2}.registry.grid_autoz='on'; gui.flmodel{2}.registry.grid_labels='on'; gui.flmodel{2}.registry.labels_object='on'; gui.flmodel{2}.registry.labels_vertex='off'; gui.flmodel{2}.registry.labels_edge='off'; gui.flmodel{2}.registry.labels_face='off'; gui.flmodel{2}.registry.labels_subdomain='off'; gui.flmodel{2}.registry.symbols_vertexscale='1.0'; gui.flmodel{2}.registry.symbols_edgescale='1.0'; gui.flmodel{2}.registry.symbols_facescale='1.0'; gui.flmodel{2}.registry.select_draw2d='size'; gui.flmodel{2}.registry.select_adj='cycle'; gui.flmodel{2}.registry.light_headlight='off'; gui.flmodel{2}.registry.light_scenelight='off'; gui.flmodel{2}.registry.light_shininess='0.5'; gui.flmodel{2}.registry.camera_mouse='orbit'; gui.flmodel{2}.registry.camera_camconstr='none'; gui.flmodel{2}.registry.camera_mouseconstr='none'; gui.flmodel{2}.registry.camera_perspective='off'; gui.flmodel{2}.registry.camera_moveasbox='off'; gui.flmodel{2}.registry.draw_assembly='off'; gui.flmodel{2}.registry.draw_dialog='off'; gui.flmodel{2}.registry.draw_keepborders='on'; gui.flmodel{2}.registry.draw_keepedges='off'; gui.flmodel{2}.registry.draw_multi='off'; gui.flmodel{2}.registry.draw_snap2grid='on'; gui.flmodel{2}.registry.draw_snap2vtx='on'; gui.flmodel{2}.registry.draw_solid='on'; gui.flmodel{2}.registry.draw_workplane_coordsys='on'; gui.flmodel{2}.registry.draw_workplane_showgeom='on'; gui.flmodel{2}.registry.draw_repair='on'; gui.flmodel{2}.registry.draw_repairtol='1.0E-6'; gui.flmodel{2}.registry.draw_projection='intersection'; gui.flmodel{2}.registry.transparency_value='1.0'; gui.flmodel{2}.registry.mesh_geomdetail='normal'; gui.flmodel{2}.registry.mesh_showquality='off'; gui.flmodel{2}.registry.post_cameraview='2'; gui.flmodel{2}.registry.graphics_scale='0.1'; gui.flmodel{2}.registry.render_mesh='off'; gui.flmodel{2}.registry.render_bndarrow='on'; gui.flmodel{2}.registry.render_vertex='off'; gui.flmodel{2}.registry.render_edge='on'; gui.flmodel{2}.registry.render_face='off'; gui.flmodel{2}.registry.highlight_vertex='off'; gui.flmodel{2}.registry.highlight_edge='on'; gui.flmodel{2}.registry.highlight_face='on'; gui.flmodel{2}.meshparam.hauto='5'; gui.flmodel{2}.meshparam.usehauto='off'; gui.flmodel{2}.meshparam.hmax=''; gui.flmodel{2}.meshparam.hmaxfact='1'; gui.flmodel{2}.meshparam.hgrad='1.3'; gui.flmodel{2}.meshparam.xscale='1.0'; gui.flmodel{2}.meshparam.mcase='0'; gui.flmodel{2}.meshparam.hmaxvtx={'',''}; gui.flmodel{2}.meshparam.hgradvtx={'',''}; gui.flmodel{2}.meshparam.hgradsub={''}; gui.flmodel{2}.meshparam.hmaxsub={''}; gui.flmodel{2}.postmodel.postplot.linplot='on'; gui.flmodel{2}.postmodel.postplot.linheightdata={'F'}; gui.flmodel{2}.postmodel.postplot.linheightcont='on'; gui.flmodel{2}.postmodel.postplot.linheightrecover='off'; gui.flmodel{2}.postmodel.postplot.linheightdatacheck='on'; gui.flmodel{2}.postmodel.postplot.linuseexpression='off'; gui.flmodel{2}.postmodel.postplot.lincolor='0,0,0'; gui.flmodel{2}.postmodel.postplot.lincolordata={'F'}; gui.flmodel{2}.postmodel.postplot.lincolorrangeauto='on'; gui.flmodel{2}.postmodel.postplot.lincolorrangemin='1.000000001018208'; gui.flmodel{2}.postmodel.postplot.lincolorrangemax='1.9649197878772688'; gui.flmodel{2}.postmodel.postplot.linmap='jet'; gui.flmodel{2}.postmodel.postplot.linmapreverse='off'; gui.flmodel{2}.postmodel.postplot.linbar='on'; gui.flmodel{2}.postmodel.postplot.maxminplot='off'; gui.flmodel{2}.postmodel.postplot.maxminsubdata={'F'}; gui.flmodel{2}.postmodel.postplot.maxminsubrecover='off'; gui.flmodel{2}.postmodel.postplot.maxminsubdatacheck='on'; gui.flmodel{2}.postmodel.postplot.geom='on'; gui.flmodel{2}.postmodel.postplot.roughplot='off'; gui.flmodel{2}.postmodel.postplot.autorefine='on'; gui.flmodel{2}.postmodel.postplot.refine='7'; gui.flmodel{2}.postmodel.postplot.geomnum={'Geom2'}; gui.flmodel{2}.postmodel.postplot.phase='0'; gui.flmodel{2}.postmodel.postplot.solnum='10'; gui.flmodel{2}.postmodel.postplot.selectvia='stored'; gui.flmodel{2}.postmodel.postplot.autotitle='on'; gui.flmodel{2}.postmodel.postplot.customtitle=''; gui.flmodel{2}.postmodel.postplot.smoothinternal='on'; gui.flmodel{2}.postmodel.postplot.complexfun='on'; gui.flmodel{2}.postmodel.postplot.matherr='off'; gui.flmodel{2}.postmodel.postplot.animate_solnum='0,1,2,3,4,5,6,7,8,9,10'; gui.flmodel{2}.postmodel.postplot.animate_selectvia='stored'; gui.flmodel{2}.postmodel.postplot.outputtype='moviefile'; gui.flmodel{2}.postmodel.postplot.filetype='AVI'; gui.flmodel{2}.postmodel.postplot.width='640'; gui.flmodel{2}.postmodel.postplot.height='480'; gui.flmodel{2}.postmodel.postplot.fps='10'; gui.flmodel{2}.postmodel.postplot.statfunctype='full'; gui.flmodel{2}.postmodel.postplot.statnframes='11'; gui.flmodel{2}.postmodel.postplot.reverse='off'; gui.flmodel{2}.postmodel.postplot.movieinmatlab='off'; gui.flmodel{2}.postmodel.postplot.copyaxis='off'; gui.flmodel{2}.postmodel.intdata{1}.intdata={'F'}; gui.flmodel{2}.postmodel.intdata{1}.intrecover='off'; gui.flmodel{2}.postmodel.intdata{1}.phase='0'; gui.flmodel{2}.postmodel.intdata{1}.solnum='10'; gui.flmodel{2}.postmodel.intdata{1}.selectvia='stored'; gui.flmodel{2}.postmodel.intdata{2}.multiplyexpr='off'; gui.flmodel{2}.postmodel.intdata{2}.method='auto'; gui.flmodel{2}.postmodel.intdata{2}.order='4'; gui.flmodel{2}.postmodel.intdata{2}.autoorder='on'; gui.flmodel{2}.postmodel.intdata{2}.intdata={'F'}; gui.flmodel{2}.postmodel.intdata{2}.intrecover='off'; gui.flmodel{2}.postmodel.intdata{2}.phase='0'; gui.flmotdel{2}.postmodel.intdata{2}.solnum='10'; gui.flmodel{2}.postmodel.intdata{2}.selectvia='stored'; gui.flmodel{2}.postmodel.domainplot.extrusion='off'; gui.flmodel{2}.postmodel.domainplot.lineyaxisdata={'F'}; gui.flmodel{2}.postmodel.domainplot.lineyaxiscont='on'; gui.flmodel{2}.postmodel.domainplot.lineyaxisrecover='off'; gui.flmodel{2}.postmodel.domainplot.linexaxisxaxistype='x'; gui.flmodel{2}.postmodel.domainplot.linexaxisuseexpr='off'; gui.flmodel{2}.postmodel.domainplot.linexaxisdata={'F'}; gui.flmodel{2}.postmodel.domainplot.linelinestyle='solid'; gui.flmodel{2}.postmodel.domainplot.linelinecolor='cyclecolor'; gui.flmodel{2}.postmodel.domainplot.linelinemarker='none'; gui.flmodel{2}.postmodel.domainplot.linelegend='off'; gui.flmodel{2}.postmodel.domainplot.linelinelabels='off'; gui.flmodel{2}.postmodel.domainplot.linecolor='255,0,0'; gui.flmodel{2}.postmodel.domainplot.linesurfacemap='jet'; gui.flmodel{2}.postmodel.domainplot.linesurfacemapreverse='off'; gui.flmodel{2}.postmodel.domainplot.linesurfacebar='on'; gui.flmodel{2}.postmodel.domainplot.linesurfaceusemap='on'; gui.flmodel{2}.postmodel.domainplot.linesurfacecolor='255,0,0'; gui.flmodel{2}.postmodel.domainplot.linesurfacecoloring='interp'; gui.flmodel{2}.postmodel.domainplot.linesurfacefill='fill'; gui.flmodel{2}.postmodel.domainplot.pointyaxisdata={'F'}; gui.flmodel{2}.postmodel.domainplot.pointyaxisrecover='off'; gui.flmodel{2}.postmodel.domainplot.pointxxaxistype=''; gui.flmodel{2}.postmodel.domainplot.pointxuseexpr='off'; gui.flmodel{2}.postmodel.domainplot.pointxdata={'F'}; gui.flmodel{2}.postmodel.domainplot.pointlinestyle='solid'; gui.flmodel{2}.postmodel.domainplot.pointlinecolor='cyclecolor'; gui.flmodel{2}.postmodel.domainplot.pointlinemarker='none'; gui.flmodel{2}.postmodel.domainplot.pointlegend='off'; gui.flmodel{2}.postmodel.domainplot.pointlinelabels='off'; gui.flmodel{2}.postmodel.domainplot.pointcolor='255,0,0'; gui.flmodel{2}.postmodel.domainplot.crossdispcolor='255,0,0'; gui.flmodel{2}.postmodel.domainplot.phase='0'; gui.flmodel{2}.postmodel.domainplot.solnum='0,1,2,3,4,5,6,7,8,9,10'; gui.flmodel{2}.postmodel.domainplot.selectvia='stored'; gui.flmodel{2}.postmodel.domainplot.autotitle='on'; gui.flmodel{2}.postmodel.domainplot.customtitle=''; gui.flmodel{2}.postmodel.domainplot.autolabelx='on'; gui.flmodel{2}.postmodel.domainplot.customlabelx=''; gui.flmodel{2}.postmodel.domainplot.autolabely='on'; gui.flmodel{2}.postmodel.domainplot.customlabely=''; gui.flmodel{2}.postmodel.domainplot.axistype={'lin','lin'}; gui.flmodel{2}.postmodel.domainplot.smoothinternal='on'; gui.flmodel{2}.postmodel.domainplot.autorefine='on'; gui.flmodel{2}.postmodel.domainplot.refine='1'; gui.flmodel{2}.postmodel.domainplot.plottypeind='0'; gui.flmodel{2}.postmodel.crossplot.pointyaxisdata={'F/T'}; gui.flmodel{2}.postmodel.crossplot.pointyaxisrecover='off'; gui.flmodel{2}.postmodel.crossplot.pointxxaxistype=''; gui.flmodel{2}.postmodel.crossplot.pointxuseexpr='off'; gui.flmodel{2}.postmodel.crossplot.pointxdata={'F'}; gui.flmodel{2}.postmodel.crossplot.pointlinestyle='solid'; gui.flmodel{2}.postmodel.crossplot.pointlinecolor='cyclecolor'; gui.flmodel{2}.postmodel.crossplot.pointlinemarker='none'; gui.flmodel{2}.postmodel.crossplot.pointlegend='off'; gui.flmodel{2}.postmodel.crossplot.pointlinelabels='off'; gui.flmodel{2}.postmodel.crossplot.pointcolor='255,0,0'; gui.flmodel{2}.postmodel.crossplot.pointcoord={'0.5'}; gui.flmodel{2}.postmodel.crossplot.crossdispcolor='255,0,0'; gui.flmodel{2}.postmodel.crossplot.phase='0'; gui.flmodel{2}.postmodel.crossplot.solnum='0,1,2,3,4,5,6,7,8,9,10'; gui.flmodel{2}.postmodel.crossplot.selectvia='stored'; gui.flmodel{2}.postmodel.crossplot.autotitle='on'; gui.flmodel{2}.postmodel.crossplot.customtitle=''; gui.flmodel{2}.postmodel.crossplot.autolabelx='on'; gui.flmodel{2}.postmodel.crossplot.customlabelx=''; gui.flmodel{2}.postmodel.crossplot.autolabely='on'; gui.flmodel{2}.postmodel.crossplot.customlabely=''; gui.flmodel{2}.postmodel.crossplot.axistype={'lin','lin'}; gui.flmodel{2}.postmodel.crossplot.smoothinternal='on'; gui.flmodel{2}.postmodel.crossplot.plottypeind='0'; gui.flmodel{2}.postmodel.dataexport.bnddata={'F'}; gui.flmodel{2}.postmodel.dataexport.bndrecover='off'; gui.flmodel{2}.postmodel.dataexport.bndlocation='element'; gui.flmodel{2}.postmodel.dataexport.bndlagorder='2'; gui.flmodel{2}.postmodel.dataexport.subdata={'F'}; gui.flmodel{2}.postmodel.dataexport.subcont='off'; gui.flmodel{2}.postmodel.dataexport.subrecover='off'; gui.flmodel{2}.postmodel.dataexport.sublevels='10'; gui.flmodel{2}.postmodel.dataexport.subvectorlevels=''; gui.flmodel{2}.postmodel.dataexport.subisvector='off'; gui.flmodel{2}.postmodel.dataexport.sublocation='element'; gui.flmodel{2}.postmodel.dataexport.sublagorder='2'; gui.flmodel{2}.postmodel.dataexport.phase='0'; gui.flmodel{2}.postmodel.dataexport.solnum='0,1,2,3,4,5,6,7,8,9,10'; gui.flmodel{2}.postmodel.dataexport.selectvia='stored'; gui.flmodel{2}.postmodel.dataexport.smoothinternal='on'; gui.flmodel{2}.postmodel.dataexport.exportformat='ptd'; gui.flmodel{2}.postmodel.dataexport.struct='off'; gui.flmodel{2}.postmodel.dataexport.exportedim='1'; gui.flmodel{2}.postmodel.dataexport.plotexportformat='coorddata'; gui.flmodel{2}.postmodel.dataexport.plotstruct='off'; gui.flmodel{2}.postmodel.datadisplay.fullprecision='off'; gui.flmodel{2}.postmodel.datadisplay.smoothinternal='on'; gui.flmodel{2}.postmodel.datadisplay.phase='0'; gui.flmodel{2}.postmodel.datadisplay.solnum='10'; gui.flmodel{2}.postmodel.datadisplay.selectvia='stored'; gui.flmodel{2}.postmodel.datadisplay.interpdata={'F'}; gui.flmodel{2}.postmodel.datadisplay.interprecover='off'; gui.flmodel{2}.postmodel.datadisplay.coord={'0'}; gui.flmodel{2}.postmodel.globalplot.globalyaxisexprs={}; gui.flmodel{2}.postmodel.globalplot.globalyaxisexprsdisp={}; gui.flmodel{2}.postmodel.globalplot.linexaxisxaxistype=''; gui.flmodel{2}.postmodel.globalplot.linexaxisuseexpr='off'; gui.flmodel{2}.postmodel.globalplot.globallinestyle='solid'; gui.flmodel{2}.postmodel.globalplot.globallinecolor='cyclecolor'; gui.flmodel{2}.postmodel.globalplot.globallinemarker='none'; gui.flmodel{2}.postmodel.globalplot.globallegend='off'; gui.flmodel{2}.postmodel.globalplot.globallinelabels='off'; gui.flmodel{2}.postmodel.globalplot.globalcolor='255,0,0'; gui.flmodel{2}.postmodel.globalplot.autotitle='on'; gui.flmodel{2}.postmodel.globalplot.customtitle=''; gui.flmodel{2}.postmodel.globalplot.autolabelx='on'; gui.flmodel{2}.postmodel.globalplot.customlabelx=''; gui.flmodel{2}.postmodel.globalplot.autolabely='on'; gui.flmodel{2}.postmodel.globalplot.customlabely=''; gui.flmodel{2}.postmodel.globalplot.axistype={'lin','lin'}; gui.flmodel{2}.postmodel.globalplot.phase='0'; gui.flmodel{2}.postmodel.globalplot.solnum='0,1,2,3,4,5,6,7,8,9,10'; gui.flmodel{2}.postmodel.globalplot.selectvia='stored'; gui.flmodel{2}.geommodel.suppressed{1}=[]; gui.flmodel{2}.geommodel.suppressed{2}=[]; gui.flmodel{2}.meshmodel.meshplot.subplot='on'; gui.flmodel{2}.meshmodel.meshplot.meshsubcolor='0,0,0'; uq~ q~srcom.femlab.geom.Rectȉ,E6DlxDlyLlxExprt!Lcom/femlab/geom/Geom$Expression;LlyExprq~1xrcom.femlab.geom.Prim2Z~DrotLbaseq~Lconstrq~[post[D[posExprt"[Lcom/femlab/geom/Geom$Expression;LrotExprq~1xrcom.femlab.geom.Geom2Vc/Oxrcom.femlab.geom.Geom͹6{L geomAssoctLcom/femlab/geom/GeomAssoc;Lversionq~xpwq~wDur[BTxpDGeom2|=-C6??I@I@??????? BezierCurve??I@? BezierCurveI@?I@?? BezierCurveI@????? BezierCurve????? AssocAttrib VectorIntxwxwtcornerur[D>cZxp?ur"[Lcom.femlab.geom.Geom$Expression;\2YUxpsrcom.femlab.geom.Geom$Expression OpI_hDnumScaleLexprStrq~xpwt1w?xsq~@wt0w?xwsq~@wt0w?FR9xxw @Isq~@wt50w?xw?sq~@wt1w?xxsq~5wq~wDuq~9DGeom2|=-C6????I@I@????? BezierCurve????? BezierCurve??I@? BezierCurve???I@?? BezierCurveI@?I@?? AssocAttrib VectorIntxwxsrcom.femlab.mesh.Mesh_q Lversionq~xpwq~wuq~9MeshI@?I@8wJH@?n}H@7uBH@?6>H@Df{G@?&oR|ڊG@KF@?{(kF@0'F@?97#F@4 ttE@?&pE@;D@?{.D@k` D@?iڭ D@"ƛYC@?&>VC@rLB@?|4s3ϢB@A@?љ_A@v+9?A@?&W;A@b[[@@?{d8@@dK?@?y#?@Lw7I>@?N^^#EC>@ #<@?(C|f<@B8{;@?'Շu;@-:@?N .:@v?8@?ʧ8@"AQXE7@?S@7@ c5@?L8 5@?~??Ќ??Ko&??pK0%/??']V7??&*?_tw4@?蟑.s4@?$y-1??Ph??un??l ??HbL(??Ƿ|??]'??a2uk??p Y??6LQN??DŽ??cL??s"??O@P??+}I ??4z??ث??1B?? 8??55i?? Ưb??/)??WT ??2~#??T~??yZ-??6_??F??s?? ??|_r)??;V??f$??߱-??YJ5??5 |=??i6??]x??ZM:E??dgM??@AV??@^??4qf??ծn??8(Kv??M??g<u??B`Gz??%??hS ??(??+r??j??d76I??DdQ??q&Z??7Wb??\01??a9???[P A????6z`??"C??L/??+??mF??#Ֆj??HjOě?? X??EeC??jAtt????g??;??[i9?jw?Ő"K?}e?Ns?6?8="?}?7k"? Y?<| *?4?@[3?ߒ??h;?wa?mXa???w?? &i???x3@?O 3@?nF3M??` V??-=R??aeP??^8??:=^??znf??W.n??'3v?? ??jݼ??t??L"D??qq3??d??̕?? Ɵ??\'??*8T)??OwZ??R??wE??ѿ??9IF ??扳vw?? f-??0B"??U! +??z,<3??Zm;??x??f` ??B>??Tp??@J??eGxҡ????;4??Zcq?? V^9??.ԏA??SII??x/Q??q=]#Z??MTb??)1j??lgp?? r??1$z??V@??{nJ??v{??R ɬ??.ݣ?? $??b9zh??=x I`??=O??X??4yQ@??Y~q??~m??{??Wa??a G??V???)S7??_͝!/??:#&????346??Ubg??7Ώ??\H????<,??\E]??80s??+z7?M? 5??-,??Qd& ?[)???`??h˛?vPK$??i??;??C ??gr??b>??>K??2|??*??(%X??M??rA??ot??JJG??%??VU??9c|??ݾ$??]ct??lo6l??G`d??"{.\?? 3Bt??o??&"??D+??i|83??X%j;??4SC??K??S??^~??W1M????*d??N꨹??crp{??>MW??| &????ß??%??Ija??`m=0?????e$??H-??XvD5??ңu=??8LѦE??]hM??D@, V?? Y:^??3kf??حn??'v??;~??it??}jl??IJC??K??kT??3G2\??X#v=cd?Ҿ.?x?g{v?HCW?t?Ќ ?f1? }v?YtL?i N ?"?/׼I?HD??P?I\?vf??K+?_?Py?^ݩ?=ɲ?D ?}?Ky8.?_v`U?bR?(7?G?<?F ?ڗ?Hz?̶(? L?1?'H]V?S??3P?uC?d^?S:5K?gN$?lTXS?O^?@\?wߟ?Kd?BW?|‹l?/$?߄t? ?'5|?> r?/"?m(?V2M?Kz?4Uf?=A?ѥ-ǝ?m??v??Eg??!??.ʟ??l"??&e???\??;},??`]??nq??J??T?? K??A'"??f3+??xa?3??Tp;??0C??iqfd??}pl??Yt??5d|??'+?h%`?\X?CVm?y9/`??"WU\??:8R??Gт??lK????^? !??cIy??H??3f??%󬓴??J&??o?W,?C*1? ?$"?t?yR?R?>9??ߥ?G?1!?%?A~]O?QV0?)O? 8W?gc?>UW?8>?0?=ky9?1c ?)?]9? ?>!?`~3??od? ?s;?9T|M?܂?UsA?k?'f?%ۼ ?2?/'(?;??1?qFl?t%b??#NYsj?U? .8ar? c>z?L"?QAh?](~?t?3v?(}?=?̓ ?X/k-%?#?iݠ-??F?/6}n?3a?5bKpa?υ\?%?=-Q?ߏW?Kz???:z?Ԇ?Kqs@?=%t&?~c?p.?̺9;?]snN7?x ?dBy?l$?Փ8?d?ѠI-?10?sQ\?ح=Q??k؆1@?J~iCq1@?kf??G/.??$[??C#??hܜ*??[??Q٪G5??$.Sx=??I E??u_}-??O$??k"??k????p ???Ll??!) ??FxQ ?P?ejI?j*YY?DQ?#?a5Y?c+?@}Ihs??_C?c?ƭ??PV?[s?L3b? ?̼}j?"Y?=_r?Rq?_>z?Θ?\2??I]X?Vy?e|w?E?8p|? C?[4?/?Cu?!#?9?b?p@ɣ?Ž?9U?-6?_F?*ԋ?gG?&dA???Ѝ?k??g7 ?gG?i ?9? /?z)'?BV?_ /?83;?e7?Q+[? ߒ??t?jh?k:?t?ɺk?))?6$<?7YF|?-?uu?ʫ ?F^=?Uw?|_7n?O-?+; ?]?ҥ?H(?{??4b??ɮ?? ('??2T??W^'??|:X??݉?? ??8??}e??5N ?B?|{?vi?ݏH?}Wo?ރT=?8n?@E?3?E6M??YU??D^??AIf?n?L쿑an?Ʌ?;_ul?.?#H{v?ƒ??~~?M\?_U?GsO?ZPO? 1??˸?)й?<ލ?'?n6?8??ӱ;d?4? \?AL.,?L8K??[DdS??-.?y?QM?p9? ?b?1M?:&F?;HP?c@U? HsC??( =;?/?Ͳz3?!_?*?7 ?tJ]"?q?a?Y\?A ?|Z?tiܭ?4?&?)Ķ4?p?,? u? ?1i ?g$?s@?̔?; ?=԰? 8?t?,0?b?|_l(?J0?*z7?w?W-?!)?< ?A*g!?OcU ?%&?Ȼ?^O?h"2?p$?+⡈?a?_?խ?&KVS??:" ??՗0k6?Q[R? V?ir?8H}?\e?{T??G;??AK?Ui?7?;?EChh??:?$A?9]Jӈ??ޱzx?c< ?n>?f?-ddp?D3 ?aH 4h?I?p $`?-?'1X??fwŹ??S???/C ?$e?Dl?U?EV^ ~? q??qB?c `&?n@L?|?.?ud?1?U,7?κx ?S??#?ȈڒG?#Peo!?/"+O??)?'Q?P*`??Zt3? *6?I??+e?TA;;?@?NNgO?JL?]E!F?` /?B%:7 ??{Y ?M ?Io?T?Ц?L?s?- -?^?ij?Ѣ?}F ?Y"?;(? (s?5p#1?i?3*9?Z?K+A?2h?}m1 UI?Zo2?DQ?a?k( Y?rod>?)/b?j?lKIZj?D?ŝ4r? O?|z??#i=??HEsJn??m!w??(??Ӧ[E*1??r[9??_OA??B;ͽI??gCQ??( Z??6VQb??֫j??*r?? dz??E@ ??j9G??gx??ԋ??ٰڣ?? ??͗߄p?[j?U`Ih?8 *,?+%t?#?˓ |?q?0,?= ?ϔWӌ?jI?;jեS?i?LYp?'? ;?l?KG`?['?i8.? Gȕ?yٔ-?=3p?RV?ٍ?co? W?s`í?h*?]?0?܌?x??ui ?z˄8?E3?Ɨ?3?}?Xi?JQO?]? 8?kO>?z*?&vG?C?O?`U)8?UFWW?H?1"u_?<?{Ph?C?zEgp?RD?x?޿?6?۔?K-?7?kK?+5?(R?aO&??+ .?@>?8J??wC<?}S4?4?=?mg?Ce?u?߮?\?ս?Z?,VT+??Ԟr?!.??0?tAO?}fI?G?4?V&??Z/?4?ߣO7?̦?Iu???\Xh???Pb? 9p?c?Ӵx?a ??%؀?T-?cS?AuAu?_O \?W=Xb?1d?P' ?Yc=?Qj[ ?G2?B<?L}?z?Ǧ??cr?d?)WR?Ҍ?w^>?y7ۃ?Өv_?$?Ia?U?MK?x4?„??Y`?%kӽ?iFV?R ?Z?,  ? T? 5?? ?}Σ2?s]?R6?p5A?j??/?.?mTT?a&?z?(Hg?-Cj?.?)Fm"?;@.? _??HGGk? ?Ȧ??la ?}El?"yl]?y1?;zs?%.?7 ?pҧN?qh?B ?os?? ?Xt}?0@kg?&{V?jkw?%̆?}KT? aԤ?Gcw?իA?5?z?Au?̽C??0?0?$`C\8?_ٰ9?u1A?_-)?$-a(?|R?9ݫ ?oU?gv?S6'=?-0?ؙ+}?;?8??4??h9??$N?MD? a6?x=pkM?iZA?@'ZU??%6]??/r@ ?exB?J???)l??QTrwh??v02p?? f`x??}O??~X??,xE`??)s&??NO/?'?]l?d\< ?sg ?Lpov0?1(?s??1;o?Z9??&?7?6/C?χz8? ?'tK?Q? a?#P+?X?YbH,?9cL?BT?CϿ[?V(?j\?~e?[< ?if?lA_iA?їn?AI??t}|Q?8?BY?JQ/?l|"b?]]?\>j?}?0q?(I?im5h?j!?oZz?c5 ?L{?]?S.E-?`+?9J??)?])S=?ԣ?a[?b?3ުƫ?x>P?;?q 3?e ?8M;?UX? \+C?now?8K?ׇ?U?C?3y?YHJ?%N?-zN?U?*"b?OF-+?m??Ĵa? 0w??4ط?h ?M[??K W?{ ?9~g??jE??hA?i?pl݆?^1I+?06~??$?D?uxK&-?2?x%5?pj`Õ?Kg֝U?©$?/|l^?ic"?f??,q5n?HMK?`NJv?!???>?BoWk_?t?^J|?*t?4*A??d??g ?ףvr?ST$?Q?Gj,?LY?w 5?,0?dFJ_.=?}U?QWcE?#;?"N??oV?i?WFC^?5?y f???ro?ўCw?YQv?sz?G?iI?O|?Aw?O\8??o?I;Ha?v?`̧?pՕ?n;?%E?0 l?u?E5X%c?l:(U?b AP^K?x?4S?"QkU? a[?^H ?IGqo?O}\ ?!!y?kI ?kG?K ?eRŇ? ? ʐ?Xoi ?ZkL?  ?YJv?D ?au ?Iyr ?X?40 ? ?H ?*',?:.$ ??. ? i?kqx ?Ug?iҖ5- ? f+?\2 ?=5/ֹ?J_x ?/a?tϓ ?"'?Cd ?Y?;{_ ?Pl?'# ??#m ?<ޗ[ ?ѥ| ?YijJ? 9 ?i[!T?{% ?3VW[?LQe' ?Hrlc? ?=l?da ?//t?Lt8 ?q򠻭?iJ ?$SI|?o# ?2?U ?2?&d ?1?j{? ?:d?; 7 ?"?M?^6?iN?r??|?dZ?Mv ?:|?5}?u\m?k8~P'?~?<h.?Z\? -?gj?R?8X4K?6 ߪ?d\C?֓[?'*?/?_13?~NY ?ro;?V ?PyO?,b?CBl?gl?Ǡ?ƶ?*5t???Oe볏|?٥+ ?lQ֡,X?mȗ ?,_?q. ?vjg?I?,?٘?@3?I[?qY}?X?Cå?]a ?GKH?C d߷ ?f?,?d?V\} ?v ? B\?[?#?9).? ~g ?yԹ?6z ?:{`?/ ?$H? 6 ?BN^?֨y ?LXE?؀ ?$UT> ?쥛 ?Ug{? ?QP?07B ?4g?_ ?%?OA ?8$K?ZS ???;a,5 ?wM?ԑ ?d&?U ?$v+V?/ ?;yy?ŎdQ ?? ?u:?Y'{\ ?kx[? ?0q?fN ?.p&w?U ? ?,c5 ?뜒F?= ?o=G?c, ?,Nq?ID? Z?K ?TI? C ?*S ?37R?4MF ?oTY?|C*} ?^'a?]* ?Q ?ם ?d?6 ?Ji?ª ?ȗ?s. ?} oj?? ?))s?\ ?z?v/ ?^?)"M, ?eQ3m?]ſ ? )?v ?Cﯓ?4rG ?r֊?2 ?y;i?S;Ѭ ?DJ]?L ?ү/J?y ?{:?3#g ?ߺ? ?T)=?/ ?g ?dӐ{ ??6J ?&D?ol_P ?!%?=:f= ??E?of ?̂*/5?>L ?-?K?U(>?v'k?Ij4? ̚?e@S?l,hN ?Ayǭl?j ?s wt? ?Ȧ=|?_.3 ?-Yg?@N ?)ܵ?[ ?4guͭ?U'2= ?0S?͋oB ?U*? ?5C?0 ?"N?)SFU ?|(9??\|??ʗ\!??sַR??PP僕??9,??^D@??m??7H??a ~>??o??Za4???6te??Ō٠??С??}4?-?t?%?_#?߀'?-R?RV?—h?@{?|0z??h/t??[l??6'u\d??K+\?O ?kg?I ?{ĥ?h?􂢞?fݥ?Fٖ|?e)?>Ȅ?0f{?h?\?ri?J?i?[?&?;?3 7?&?d?)?8$"?AB?]j$?3?ȏ~?ͺ?yQ ?qh?9e?<?D?ҌN?p4"?P_$?oTnGd??|sIal?{:(?cu{t??s+O7??"???OG? "a?F K?r~?5US?W؏?:O&\?m49?؅$.+? ?u63?ȍ?DB;?V?~'du?Az[?nd?qZL?/?9?C:?kj{?y5?7E?^?a(?gI?l?tn?=qe?>?[_҅?Md?I 9Ns ?"c?*NY ?G5ΈF?  ?xx2?; ?a|?  ?KF?` ?auM? ?qlT?J ?lzD]?X ?`sf?xdl ?Vm?HA ?t?28! ?`2vc?Zv~ ?E}?# ^: ?Y&b?:S ?n@?=L ??皗 ?\cG?k  ?# ?x ?=j\?>4 ?@ ?l|p ?\[?Ӯa ?ADS?i0 ?B?@ ?K?Y0 ?d:?Vz?= ?@ ?ӈt?hP" ?]0? ?l7W?Kg ?bȹW:?C ?W2?V^)> ?Ƽ}C+?4 ?1R_!?[- ? w?v ?{X?H[I ?z?h8 ?\ ?~U: ??L ?\Lk?`^&S ? ?jx?.ZB7?a?a8A?,\X ?Ju?D) .?Az,?ǯ ?A]Ul!?|y?U?MC?ia ?_?8 A? 9 ?=D? ?5? ?qƩ?, ??D ?;pN?` ?/L'?7x] ?ۻ~? + ?(Q?z%^ ??tg ?}?]} ?#$U?DY?`r?A2 ??O; ?j:ڏ?qr ?I?A ?+G5?Y ?8F&ޤo?%# ?-[x?1& ?Vf?`% ?l_?kwi ?`X?kY ?!P?0Yp[?`?t1 ?8R ?WYN ?g?򬦹 ?1^B?W: ?6%?`) ? qJ/?F ?QY7?u< ?CC>?Z ?3c,G?^}?W?5&v ?0᳃R?4 ? /S?S ?B?Ɛi ?\ȼ?W0 ? ?'`} ? `?T: ?d?P; ??# ?g>?I5 ?ikJ?*9 ?5h~?Oq# ?gΛ?,F ??Z ?YQ{?It ?3Y؂?N ?& {? ȁ ?D4| )?jD ?~1? ? _8?D ?DӎN??'` ?gEG?xNj ?dHP?#ˣ ?ݟ=4Z? ?^oa:b?a8 ?i?1rD+ ?`q?1,?]QGZ?gI?Y ?r?CX?!?K}?+y?J ?%ԫ? @? Z?lb}?|٥?dj!?ڣ8?7ʷ(?8?0?c%?68?X/?М@?jz?كI?{/ J?0;[?c?gS?G?BKpk?@5 @=?*hc?Ʃ&?S#s?QV~?G{?PK?.}ւ?\G?M~?R?6?4?'\:?R?̣??dI?? AQ*{??0W??UD??zվ??nyS??ǒLK??8? ??č q??i,;??Fh"??3" +??X53??}f;??C??]??O-??t6^??c????_??<"??-vT??RF??wit???ߙ( ?f?\,R ?8h_?`}T ?3BN?f;< ?+2X?~?5Tj?w,?}!t?Za?K>?C0i?1?N=?lz?|`?~xK?W?^?TDuB?" ?' @?g?|bj?W? Ay?%Q?G<0?of?-ɬ?:cW? -?62?? ?t?w 6?Yך?Q?'r?[e?N?I^ry?iL[?Ϟ?tg?vw?Qvt?.32)?MJ?U[\?gd?5c} ?VF?3Q ?z{a??tj ?j.?( {Y ?d7?A_? mlK??zF U? ?ןp?" ?|:?j ?%ox?cI?bŚb_?5?j-־j?W ?ubdf?͞ ?cm?h ?ET_?JO? I??A ߋ?"1[?ͱzg?N8 ?&3?R0> ?6Lua?A3D{?d΄?6a?SC?&?6?? ޣ? P?HlN?"o?J]|? ?:,?6p?Ȯ`?ҜI?lF?;F=?bz?9J?6q&?߮{?[p ?Mw?j?1?":?b+?JhQ`?ɖㄏ? 7?y9?ZĿ? y?;?zT??Cd'??Hы?GwI??$ϰ??;:µ??o??>ME??4 ֆ??X_ȶ??|kV ??LzrK??-I.??η?? ?N{$?J[E?N$?lhr?Yb? (/?Zǽ?O>? le?,`S?]?#Q}?N?TUճ?w$?WU?%c?>?X?{H??ۿ?۷`ڴ?GM? [?*@?/*@ ?a`? G ?:M?mU< ?CN?8^f ? T?>p ?7dR?w ?]B?h ?{db(?w< ?^IΟ.?_v ?6?_ ?>U!?cKs ?X?򜖀 ?> ?eKj ?k؞y?`\ ?I`(? !0 ?#?8?g?>?^9?+.+?aѦC?<? }PM?X?ިY?]|?ۜL6d?N?b7#?2F?<},?৑|?w]?{l?_o?a>?/{??2/?dR׺?ae_?ut?wA##f?Y[?SS>?2c?~;?8GS?Մ's?31q?Y5??4+k?#?J?z??@$ͽ ?U?Ȫ?Y?g?qE1?sZ߬? ݼ?&}?|_^^?hd?gX?T4?o݋?7x?{??ZPW?O?HX벩?W?rA?K+Y?x䠄??A"x?9aK& ?sY3%?/73?sㄈ?8-Y?"?_q?w*د?(×?KD??mw ?Ա?kF?(vע?hOR?dϹ?GYz?ɲN?AJ?7"?wNn?ҹ'?W[ ?,q? 4?]Ak?dS&?A?,xE`?8Ƅ?$0%h?7z?᪍s:p?_w??HƐD?'M?V9? %F2X?j?+?xF?*X?_ë?D?D˧3??s3? q1퀂?3E?pu?o#?=z.?f X?S_8?^w?BܦA?_HZ3?+nTK?.pJ?i U?&_?ڬa?p'Կ?p+hk?\I ?z$=O?A: ?+]D?Ox ?nh?Y ?p?S ?CϿ?[e$ ??4Je?vI?EAQ?2?Σ ? #? ?0~ -?{ ?KA4?NY+ ?wF[;?H%Ш ?OjD?* ?G[.M? ??\?,u ?caP2U?T3k ?-gEck?P ?o'/c?9Y)?.(u? ?l &}?YRB ?j?\( ?8?}?U ? A?SU ?X|=?gQ??`?? ?Ť/?wH?ÈfQ?ę??GK?:?2#?;C??O?0?wG?,n?6#?0)Y(?­4c?'n?oN?[}?(&?B?^/?i ?;?7?2M=?3-in??J%d?F ??*!~??LEM??qƿV??9%7^??~Rhf??Z-n??7v?oR?cx5??,?{a?&r?7F??ݕ?x}L?ȝ?\?Hs?ms?0?sL?9??UP?)2? ?%GP??$??y^-??UAA5??2Ror=??'̜E??nj??FM$??k{U????t ַ??P??,0??$ w^K ??I|??!" ??'??K.Ő?q?}o_?ℱ?@×S?bsz?e?%/?uA܍ n?9oW ?=R>w? J\?? fz?{]?zz?LP!N?G?v?NN?9<?ŸrT?C_i?L?R?\?8??uQ??J?]r"?¼?I۞8?2 ?) &?1??q?@{?|b?o?x`;?x? D?:"V?g?׷x?e]0?Si?Fb ??I?vz?(G ?)B?m8?M?k+?Z?Mv? J?1JKw?آ ?A:K?wM?,1U?b?ޱZ k?)mc?[AD^?L??XD&n?, m?6e1`?0?F(?A~s?l(1}8?b?1{R?^(?ŞE?Q?p!?uOos?s[?-S??!??-4+Y?q?5-??[yᳯ??NL?lV0?U?Fd? ǚ?C)?V/`6?$A?3>?:+$?h?&}BJ??\@m7?kp?6c@?,?rO,?1w?72?e??=?x? ?'i??~n,'?LZ?"M.???hG??ZMh??`??Ѻ֩??A|??B2`??"q$ ??fX,??@TM??t' sn????خd??;?? qV<|??DR%)??h3??F? ??bA??jk'b??ۗa??L?? fu??-N:??D59??&?߻?#b?? @;?w"? .b|?_  ?ŊyѾ?W@?C?>?UB?<?'P ?P? 0Ż??'z?? @G?U?㿈?J?guʼ?@?Z! ?6?.L?u|=? @1>)?o+?M̼ѽ?|?pm??5/T?-?`p.??.Hж????Cꄪ??΀U-??^??̋9??~;_??Zꨌ??{{6??>~ȋ??w΢??}??N\y`??bf??ne m??+1s??ngpWy???W?k+?AJ?a?iU?ͨ9?C6?Ej?M?rۢ?iԣ?sZqţ%?tn?Y?rym?ک?L1?+W?yTip?ll?z<?k,@l]?:??%Nߪ?c?O|=a?P??ϲ?,?Ib5?g=?v?IR_?A$0?B?wPm'?B?X^ [?4?Nњ??mBCU?9>{ڹ?p[?Q?^??cr;^?rU?;@۸?&?Ƈ?cq?en?#)?Ttb"?wSm?N(}c?I(?Ǝ?zQl?i!E?[G?x_)?ri?<8!k?|å?W|Փ?5 ?K?Cn;?~pJ?L?oAM?h?Փ ?'6?301?{!_?cf|s?u?(㳳?%5Ͳ?1D?[?G7??D u?r?Gą?_?; m?)d?M;=??kh??8U`??-HP??1,p(@?QM(@?:o?1?U&??*G?j??Z*?b.?H8N?ծ'?o, ?%E1?6vGz?׻?#k?ɟ??oؾ? +R??K?7_?/ݺ?[V?p5@?ث??дb=?ՙt?-dm4?j*?5E? y?<">P?.7?l8]? g:?3[j?D3{?/+?8?ҨZo?g]vs?'?)D?Lhw?C ?'m ?\ ?Y}ڀ?dl?´c?M?h&?Ģ`?0ݒ?N?Be? RU?L _?"?l ?_k?ͼ9?Y ?zu?u?Cm(*?LC)? H?z*Q?hn9??Orϥ?h t?c=?niW*?Rb??ʹ`?5 ?k??uVw?:$?(4%?zs?D?o?]]צ?@?OO?O]Z]G?O?>?@qt??r|??O}Ȅ??.?p"?+o?Ϫ]ٔ?W m?Ԣ\?/"A?ٝ[?:t?;%ӭ?D6 ?6?C?g?w?a ?\@?2?^~R+? ]," ?HrT/?6p? f+ ?Qc?! ?5l?ap#?-A?xU ?uW]J?C ?LKPT?Cq ?!S9?R?*@1?5m ?T:?4s?\^? h??6M\?E'F??׆>X?;q=??8Y?w?GI?Ϯ*?,B{?ͱ?E9?-ەv?;ҵ#*?~q??Ns?@%U?@58?Ap?C+E?BQ?-¡I?_Ro^?:f?uhl?;%??z?7?pV?yΫ@*?߾?_[/?4bx,?lk?ィ?#??P3?E,?V?)?oXCJ?= ?B ]7??pdn@?&k?-H?N ?8??:|;?m?S N+?}M\?Q ?vvf??D`?TA9 ?˿\V?e?o+O?0?W?87n?nC?6b2?P"?~F?@yP??[O?LW?3]w3"?np9?u\?7?T?-?G޾?F.??U?)?L[?Dw?!U?ik?+8?yk%n?b>?dS??^z?->D"?zx? 57?oI?lWノ?s?<#D?/+?˂v??,B-e?3p@?mhm?@0?]dP?4%I,?}^[?k?NG?lR^(?9U ?.n=??F?ip2"?BQ?f/? Qo??Lf̨e*?37P?"gA6??I? A?f(&?[VV?́?vI? ?VWd3?Y:)?;p?: 1?Mlm?-9?h+e?&iCA?$b?Z?IK?tVL?s?Y?EV?[&0?Myt?ϻa7?q? ?L+v?B?or?b?b=^?^H?:tO ?.?n0 t?;!?Tk?5"?&1?:ǽ?2?,?;2?mD?a*A|? x&?j?j$?sp?uQX #?d?=p#?L?sM ? -=?5L4?b-?rL`&?|הE?v?d{Bw?p.Q%?[T?rHr?<@b? ?c?ɤ?|5SPV?6 4"?^ή-??uWE?imL*?Pejh?E4x{<*?Gy?9E'???Zp?Q*N?5ja?@= ?o? iNC?OG?6(?/?DIld)?/t?;-C%? ֎*9?E4'?V"?C o>&?$N ?;o3(?g \?5d,?'jV-?`W9?N",?.،nC???)?=7'6?܅8??mW??#x?E&?7D?P?пS?Ţ?/?ձ?khL?YG??C??7??Uu??@+??6??dJ??M3??{S?C?S?j?rJ?!8?(?9?=1r?W.??_? Q?_͒|??w?bI?m?oƫ?(.S:?E!?d4eH? L]ҕ?Pe?f]?l=>`?pȐE?U`?W?{!F?6ׅ[ ?hzHZ?NKh?NHTQ?QT????վ?#&?%ku]?)K ?9 nn?EF?}?p ?#Y^?u"?If?M?%1?̶?i#?Jfx?fZ-?*-g8? )?`y?q~?,D?ܻ=?# W?[E1F?~%?Y(?So?Ѩ ?W?9>?3cn?Nw ?e+?Ҋ?! ?+{l?x ?a䒚?4?2?Ǧ?2PC?$[P?p[e]?!?՞?ڰ?-f? ?r%?{?zge?Qk?P?2?M Z?+?9lD*?^?uo\}l?`???` ?DZo?o\ ?ɆW?# ?(Lw?9'H ?DI?=i'd ?(+j?TR ?}>?Hſ ? y?Kb ? ?C!`o ?"(S?i;~ ?β? ?}lx ?2 ?5}?qC ?+؄?u?Md?9?n?W?uu??GL?4dր?e#-W?-#Ŷ?;m?[E]?P=?I?.?Ɋ??3̷?l) ?#Sm?c7K ?I#?(s ?;h? ?ϿU? q ?-S?  ?5×ϳ? ?á%?w2vK( ? U?_g ?$?%RuK ?95xԴ?fz ?nR)?vپ ?\?ˋ?K 5e??R`?kCl?mT?acZ?w8C?ځH?//?pqIL%@?9/F%@??? y-1??.Zb??8n͊l??=b(|??UO??Iޱ??\f=9??1v??$??7J;??G ?3c???s72?[@?}v`??R%k?am?'L5>'?e?e(B??Ϥ?X ?c= ?j_ ?#8?*1LK?2 j?/~?H?y;?q?x73/?+S?0hG?/;]?kXT?g? ?c?l.Rr?V9gq?V/?<? m ?,ݿ?>搲"?Qߏ?Yln?$?B?8Q?AS]&?WW??U?1h-?Q!?}p??S h&?^4?Fd #?/7۱?1?BDZ_??o?߄?[$?yeo?|V?IJ<?[?7EwC ?7RaTq?VE ?"x?"0* ?@9?"/I ?c"?4a ?؅? ?$ On?(' ? ?KM ?#꺼Z?|?k?H?$]?3*| ?S? /K ? ?(? ?˹D[?I ?lb ?ew9 ?U<'?EF?Tv ?q{%?^?R?>3?Yev?eIܧ??I{X'?)T ?I;wh?K'.? ?QN^?_B ?;W?U ?ۿ# P?hG>`?tȩ6?/s?qg t?ޟar?k ? ?X`}?#ݚN? Z?m3?k yj?~EN?xA[?a}?-0#?Y??GY}?:r ?M?֪Тa??C_'?aE?Ej? ?8[D?FӢ% ?9d?_+?o.s?ۋZ?Y?&e?I?+bvC?mY?K?jO?v? N8?".@?ԧf?}YZ?KR?J?ʳT? C?)?n?=?#IQ?M? ??aSgX?,_?o?vV/?]'?t?$?q0>8?+v?k ?f = ?n FB;?+3?)Z<?`"5V?/l??+e??a;Zr?Z>?9]~?O<%?`aNO? ##%?Q 6W?E ?ݠ ?i?ź}*?~6?pp ׮?n?_s@?D?Z-;?Q BB???X^?L76?Mm?abiM&?I?_H?Ru?cT?L}?\?B/? h?]=$?s)?Jq&?^Ԇ8?Uh'?.J??dk"?KI&?O-+?1'?Ő) ?P*v&?LgT?-+!?p kC}?r, ? wnߵ? M!?õN?ݙO?0';j?ą)?'IΝ?'?O*!?G=?\e?^?ǫ?_{?ۑ?:;N?y͜y?O ?x[N|i?BW?+vO? 5J ?9FZ?7+I?B{cC?6{?y9?%?XD??5'?0: j& ?+6?YJM)?t#z??2ߤ?R5?vư?aS$? ???%q|a?"r ?`?? ?ʪ?kAV?YYk?i?8kgz?"[?G~?? Цdfn?uR s&?6=?A_/_?J NN?^I?_H^?F',u$?p4?+?ք*?K!?I?+8v?ܽg?RGk?1??U?Gnu?z`Tc?P?#Zp?H ?pFR |?\0?\1 ?|D? 錕?{ ?v?5I?EO6?5@?|n?114?1SG¥??۞?i?cC??ѧ2?o-q?S?5暝?v+d5? w*?;?I!2?F?:Ʋ:;?S|?wφC?B>?hطK? y?[S?s%?h\?e@Y?Q8:d?iRe?=]al?˪?r t?Kz?.Z|?߼G?L "?Nl?(Qžm?}?Pu>?fA?o?T@ ??FJ?\?1GHX9?? kA?iu?ϪA,$?d?a?P?س??EW.?;8?\?7?H+????2ף??V `??YD??~z2u?.#??P=?E?'? ?=?O?A7?ҫ?%5S?8??1HI??VQ??{u<Z??Q!Nb??-0Oj?? |r??#z??4?gq$ ?z?=c ?xC ?.G ?rj? : ?\e?bl ?}I?2}> ?.IP?ç}!W ??P ?Ќ ?Y ?F?ə ?fO^?? ??,`Y ?H'?#WD ?m&?I ?3.?K@j ?YM7?Ut ?O5?~?ZF?V? v?q(?ZM?e͑o?7%OSU?$?I]?W? uf?9u ?GӃn?t ?uz?.E ?j;)?]ƫ ?R?f3 ? -? ?I7 x?/ ? ٢? ??J^ ?`Eʳ?yg ?1+?; 6 ?iqc?y ?m* ?D"Z?$?>8N?6?+7m0?z)?.?lϓA&?胖>?B* ]?q?ۓd ?E"?9"c?UVK?Bو?I ?ɦE?2%d??k13?S?z(?I"j?^"2?M,v?9?Q ?k;*?5*?H9?$^PtG?WQ?kMN?X#?dZ?eN&?l?{'?pS~?~c%?&e?$?ԅmV?:} *? n?}0(?e&?hO(?膫?)?['¥?t'?M?D)?-j@?Q-ԍy1?f@?UNê)?!R*?C? }+?gvR?7m,?oB?jƥ,?R0?-?J?46_.? vg?ӢE/4?&'V?ʛ.? )4(?=)?h~T?ߌd-?]r?)˺?6?%Q.?>?Q]? _5?Gr?"f ?Hs?uf+??bt??iJo]??>1%"??J?gy?? q?lN?y6?;‚?_?[[P0?aU?mL= "?yW?nB?; ?jFc?%%?!6M?Vω?R4?/1?Rn$s?izd??Ѹd??Lo3?-?7"w?_`?l?IFU?g^ϙ??.-߆?Wԕ?[ ??k0 ?;ƪ;`?=:Q?怏?K#+?֔0?uQ?B9?>t?*oI?/}?i |?EH ? !0?? ?3Z:r?# ?{\U?ϛ: ?K.?nvx ?ھjB?s ?h]}?!bo ?3lȻ?L ?n?' ?YG=?wDOe ??(?+ ?S ~ʼ?- ?ݛ٣S?$m ?/??~J ?8U5?Ѿ ?s^1HѾ?E ?MԽ?߻ ? r?a(( ?_P? ?~n̘?+%?K.j?CX?d ? ?Ϫ?E?hL?ݔ̫?ኘ?ŗ%?{ᒙ?r?K@섮? ?B4&`c?9?p͋r?6?Kv?hٹ?#1z?_ )?o:s&_?UޗT?"|?T?Qa?S?s Vof?t?7S~?[*?3? ^?U8??Ҳ?|N? ?c}V쭎?yT?be]?I?]: ~P?m%?_gϨt?EY٘?_n?b?R\?s?Xd?wC?Sl? !E ?2?+Z ?+=X?o0 ?*9)?Ct ?-/ ?$ꦺ ?@VY?k& ?۳׫? ?yug? ?cc 0?/; ?⏯Ť?<1 ?,:?$b4 ?%?Eɐm ?s>F6?T@x ?av?\?Zv}{?GF- ?@L;;3?\6?<ƟĨ?{ ?C? ?H/C?P#?,?k9?4Lգ?7 ?ӻW?X ?(7Ӳ?k8?2#?E7 hs?lnϑ?'R?P[?LMO?/`HV?qU?r!Y䧴?DL?gF?o?;T/V?'7?.a?$M?=i?1?Էp?47?Px.0,S?E~7 ?V2"~"@?|rx"@?P??^R??? ݚ??w??9{P??3< ????a+??]\c;??K??zr(\?ęMZ?Օ77?^)4?7L)?9? 3 ??s>d?TgX?ut?4O$?-#b?mP?hU?!U?y?3F?;o?Zs_?Uw?)(_??h ??n?} ?Z?I#'?0gq ?h??Epy?M!?{VX?ONk!?OY&?۩%? 妇?i Ӧ'??Sdr(?tŅ?l'#?+\O-:?7X'?X,)?d&?6k,4I?D(?p?Z?&?ۮ9{i? ;%(? y?&?;i"?N %?H2mP?~+h&)?}䋏?!(?.P?1.?XN(+?8L&5?.?|Ai?ْg&?r?f?g{%?Ġu?e` $(?YI@ ?4'?Ⴏ??;Wm?G.x?Dx?.2?y?>?$!m?VG?慃?=>.?'ǯΤ?_j?- ?^T?ib?.nن?k)Ƹ?qʍ?Z?Ѥ?k{?=?b36?!?|b{?Ai?:IP%?T?@=?B?28)b?Dh3?îzmQW??o$rK?DF?>*i?5?Ǫf?6z;?qv?V?݈?P?Ro?mb?W?fxL?֚?Js?>3?<<?-!?F?]?$D?AGi?Hw?|a?\Ⱦ?x?Lʋ?U?p0?B,?@t?#VX?Cˡ?o)>G? *?cI`?!?(٬w:??1 к?e&$?H΢?MS?h?t/?f ?LH?K?DF;Y&?mqh?*" 2%?Z䮒%?TCR'?욓f?|i5(?x5&?ʟ,c(?^?!DWk%?|,q?.h&)?efm?8v'?c}G?T-?UFX? Y(?ә?z$?&i s?J(?Zk?lGn)?l52?&?镦f?WK)?|1J?&?>?{@W (?jy?}l\-?6Gr)?$oyF1?JvTm)?Pclc?.j9y1?Js?1V1?5l?5+?3]jc?_4??\4H +?eq ?l2?9s?\K9$?KT!?6(?~??%#&?sp?ZD(?Eb?93ƪ1'?f N?&? >?K%]&?\.?5)?Ο10?(3U3?@!?u(?2_?" (?T$ ? ϧ-?RA?M(?;yz?ҹ)?@? h)?F?GT'?6ð4?w%?e?g_'?ZEsit?ڧ'?аe?7A&?"*B?HQ4:(?9ɢT?L-?2? ?L- ?~GK?WC?k?]q] ? w?`$?F4 %??~9H??!#?L$?x?-3?E7?P;G?Bb,"?n3`;? 9~;$?U5S?sd ?le?j?+H |?2zK? ?־?4(?^H?,?6 ?1?bJ%?^lk?|?2˯?,6?Si?ϓ?Sѹ?%x|E?Mr?qV?o?n&?d^?K~.?@T$?!>[6??ς9V??XC?.ͫG?Ј?ͥO?FR?80W?k'?]`?j?ݦ h?qȩ ?1;p??ֵڳx??|X?}NW?3`A?L{?0r ?Z&?I,?+*?Jx?]I ?kRL:?T?s}{ ?7?1,?$?)*5?鴹?W-U=? 0~?d|E?*@? *(?p׶?e6?Tx?R):m?H$?,t??3Y$?]i?=g[?@ 5?#dMԧ?!?k?@}?soD?U?c/?T2?B?-8?B?+???M!?>H?xл?װо?e1z? ߕ?O ?m?mpM?˃?*ɄU?[?!~^? ?ŋX f?O?a4n?Kd ?dv?^r<?ߖAs~?y#A?[׫7?Z>:f?M%?vC?V?#?-=?SO??^ n?y?*+'`?wX-?nV?(E??ng?+9?) ?E{&?a P?Ըp2?3??׮?_g ?@G?Db]! ?s*s?  ?Q?8 ?-jY?y9f  ?UPQa?}84m ?c%j?̅1?fB;z?'`m??(V? ?z,?fTT?- Ys?fL@p-?jkݦ?n:~?$w.`?Kjr?S{o?pMJ ?X.?wVU ?dk:?JH{ ?ȼX'?~p ? 7?N ?q0'0? l2?/A?,Km ?qA?~l ?/ӈ?p ?v?آzP ?<'h.? ?$F=V?s ??# ?v B?`wQb ?qθ?Ʒ ?uV9?hl ?"v?n? ? VG?k ?~?1^0?>WY?20?p?T3? ˇ?(2?yW0?Q.i2? Jv?BQ1?H? 5?(!T?" 3??Pk1?$N?|H3?^Y{Ϸ?(.O2?xʡ?V*'1?F|r?Hȉ&9?$¶?<睐~:?o H? K|A?_y?p7=?݌%?mA?xT?D):?gCR>?a.BD;?v ?V :?B? D?j4G? j?l]?r?8A?/U$?Ŷ=|,L?[Xw9? i+Z? Α?Xrtr?v#6?E/??i ?˾&i?X0?T?NP"?ՅI (?lb,?M=jI?ĴT?m7;?9tIiO?EJL?(0p?eY~"?jv?~˵?PZFR?A:? ?b?7Eo?`}?9(%7?ͬŕ?yXW??\|Χ??g2?lJ&?)Lx?z?\??W??I ??Z Qv/??{8,??T*??6* K??Țijl??~??]}??MB??4>1??ƮQ??Xor??ꏌ%U?di ?__rH?3 ?([3?k ?"U|?uEw ?gU?9 ?%z?pN ?'? ) ?'?A? ?YӘ?Q1] ?3Zs1?wB; ?۱y‘8?O[&?l6N{?*%??Il?i$ǐ ?B앝N?̍ ?aLݗ?@ ?(g,?Oɫ ?ɝ7? ?/?8 ?o#M?K7U ?y?q5X?(yX?)G? CB?ف⋱?tN- ?Y?Z)l?@F?d?g{ξ?iX??6?>?þy??vbj??1,'??tPI?? (??@??0f~??e??TGMbR=??4^??x(~?? ?? 9e??.z)??깥??R[["??ˈxC??vӖt?xQT?xCy&x?& ?:G8?YR0 ?#{?3#p?];~2?iXq?B_BW?_"1?_m??  ?cG؉?h} ?%'|B?[Q ?hqu?ͭ ?`͏?R׮ ??(ِ?6 ? ˼=?jp ?+?Y ?;u?c?D1 ?ˑ?'ʑ0 ?5$?]r@?lPOPÝ?6Y?,*E_?FAQ?a6?ĕ3Z?Fc~*??4?H] c^?S!|w? %:?)?%W[?v:?SA?bb6L?T3A?J??F[?%Cv?6qo?:?,቟;?q?R ?_?Ы4~?xV>?O~\?m?-h4?6K/f? zب?Wq?r!!>?u$?HaG*?M?K΅q?/'?H#X?d?(?ޢI?Y;?qp?e?yC?x?냣? 4x|]?oL+a?F9.?#,?\IG3q?\?K=Wö?|ztK?[$?>m?/?z&`&?Y1?4`?,.???m?7Ev?x< ?p0xYd?| ?PDxRr?!c ?Um??ȓ? F3[?T3*7?S_@?#jU@???)/??:q)??&yv??W >5??KhE??_H?V??3ef??d$??`>FR????|??;gpWy?{? ?8?*T?l1?_?r ?M~?Ū}!0?|@ܨe??N՜5?H??ˬ?f%?Q#?Q?xƕU3??>\C?`?TWS??i_3?cn?8PRG1?Ǩ ܫ?b3?/8?)M?OwQ0?WS,?),4?!6!?(8?:f(?˂8?B ?]18? ΢|wD?9/a4?R ?+9?퉞Nu$?;t;?,F?('0?XIp?6b 4?@?+A8?#WR|[?vT?Y2r?C11?$iyh?dq?ԟj|???z?_/?N?rTZ ?)6?3?]?Ɯ?)?yk/?.@6?MYm? O!?sw?Dy') ?ɓ?/I3!?q%T?v?y? @M?ؕ[?ˡG?hP?yӏ?d!RF?_?:dvn?(A?R.@p? %t?i}?$%?G?W< '?%]m?Ǻ??dFg?|?d!DW?.n?cB?aJ=?fK?.'?5{J?HWk!?g,*?r"?BGdc?- AL ? ɋtN?;c #?ҡi8?s-?M1?7,"(?@b?{hˮ)??CxS)?8F ?x~` /?DrW?~K q0?^Nai ?~P)/?Q1LD?o3Q2?Þ?D0e3?5qn?azJ5?m;B?z4?RVٻB?i/.@?=tİN?6[ 3?\q? /e4?1?Q5?! &?3?+v_?)nDz4?xf ?F|0?d#>j?p;?I_(?xǕ;?TOA?J B?G'W?(5?!L?mw19?rx?{ÀT ? gm1?݆х ?:?2 ?,HD?' ?W꺫K?2 ? 2KS?߄U) ?>23Rm\?tİ8 ? d?2A3 ?UvGk?.a ?ıCt?j; ?ߘ?le ??/ ?e ? ?[?-9 ?#UJz ?# ?Ht?&*6 ?"W?3첍. ?X"?kil?B0?ކWL?mUI?O]?×@-9?sc?YA?m7f> ?n+?# ?wӣ?{A[ ?+? ?LC?= ?ia͎?t= ?+sj?x"?fq\?Ok?"c?WG2;?-v܎ɒ?u  ?/ե?l?f"ߊ? ?x ~?n"F ?Lvѫx?*: ?q~?T; ??34 ?X?WJ>= ?CV?(?,BfQ?ڂ# ?VL?A*&?i,Y?)-?(3a?I?{Vi?#%?wUq?O/?f5&z?O e?sU?jHu?+b?U?Ѓ[?촕'?4^'9?K.? "?,}?XL ?z?a?;i:? 8?y:?Hڜ?sg?"+?΂s??1r ?$M?A?)4n?Iy*? nY?D_o?/Id?F?Os?CH?E}?߆3$??݂?A??iIǟ?:Q?A?ęO? 6Dx?}K?oT!?cI?$X?,?`?*?s?ܫ;8?rK.?ʶE?sCZ?uH.< ?U% 3?Q2z??\D?,o?hz"?s?X)? 2Ą?%?][?Ba?*?1B?[;?t$u±?Lϰ?tx6??~??>Irg??huz??c @??؊+?? U9??dS??(?|,A?'p謿j?főC?ɤnҞ?dz#??h?)5p:>?4?sG?]G )k?tgC?v Υ?f}γX?7MKT?R79O?;޶G?rw{Z?7IhD?1[?xxHD?y}KT?n?#"_Y?31?j?a?VEu?nL?#?>- M?R?VBN?w)b?(S?1~?&YU?$cu?F{@Sg?#4?3;~?)j?FːvŞ? ?#[Z[??֊#3?.?Ƣ?R?.?B?8q?橅?8?m?q2=pZ?-? ľx?Q?Ȇ?MS8#?Xo5{??DT"\ϛ?3??NQp?yB?U??s?M?Z0Y?BFE?}G>?* i?'_?׏<?!2?;0?n?.f?*{!?K(? 7?z%3 ?x4?Mi?[f? I?ibt?8ܐA?)Z?1?#6?r=?G?D%?.?2f;A?66qn?o;?^?q?HsQuq~9 ?|#?+j5?g`|?s^Z?$9?f钀?GU?o?vY?*"?Ԋ,?V&U?[Gq?"xv??W.U ?9GŒ?d?-?#OȻ?EnU?+L,?Q? 3x?$Ǐ?'taɼ?3?-%?0m?vѲmhy?p?F%н?S/y?nrN̾?{C?hC??*z??b??NINu??0:??rd.??oO??E%p?t'?3(/Y?zC?E}Duz?x!?%r?-ap?0u7?s)?1??x??zz?? ??3tm??Z?W(??B8 ?%t?t,?% &??>uM?D?9B$n?cry1?Ty??\?G@ï?? r?i?[z( ?mV?tc?,艕?#.o2?? C?!S?C?+ dt?T;4?1?L1R?$p,?axY?rԏs?ڱ?ʳ?We?Ya}~?v>?n_?M$?V|mz?nD?eU?H?Ef?dn ?9?[ ?R࠽?(E, ?ApDҀ?ݳ,/ ?*:ow?vS?RzB}?_.9@ ?m:?k ?Zqz?<7?SQ?{L?ʹs?`Y?j?Al?s:*Ԑ?7?*%X6?A?2Փ?p,ć?Y?1?uH?T[7^?u?nQm?jhbM?vmSY?Zq*F?Sn&,{?J?К ??IF f? 0?%/ti2̱?5B?) 65?%?x K ?\~R? Ү?Hv?f$?]?x@?y`lb-?/:Ҹ?XY?!??XbI*?壓%?)t?!E?9T)?=??F#N{?暛Lh?:_齊?v|?+<?z ??dE??08?Ӆҵ?RzE?lZ(?sK?Wi>?:IK?>"hL?$yE.?q>?n7v.?_V?fWc?XkF׳?;?XE2?ت?U~ô?_?,i?Ho?#&?B{p?t? XUc?W`4@??0(@?f?:rd ?q=?7 ? s?$ ?7#27?: ?Lo ?fڿ.@?r8H??6?SR?X7?slk?-5sR>?Eݱ?xvB?a_3?  F?p(?ɷ+D=?a2q7? DՋA? ?7{yC?ʄX?-$@?`vbbr?eWĭgE? ?e`*A?|?OG?8ܹ?;Q?M93?\?PE??D?Jo?ΡǛ?>!_?)A ?Z)t?(x> ?avi?MgBq ?ʷ磗?< ?.?$| ?Unu'?Fxj(?>?ٍ&? ? v&?b?{&?qT?܁%?jrlG?^Vg)?;2?-9)?d?޲?˦0˩P?_sb?@?Ib>&?Vzqw?Bĉ1?Oe?T3?'v#?J8$?A ?ĒX&?S;(?)*?{ h?'.+-4?؎C?%F ,?DzP(?m1,?;ܶ\?.?^9@?-R[h7?7P"?^D5?s?jۇ5?݃e?F.o/9?9|?%VP:?]y"0?r<@?r~53?8Ɔ@?(?AF?|? @C?2?d&N?1I?_4 D??/gC?d6?dIZC?+t?A=?qOuB0?{!| _F?4aO?I?nJt9?lt[S?s}t\?? D??H?s?s-SJ?r\?eI?fGm?L?$ N?h1D>?`fgb?yʥ ??ѾLU?kI@?lop0?WǛFO?^Kh?I{:?ڶ v?ڒgB?t?nn~E?UG,?pP??GO@ʶ?lO=?-H~? @?Wj?; >?X߱o?Xy>?+8aT?HC?UN;?C?}q!?&:s+?TV ?۽ ?5mb ?Z0?*ƹ?<( ?ױr?Scy'?V|>R?9ވ=?34`?(?^gD?M?G?T ?a U?5n?T ?O?yw"m ?A,^?^x ?e?UT ?I!Kl?Hl ?_bPu?-?6?jl?Ӭ|?e?~?m?a&-?qt?ja? . ?J1?qZX?b$$?LWB?pw_*?wg ?~#{S?jEڛ?ÕXTi?9~?45y_?@N£?K?nIp?%wr?ߴ$?rf?V?n?v ?:wP#?K,?+8oY?Pd ?0w†?WLB?hT7?yM].? ?T*?rp?8?n l,?dÔ?˪|;?J?lݣ?f{z?:מM?)}?U?A?I%?z9=W?X?o3?Ǣ}?j?>|?N ?y]O?b53?Sd??e Cߥ??TO|}??ӛ[!??A+tkVd??gƸt?-?%̵??1?fq?9Y????dI??Z??ѯ|j?Ow;e?g1s?PX?<*~E?)9,?)dn??ҥ??^-??62B??|*??@5??Ci?+9?1?'uh?bB?x%?/;/?o?St!?E$le? y?)jX?fHZ?ȉ i?b-?vvu?J1?Qi? ?tB}?[ ?E?הe"W?lm?^װ?2*s?uK?|_su?iJuF?Tb?'S 9?;Ǔ?\k6?x?nce?!C???(L??&??LG????pxl_??Si$5??Y;U??&"խv??: r??J@7????n??b??mJ;??$v\?] ??c$W ?eh?W ?]_$?a;r' ?k[`I?yBj ?`ul?A ?L?f5?Y~?>x?NH?Sl?/D ?˭??p,+/?e.?Ʊ;$?*? :Klo?tT5?mրތ?)rx?}I??*?bd'+R?M<?D3?ȇ^H?xYL6?kU?«D?V{f ?a8!v?kT>?^hW?9I2P?HXj?݋? g?$?H:E?S۳?oʤ(?g#?xCʷ?O}?H?ic?\JvI? )?cyqj?O_?IJ'?m"?^D$?bl?>I?`<?7& ?[ ?"?U?^{?= F?Ew?S^?B{.>?3(?ǀ9?? ?EځH?cU?Ap?w?2+ls?\W?|f ?a?=aѳ ?7?YB?;@m?ߒBPm?az-??Ay?x6/?4܇?,\ֈ?hl8?ɼ.[?d?Zo)?ϕ?_|?dֵ?ƨI[?謤f?{A=?mNiE?f{%?o*?>?Tvr?:?kDi?*?"P'?g+x?z pۺ?ۼ?t???%ҡ?P?w?IT? &7?n/r?fvv?^i"?)n(H?-x[~?J*F?+pn?v?<?Գ.q ?AI?%Τ?M2M?=r?(?$8*?=?;>?د?Q_?k?Cܩr?Hq??FG?bl?-^Qi?s1?X'6??`?~<?V%?\SȮ?{?_.?=]?sh?݈۫?}#t?ܽ??k}?#?d? yC0?e?% ?M(???Љn?%@?dL1!?ø<?d*A?u2u?wH޾b?Y¼?,?{b?}%5? a?{nb?dռ?n?X?u!]?)@}?[S0?O$?,?E?6.x[?W?2߿'m?Fe?+ʿ?I5?Ƭ/=?rh?̜`{?b?l(٤?AÄ?0ͩ?jvD|?5ߌ?v?F{ ?=>?rit?P.p?>rj?'G9?h?/\?OZ&?7#?8.?44MF?҃o .?KI?ӢU?WS&?>q?2=%?IԿsá?ŋn?<?p~4?r#?*ԣ?N!?:z? ?qpyǦ?"!? ia?Q6!?"3c?s'?_?&K&?"r6W? ?t?y?NHG ?3 ?$( ?v?O ?Pj/`?ZTM?׼d?xۗ_?gA |%? LyX? *%?ic? 4'?C?Ce=?M!C??+G? C?Qc,H?J ?fO?OiQ?f e8R?1?f7jZ?Z |?ZZ?2!?ˬ*W?=X?4J{Q?͇?w?ЬT%?.U?sY^?5 u\?V=JK?<?9n%S?%Q* ?6N?n?x JM?Lg?wP?6 W?kU?R?&?!2#=9? B̾ ?.L?M?FZK?$KI?n܇H?~۾ ?T&@?<.%?56pF?{֧G?5L?!,q? VS?JH ?Bc$?,31s?a?4;?[?9} ۖ?wMs? ް}? F? #?%?M4?EX2*.!?J??*-? n?o<`99?E?7D?(g߫?:O??c?-K\?[?@q+i?:08&?\ ?4?Xߟ~?sn7?no.q?{?Ҥ͂?5s ?e)8 ?Ϗ3?ٛ? ?>†?zF3?37*?#H$?pʲ/??T_?9J?9&@?ߒ?ST?\I?\0?n?P?Ry?֚?Mko?Ȫ ?£| D?˥8?9?{]?RgW???p'?u?.5&?r3 Ƅ?Ɲ'??⑯)?X*`?;?\+?&{M?zB?(Ɉ"?y.?r"??qqs!?t^>?2!?]ga?P#!?T[?T,?a2?k:?@!X?]/Ƨm(?Ē?SŌ(?Ӣ]$? 1)?ޯ?_?0N?#y?]i??rS??C??fZ/3?m?G?U?lqy|?X!??O[?O@?l-l??J"??ԑj??h֓C??B!??ٽI??8??g~??@??Շ(??W??C r~?aEe?1?Z^I/?؊+?b(??ۇ?mx?O?dq?}zR? odr?z5b?I^j?%l?4<;F?5Qz?N)2?c @?Qr{?ɬ?-?1 ?]?]C[g?A?k2v? L?p \?yv? ~{K? g<?} ?ޯ%?$`e*? e^0!?=:?R?DF??T?????i?uȽ? #b?Fu?d+? c`s?ѾӨI??$q?SiӰ?*MoN?_0?V?|޸?QLk&/?v?(3?cYľ?LF?Gp?ȼC7?f +?jeՔMc?'u_1X??2?m?jf?$ ?:&?W?[?;?(Č?[? t$?#R?3E?sՁ?Y1;e?3{P?PqN?? 弦??N^|??HE:??/-\?b?@`N? ???s}?#7 ?m ?7r)?`n?3.eJ?/?k??l!??[??U??y ??Z1>1??̙|A??Q??5ZOAb??~r??ʛ??`h?pN?=.?!9?q ?q?s5?I?-X_?3I?+C?ԋ??q?Y(? ?xGo??'z?$Q'E?[> ?bd?Zv?W ] ? C?j7h>?ʼn?Xu?n?h(/?%?Nn?Y ?#r?rW ?Mq:r?ZT[?գי?; ?G ?G ?nk?KDV ?|{-33?e" ?L?e5n ?-w?  ?z?)?Y?~^a9 ?Pn ?~*) ?\7:?{ ?d?g^T< ?az?ϾM ?ڳ͚[?[ ?GR;?R: y?&f%?I?AX:?lŜy?#k}?OtI ? ?Qp'" ?ང?M?GD|?~B6%?4\?up?(?O1N??4 L?ԉV9T??rj&?h?܈?\:#?j? ?XF?WH?Tg?llm?̭_?~?N?gkҳ?=ش? lj?}UX?!?n!?\Z?q ?7J7Ԇ?L85Ԋ?!E?e ?u@nf?o(-?C;?[ɗ?V&\P?Y?Kl?5>Zf(?E?1Ԟ%?@]?{>)?,/ǚ? &??7Ğ?|ZY0)?T*5?VG*(?~?4%?;?^ȴh&?x|?1w&?G?Cp%?j(.?!6?0"?h?Dp?\,?Iӝ ?O?k-?ꭃ?qN?XU?o?;ٳ?PΏ? T ?Xw,4?k5 ?ςIW?{\ ?H+ppz?B14 ?? ?Rn ?8puug?@E ?c)?NEԪ ? ?.N? ?m?Qy ?4?Ş ?g{=? Ξ2 ?&?? ?:Ki?ry ?$En?Ϧ ?1? e#A ?N?gG ?-`1t?B6 ?z" ?{\ ?DZ]?Y~\v ?q?΁?a?uǡ?W1cO?LK/]"?lI?id?zwzwł?4>?m?+p?`yh ?N?4g@/?Z?_)(?,?T {4?smd?яPJ4?Hoz~\?ZEO32?da>?fQYC?HO=9?X츚r? LQ+?gn?60~w֬@еFu?MP@?Cc]C@qm??*?#D?㟬? ?9o?y ?W85 ?]$?HZf?.hߵ?A.'/?A> ?xYDM??<?7;mO?$De?_?L씡?6{o?y ?8猀?0?7a?iX?#K6@?۫??VF\ű?9#?GU ?J?ν ?kd}?J ?|0n?) ?*9^?$` ?]2)?P ? "z;?jN ?kQM?{W$ ?Y%& ?#VC? ?m  ?1F&@?K' ?j? ??2A ?GR@#?F%?5IkM ? m?E7u?B#-?G?i}d?Ԝo? 'c?Ѷ6?Y:?! ? Z@?sh#?É?tkE=?ZG8M??u?ʆz=L?{]?sza?| /?G

v?5jS?Hdފ?3~?#$?rj ?ܒ4y?Ut?x^?IZΧm?ž?#|?mCZ?7?:} ?;m"? ??VmAX?/EY.?9'{^?Ua4?%u?ezu5?S?'d@?F)?vqD?`7?;>?@ ?,=8!KH?}&S?f; ?<>1S?|'e?Ga? U?v?C,?u?E?"U?TB ??囯?;#?%ι?D!0?TNz?y$?weaU?dY?3 u?P?o?kK?Kb?#|?r'?L~?۵H??]33?}P?';K?]I?GuO?*p+^?8??o8??e6Z?P&?!{??N?:֌M?nA?v?M.9:?(De?b(? FK? T3 9?]y?;cjI?&?sKY?(?)<j?)n?oʰoz?gx?>C 壊?@5 ?4,9ɚ??@?=[!8?co8A?j]t?L7uL?^?/+?Ŏ?%?b$Ό?Hcv?;c+P?}@Z?C=?J]?%'?+[J?? b%??Uҟ ?{)~K\?ᎧK?[&?6?б5'?ZSp?y+?}TG?%tP?n3"?eǵ&?֡?̴W?<32?fJD?Q??E{^?.o?nػy? h?~fйe??~[ >?B q~?z  ?*?Ȳ ?1:?pN1 ? ?=((]?ub'?#F'r?0.7(?mij?a6'? +?a.?]?\(?ҫԶ6I?/<?!E?(T?Ykw?/PJ"?4Ȓr?&"?{{@?Myqj*?b#D?[Q[h'?٢?`pӉ{(?Bik?e$1(?*m?H1?􇴖?l3? ] ?x3?hr?cS>?~@z? c4?8CȻ?U-?/e+ʾ? ..?/s5?$M[3?Sς?0?~?,??c̚h?c|?XRI?>?qZ0o?&?O?: ?6Of=?:M?J?<7?X|q?v-l?.ݣ?8?Hy~?50 ?/MVY?.?\H?($ph/?]"?2[^?*Tu?"?Lp??y8>4*?Q ?NY-?m@?wyS,?v-Wˉ?ֱW ,?Οׁ?4.=?mT?s;?0?ab5?zN2?A=?!?M sI5I? _!w?RLC9?k~1?I̋=?GnE@C?_0D?p?F׸?T9hA?;ܶKι?dA?dd'3?PQB>?9?M9?E9ж?aB???=?n%~ɵ?zV_U_?ۣ'Q?Lsz?$?X%?iq|?&OT?Ij?_"0t?\v?"?7 ?22?~? ?W)]?bP=?;?3p?Ħ?CŶtZ?߲VA?J/_?PB?ιÁ?=N?yq?֦7vN?#w5?O1DT?`T?EuR?4b8?R1E?q!=?d߂=E?F?+yW?DDJd?7{\?SQ?:Z~a?԰Y?:Qu]?x?TN^?XI>?Bo? K?!g}?iWQ?MƢ??Ӂ*??SJ@?pߎ?ᄝz?X7?#gCy?(]?9?Y9ҙS?!a?-O? 2S?z8&?.bg?/)? kGv?qb+)??CڭM?̼HB?;Em? fC?qsk?QZ;3?\(?G9O4?g͑?a?\= ?r ?֊?SDs ?T%P(?KPC ?ЭQH?X߹^> ?eRɶ2$?i0h ?͔5KH?Q> ?Kaۣm?3:L ?Ɗ?g2?v)?Y ?Gj?fp?xf^ ?e+?%͌0?[$A?*V@?G?S[Q?qS??f)?Xu9?Br|?2?J[?gJ4?݊2E2?&=D3?!g ?~(:?{?dG7?lk??*$?Yx?6*?Wkky?u0?o?C:?zc?Ľ3?5ޤ.a?kÒ4?R2˂@???(L?Ihr?9,IqA?zG4df9?۲M2??%?_LJs9?Rg׾?V.JA?ޯ?B>c6?X?^TsT??π:?Ќ?@L-ѷ?"??D'?L0f?lVY?7O?#?WI?ۘ?b=o? ps?L~?،?$e?:F9?OcA?? p?1t?yh)?EIA?< x?'C?پ^ڑ?mmWJ?,v%?AXN?pVd}?(bK?-2B?@dT?8,?ܤ \?ghf?NNI?Ʒ?TdR?SLv?hGIJRd?X /@?8ȋe?? ]??&p1?! ?$?c6EO'?7x9?eM(?iu?6D'-?y5r?=c_'? aro?{rh*?TR?%??9lE?(?"i?d'e?4*?챜W?9nHQ?{lU?nv?F#`?Ձ1\w?Uv h?TG?J4OW?KI^+?+/S? ?c pu?`d?*3z?O???J~U??U?aã?1g Q?)`GK_T?(mU?@mz?{H?,qH&?M /C?W9=?Ƨ J?e?:S?ؒ8? [?6?*B?ʺ~ӄ? [N?ʹ ?|O?@\?e?㱛?Bt??SQ?E{?,7?[z?DF ? leۉ9?/2 ?+u*?=/ ?sD?a#2r?j?'%???vSe?2 S?Gl ?h|4??U0 ?h禐i?Ts- ?m ?5* ?L$=?3% ?P.O?ZS ? QG?(V? s?9:Q?(,?`?M =??.M?OŴ?y^?&; ???M7 ?xޖ?4, ?s>9c?S ?ݲ}t?pT ?0\e?l+ ?+Y?RDX2 ? ?YY?0o а?>1?*?=9?&ei?jkto?GF? ?Ԏsv?(HM?nf7??dplO?ֺ?K?v?b#?;??&P.?<\(?[:>?d@?J\O?7?t3<_?;4E?:kCp?;!?/jڀ?k4g?]?}? {?3????`g?[%M ?s 8W?zB ?a?4}PM ?gO?c-3} ?.?7`%3?E?dN]?v6 ?uѪ?>??1?p?a?&r?ܼ?9?xT??=;G?{G? OO?RQ? ִӻ??6n x?ч?BlЦ??O?W(?2?G_?NT?U?c O?gO????鿾j??2xR??{0 ?{H?c](`?k~-?Ch@p?[5?SE%B?㢈?'m??{?? y??VY1??u> ??h??1\B-??z:Pe=??8)߬-?KǮG?L`,? x?v )?$ K?c3|?d:?w? /!?g_4&?ه!,?c~"?wan?$L"?$?K2f#?xz>:?7"?ZQ?fL ?Ƽ"?Ґ?c 1?|+ ?фd?a.?I?o/ ?&捷V?`?*\C?HAh? g%k3E?!2`,?J@J?- a?i̅0?s7h?_@:?qx?PܡF? )6?fE?0c?fhgO?19BL?B٥c?t?FXS?6?\]P?M0$?;dt?3;W?w?Ek?z;a'?0?MڐL?x#i?KZ?Ξ?O?Gi)F?(?96?Đ?MQNy??=*+Z?%ǂ ?~ E?p&?)Ua?K?ϲߙ?Kٻ?K`?՟?lc2?N%?Ced?P ?%&>?ZGSH?ܛ P:?LTOC!?TE?a^?~A?=ia?<?S܀g?T)(??c???p@^;*:^?@e_+4@b?sJOn@J&?a @?]Q? ?ew}z?T?``9i??} 7rY?4?7K,?.P)?Ga?ۖd?bLg(?CB(I? m>?ci^?I _W?BM ?r:9n? kvx?UGϫ3?7$ ?Z_? ?8g?+?=QD?IGK!?Bkr?S?Vd`pܹ??{?c=??N'?5>/?avݰ?Yq?k?5;j?Yg7?j?B壿(?5?{&?4}|?g(? W?Ĉ(?S.߅? ζ)?nbb?>n4??6?8YAQ?k7?Pv? 6?+ ?I/YX1?! 屏?"]i?>?#!b0xi?W2';*X?{ C?&:Y?9??#l?!cE?oefU?GHy?R{4a?D??Tm?Rw>}P?o?u枾?f? Edq?o74?O)r?6?Fk_*?La??BW*?I2Y?nkk? !h5?/B?}(lxF?K~??8Lu?TX?D?T;T?đ?V?D ?kI?] ?Xe?9aUna ?]q?6 ??CS1?` ?=/?>?XX%? ?It? ?o?Z&Hj?eX5?Q*Ӷ?OF??bՋW?.t?6>?,X?S4r?Am?~V?8?h?=EF?LNy?'Y?[? q?D-??CM?? 7S*^?5׷?z(?9k3?jrH?L?r???5 l?~9$?M$?a5?J?0r)pE??Uc+n?? ~??dQ??0??yD??tx?? ??Tm*=?4}l?q:d?G|4?vJU?~Xv?0R%\?yZΥ9?&^?Xǥ9?p?[W?xY?5ٹ?a??j&?uLI??48oY?sn?X_?/2?`k?y?匵Vt?IM ?m?Ys? #`ܱ?YR?aY?|?kޙ?6N?,\^?&O ?U~A E?Bŋ? [?q?OfR?[7?r?n?$?ZF1&?Y?l 5>?Î ?BW?yo+?Ysn?~?(A ??FCG?{?zmү?{8??(z8?Qox?>S83?QJS#?+i1?l?A67?4*h?(4?Yn?׆6?µE ?%`x8?vr\q?r16?L?5I)2?S*6?b9'?ï ?K<.?c<l?*K,?PQ} ?75~,?H5 ײc?.)?hN?6%?a3}?$?\r?q2,? m#Y?uߣZ?DX1?2\?w櫇?)!D??Q?cЈvL?f=Œ?8OY?K4?z9i?ua?v@{?(ʵ%?[A|?tc|11?O?爂|? ?n) ?: ?gьԅO?d|p?5&?m">W#?$UJ?&U'?҉I7 ?^&?䶡F?}ߠ(?B=?9,?}d9?qp'?63N?7#?5n?#'?wP?x'(?ILK?R*?0ӃZ?0ka?EFޞĠ? 쳈?$ ݦ?,!?}>?oA?o?|ܖ?E?]?ĂQ(?{Sx?i5?m?Cn^?UԱ?In|??+,l4?Lq?.{F @ހa$?M?5^Ʉ?ʃF@ Bq.(?#??HA??,ڧ 1??K F?ƿ_?ɺ|l?/I?u3?ʼnM)?gUG?r-? ?O1j%?>:QO?X'?*?7/?O ^?~*˷'?#t?8!}(?]?*n'?q? PkjF?x?zQL2?Pwʘ?׷+2?RWG?[7?J뺴d? Z#5?=P?d>?H,?3gtC?hT.? Q+E?~QG>g?4NEF?n?z)?*s?u?Yk<3?088?Ǒn?CYf?d??{L<?6tЅ? S?y?]?N|?VW,?B5M{a?oK?I(N? X~"1?7l?Pʠ?&N8BT??4*?}Fh?յ4?Dy?Hݬ?98Q?s4~?h?Q5?ӡ$4?epF?7M?GXI?:l?v~? k=n?|B(?#='Z?&Fw?f?TN?\~ ?i?-3&?`Ua*?']Έ?-,?EEͿ\?b%?!v.k?5+?vK-?dR*?s}?~x2 ?A?Jg ?<_fD?,?90h ? އ&??Ɣ ?9WN? з ?<\?f ?/ o?]:?hY|?woW*?&V7?ŕ?Іck?tZkQ?J1ڠ?z|`?C?P?-E(?Y?V[)kq? 4wnB?̩?BK?C?/;?S-3/?$)?d.OF?>kӴ?^?-MX?` Qu?ȉ?᷸?+??2?$,?o* ?zU?LDFE? Q?~?T5TE?EΆ?B?އpC?w+A?-Lq0f?냒E? m9-?@ 5B?J\?8G?fr?B9?~{W?J}M=?'*B ?;E8?WI?SV9?e1?zӮ7?õ-4?#02?iU?#.%1?UҔ?JS:?[?-N?/?4UDw?AϱB?ƹm? 0[0?6 S?m!?J~^?<:?Wb?P+ ?ln?W?pw?r6)۰2?Xx)?$&i+?FX(?l8|?l&! .?j6U?$<2?tmT?-ݡ~2?l3?؁1?g??vkh7?h.?QqD;?V~$?{3?@m"?@%3?$It?J5?w?7S @?H?-&?4i?JM׼?7( Ӯ?}R}??{4?w?1&?5lӅW?BW,?NQX?TB?{#?#Eۨ?k?__0?<?+]:?`l ?1w?)ܪ??SwS??/sPd??f]t??nHu??j< ??#0+p??I#??4??8?h?~(?Kz?ˋ|.?% <?G?G?|?*3?qI?b(ʳ?F@?ԟc ?eh? % ?q]iV?.- ?~KmH?{))%?-l!?x)?&# R?2m(?X2?{e&8?l'5(?UV36?>:z?0?P/?.@6?k?/0??gZ3?ވG?("j3?<({:?W /"U?>vϽ?vf_^?̌q?\DF?M *@?C=@?^?RoiE?E2`-?OL?7sս?s#gT?dZ7?@\V?ߟ}?L?s ?MY2? wnH?d%W?:m=?/CP?hQN?g?Fै>? g#?}?t/#?M/?܀:n? +N(?Q5g? ?$quQh?,,5K?DZ^?<3?>1 ,g?sߒ?㪘}BZ?Td?N?1Q.?v۸?#h?sӛ?0fQ?3 %?Mݭ?Pe+?=@?Ϣ6&?~P`? ?2X?Yӽ?Äs?)?_5ST.?O?0$c?X^!?ћ?sFu?zz\?T?*l??񎎡?f?[2,?hy?*@?Uχ w?aѿ??s?W(?vTz?&? H ?{p?]qA\?,[Q??8?~g ?^?5 ?^p?Gf? ID?b$q?ϳ??/R[?y?cBuc?|P8g?jG?Ur0?#?"m"?r*?iD?r@?mM`W??6i?s!i ???dz! ?[?Yyd?@i7|?ͷ(?֏ؑ?W?{8?t?]?$?lhkhn?ӭp ?S%/?8g ?n@"?_' ?Cq\?k ?M""?  ?5?_ ?`4E?ϗ ?WoLT?H/? i̅?&? ?l?XÛ5?9 ?M1*?g)? o;?DS'?xsK?K?mc~?g6+?Cj?Z?@7?rX? 9?Bb?Gd$?o,?`vΧ?sQ?ɠ¬?sٓI?i ̝?؜ER?a?ۤ]?YU?*J Ý%?Lh7or?i 1?d`y?H,(?`?af?P`'?.?"#?2vA?к1?&rmlN?`O{L7?c96 ?\鮜?P_l?m&?Z~&9?t%?GH?!%3'?/ ?,?Sj9+?b?Z"Y?`i?8E}?jF??z>?w(r?]U?q^?Pc -?tR?ףHci?mlS? -?0M?cK?CjX?$Pݦ?9U? է?u+J?C*]?3FgF?K-?oJoXI? qe?nS~B?D?Av,@?xIN?JK?6o[?.?^M?,? C]4?*:q? lO5n#?>Ԣm?yr㽿??StK-?鰍~6?RS?;?ٛF[?RV>?!?у+D??=QF?5?_3C?j S?pѾ?(?Y?F{?1q?ړ˜? ?] O?꧜S?ٌ?enW(?tP?d7H?j9?Ԍ{?A?if*?HS#R?VUx?UX?Q?C]M?/ ?DI\?^rN?F.Cl??.Z? U?}|??%TI?A_ ???e?? ?1?T ?\Cea?[\G?=>Θ?Do?#??UY?@b;s0?'? 9?i.?Te\ ?sq$?>S;?j]?E?cӧ ?~S9?lr?77(\?9qu?ȎH?=5?-pr.?JԨ8? l?'C?8r?6eA@?A?v$yf@? ]v?vC??U{T?E?&ю?, ?1 Ĉ?zyn?{??V?a4?6~?R??`?h?Ybj1?E䧁?$d8?m ?4?K?:5W)?$?cq&?}a?#L7̆5?΂?p56&?$ Z?d)?x>Dࣄ?Doic&?PQ?t)?R!?%Mr(?pVz?2(&?o.?)CKI?0y\?wuI?feA?Ɩ>E?2%O?m;?$P?^? %:4?ݶJ$?ضT7&?;IA?Rux>?$<?CP0V? ?Q\?猱, ?'1t?Vw}D?RmI^?0!*(?`Ǹ?d'??D{?#?2S-?מuq?6?JoO|c?Ga? ?:y?? >?^x?'%=?).Jޔ??Aa|??mdl?5?o??Do?U?/J?5Eu?,԰?/ ?)d?]S?7W9??t*?V !?rO?y?p*6e`?)#d?,s?)d?x쐌?~??\~̣?_RN?c?iA?p ?IGg? !] ?:PHv?xg?(e?Z;?LK?&1 ?0+??w܌}D?\%vk?x4']? ?Aj~? H?<ݷ?#?7!?H `?O(2?_Ƅ?[}SjC?#SU?FtT?{׶ ?6? ?I$?4 ?Tcޓ?7} ?#?h ?;`>?;(?=TN?jt^f?*Û?D|6b?RQ?~0 ~v?A?g?|#?[?k}{?cU?x?R?\?*t] ]?F=Be?a@?cTn?""'?D?g'?ɾz?o5? >?*+?]?xM ?B?cZ ???f ?5W&?q1i ??Ήk ?Ӓ?y?K ?D d??%/?d@u?O?4QK?^2:? |F?xCΗ7?"1 &N?iYw?T?6?FQ?lHiz ?9Q?Q?\HY?F ?8 i?D(?45?^#] ??)?E3n?O3?>m?:J??7.?ao?A&ɐ4?,X?RxP>?#N?^yy?9$e|?҅M?xs?I~?;[ȇ4?5 ?*C?q:vw?tD?H-?UKS3??0#?`J|B?4)wj?#&5??Ba5?M07Di?fD5?4 5?-Qo4?E!?jP$2?{5?2 ^x\?af=?# \?5ŋ?)o Z?Y?XH?Ϻ=??]n?O9!?6;h-? J ?`HI?zn(?uq[?JP(?~F]?%~2?A?!?yҨ\?ݙ#?@| ?&d?gBMt`?}?J"?&_0!?ȶ#˃??Jy "\??K?4?DOt?@t?Iy=)c?A?ΎF?I 1?CJ?]JB(?b?Z{/'? ?s̺?x iF?4^rS(?,_5?2\?b? E?wJ6?[۟?J3JK? 1?u"?|u?"u?¾H?__/ ??px?b?#!4?+?f|zj?B?*fR? ?o+d ?M; ?G?A 1̅ ?rn'? ^8, ?pM:?}$ ? EoL?X(j ? (]?,Ca? ?J.=?pm?rj?] ?xE?Hsg?ǻ*&? ?Z//?q-0k?P?{>? 3?+[e?<V?;*? N?*?/>?z-?j&4raK?(l?FI~4?p5#?&lI? ̋???j?4?t\?g6/?Q?#K&2?}uf?gM?L廓?-غ ?JB?=p?78?"V K?؞V?hw q? C?K%k?tfN?⍮H?hu⃟?vO?ðYC?p(!?nS??A^Bc?0)Kv?Un?a8X6?f3!v?_?.B?:]0?r)i?N? S x?#J?v36F?bl\?lg?X?+wʼn4?who?n5?e6?P ;p?l?@B^?nwď ?_l?> ?2|?XM?W;?J&]  ?Y??R)$??9?b??7?Q?OI?8V{?'& ?>f?y2G ?{(?j ? -J?h'7 ?ŝI?,Ar ?EWQ?w2q?܇%?wi?k?=Xe?pu? 9?Dq?>s?<8b$?*Qт?7;?3\?ߛ6I8? he?1?^+`?Wtջ?xn?4/m?%j?BMH?<{?+4ڞ?%?;p ? lƶ?ۚkg?5&?@ezs*?%?R]Z?{ǥ??z?':AS!?rT??ǽĴx? kϙ ?湽}?YeV ?<-T.V?0qw??O?~d ?)fC?v? x&O?GP]#? rD?HG? l@?s?FHA? XZY?#Ob>?SDLλ?jx-s?wZ?6/^Rs?X谲? 6'k?:MO? @nj%?{8h?[2)*?>?i*?Zi<9?9_4?Tr?Dّ5?^L?jJB?Ș`؟?VQ%?׸L?ŅU(? $s+?_&?qR;T?{/(?2k?Cj(?UR/??`S];??o*?V?u3S?K=?`L/,C?HS?l}k?ê?3h[?sRl?j)?? ?D*}3?|WS5?Ѭ%3??2Q(?KK6[?0O;1?%&EF?c79%?őM?qƠ8#?+Rq?-T`^?b?X? ?kmwz ?)??+?N?`m?Z4 ?'SZ*Y?zLq??*3?IV$/?mon?}qD?Aw?^­OX?Ar??q1>h?Fd?6&)A?xOP?'& ?ƫ 9?M?U"C ?J??I'7?z$V?.?9?9B?B=vc:F?~?8%SH0?}5h?| ]?Rpc?4M;S?tO ?ڧY?\ґ?ibB?s?B?k0$XR?g)Ld?B~U@?>#?e5.4>?x?eFs?ĨlT?Q*G?L?^&;~? L?jʽ˳?F^z6?MXm?ٶ?x ?<1?WR?3M@?z0׌?V?15?̭)E?~O:?%M?c*?@X[?vy7?НWB?HRk?MtDܣ??b??-5??vb'????[P@?a?+{8?G@?su{?,]+` ?gbm?$#?`2?ZJ? C?Zh?3!"?k?;$+?ҶK ?}Rf[t??ab?#?W@wj?k 8H?%? ?|^0? ;?ۯ+?K$?#0(?A$*?EIR?IlC? ?2?K ?,(?\p,?O |?Rx:?pt?vUdT?rp?8j ?>t?:2?XM?ti?k9?;$W[H?`oc+?)?02?Xe}?9?ʮ`B?#2_?y!E?ST?Qx?L:V?m]b?O P?Z?))O?n~?Xhܐ?O52}?M ?wNua?ˏw?Ƙ9?D3?j]?I=56?lvh"?[vB?kRbwc?·FA?rD;?%}kGQ?i? m?62?~l?OCl?B6?Md?z}?A~aS?/1/p?:$b?6v>?ғO?S[?7?5?uu?aT;?(NJ@?ڀ+?*B)?(Y?bx3&[G?/I?? y~b?ֲC?lJl?5p??t ?CJ??E(?(1?hUUq?Zw??Al ?P5?"? > ? 2  ?e?⹑ ?&ݼ)?@d.?vM!?dT+?ⶥ?h??a?lʭ?9x?5I? ?V??QӠN9?LA?N{j??Bit?^\P?H:Z4?TM?2ڝ?]?=_:?Y0?tMK?Xa8??Me?8?V0e?D? "`?Cpt? ֌װ?֓)?w"?cgC?(TC?V&A?2>.H?fL?4,mHP?|Ra$G?-g7c?h?ߘ>?{ J? |G?Fˌ?g5?yb?y?@[?d/N?u%q)?Nf??t?GH>Q?{bpH ?H>KC?pR ?宍$0?̪??JR?C+? %??ԀW?hBn?1;p??p{J?83?jS?I5?cX/?ZxZO?Om'?7I?Bq?@2??E|+E?(?kW??k@4? D?/0?:Er?2,?Ȑa-?PDT_`?$\H??H<[ `?5S#?swx?¿W%?d?++?O?2(?((W?8o&?S(S?$99?X$?Fʚ?3?>뇽??Zy?g8-?˩i?ΪA?6_?4Z?6??pa?d`?OU ;? v?Nc&+?猶Xr?)q??+9?H-'?5K?酿_/?&X ?ؒ?V?8d0?*y?eV -A?c2.?wR????0ic?-v?tp(??Fj?izb?;?%?LK7e?^<?u?@s?In?~?o?\cڧ?zi()?W?LNb?_ }(a?*4?gqt?GI? R?wGE?zMtu_?㠤@? M?+ק:?3D?o`?5 -?d>^ ?T', ?լ?T?̧?>C?X8?s I?bN-"?f ?e2DC?̷ G?L`? ?xfM?lᣘ?7٧S?;?8??'!?'[8C?y?HXC?q.?c^?J O]?#z&mTV?j-1?~b 5?(^?3%@?cbq?lK(?841ɨ=?jǐ%?tSb?"ڐ$?ŚI?J5c2?At _?L1?~?U&b?aQv?ك@?}Ro?Yq?, %??|WU ?tu??l)1v? ?i2?ҁ?YMy?K.t?a?^ d?$?n?l^?x_?E9iS.?J*??)$8?i[?*u\Q?UV?OBI?6l- ?F?: ??rL ?TZ ?8 ?X٪/?tMi?flڎ?/;s'? xv?3\K|??n`?Ja?O#? {??VZ?:~8?Y nU?:37S$?Ƶq?gu!'?`b?5p2?2۴?_ CC?0)?X??BO$?v ?o8[?E'{?&+I??0_?倀{?/?l?}wA? #?|^zs?*~ ?< 6? ?>??O ?'N ? ?Ut?U{N?^+&?uI?SP?ew9?$30?'=" ? \p?8\ ? W{?/ ?'K?Z ?h?>:?U8ʨ??- ƅ?`4k%U?X3?P?ȶN?N2s?j~?2Vh?YZuN?X^B?[~ڼ?Ϣ`T?`.?%E|U1?ﵢQ?-.?%}?a@?@?'Sq?*E?x'e?u? ?=1?FB?%ǪW?b+_.??Hy5?#^,?PͲ|?t?:Z=ِ?]s ? A?\ ?&sP?g?(a?[?hoX?NRqhd?P?"Ccxi?.? ?4F7?3??/?o?iW?;M?~[(?x?v? Lo???r?1Wk?;Tr??,uj?}~**?o}G?*1?jx?U#A?'*Ʈ?~P Q?%??2s?(>,?:یe?xQ?yNx?aȦ?Edž?P坣???Z?Bf ?p?殡?]N?MLl??>1Y?3!?>?v?9E" ?,b/&?_&9?`1?)ϞA?&/{r?ߘ~?z?(4?!^? +Ї? Kv ?2?sw/?^ ??uk#?^g?qgO?`?Z%*p ?y&\R?nw7?e?XE?d>?Nt?k gDK?,7?x??8V_X3?ߚ2?NZH?Ze:J?>>?Hwh?u ?/H?EkX?N O? 28@4 ?/1l^?Y "?VRh?ˇ4?Yy?xޣ?AͶ"l?1G0?!-?Q#? fB?I;ۘ@?a:|?~) 4?J?z|W'?d>?=软?K?};?`$??8Pz??ul z?x=G=?D?vT?C!`?Sx?`Zו?xn?w;a_?-?h ?(sڣ?l`r?()?CXX?"÷?`??dp<?HHv?O ?YF?_` T?Ŧ&?v=?ġn??L%v?Rs?ՇǾ?]f?Rt Z1?0 nP?ĔX? 0l ?Y?أXx?` ?q?K_ʠ?9'?i? _ά?t`?qhANM?#?^;Ȭ?42ZV?n?!5d?lش ?XCBYp?*s ?mݰ?,- ?VP?u??B T"?bv)u?0b??Bq>? h?=82?NU?'?H/JM?@?w'$?Wux?9??$g:?jZlN?Wk ?/g??v@0?sno?ғR?i2?{CG?@?TA8? 4ӂc?;?%? ?%?P?L?Ի*?K?N1?}ڤ? 'k5?aѩe?كK ?$en??w w?6?3.]??2^f?p$is?S\T)?b?%X{?t?& (?av? _X ?6k3?b ?@~ە??wPbG?&?hV?$;њ< ?0;? m\Y?y?D$Njl?$J?y?3 ?o??X0? ?P&?I΂i\?g Um?#6VGe?IGCC?@|\?9 ?aD?55?$dҚjM??L>ZU?i$'?эU?PY!?&mQy?7?<?7#Ω??e? ƨ\E?'A?N?g?ϕI?۫aD?=83?Swb ?Sg)?+???h ?mo?Y?_#=$?W3??᪂/?9kbC?H=???dF??#cI$? ý A?kc?RGEG?.?|>J?P xw8U?>?dBi?jX ?`?g?Hֱ?8'?yY?^)4?@Rl?\W(?}I,? k?#w?23?C?q7!?_nK??+X.&?ؒ;???4<=?)4dt?P->?I?>߽/?r?? uU&?t?@y??lB>w ?T?s$?ጤ?)?:?( ?3<{?6?!??5G ??kor?e6?ҋ?2;?G;?qc?|0?' ??srf?+Em?tk&?>a?S{{?,/?? ?ԜG?dU1?ΐ3?46?,VT??tvL?q/? XD_?p/?*"?-1?iRM?JB'?8J?v@?lW?:r?Mj?\XK#?9tS?lH ?#i?߮C3?Keg-?l?a {??M{?G*?_x/tC,?dzqa?Zb? 0P?7 ?k7?E?/l ?X0??iUT ?i?G??.@?{yl$?R2U?/p%?a?gw&?{?h'?P}?N*S?k$lc?A?(^m?%?b˷?5 ?jU?O t? ?3?ò9??8?wj?Iy 9?~-O>?8b?s¯?c(?UU ?&?÷?9?gP0?,ΐ8??3?M? Y#?(V?ۘ?]*ztp?F;2?,>?Cq?\N?s)??FF?ΛH?"y ?AEK?,5?u^?l:^?mk??BK? ʘ?;C?5(i?05?~sk ?z" 6?LS?z.?V[?_&??O'??W?D?\cj?iCo+? ?$?,5E?Fm!?#i7{?B}1?eSc?F ?<:jƹ?T?x 1?[?4y??r?r|?9KLM?E ? F?.g? >?VBK?mE7??W/??^$Q'Ce?7 œ?'@.y?"U?Z?V?M;?>=@@AABBCCDDEEFFGGHHIIJJKK?0LLMMNNOOPPQQRRSSTTUUVVWWXZ[[\\]]^^__``aXbbccddeefhgfiijjkkllmmnnhgooppqqrrsstvutwwxxyyzz{{||}}v~,~;1-2345           ! "!#"$#%$&%'&('))**++,,--..//001122334455(69768899::;;<<7u^^__`aZba`ccddeefgbfghYihajjkkllmnimnYooppqqrrssvvxxyyz{wz{|}|w~~}VVaabbcc789wxxyyvz{z|{}~~|}789        wv  223344XYYZZ[[\\]]^^__``aabbccddeeffgghhiijjkmlnmoppqqrrntutsvvwwxxyyzz{{||ul}}~~sX,-..//0011223344556k778899::;;<<==>>??@@AABBCCDDEE-YoZY[Z\]]^^__[`ab\cbdcaeeffgghhiid  , 6' ' ( ( ) ) * * + + , , - Z Z [ [ \ \ ] ] Y Y _ _ ` ` a a b b c c `                                  ! ! " " # # $ $ % - / / 0 0 1 1 2 2   %          ?@A?BACDDEEFFGGHHIIJJKKLLMMNNOOPPQQRRSSTTB      @Cuxyzz{{||}}~~POQPRSSQWWXXYY]^^O__``aabb]tuuvvwwxxyyzz{{||}}~~u.1x2yR   t  !!""))**++,,--..//0011223.12YYZZ[[\\]]^^__v wvxwyx3~~uq~9yJMNMPQRQSRJ]`Na`bbccagPhS]LUgVhWVXYYZZ[[WL'/U00112344556677X'/237878   @A@ uuvvwwxAx 4T 4xTx+;+JZ;JhtZht    [?FE??-RC??Fli?FE?<d?-RC?$j?Fli?P6M~?<d?.JL?$j?vۘ?P6M~?8-O?.JL?>T-?vۘ?B?8-O??>T-?LC?B?W8n??V?LC?]x6&?W8n?`!?V?[x?]x6&?j=C;?`!?6?[x?tutU?j=C;?|^:Q?6?~&Vo?tutU?1zWqk?|^:Q?768։?~&Vo?aą?1zWqk?H?768։??aą?Y7?H?PeDŽ?>DŽ?cL?cL?s"?s"?O@P?O@P?+}I ?+}I ?4z?4z?ث?vUȬա?1B?1B? 8? 8?55i?55i? Ưb? Ưb?/)?2~#?WT ?/)?T~?T~?yZ-?yZ-?6_?6_?F?F?s?s? ? ?2~#?WT ?|_r)?|_r)?;V?;V?f$?f$?߱-?߱-?YJ5?YJ5?5 |=?]x?i6?5 |=?ZM:E?ZM:E?dgM?dgM?@AV?@AV?@^?@^?4qf?4qf?ծn?ծn?8(Kv?8(Kv?]x?M?~?g<u?M?B`Gz?g<u?a2uk?%?%?hS ?hS ?(?+r?B`Gz?j?+r?d76I?DdQ?DdQ?q&Z?q&Z?7Wb?7Wb?j?(?\01?\01?a9?a9??[P A??[P A?d76I??&*?6z`??"C?L/?L/?6z`?Ќ?+?mF?"C?#Ֆj?HjOě?HjOě?mF?+? X? X?EeC?EeC?jAtt?jAtt???g?g?;?;?[i9?[i9?#Ֆj??w? &i? &i?? ~?CH??SZ?nF3M?` V?aeP?-=R?^8?aeP?` V?:=^?:=^?znf?znf?W.n?W.n?'3v? ?^8?jݼ? ?t?jݼ?'3v?L"D?L"D?qq3?qq3?d?d?̕?̕? Ɵ? Ɵ?\'?\'?*8T)?*8T)?OwZ?OwZ?t?-=R?R?R?wE?wE?ѿ?ѿ?9IF ?9IF ?扳vw?扳vw? f-? f-?0B"?0B"?U! +?U! +?z,<3?z,<3?Zm;?x?f` ?f` ?B>?B>?Tp?Tp?@J?@J?eGxҡ?eGxҡ???;4?$y-1? V^9? V^9?.ԏA?.ԏA?SII?SII?x/Q?x/Q?q=]#Z?q=]#Z?MTb?MTb?)1j?lgp?x?)1j? r? r?1$z?1$z?V@?V@?{nJ?{nJ?v{?v{?R ɬ?R ɬ?.ݣ?.ݣ? $?b9zh?lgp?=x I`?b9zh?=O?X?X?=x I`? $?4yQ@?4yQ@?Y~q?Y~q?~m?~m?{?{?Wa?a G?=O?V??a G?)S7?V??_͝!/?)S7?:#&?_͝!/??:#&?Wa?346?346?Ubg?Ubg?7Ώ?7Ώ?\H?\H???<,?<,?\E]?\E]?80s?80s??+z7?Ph?i?+z7?;?i?C ?;?gr?C ?b>?>K?>K?2|?2|?*?*?(%X?(%X?M?M?rA?rA?gr?ot?b>?JJG?ot?%?JJG?VU?%?9c|?ݾ$?ݾ$?VU?]ct?9c|?lo6l?]ct?G`d?lo6l?"{.\?G`d? 3Bt?o?o?&"?&"?D+?D+?i|83?i|83?X%j;?X%j;?4SC?4SC?K?K?S?S?"{.\?W1M?^~??W1M?*d??N꨹?*d?crp{?N꨹?>MW?crp{?| &?>MW??| &?ß??%?ß?Ija?%?`m=0?Ija?Zcq?????e$?e$?H-?H-?XvD5?XvD5?ңu=?ңu=?8LѦE?8LѦE?]hM?]hM?D@, V?D@, V? Y:^? Y:^?3kf?3kf?حn?حn?'v?'v?;~?;~?`m=0?it?Ƿ|?}jl?it?Zm;?IJC?IJC?K?K?kT?kT?3G2\?3G2\?X#v=cd?X#v=cd?}jl?i6?Eg?Eg?!?!?.ʟ?l"?XS?&e??l"?.ʟ?\?\?;},?;},?`]?`]?nq?J?&e??nq?J?T?D|D5\? K?T?ث?A'"?A'"?f3+?f3+?xa?3?xa?3?Tp;?0C? K?Tp;?0C?D|D5\?iqfd?iqfd?}pl?}pl?Yt?Yt?5d|?5d|?'+?'+?"WU\?"WU\?Gт?Gт?lK?lK??^? !?:8R??^? !?cIy??w?H?cIy?:8R?3f?3f?%󬓴?%󬓴?J&?o?H?J&?o?G*>S? ~?TuN??;4?kf?kf?G/.?G/.?$[?$[?C#?C#?hܜ*?hܜ*?[?Q٪G5?$.Sx=?$.Sx=?I E?I E?nF3M?u_}-?Q٪G5?O$?u_}-?k"?O$?k?k"?[???p ??p ??Ll?Ll?!) ?!) ?FxQ ?FxQ ?k?4b?ɮ?ɮ? ('? ('?2T?2T?W^'?W^'?|:X?|:X?݉?݉? ? ?8?8?}e?}e?5N ?5N ?Zcq?^~?AK?AK?fwŹ?fwŹ?S??S??/C ?/C ? 3Bt?#i=?HEsJn?HEsJn?m!w?(?Ӧ[E*1?Ӧ[E*1?r[9?r[9?_OA?_OA?B;ͽI?B;ͽI?gCQ?gCQ?( Z?( Z?6VQb?6VQb?֫j?֫j?*r?*r? dz? dz?E@ ?E@ ?j9G?j9G?gx?gx?ԋ?ԋ?ٰڣ?ٰڣ? ? ?#i=?G*>( W ?6A?S?K?TuN?͜y?x+?x+?U#?U#?<1Q ?1?4b?y5Aq?1?TYCϡ?y5Aq?ߍ ?Y;?Y;? l? l?/}M?/}M?TYCϡ?m!w?f?f???ܵZ3?ܵZ3?-d?-d?&nN[?&nN[?KJȈ?KJȈ?p&B?p&B?(?(?5Z?5Z?ߺ>?ߺ>?)l?QTrwh?v02p?v02p? f`x? f`x?ߍ ?}O?~X?~X?,xE`?,xE`?QTrwh?)l?)s&?)s&?NO/?d?g ?g ?(?( W ?f&?U W?6G?t"4?U W?xSIԸ?t"4?T!?xSIԸ?0ѵqQ?T!?`:2?et?et?)?)?Hx?Hx?Ǵ9?Ǵ9? z? z?8e?8e?\b4? *R?6A?&?K?\|?ʗ\!?ʗ\!?sַR?sַR?PP僕?PP僕?9,?9,?^D@?^D@?m?m?7H?7H?͜y?<1Q ?a ~>?a ~>?o?Za4??6te??6te?d?o?Ō٠?Ō٠?С?С?}4?}4?Za4?h/t?\|?[l?h/t?6'u\d?[l?K+\?6'u\d?NO/?s+O7?s+O7?"??"??OG?OG?}O?dI? AQ*{? AQ*{?0W?0W?UD?UD?zվ?nyS?K+\?ǒLK?nyS?zվ?8? ?8? ?č q?č q?i,;?i,;?Fh"?Fh"?3" +?3" +?X53?X53?}f;?}f;?C?C?ǒLK?]?dI?O-?t6^?t6^?c?c???_?_?<"?<"?-vT?-vT?RF?RF?wit?wit???]?f&?GaW#?6G?ڹ?ڹ?,]dZ?,]dZ?P,]?P,]?t;m?t;m?ʧ?ʧ?}"?}"?^h d?^h d?@7뒥?@7뒥?(!W?(!W?L¥(?L¥(?p./j?p./j?r?r?AB?AB?܆r.?܆r.?hTp?hTp?$IIޱ?$IIޱ?H*}g?H*}g?l L!4?l L!4?zv?2m? ?rZ?2m? ?ҘӍa?ҘӍa?6?6?7WԂg?7WԂg?rZ??P<4?h?w??P<4?{?=N?=N?G?G?‰"?‰"?ׄ'[,?ׄ'[,?G2?(?G2?(?g c R?g c R?d.?d.?w? ?W`Ks?W`Ks?"?"?䆐$z?䆐$z?/$h7?/$h7?wi?J?wi?J?+`]?'tM?o%?o%?{?+`]?o?o?OƂ ?OƂ ?r9?r9?4u?4u?'tM?h?w@:?w@:?ý?ý?j ?j ?ԍca?ԍca?nw}?nw}?PF;?PF;?@1&?@1&?dh?dh?~?~?ԁ,?ԁ,?еPV,?еPV,??n??n?x-ɯ?x-ɯ?ME?>ME?4 ֆ?4 ֆ?X_ȶ?X_ȶ?|kV ?|kV ?LzrK?LzrK?-I.?-I.?η?η? ? ?0ѵqQ?A+ ? *R? M,?&?*!~?O-?LEM?qƿV?qƿV?9%7^?9%7^?~Rhf?~Rhf?Z-n?Z-n?7v?7v?*!~?$?y^-?y^-?UAA5?UAA5?2Ror=?2Ror=?'̜E?'̜E?LEM?nj?$?FM$?k{U?k{U???t ַ?t ַ?P?P?,0?,0?$ w^K ?$ w^K ?I|?I|?nj?!" ?FM$?'?!" ?K.Ő?'?GaW#?z4&-?hG?ZMh?ZMh?`?`?Ѻ֩?Ѻ֩?A|?A|?B2`?B2`?"q$ ?"q$ ?fX,?fX,?@TM?@TM?t' sn?zv???خd?خd?;?;? qV<|? qV<|?DR%)?DR%)?h3?h3?F? ?F? ?bA?bA?jk'b?jk'b?ۗa?ۗa?L?L? fu? fu?-N:?-N:?D59?D59?&?&?hG?.Hж? ??.Hж?Cꄪ??΀U-?^?^?̋9?̋9?~;_?~;_?Cꄪ?Zꨌ?{{6?>~ȋ?΀U-?w΢?>~ȋ?}?w΢?{{6?N\y`?N\y`?bf?bf?ne m?ne m?+1s?+1s?ngpWy?ngpWy?}?8U`?kh?-HP?8U`?-HP?hPJ?A+ ? nwB? M,?o_?K.Ő?:j.?o_?h 5?hPJ? «? nwB?? y-1? y-1?.Zb?.Zb?Sm?8n͊l?=b(|?=b(|?UO?UO?Iޱ?Iޱ?\f=9?\f=9?1v?1v?$?$?7J;?7J;?G ?G ??xp ?La(?La(?('1?('1?U>X9?U>X9? kA??x9?2ף??V `?2ף?YD?~z2u?~z2u?V `? kA?1HI?1HI?VQ?VQ?{u<Z?{u<Z?Q!Nb?Q!Nb?-0Oj?-0Oj? |r? |r?#z?#z?4?4?YD?p75?z.c>?b?+Fp?+Fp?49?49? Y? Y?}hz?}hz?<?<?^mG?^mG?`T ?`T ??<@??<@?#?#?! Z??! Z??a`?a`?:?:?rͨ?rͨ?^㨃m?^㨃m?S92?S92?w?w?5_$?5_$?F[E?F[E?8.Ef?8.Ef?ʆ ?{S?bt?bt?iJo]?iJo]?>1%"?>1%"?J?J?b?qM&>#-yR ?dT? 5? ? «?P?^R??^R?? ݚ? ݚ?w?w?9{P?9{P?3< ?3< ???a+?a+?]\c;?]\c;?K?K?zr(\?zr(\?8n͊l?z.c>?RROE?ʆ ?\|Χ?\|Χ?g2?g2?W?W?I ?Z Qv/?{8,?I ?T*?T*?6* K?6* K?Țijl?Țijl?Z Qv/?{8,?~?~?]}?]}?MB?MB?4>1?4>1?ƮQ?ƮQ?Xor?Xor?ꏌ%U?vbj?1,'?tPI?vbj? (?tPI?@?0f~?0f~?e?e?TGMbR=?TGMbR=?4^?4^?x(~?x(~? ? ? 9e? 9e?.z)?.z)?깥?깥?R[["?R[["?ˈxC?ˈxC?v5?KhE?KhE?_H?V?_H?V?3ef?3ef?&yv?d$?W >5?`>FR???|?|?;gpWy?;gpWy?d$?~?>Irg?huz?c @?c @?؊+?؊+?~?dS?(?(? U9?RROE?nM?ꏌ%U?|t?|t?q[?q[?BG?BG?2R*g?2R*g?,7?,7?V3hW?1,'?*z?*z?b?b?NINu?NINu?0:?0:?rd.?rd.?oO?oO?E%p?V3hW?x?x?zz?zz? ?? ??@?LP? #?ΎWۻ?ݨ5@?Oϻ?jX~?>Irg?fFR?TO|}?e Cߥ?ӛ[!?TO|}?A+tkVd?gƸt?gƸt?ӛ[!? U9???dI???dI?Z?Z?ѯ|j?ѯ|j?huz?ҥ?^-?^-?dS?e Cߥ?62B?62B?|*?|*?@5?@5?Ci?Ci?ҥ?nM?+x^_.T?E%p?(L?(L?&?&?LG?LG???pxl_?pxl_?Si$5?Si$5?Y;U?Y;U?&"խv?&"խv?: r?: r?J@7?J@7???n?n?b?b?mJ;?mJ;?$v\? #?-?I0?ΎWۻ?,B ?Oϻ?rS?A+tkVd?C?rS?fZ/3?C?J"?fZ/3?ԑj?J"?h֓C?B!?B!?ٽI?ٽI?ԑj?8?h֓C?g~?8?@?g~?Շ(?@?W?Շ(?C r~?W???T?i???+x^_.T?2[?$v\?N^|?N^|?HE:?HE:?/-\?/-\?l!?l!?[?[?U?U?y ?y ?Z1>1?Z1>1?̙|A?̙|A?Q?Q?5ZOAb?5ZOAb?~r?~r?ʛ?ʛ?`h?-?G85?$+#?I0?;Q1tle?,B ?T?D vD ?D vD ?iP?iP?}] -?}] -?6Ql=?6Ql=?hDaM?hDaM?80^?80^?^,n?^,n?C r~? ,?i?s.Y? ,??s.Y?Ex??`h?Y;ʣ?Y;ʣ?v-?v-?jq?jq?4d^?4d^?}R'T?}R'T?E?E?9?2[?Rz\b?G85?;M>?i?$+#?tPhS?;Q1tle?WF7?i G?i G?!" X?!" X?jgmh?jgmh?x?x?J2?J2?Ex?F!&?WF7?@.?F!&?:F?@.?kF?:F?"SZ?kF?__5?"SZ?~n?6$ѣ?6$ѣ?Gw3?Gw3?kڕ?kڕ?__5?9?XE-8{?XE-8{? &? &??7??7?3nIG?3nIG?|&X?|&X?fh?fh?Yx?Yx?WO״+?Rz\b?`i?;M>?}ԔUGE?Dc?i?,jә?Dc?B^S?tPhS?lƜn ?~n?#r?lƜn ?UGb?#r?WO״+???鿾j?鿾j?2xR?2xR?{0 ?{0 ?{?{? y? y?VY1?VY1?u> ?u> ?h?h?1\B-?1\B-?z:Pe=?`i?%S+q?%S+q?Y$2w?}ԔUGE?eV/bM?e,?,jә?>v?e,?Y$2w?3O?3O?@G⬪?@G⬪?>v?) C?B^S?]Q?UGb?z:Pe=?CM?CM? 7S*^? 7S*^?Uc+n?Uc+n? ~? ~?dQ?dQ?0?0?yD?yD?tx?tx? ? ?Tm*=?eV/bM?%T?0?) C?HA?]Q?,ڧ 1?HA?K X{[?}c `?0? LC?SwS?SwS?/sPd?/sPd?f]t?nHu?j< ?j< ?#0+p?#0+p?I#?I#?4?4?K X{[?4x^Bb? ?}c `?4x^Bb?6ПcQi?6ПcQi?bp q?bp q?KAS#w?9? ?KAS#w?9?f]t?.Z?%TI?nHu?Aa|?%TI?mdl?Aa|?.Z?wXNw?wXNw?Bn٥?Bn٥? 5;?Jy "\?mdl?K?Jy "\? 5;?R)$?R)$?9?`S];?K?o*?`S];?9?b?b?-5?-5?vb'?vb'??7B6 ?&𪝘?&𪝘?o*??7B6 ?Kόq??1?Kόq?V֬?1??E(?E(?QӠN9?p{J?V֬?QӠN9?CI?'!?p{J?CI?VZ?- ƅ?'!?VZ?,uj?uk#?- ƅ?,uj?ul z?L%v?uk#?ul z?$g:?2^f?L%v?$g:?݉œ?L>ZU?2^f?݉œ?P}?qJE?L>ZU?P}?Mqxa?(V75?qJE?Mqxa?e?#cI$?(V75?e?+X.&?kor?#cI$?+X.&?tvL?M{?kor?tvL?.@?8?M{?.@?3?M?BK?8?3?M?O'?r?BK?O'?W/?)Ҭ'?r?W/?Pt??$?)Ҭ'?Pt??*O?aq¡?$?*O?s9`?N`?aq¡?s9`?8`p?8`p?ݻ?ݻ?N`?[[tri7      ! "!#!""$#$%#$&%'%&&('()'(*)+)**2+23+,~-,,--.1/..0//L001123344845655766878796=:9>>9=<:??:>;@;>A@;A=<BB<?@=CC=B>?DA>D?KED?EA@FF@CBAGGAFCBHHBGDCIICHEDJJDIFEKKEJGFLLFKHGMMGLIHNNHMJIOOINKJPEKPPJOMLQQLNMRRMQONSSNRPOTTOSQPUUPTRQVVQUSRWWRVTSXXSWUTYYTXVUZZUYWV[[VZXW\\W[bX]]X\YhtoYuuYt~wZa[ZZ\[[]\\^]]_^^`__a``jaacbb]dcceddogfeeiffghghnhjiikjjlkkmllnmnmpooqpprqqsrrtsswtt^uuvuv}vxwwyxxzyy{zz|{{}|}|~~@Q|8               )  !! ""!##"$$%%#&&%''&(('))(**)++*,,+-$-.-./0.00/11,2213324435546/6767878989:9:;:;<<5==<>>=??>@@?AA@B;BBACCDEDEFEFCGHHGIIHJFJJIKCKLKLMLM NOMOPPNQQPRRQSSRTTSUOUUT  WN W  XW X  YX Y ZY Z [ \Z\\ [][]^]^_^_`_`cdeedffeggfhhgiihjjikkjl`llkVmnmnonopop qpq !rq r!"sr!s"#ts"t#$ut#u$%vu$v%&wv%w&'xw&x'(yx'y(5zy(z*){{)+*||*{,+}}+|-,~~,}.--~/..0//10021132243354z5467=67<7988:99;::<;<;=>==?>>B??@@A@ADACBBFCCDEDEPEGFFHGGIHHJIIKJJLKKMLLNMMONNPOPORQQSRRTSSUTTVUUWVVXWWYXXZYY[ZZ\[[]\\]]_^^`__c``ababgbdcceddfeegfgfhithinikjjlkkmllnmnmpoouvsqpprqqsrsrtuttuuxvvw{wyxxzyy{z{z|}|}}~~                 !" ""!##$$#%%$&&%'!''&())(**)++*,,+-.-./00/1102.2213/34554665676898::;;:<<;==<>>=??>@AA@BBBAC@CDCDEDEFEFGG?HHGIIHJFJJIBKLLKMMLNNMOOPOPQPQRQRSSNTTSUUTVVUWRWXWXYXYZZV[[Z\\[]]\^^]_Y__^``aa`bbaccbddceedfghghheifiigOj`kkj$l mml:nono  pp m  qq p  rr q  ss r tt suouutz{D !  "!!#""%##$-l$&%%'&&('')((*))+**,++1,,-.-.0./60/0/322121433544<556767878989:9:;:;B;=<<>==?>>@??A@@BABADCKGCDEDEFEFJFGHGGIHHJIJIKLKNWLMLMOMPNNOUOQPPRQQSRRTSSUTUTaVVmWXWXYXYZYZ\Z[]\[\[]^]^_^_`_`l`baacbdcbdeddfeegffhggihhjiikjjlklkmmnmnonopopqpqrqrsrststutuvuvwvwxwxyxyzyzz|{{}||~}}~~                ! !! ""#"#$$f%%$&#&&%"'(('))(**)++*,--,.,././00+1102/2323441554665776887998::9;;:<3<<;==->>=??>@@?AA@BBACDDBEEDFFEGGFHHGICIIHJJKKJLLKMMNMNOOLPPOQNQQPRRSRSTTUUTVSVVURWXXYYZZX[Y[[Z\\W]]\X^^]__``aa_b`bbaYc_ddce4efefgghfhhgigjji`kikMlmnnmoolppoqqprrqsmssrttnuutTvvuwwCxxwyyxzz{{y||{}z}~}~|~z J              (-(3 #,!' " "!"!$##%$$&%%'&'&*))((+**,,++=--..2.0//310021213365544e7667899;::n<;;=<<>==?>>G??@CA@@BAKBACDCDEDEFEFJFHGGIHHJIJIKLKKMLLNMMSNNOPjOPQPQRQRWRTSSUTTVUUZVVWXWXYXY_Y[ZZ\[[]\\^]]_^_^a``kbaacbbeddcdchee$ffiigghhhiijkkjjlmllpmmnnonouoqpprqqsrrtssutut vvyvw xwwyxyxz{z{|{||} ~}!!} ~""~!###"$$%%$&&%''&(('))(**)++*,,+--,..-/00/1 110456657/77688.2998:;;:<<;==<>>=??>@@?AA@BBACCBDDDCEFEFGFGDHGHIIJJIKKJLLKMMLNNMOONPPQQORRQSSRTTSUUTVVUWWVXXWYPYZYZ[\Z\\[]]X^]^_``]a_aa`b[bcbcdcdedefefgfghh_iihjjikkjlgllkmInnmooppmpqqprorssrtqttsuouvwwvxuxyxyzzw{y{||z}}|~~}{~vv E      !        $ ! ! "#'"#&#%$$&%&%'(''*))((+**0++-,,.--././2/41100233<254476655877988;::99<;<;>==@??>>A@@DBBAAwCCIEDDGFFEEHGGIHIHKJJLKKOLLMNlMNQNPOOQPQPRSWRSVSUT  TvVU V  U W \W  W ZX  X^Y[cY[Z[Z ^]]\\  ^^a__d`bk`babacdccddeffhehghgjjiikjkklollnmmstnnqp po o rq!!q sr"s""r!ut##t v$vu$u#$xw%%wyx&&x%{y''y&z}(z(|)|{){')}~*~*(}*++),,*,+(-.//-00.01112202113/3444554665677.7886877.9:::;;:<<==<=>>;>??@@>@?=A?AB:CCBDEEEFFEFDGGHHIDIIHJJGJKKHKJLLBMLMGNNMOPPOQQORSSRTQTTSEUURVVWWVXW}ltYP             :# 1!  "!!#" #  ".- %$  $&%  % '&  & ('' )((*))+**,++-, -,8.. /70//10103229435435655767699898:;:  :<;!!; =<""<!>=##="?>$$>#@?%%?$A@&&@%BA''A&CB((B'DC)HD))C(E*EF+FG+*E+GH,G,+H)-,H-KJ.JI.In.LK//K.ML00L/ON1NM1M01QO22O1PY3P3RQ44Q2TS5SR5R45UT66T5WV7VU7U67XW88W7^X99X8YZ:Z\:3Y:[b;\[<\<:<[;`]==]^^9>=^>h_?_a?a`@a@?@`=bcAcdA;bAdeBdBAefCBeCfgDglDCfDihEEh?jiFFiEkjGGjFlkHlHDHkGmpInmJJmI.nKnJKouLoLrIpMpqMqtNqNMsrOOrLtsPNtPPsOuxQLuQzwRwvRvRxySy{SQxS|zTTzR{U{US~}V}|V|TV~WUWW~VXXXYZZ[Z[\\[\]^^\^]__]_``_a`aXbbccbddcdeedffeuq~9fgaggfRhZiihjjYjkkjllklmmlnmnonopopqqpqrrqsrsttstuutvv*wwvwxxwyyxzzy{{z{|u||{}~~}~ }}<P%4      $        V "#!  "!"!$##$$&%%'&&)''(*(-+))**,,+,+-/--.0.9/  3/0 02 21 2   13 3 4 45 56 5  9 668878799C::;;>;=<<A==>>@@?@?AACLBBCCCDIFDDUEEFFJGGNIHIHKKJ K  JL!!MLNM"N""M!#PQ$OPO%P%#%O$QT&Q&$SR''RUTS(&T((S'U)U)'*WV*V+XW+W*,X+ZYFFY[ZGGZF\[HH[G]\II\H^]JJ]I_^KK^J`_LL_Ka`MM`LbaNNaMcbOObNdcPPcOedQQdPfeRReQgfSSfRhgTTgSihUUhTjiVViUkjWWjV7kXXkWlmjljmnkjmknrlknloYmponnomqpoopnrqplrppqosqvsrrsqtustsu|tsutwvuuvrxwvvwuyxwwxvzyxxyw{zyyzx|{zt|zz{y~}{{}~||~{}}|~~}~qqj{sF3                                                                                      !     "!  ! #"  " $# # %$! ! $ &%" " %! ('# '&# &" # )($ -)$ $ (# ,-% v*& *+' & *' ' +( +,( ,% ( -$ ) % -) /.* * .K0/+ + /* 21, , 100+ , 42- - 2, 3:. 3. 54/ 4- / 650 0 5/ 761 60 1 982 872 2 71 >93 3 92 . :4 :<4 ;A5 <;6 <6 4 6 ;5 @=7 7 =>>3 7 E?8 8 ?@@7 9 8 @9 5 A: AB: BC; B; : CD< ; C< < D= DH= FE> > E8 GF? ? F> HG@ H@ = @ G? JIA IMA * KB B KJJA B LQC LC OA MD ND MNPE NE D POF E PF F OC QSG C QG TRH H RhG SI SUI VTJ TH J UWK UK I WVL K WL L VJ H hM YjN bXO O XYO YN Z[P iZP [\Q P [Q Q \R \^R ]_S ^]T ^T R T ]S `aU S _V _`V `U V agW U aW bO X cbX dcY cX Y edZ Z dY fe[ eZ [ gf\ W g\ \ f[ iP ] M h] i] hkl^ jk_ k^ _ N j_ ^ l` lm` mna ma ` nob a nb opc b oc pqd c pd d qe qre rsf rf e stg f sg g th tuh u|i ui h xwj j wvv& j yxk k xj zyl l yk {zm zl m |{n i |n n {m ~}o o }p ~p ~o p q q r r q r p s s s t t u u t v v u v w w v x x w y y x z z y z { { z { { | } } } | ~ ~ } ~    ~ o                                                                                                                                          # #                                    *                                                                              !      )       "      "!  !  "  " %$ $& # % #&( &  ('  (  '))  )   +* *  ,+ +  , -E .- - /.! ! . 0/" " /! 10# # 0" 21$ $ 1# 32% % 2$ 43& & 3% 54. . 4& 65/ / 5. ' 60 0 6/ 871 1 7X982 2 81 :93 3 92 ;:4 4 :3 <;5 5 ;4 =<6 6 <5 >=7 7 =6 ?>8 8 >7 @?9 9 ?8 A@: : @9 BA; ; A: CB< < B; DC= = C< ED>  E> > D= GF? ? FHG@ @ G? IHA A H@ JIB B IA KJC C JB LKD D KC MLE E LD NMF F ME ONG G NF POH H OG QPI I PH RQJ J QI SRK K RJ TSL L SK UTM M TL VUN N UM WVO O VN XWP P WO 1 XQ Q XP YZR mYR Z[S R ZS [_T S [T \bU ]\V V \U ^]W W ]V _^X T _X X ^W Y ] ^ `c d a`e e `d eaf f ae bcg U bg cdh g ch dii h di fej j ef gfk k fj hgl l gk ihm i im m hl jkn jn mR o klp n kp lpq p lq nmr r mo ons s nr pot q pt t os n u rqv v qurw w rv stx sx tzy x ty vuz z uw wv{ { vz xw| | w{ yx} } x| zy~ y z~ ~ y} |{  {}| | ~} } ~ ~         v         u                                 x         ?                                                     Z                                                                             .                                       s                                                                     q                                                                                            " !  !  !  # " ! "  ! $ # " ) $ " " # ! % ) # % # ( j & $ & ' % & % $ ' ( & % ' & & ( ' ' ( # ) " ( # ) ( + * ) ) * B , + * + ) * - , + + , * - + , , / - . 4 - . - - . 0 / / / / , 1 0 0 0 / 0 3 2 1 1 2 1 1 1 0 7 3 2 3 1 2 6 5 3 5 : 3 - 4 3 6 3 4 9 7 4 4 7 2 > 8 5 5 8 9 9 4 5 3 : 6 ; 6 : ; < 7 < = 7 ; 7 6 7 = 8 @ 8 = ? > 9 9 > 5 @ ? : @ : 8 : ? 9 A D ; B A < A ; < ) B = = B < C G > C > F D E ? D ? ; E F @ ? E @ @ F A F > A G I B > G B H M C H C J B I D D I K K L E L J E K E D E J C M ] F C M G G M F H N _ X O I I O N I N H P Q J ] P J Q R K J Q K T S L S V L K R L T L R U W M U M V L V N N V M W \ O M W O X I P X P Y Z Y Q Q Y P Z Q R R [ Z \ [ S O \ S S [ R ] J T F ] T ^ ` U _ ^ V ^ U V H _ V W H V a b X U ` X a X ` b c Y X b Y c d Z Y c Z d e [ Z d [ f g \ [ e \ f \ e g h ] \ g ] i n ^ ] h ^ i ^ h k j _ _ j $ l k ` l ` m ` k _ n m a ^ n a a m ` _ $ b p o c o c r p d d p c  q e e q f q r f r d f g c t s h h s t h i u t i v u j u i j w v k k v j y x l x w l w k l l k m z y n y l n { z o z n o | { p p { o } | q | p q ~ } r } q r  ~ s  s s ~ r t s t t g u u v u v w v w x y y x z z y { w { { z | } } | ~ ~ }   ~  x |  u                                                                                                        > &  ' '  & ! ( ( ' " ! ) ) ! ( # " * * " ) $ # + + # * % $ , , $ + & % - - % , . & . . & - ( ' 3 3 ' 0 ) ( 4 4 ( 3 * ) 5 5 ) 4 + * 6 6 * 5 , + 7 7 + 6 - , 8 8 , 7 / - 9 9 - 8 / . : : . . 3 0 ; 0 / < ; 0 < < / : 2 1 = = 1 Q 3 2 > > 2 = 4 3 ? ? 3 > 5 4 @ @ 4 ? 6 5 A A 5 @ 7 6 B B 6 A 8 7 C C 7 B 9 8 D D 8 C : 9 E E 9 D ; : F F : E < ; G G ; F = < H H < G > = I & > I I = H @ ? J J ? A @ K K @ J B A L L A K C B M M B L D C N N C M E D O O D N F E P P E O G F Q Q F P H G R R G Q I H S S H R J I T T I S K J U U J T L K V V K U M L W W L V = Q X N M Y Y M W O N Z Z N Y P O [ [ O Z Q P \ X Q \ \ P [ U g ] R S ^ o R ^ S T _ ^ S _ T X ` _ T ` V U a a U ] W V b b V a X W c ` X c c W b _ Y d d Y ^ [ Z e e Z \ [ f f [ e ] \ g ^ ] g g \ f d ^ h ^ g i h ^ i ` _ j j _ d a ` k k ` j b a l l a k c b m d c m m b l d m n e d o o d n f e p p e o j f q q f p g h r ] g r h i s r h s i m t s i t k j u u j q l k v v k u m l w t m w w l v n p x u n x o ^ y r o z z o y p q { x p { q t | { q | s r } } r z t s ~ | t ~ ~ s } u  u x  w v v z w w x y x y ~ y { z z | { { } | | ~ } ~ }    J e .        h                                                                             e                                                                        !   " ! ! ( " ! ! ! # ( " # " ' % & # b $ # % # $ & ' $ # & $ $ ' " ( ! % " ( % * ) & ) = & + * ' + ' , ' * & / , ( ( , ' - 3 ) . - ) . * . ) * / ( + 0 / + 1 0 , 0 + , , 2 1 4 2 - - 2 , ) 3 . 3 6 . 9 5 / / 5 4 4 - / 6 7 0 6 0 . 8 : 1 0 7 1 8 1 7 : 9 2 1 : 2 2 9 / ; ? 3 3 < ; = < 4 4 < 3 = 4 5 = 5 & > B 6 > 6 A ? @ 7 ? 7 3 @ A 8 7 @ 8 8 A 6 B D 9 6 B 9 F T : 9 D ; D E ; E C ; C G ; G F < G < ; < F : P I = = I H = H W J K > T J > K L ? > K ? ? L @ L N @ M O A M A N @ N A O S B A O B P = C Q P C Q C R S R D B S D D R C T > E : T E U X F V U G U F G W V G = W H H W G X Y I F X I Y Z J I Y J Z [ K J Z K [ \ L K [ L \ ] M L \ M ] ^ N M ] N ^ a O N ^ O ` _ P P _ b a ` Q O a Q Q ` P P b R b # R h  S d c T T c g U  e e f V e V U d T V V f d T g W g t W i h X X h S i X Y i Y j k j Z k Z m Z j Y n l [ [ l m [ m \ m Z \ n [ ] p o ^ ^ o n ^ n ] q p _ p ^ _ _ r q s r ` s ` t ` r _ t ` a W t a u v b u b v w c b v c w { d c w d x e y x f f x e z y g g y f { z h d { h h z g | i } | j j | i ~ } k k } j  ~ l l ~ k  m m  l n n m o o n p p o q q p r r q s e s s r t i t u t u v u v w v w x y y x z z y { { | | { } } | ~ ~ } {   z w ~ b                               2                                             ! " ! ! # " " $ # # % $ $ % % & I ' & & - , ( ' ' ) ( ( * ) ) + * * , + , + . - - : . . 0 / / 9 1 0 0 2 1  2 1 4 3 3 ; 5 4 4 6 5 5 7 6 6 8 7 7 9 8  8 9 !!9 < : "": ; #; < #< "$#< $> = %%= X ? > &&> %@ ? ''? &A @ ((@ 'B A ))A (C B **B )D C ++C *E D ,,D +F E --E ,G F ..F -H G //G .I H 0I 00H /K J 11J L K 22K 1M L 33L 2O N 4N M 4M 34P O 55O 4R Q 6Q P 6P 56S R 77R 6T S 88S 7V U 9U T 9T 89W V ::V 9Y W ;;W :%X <X \ <[ Z =Z Y =Y ;=\ [ >\ ><>[ =] r Ua ] VV] U^ _ Wy ^ W_ ` XW_ X` c YX` Yb a ZZa Vc b [Yc [[b Zj d \\d h \h ]f e ^^e g f _i g __f ^h i `]h `i _a`i ak j bbj \l k cck bm l dn m ddl cn deo n ffn ep o ggo fq p hhp gu q iiq hr s jUr js t kjs kt w lkt lv u mmu iw v nlw nnv my Wox { px p } z qz y qy oq{ | r| ~ rp{ r~ } s~ srs} q  tt p u u u v v v w w uw x xvx w yy z z yz {{ z || { }} |u ~  ~      }  ty                             v      1                                          ^                                    x                                                                  *     *                        S                                                 U     U                         ! % !   " % $ "  " # $ # R $ %  % ( ' ' & & 5 + ( ( ) . ) * * - , , + + / - - . . 0 2 / / 0 1 0 1 2 1 2 4 3 3 7 5 4 4 5 5 6 9 6 8 7 8 7 8 8 9 ; 9 : E !< : "": ! ; ##; < #< "C = $$= H > ? %? @ %E > %%@ &A &@ A B 'B D 'A '&C $(D C (D ('E %)!E )F I *G F +F *+,H G G +,$H --H ,I J .*I .J K /.J /K L 0/K 0L M 1M N 10L 1N O 2N 21O Q 32O 3Q P 43Q 44P R 4R 55R X S 66S V T 7U 7V 7U 7T W 7W 88W a Y X 99X 6Y 9:Z Y :Z :\ ] [ ;[ \ ;;\ :] ;<^ ] ==] <>_ ^ ^ =>` _ ?` ?a ?_ >a ?@8a @b c A b Ac d BAc Bd h CBd Ce s Df e EEe Dg f FFf Eh g GCh GGg Fi t Hj i IIi Hk j JJj Il k KKk Jm l LLl Kn m MMm Lo n NNn Mp o OOo Nq p PPp Or q QQq Ps r RDs RRr Qt u SHt Su v TSu Tv w UTv Uw VUw Vx Wy x XXx Wz y YYy X z ZZz Y| { [[{  ~ \} | ]]| [~ } ^\~ ^^} ][ __ Z ` aV a ba b cc ` db dd c e e fe f gf g h ig ii h j kk j l` ll k mj m nm n eon o pp \p\q rr p ss r tt s uu t vh vv u w x x x w yy x zz y { z{ || { }} | ~ ~  }  ~  w                                                      A                                                                                                                          0"!# !  !!$""##$$&%%<'&&(''*))((+**,++-,,/..--0/0/21132243354465576687  798 8  :9  9 ;:  : =; ;  <<>>=>= ?A@??@@ABABTBCDC  CED!!D FE""E!GF##F"HG$$G#IH%%H$JI&&I%KJ''J&LK((K'ML))L(NM**M)ON++N*PO,,O+QP--P,RQ..Q-SR//R.TS0T00S/Uj1ZV2VU2U12WX3oW3XY4Y[43X4[Z5[545Z2o36b\77\]7]8]`8_^9a_99^`a:a9:`:8cb;;b7dc<ed<<c;e<=gf>fe>e=>hg??g>mi@ih@h?@jkA1jAklBlnBAkBnmCnCBCm@1ADqoEo6EprFpFtsqGGqEFrHrsHsGHtIItFwuJu~JvKvxKxwLxLKLwJzyMyM{zNNzM|{OO{N}P}|P|OPQJ~~R~RQSSSRSTTPTUUIUVVMWWXXWYXYZZY[Z[\\\[W]]^^]_^__K`_`ababcaccadeceffe\ghhghiijjikklblmmknnmonopppoqlqqprrjrsssrttktsvvvv9uwwwvxxyW6~7           5   # "!!)##""($$-&')%&%((''))*.+*,+-,,--././0/010231213434455596678788@:99::;<;=<>=<?>?@>@ABABCCGBDRFEEDDGFGFHSJI IH H KJ  J LK  K NM ML L  ON  N QPPOO RQRQSTSTUUVTVaVWXWWZYYXX_ZZ][[_\^q\^]^]__c``labbdadcdcefoefgfgi g hv!ih" i""h!jm#kj$$j#lk%l%%k$mn&no&#m&o'o'&q(rp))pq)q**q(sr++r)ts,,s+ut--t,vu.!v..u-xw/w/zy0yx0x/0z01z1{}|2|{22{1}23}3~44~5545366/778898997:7;;8<<;==<>=>=??@6@@?ABBBCACDBDEE:EDFFAGGHHGHIHIJFJJIKKLLKGMKNMNTUUTzVVUYZ[[Z\T\\[cWddc^efcffeggghhhhiiiijjkkjklillmmjmnhnnooooppppqqirrkssrtsf             u0 !  "!!#""$##%$$&%%'&&('')((*))+**,++-,,.--/..0/0/211D52234634455666E;7788:v99::<;=<;==>?>>@??C@@ABDABBCCDDGEEFHFIH G  HGUI  I  ILJ `K L K JQ Q ONNMMVPOOTPSR QRQSTSTVUU VVXWW]ZYXYXYZ[Z\[\g[]^]]` ^_^_`_`abbladdf !eccd!d!fe" f""e!hg#g#h#iji$$i#rj%j$%mk&&ktlq'l'nm(n(o(m&po)p)q)o('q*q)*sr++r%ts,,s+&t--t,u./wu/w/0vw0v0x1y2y1{z33zV|{44{3}|55|4~}66}5~77~6887998::9;;:<<;==<>>=??>@@?AA@BBBACCDCDEDEFEFGHHGIIHJFJJIKGKBLMMLNNMOKOONPCQRRQSSRTTSUUTVPVVUWWPXXWYYXZZZY[[\\\[]Z]^^]__^_``_aa`abb[baccddddceedefdfffggghghhigijhjjjkcklmmlnnmnoonpppopqrrqrssstttsrusulvv4wwvxxyyxzyz{|||}}|}{~~|x~ykkt{uq~9L               \(%'  "!."!"!#&$##%$%$'&&''*((+))***-,,++.-.-/6100//3221153w45436@6:E89978;7:::<;;><<?==>>@?@?AFCABCDBCEDEDFJFHGGMIHHJIJILNKLKMMNMNN_OOPOPQPQSQRSRSR3VT\UTTVUVUXWWdYXZYXZ[ZZ\[\[]b^]e^]`__a``babadecfdcdcfefe gi  g nhg hliiqrkkjjmmmllon noopqpqqsrrtsstvuuwvvxwwyxxzyy{zz|{{}||~}}~##~$$#%%$&&%''& (('445546657768879::9;;9;<<8<==<>>=>??;?>@@:@AA@ABBABCDCDEBEFFGFGGEHHFIHIJJKDKKJHLJLMMCNNMONOPPNQPQRSRSSTUTUURSVVPWVWXYXYYTZ[[[Z[\\]]]^^]^\]_```_aaab4baccddedeffcfeg`gdhhgiijjijkkkjkllZlkZlmnnn noonipqqorrqssrtstupuuvtvvwwxxwyyxzzy{{z||{}}|~~w~X0             #'! " n"!"!#$##$%$+%%(&&-'*')()*(*,++-,,--././0/02112433544655766877988:99;::<;;=<<>==?>>@??A@@BALBACDQCDEDEFEFJFHGGKIHHJIJIKOKKLMLLNMMONONWPPVPRQQSRRUTTSSVUVUYXXWWZYZ]Y\[\[b]^]]_^^`__a``babakccefdedeffghg   ihhjiijkkmllvmnonnpopqoqqrurrttssuuuvwvwwxxzyzyzz{}{{~||}}~~                      !!""#!##$$"$%%$&%&'''&((#)())***++,--+-,..//(./*001.1122'33234,44356657678887995:::;;;<<<;=9==<>>???>@@>AAB@BBA?C:DDCEEFFAGGFEHGHIJIJKJKLLMLMNMNOKOPOPLQRPRRQSNSTSTUVVUWTWWVXUX`X`a`ababcbc_dcdefefghhgifiihjjjkjklgllkmnnnmooIpmppojqqrnrssstqtrusuYz {z{  |{ | v}| }       }#!  ("!!)""$##%$$&%%'&&(''((*))+**,++-,,.--/..0//100211322~33544b655766878<7:99;@::;?;=<<>==?>?>A@@BAAEBBMCCDDKCEIFFGGEELHHIIKJKJLLLOMMQNNOOWPPQQURRSSVSYTTUUUVVWWXXYYY\[[ZZm^\\]^^]__g``__babacccfdhedfefehghgjiipkjjlkmlkmmmonnqoopupprqqtssrruvuvttxwwyxxzyy{zz|{{}||}}~~~                   e  !! ""!###"$$%%$%&&%''(&((')**)*+'+,#,--,.)..-e/0110212$34435456266577708"8"89::7;:;;;<<==8=<>????@@@@A?A>BBCCCBCDEEDFFEGGGFHHB8IHIJJKKJKLLMMMLNJNNMKOOPOPPQ QQQ> R  R RQ SR S   T TS UT UU VUVVPWWGXLXYYXZZWZ[[[Y!\]]\ ^__^E``_`aa]bbbab c^ ccb!#d\!d\de$"f"9f#)gd#g%$hh$f&%i%hi2'jj'&j&i(/kg)k(k)*+l0*l-,m,4ml+m-m+0ln/.ok/oo.110p1pop0n2jqr32r2q43s4sms3r65t59tu766tu87vI8vv7u9=w9wt;:xx:D;xy<;y=<zw=zz<y?>{C?{{>@@B|@|{}AFBA~|B~~A}DCC{xDDE`HEGH}FGFHHIJoIIJKJKOKLMQLMNMNSNOPOPRPQRQRQSTSTWTUXVUUWVWVX`XZYYz[ZZ\[[]\\^]]_^d_^`a`ababcbcdcddzeffi/ehgglihihjqkjlklknmmpnrnpooppqqturrtstsuuvw}vwxwxyxyyz{z{|{|}|}}~~@                       !! ""!"##$$#$%%$&&%&''&()()**(++*,+,#--,)..//011/2123134404355065677687899.98:::;;;:<<:==<>>>?><??@@ @@A B@B>CCB DD DDE   EE EF AG G  GHD GHH HIGAJKKKLLL;MOOOPOTT/TUUTVVUWWVWXXWYYXY ZZY"![! [ Z[#"\#\,\"[$%]$]3&(^]%^&^%('_^(__'+,\`*)a).a+*b+b_b*a-,cc,`.-d.dad-cT/e/f/fe70g12hg0h1h026ih2i43jj3]4jkk5465li6ll5k7gmm:78=n98n9noof9;:p;p<p:m=<q=qnq<pQr>A>rs@s@?s?AsAtArtBHuCBvCvDvBuFEwEDwwDvWGxxGFxFwHIyHyuIvzyIzJN{J{KOK{|LXML|{N}NM}|}M|X~{OOPVPPrQQRSRRSUTSTUUVVZWWxX~Y[XY[Z[Z]\\ea]]_^^c`_`_baacbcbdgedeehffogkgihhqjjiikoklmnlmmspnnoopprqqsrsruttwvuzvuwzwyxxyzyz}|~{|{~}~}fQs'                 !!""!# #$$$"%#%%&&%&$'' (('))( **++*,,)-+--, *.  // .  00 / 11 0  2 22 2331/4445526667768879!99::;8;;:<< <=6==<F???!?@<  "@?@!"!@FA?$#B#-B%$CC$B&%D%CD'E'&EE&D*(F()G).GF(G+*H+H,H*F-,I-IBI,HG.J9J./4K2/K4L050MM0L12N2KNN3143O4OLO3N5MPP6576Q7Q8Q6P98R9RJR8Q;LS;S::S=ST==T<T?<?U>>UCTV??VUBW@@WAWIAXWBCUXXBCHYDDYEYFEYZFFZA[YHI[G[HGW\II\[J]^KJ^K^_LK_L_SMNdMdON`edNefPOfOdgPfQRiQiRSjiRjShkjSkUTllTeVUmmUlWVnVmnXWooWnYXpXopZYqqYp[ZrZqr\[s\s`s[r]^t]tj^_u^utu_v_bvc`ww`sbaxbxvxaddcydyxycwvxzle{{eff|f|{o}gh~mg~hi~hilijtjklklkm~pmmnqno}oqpqprrtststuyvuuvwxwwxyzzy{|}{}~|~~}|ibE                                 #'  "!  !9$"!!" #%"#"&$##$!%&$&#$"%$('%%'&)(&(%,)'')&+-(*+((.*-,)(-)),'/.**.(0/++/*31,10,0+,52-23--3,K4..45.5//5-870076=>006=;810189:2 922:33:;3;44;1@5<>=5<5=56>>6075@7@??A7Z8A87ACB99BIDC:C9:E;;ED;D:HF<FG<GJ=<G=IH>>H<9I??I>JR@J@=K.AKANMLBLOBMBPONCOCBCNAQPDDPBRQE@REEQDS_FSFTTFVFGVVGUGXUXHWWH\GIXXIH[JYYJZJ8ZKJ[\HKK[\]LM^]M^MN_^N_NF`aOe`OacPOaPcbQcQPQbdeRRfdeOSeSRTgfTfRUgThV\kh\ij]i]jk^]j^k\_^k_ml``l{onam`banbmbnoaccpoqpdqdrdpcsresewerdtufuvftffvggvzwehywixyiiwhxizgzjzij`{kk{l{|l|m|ml}n}n~oo~oppofqrprrqosttsuutvvnvuwwwxxyzxzyz{{x|||}|}}~w~}~}|y|n{m]wQ;             J8"%#!!  2"$"$##$&%%)''&'&*( () ) +*  * ,+ +  /-  -, , A.  ./ // 606101412323344755668787:99?;;::><<==@=?>>??@E@@A CADB  BCC ED!E!!D !"FN#F#GG#I#$II$H$KHK%JJ%$&KK&%L'(ML(M()NM)N)#OP*O*SPQ+*P++Q,TR,RSS*-S-,.UT.T,/U.VW8\V8W[98W9X7:YX;;X:ZY<<Y;[Z=9[==Z<\8>_\>]^?]?^_@?^@_>A@_AabBb`BaBc`kBdcCCcBedDeDhDdCqfEfgEEgFgjFihGGhDiGHiHjFjHBkIklJkJImKJlKmKlnvLnLMMnqENprOsoOpOorqPOrPPqNtsQsOQutRRtQvuSvSLSuRTwTw~UyUx{zxUzUyV{{VU|WW|XT~X~}X}YXYWUZZWZ[[[\]]\][^^M_\_```^_`aVaabbabcb[ccddeedfffdgghhggifihjjklljlkmmknnnmooppopnnqrrqsrssrtuuKvuvewwvxxxwyzzy{{z||{|}}}|~~~}t~y?0T+%             " ! "! ""#)#$$&&&%%'('()()-**+*+.,,--//..10021122343354465576:76:89>89=9;::<;;=<=<>A>?@?@AA@CBBIDCDGCNEEFFHHGHGIIJJKJKuK^MLSMLMMNPN  NOP O Q P RQ  Q SR S  R  T TXZUUVaVVYWWZ XXYYZZc[[]]\\_`^^_`_acbabcceddfweefifghgihjhiilkkmjljmomoopnqpnqs q  s!sr!rt!t"t"!uv#u#vx$#v$$x%w%%xwy&zy''y&{z((z'|{){()}|*}**|)~+~++,,*--,"..+//.&0011023133445256646599::9;;<<;==<=>>>??=@@>AA@BBACCCD9DEBECFFFEGGHHGII:IJJIKKJLLKLGMMLNNOONPPOQQPRRQSSRTTHUUTVVUWWVXXWYYXZZYN[[Z\\\ ]]\^^__`_``_aaab^bccddd`ceedffcggfhhg;iihijjkkllklmkmnnloonopppoqqqrrpssstttmjuuuvvs^wwwxxxyyxyqzzzy{z{||||}}j~~~|]~S72#           \  %  ! ".!"!#$#$%$%%'&&0(''()(*)*-)+,/+-,-,/./.01013122534346656578788:99DI::<;;i?==<<@>>???BAA@@EBBDCDCFFFEETHHGGMJIIKJJLKKMMLMLONN[POOQPPRQQSRRSSUTTWVVUUXWWZYYXX[ZZ[[]]\]\^w^bd``__aaabbfccedeeddgffhghigii}juj}tmmklklnnnoorpopzqqrrsvsttuuvvwwxxy{yxzz{{||}}~~          !!!""## #$"#$%%%&&&'''!&(('))**)+++,*,-+-..-/./0/010122323344)5565677768879898:1:;<<5=<=>>;=??>?BB@CBCDDBEDEFFGGFHHIIHJJJKIKLJLLMMFMLNNOOOGPPONQQPRQRSSSTTSUUTVVUWWVXYNYZZXZY[[X\\[S]\]^^____`%`aabbbabcdddeeecffdffggHahijijjkkkkllllmmkjnnmoohpolppqqqiiqrsss^tqttsyy  zzy {{W{y ||  | }} {  ~~  u  ~~  zD;2 # '!!"$"#$#$`%%&&((''((*,4))*+-,+,-.-.//0.011:0232343445<657697689:899::>;;<==?<>?>?@AC@AABCEBCCDEDEEGFFMOGGIHHgKIILJJKKMLMLNQYNPOORPPQQRRTSS]UTTVUUWVW{V[XXZZYZY\[\][]]s^^^___```cbbaaheccfddeeeggffohhirijnjokmklplnmnmppooqtqrrrtssttvuuwvvxwwxxzyy|zz}{{||}}}~~                 !!"" !####$$"!%&&%&&'''(()(**++*,,+(--,...//.00/011*221133.4)556657768887899::9::;;;<<===>>>=???@@@?A=ABAB?CCCDDDDEE@FF<FGCG HIJJJIKJKKLILMMKNMN5OMOPLPQPQHRQR THHTS  UU  VV U  WW  XUXX WYYYZZVZ[[\\[\/]]\^^Y^[__^_``'`aa>bcacb ddWedee"f fd !%g#!g"$h"hf#i$$ihgi#&j%g%j&'k&kjk'`)(ll(-m4)m)nn)l+*oo*2,+pp+o-,qq,pl-rr-q3.ss.0t/]s0uu0/u/to2v21v13vv3w3swx4m5Oy5y676zz6y87{98{{7z9{|;:|9|:;|}<;}<}~<~Fb>>==AE@B??@AABBDCDECGEGFGF~HSRHJIILJKJNKLPLLMNMONNyOOPQPQRQRRSSTSSVUUXZVVXWWeXX^YYZZZ\[[_t]]\\_^^__k``aaccbbccfdedeffhgjgiihhjkkjnllrnxmmmnnpoovrqqpprrtsuswuuttvvwwwxyyz{z|{z|}|}~}~~~uq~9                   !""!###"$$%%#%!&&&''&(('()$*)*+*+  ,  , ,-  - ..  . -, / 0 0/12203133434424556667771178:55:9;;:<< <=<=>>=>>.?)$@' @A@ A <B!&"!CC!B%#D#"D"CD?$EE$%E%FF%DB&GG&(G('G'@H)?I*)HI)J+*IJ*,/K-,KK/L-KM-M.MN.>.N02O0O//OL18P1P324Q2QO3PR3R4RQ4P8S59T65T6TU76U7U8T9V8UW8WS9XV:Y99YX;Z::ZY[A<=[<=\[]\=]=>>N]^H?^?__?E`G@`@Aa`AaA[CBbBGbFDccDCcCb_EddEFdFcebGeG`fH^gIHfgHhJIghIOiLLijLjKMKjjkMMkNk]NQlOOliPSmPmRRmQQmlSWnSnmTVoUToUoWVXpVpoWoqWqnXrpYsXXsrZtYYts\u[a[uvu\]v\wv]w]kx^_yf^y^xx_zz_d{e`{`a{au|cb|bezd}}dc}c|~|e~e{xzfygffhggiljijjkkwwlnmmllnqnprppooqqqrsrrtss{uuvuvvwwyxxyyzz}{~{}}||~~                        7xsrcom.femlab.geom.Geom1q`V9xq~6wq~wuq~9Geom1|=? AssocAttrib VectorIntxwxsq~Uwq~wPuq~9PGeom1|=?xwxsq~Mwq~wuq~9Mesh????WUUUUU????633333?YUUUUU?|wwwww??»???vtxedg xsrcom.femlab.xmesh.Solution[ʏQqSxpw uq~9Kt)t)t  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~                           ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~                            ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~                            ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~                            ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~                            ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~        !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~                           ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~  !!!!!!!!! ! ! ! ! !!!!!!!!!!!!!!!!!!! !!!"!#!$!%!&!'!(!)!*!+!,!-!.!/!0!1!2!3!4!5!6!7!8!9!:!;!!?!@!A!B!C!D!E!F!G!H!I!J!K!L!M!N!O!P!Q!R!S!T!U!V!W!X!Y!Z![!\!]!^!_!`!a!b!c!d!e!f!g!h!i!j!k!l!m!n!o!p!q!r!s!t!u!v!w!x!y!z!{!|!}!~!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!""""""""" " " " " """"""""""""""""""" "!"""#"$"%"&"'"(")"*"+","-"."/"0"1"2"3"4"5"6"7"8"9":";"<"=">"?"@"A"B"C"D"E"F"G"H"I"J"K"L"M"N"O"P"Q"R"S"T"U"V"W"X"Y"Z"["\"]"^"_"`"a"b"c"d"e"f"g"h"i"j"k"l"m"n"o"p"q"r"s"t"u"v"w"x"y"z"{"|"}"~""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""######### # # # # ################### #!#"###$#%#&#'#(#)#*#+#,#-#.#/#0#1#2#3#4#5#6#7#8#9#:#;#<#=#>#?#@#A#B#C#D#E#F#G#H#I#J#K#L#M#N#O#P#Q#R#S#T#U#V#W#X#Y#Z#[#\#]#^#_#`#a#b#c#d#e#f#g#h#i#j#k#l#m#n#o#p#q#r#s#t#u#v#w#x#y#z#{#|#}#~##################################################################################################################################$$$$$$$$$ $ $ $ $ $$$$$$$$$$$$$$$$$$$ $!$"$#$$$%$&$'$($)$*$+$,$-$.$/$0$1$2$3$4$5$6$7$8$9$:$;$<$=$>$?$@$A$B$C$D$E$F$G$H$I$J$K$L$M$N$O$P$Q$R$S$T$U$V$W$X$Y$Z$[$\$]$^$_$`$a$b$c$d$e$f$g$h$i$j$k$l$m$n$o$p$q$r$s$t$u$v$w$x$y$z${$|$}$~$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%%%%%%%%% % % % % %%%%%%%%%%%%%%%%%%% %!%"%#%$%%%&%'%(%)%*%+%,%-%.%/%0%1%2%3%4%5%6%7%8%9%:%;%<%=%>%?%@%A%B%C%D%E%F%G%H%I%J%K%L%M%N%O%P%Q%R%S%T%U%V%W%X%Y%Z%[%\%]%^%_%`%a%b%c%d%e%f%g%h%i%j%k%l%m%n%o%p%q%r%s%t%u%v%w%x%y%z%{%|%}%~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%&&&&&&&&& & & & & &&&&&&&&&&&&&&&&&&& &!&"&#&$&%&&&'&(&)&*&+&,&-&.&/&0&1&2&3&4&5&6&7&8&9&:&;&<&=&>&?&@&A&B&C&D&E&F&G&H&I&J&K&L&M&N&O&P&Q&R&S&T&U&V&W&X&Y&Z&[&\&]&^&_&`&a&b&c&d&e&f&g&h&i&j&k&l&m&n&o&p&q&r&s&t&u&v&w&x&y&z&{&|&}&~&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&''''''''' ' ' ' ' ''''''''''''''''''' '!'"'#'$'%'&'''(')'*'+','-'.'/'0'1'2'3'4'5'6'7'8'9':';'<'='>'?'@'A'B'C'D'E'F'G'H'I'J'K'L'M'N'O'P'Q'R'S'T'U'V'W'X'Y'Z'['\']'^'_'`'a'b'c'd'e'f'g'h'i'j'k'l'm'n'o'p'q'r's't'u'v'w'x'y'z'{'|'}'~''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''((((((((( ( ( ( ( ((((((((((((((((((( (!("(#($(%(&('((()(*(+(,(-(.(/(0(1(2(3(4(5(6(7(8(9(:(;(<(=(>(?(@(A(B(C(D(E(F(G(H(I(J(K(L(M(N(O(P(Q(R(S(T(U(V(W(X(Y(Z([(\(](^(_(`(a(b(c(d(e(f(g(h(i(j(k(l(m(n(o(p(q(r(s(t(u(v(w(x(y(z({(|(}(~(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((())))))))) ) ) ) ) ))))))))))))))))))) )!)")#)$)%)&)')()))*)+),)-).)/)0)1)2)3)4)5)6)7)8)9):);)<)=)>)?)@)A)B)C)D)E)F)G)H)I)J)K)L)M)N)O)P)Q)R)S)T)U)V)W)X)Y)Z)[)\)])^)_)`)a)b)c)d)e)f)g)h)i)j)k)l)m)n)o)p)q)r)s)t)u)v)w)x)y)z){)|)})~))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))********* * * * * ******************* *!*"*#*$*%*&*'*(*)***+*,*-*.*/*0*1*2*3*4*5*6*7*8*9*:*;*<*=*>*?*@*A*B*C*D*E*F*G*H*I*J*K*L*M*N*O*P*Q*R*S*T*U*V*W*X*Y*Z*[*\*]*^*_*`*a*b*c*d*e*f*g*h*i*j*k*l*m*n*o*p*q*r*s*t*u*v*w*x*y*z*{*|*}*~**********************************************************************************************************************************+++++++++ + + + + +++++++++++++++++++ +!+"+#+$+%+&+'+(+)+*+++,+-+.+/+0+1+2+3+4+5+6+7+8+9+:+;+<+=+>+?+@+A+B+C+D+E+F+G+H+I+J+K+L+M+N+O+P+Q+R+S+T+U+V+W+X+Y+Z+[+\+]+^+_+`+a+b+c+d+e+f+g+h+i+j+k+l+m+n+o+p+q+r+s+t+u+v+w+x+y+z+{+|+}+~++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++,,,,,,,,, , , , , ,,,,,,,,,,,,,,,,,,, ,!,",#,$,%,&,',(,),*,+,,,-,.,/,0,1,2,3,4,5,6,7,8,9,:,;,<,=,>,?,@,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,[,\,],^,_,`,a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,{,|,},~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,--------- - - - - ------------------- -!-"-#-$-%-&-'-(-)-*-+-,---.-/-0-1-2-3-4-5-6-7-8-9-:-;-<-=->-?-@-A-B-C-D-E-F-G-H-I-J-K-L-M-N-O-P-Q-R-S-T-U-V-W-X-Y-Z-[-\-]-^-_-`-a-b-c-d-e-f-g-h-i-j-k-l-m-n-o-p-q-r-s-t-u-v-w-x-y-z-{-|-}-~----------------------------------------------------------------------------------------------------------------------------------......... . . . . ................... .!.".#.$.%.&.'.(.).*.+.,.-.../.0.1.2.3.4.5.6.7.8.9.:.;.<.=.>.?.@.A.B.C.D.E.F.G.H.I.J.K.L.M.N.O.P.Q.R.S.T.U.V.W.X.Y.Z.[.\.].^._.`.a.b.c.d.e.f.g.h.i.j.k.l.m.n.o.p.q.r.s.t.u.v.w.x.y.z.{.|.}.~..................................................................................................................................///////// / / / / /////////////////// /!/"/#/$/%/&/'/(/)/*/+/,/-/.///0/1/2/3/4/5/6/7/8/9/:/;//?/@/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/[/\/]/^/_/`/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/{/|/}/~//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////000000000 0 0 0 0 0000000000000000000 0!0"0#0$0%0&0'0(0)0*0+0,0-0.0/000102030405060708090:0;0<0=0>0?0@0A0B0C0D0E0F0G0H0I0J0K0L0M0N0O0P0Q0R0S0T0U0V0W0X0Y0Z0[0\0]0^0_0`0a0b0c0d0e0f0g0h0i0j0k0l0m0n0o0p0q0r0s0t0u0v0w0x0y0z0{0|0}0~0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000111111111 1 1 1 1 1111111111111111111 1!1"1#1$1%1&1'1(1)1*1+1,1-1.1/101112131415161718191:1;1<1=1>1?1@1A1B1C1D1E1F1G1H1I1J1K1L1M1N1O1P1Q1R1S1T1U1V1W1X1Y1Z1[1\1]1^1_1`1a1b1c1d1e1f1g1h1i1j1k1l1m1n1o1p1q1r1s1t1u1v1w1x1y1z1{1|1}1~1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111222222222 2 2 2 2 2222222222222222222 2!2"2#2$2%2&2'2(2)2*2+2,2-2.2/202122232425262728292:2;2<2=2>2?2@2A2B2C2D2E2F2G2H2I2J2K2L2M2N2O2P2Q2R2S2T2U2V2W2X2Y2Z2[2\2]2^2_2`2a2b2c2d2e2f2g2h2i2j2k2l2m2n2o2p2q2r2s2t2u2v2w2x2y2z2{2|2}2~2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222333333333 3 3 3 3 3333333333333333333 3!3"3#3$3%3&3'3(3)3*3+3,3-3.3/303132333435363738393:3;3<3=3>3?3@3A3B3C3D3E3F3G3H3I3J3K3L3M3N3O3P3Q3R3S3T3U3V3W3X3Y3Z3[3\3]3^3_3`3a3b3c3d3e3f3g3h3i3j3k3l3m3n3o3p3q3r3s3t3u3v3w3x3y3z3{3|3}3~3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333444444444 4 4 4 4 4444444444444444444 4!4"4#4$4%4&4'4(4)4*4+4,4-4.4/404142434445464748494:4;4<4=4>4?4@4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P4Q4R4S4T4U4V4W4X4Y4Z4[4\4]4^4_4`4a4b4c4d4e4f4g4h4i4j4k4l4m4n4o4p4q4r4s4t4u4v4w4x4y4z4{4|4}4~4444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444555555555 5 5 5 5 5555555555555555555 5!5"5#5$5%5&5'5(5)5*5+5,5-5.5/505152535455565758595:5;5<5=5>5?5@5A5B5C5D5E5F5G5H5I5J5K5L5M5N5O5P5Q5R5S5T5U5V5W5X5Y5Z5[5\5]5^5_5`5a5b5c5d5e5f5g5h5i5j5k5l5m5n5o5p5q5r5s5t5u5v5w5x5y5z5{5|5}5~5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555666666666 6 6 6 6 6666666666666666666 6!6"6#6$6%6&6'6(6)6*6+6,6-6.6/606162636465666768696:6;6<6=6>6?6@6A6B6C6D6E6F6G6H6I6J6K6L6M6N6O6P6Q6R6S6T6U6V6W6X6Y6Z6[6\6]6^6_6`6a6b6c6d6e6f6g6h6i6j6k6l6m6n6o6p6q6r6s6t6u6v6w6x6y6z6{6|6}6~6666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666777777777 7 7 7 7 7777777777777777777 7!7"7#7$7%7&7'7(7)7*7+7,7-7.7/707172737475767778797:7;7<7=7>7?7@7A7B7C7D7E7F7G7H7I7J7K7L7M7N7O7P7Q7R7S7T7U7V7W7X7Y7Z7[7\7]7^7_7`7a7b7c7d7e7f7g7h7i7j7k7l7m7n7o7p7q7r7s7t7u7v7w7x7y7z7{7|7}7~7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777888888888 8 8 8 8 8888888888888888888 8!8"8#8$8%8&8'8(8)8*8+8,8-8.8/808182838485868788898:8;8<8=8>8?8@8A8B8C8D8E8F8G8H8I8J8K8L8M8N8O8P8Q8R8S8T8U8V8W8X8Y8Z8[8\8]8^8_8`8a8b8c8d8e8f8g8h8i8j8k8l8m8n8o8p8q8r8s8t8u8v8w8x8y8z8{8|8}8~8888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888999999999 9 9 9 9 9999999999999999999 9!9"9#9$9%9&9'9(9)9*9+9,9-9.9/909192939495969798999:9;9<9=9>9?9@9A9B9C9D9E9F9G9H9I9J9K9L9M9N9O9P9Q9R9S9T9U9V9W9X9Y9Z9[9\9]9^9_9`9a9b9c9d9e9f9g9h9i9j9k9l9m9n9o9p9q9r9s9t9u9v9w9x9y9z9{9|9}9~9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999::::::::: : : : : ::::::::::::::::::: :!:":#:$:%:&:':(:):*:+:,:-:.:/:0:1:2:3:4:5:6:7:8:9:::;:<:=:>:?:@:A:B:C:D:E:F:G:H:I:J:K:L:M:N:O:P:Q:R:S:T:U:V:W:X:Y:Z:[:\:]:^:_:`:a:b:c:d:e:f:g:h:i:j:k:l:m:n:o:p:q:r:s:t:u:v:w:x:y:z:{:|:}:~::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::;;;;;;;;; ; ; ; ; ;;;;;;;;;;;;;;;;;;; ;!;";#;$;%;&;';(;);*;+;,;-;.;/;0;1;2;3;4;5;6;7;8;9;:;;;<;=;>;?;@;A;B;C;D;E;F;G;H;I;J;K;L;M;N;O;P;Q;R;S;T;U;V;W;X;Y;Z;[;\;];^;_;`;a;b;c;d;e;f;g;h;i;j;k;l;m;n;o;p;q;r;s;t;u;v;w;x;y;z;{;|;};~;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;<<<<<<<<< < < < < <<<<<<<<<<<<<<<<<<< <!<"<#<$<%<&<'<(<)<*<+<,<-<.</<0<1<2<3<4<5<6<7<8<9<:<;<<<=<><?<@<A<B<C<D<E<F<G<H<I<J<K<L<M<N<O<P<Q<R<S<T<U<V<W<X<Y<Z<[<\<]<^<_<`<a<b<c<d<e<f<g<h<i<j<k<l<m<n<o<p<q<r<s<t<u<v<w<x<y<z<{<|<}<~<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<========= = = = = =================== =!="=#=$=%=&='=(=)=*=+=,=-=.=/=0=1=2=3=4=5=6=7=8=9=:=;=<===>=?=@=A=B=C=D=E=F=G=H=I=J=K=L=M=N=O=P=Q=R=S=T=U=V=W=X=Y=Z=[=\=]=^=_=`=a=b=c=d=e=f=g=h=i=j=k=l=m=n=o=p=q=r=s=t=u=v=w=x=y=z={=|=}=~==================================================================================================================================>>>>>>>>> > > > > >>>>>>>>>>>>>>>>>>> >!>">#>$>%>&>'>(>)>*>+>,>->.>/>0>1>2>3>4>5>6>7>8>9>:>;><>=>>>?>@>A>B>C>D>E>F>G>H>I>J>K>L>M>N>O>P>Q>R>S>T>U>V>W>X>Y>Z>[>\>]>^>_>`>a>b>c>d>e>f>g>h>i>j>k>l>m>n>o>p>q>r>s>t>u>v>w>x>y>z>{>|>}>~>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>????????? ? ? ? ? ??????????????????? ?!?"?#?$?%?&?'?(?)?*?+?,?-?.?/?0?1?2?3?4?5?6?7?8?9?:?;????@?A?B?C?D?E?F?G?H?I?J?K?L?M?N?O?P?Q?R?S?T?U?V?W?X?Y?Z?[?\?]?^?_?`?a?b?c?d?e?f?g?h?i?j?k?l?m?n?o?p?q?r?s?t?u?v?w?x?y?z?{?|?}?~??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????@@@@@@@@@ @ @ @ @ @@@@@@@@@@@@@@@@@@@ @!@"@#@$@%@&@'@(@)@*@+@,@-@.@/@0@1@2@3@4@5@6@7@8@9@:@;@<@=@>@?@@@A@B@C@D@E@F@G@H@I@J@K@L@M@N@O@P@Q@R@S@T@U@V@W@X@Y@Z@[@\@]@^@_@`@a@b@c@d@e@f@g@h@i@j@k@l@m@n@o@p@q@r@s@t@u@v@w@x@y@z@{@|@}@~@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@AAAAAAAAA A A A A AAAAAAAAAAAAAAAAAAA A!A"A#A$A%A&A'A(A)A*A+A,A-A.A/A0A1A2A3A4A5A6A7A8A9A:A;AA?A@AAABACADAEAFAGAHAIAJAKALAMANAOAPAQARASATAUAVAWAXAYAZA[A\A]A^A_A`AaAbAcAdAeAfAgAhAiAjAkAlAmAnAoApAqArAsAtAuAvAwAxAyAzA{A|A}A~AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBB B B B B BBBBBBBBBBBBBBBBBBB B!B"B#B$B%B&B'B(B)B*B+B,B-B.B/B0B1B2B3B4B5B6B7B8B9B:B;BB?B@BABBBCBDBEBFBGBHBIBJBKBLBMBNBOBPBQBRBSBTBUBVBWBXBYBZB[B\B]B^B_B`BaBbBcBdBeBfBgBhBiBjBkBlBmBnBoBpBqBrBsBtBuBvBwBxByBzB{B|B}B~BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBCCCCCCCCC C C C C CCCCCCCCCCCCCCCCCCC C!C"C#C$C%C&C'C(C)C*C+C,C-C.C/C0C1C2C3C4C5C6C7C8C9C:C;CC?C@CACBCCCDCECFCGCHCICJCKCLCMCNCOCPCQCRCSCTCUCVCWCXCYCZC[C\C]C^C_C`CaCbCcCdCeCfCgChCiCjCkClCmCnCoCpCqCrCsCtCuCvCwCxCyCzC{C|C}C~CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCDDDDDDDDD D D D D DDDDDDDDDDDDDDDDDDD D!D"D#D$D%D&D'D(D)D*D+D,D-D.D/D0D1D2D3D4D5D6D7D8D9D:D;DD?D@DADBDCDDDEDFDGDHDIDJDKDLDMDNDODPDQDRDSDTDUDVDWDXDYDZD[D\D]D^D_D`DaDbDcDdDeDfDgDhDiDjDkDlDmDnDoDpDqDrDsDtDuDvDwDxDyDzD{D|D}D~DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDEEEEEEEEE E E E E EEEEEEEEEEEEEEEEEEE E!E"E#E$E%E&E'E(E)E*E+E,E-E.E/E0E1E2E3E4E5E6E7E8E9E:E;EE?E@EAEBECEDEEEFEGEHEIEJEKELEMENEOEPEQERESETEUEVEWEXEYEZE[E\E]E^E_E`EaEbEcEdEeEfEgEhEiEjEkElEmEnEoEpEqErEsEtEuEvEwExEyEzE{E|E}E~EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEFFFFFFFFF F F F F FFFFFFFFFFFFFFFFFFF F!F"F#F$F%F&F'F(F)F*F+F,F-F.F/F0F1F2F3F4F5F6F7F8F9F:F;FF?F@FAFBFCFDFEFFFGFHFIFJFKFLFMFNFOFPFQFRFSFTFUFVFWFXFYFZF[F\F]F^F_F`FaFbFcFdFeFfFgFhFiFjFkFlFmFnFoFpFqFrFsFtFuFvFwFxFyFzF{F|F}F~FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFGGGGGGGGG G G G G GGGGGGGGGGGGGGGGGGG G!G"G#G$G%G&G'G(G)G*G+G,G-G.G/G0G1G2G3G4G5G6G7G8G9G:G;GG?G@GAGBGCGDGEGFGGGHGIGJGKGLGMGNGOGPGQGRGSGTGUGVGWGXGYGZG[G\G]G^G_G`GaGbGcGdGeGfGgGhGiGjGkGlGmGnGoGpGqGrGsGtGuGvGwGxGyGzG{G|G}G~GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGHHHHHHHHH H H H H HHHHHHHHHHHHHHHHHHH H!H"H#H$H%H&H'H(H)H*H+H,H-H.H/H0H1H2H3H4H5H6H7H8H9H:H;HH?H@HAHBHCHDHEHFHGHHHIHJHKHLHMHNHOHPHQHRHSHTHUHVHWHXHYHZH[H\H]H^H_H`HaHbHcHdHeHfHgHhHiHjHkHlHmHnHoHpHqHrHsHtHuHvHwHxHyHzH{H|H}H~HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHIIIIIIIII I I I I IIIIIIIIIIIIIIIIIII I!I"I#I$I%I&I'I(I)I*I+I,I-I.I/I0I1I2I3I4I5I6I7I8I9I:I;II?I@IAIBICIDIEIFIGIHIIIJIKILIMINIOIPIQIRISITIUIVIWIXIYIZI[I\I]I^I_I`IaIbIcIdIeIfIgIhIiIjIkIlImInIoIpIqIrIsItIuIvIwIxIyIzI{I|I}I~IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIJJJJJJJJJ J J J J JJJJJJJJJJJJJJJJJJJ J!J"J#J$J%J&J'J(J)J*J+J,J-J.J/J0J1J2J3J4J5J6J7J8J9J:J;JJ?J@JAJBJCJDJEJFJGJHJIJJJKJLJMJNJOJPJQJRJSJTJUJVJWJXJYJZJ[J\J]J^J_J`JaJbJcJdJeJfJgJhJiJjJkJlJmJnJoJpJqJrJsJtJuJvJwJxJyJzJ{J|J}J~JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJKKKKKKKKK K K K K KKKKKKKKKKKKKKKKKKK K!K"K#K$K%K&K'K(K)K*K+K,K-K.K/K0K1K2K3K4K5K6K7K8K9K:K;KK?K@KAKBKCKDKEKFKGKHKIKJKKKLKMKNKOKPKQKRKSKTKUKVKWKXKYKZK[K\K]K^K_K`KaKbKcKdKeKfKgKhKiKjKkKlKmKnKoKpKqKrKsKtKuKvKwKxKyKzK{K|K}K~KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKLLLLLLLLL L L L L LLLLLLLLLLLLLLLLLLL L!L"L#L$L%L&L'L(L)L*L+L,L-L.L/L0L1L2L3L4L5L6L7L8L9L:L;LL?L@LALBLCLDLELFLGLHLILJLKLLLMLNLOLPLQLRLSLTLULVLWLXLYLZL[L\L]L^L_L`LaLbLcLdLeLfLgLhLiLjLkLlLmLnLoLpLqLrLsLtLuLvLwLxLyLzL{L|L}L~LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLMMMMMMMMM M M M M MMMMMMMMMMMMMMMMMMM M!M"M#M$M%M&M'M(M)M*M+M,M-M.M/M0M1M2M3M4M5M6M7M8M9M:M;MM?M@MAMBMCMDMEMFMGMHMIMJMKMLMMMNMOMPMQMRMSMTMUMVMWMXMYMZM[M\M]M^M_M`MaMbMcMdMeMfMgMhMiMjMkMlMmMnMoMpMqMrMsMtMuMvMwMxMyMzM{M|M}M~MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMNNNNNNNNN N N N N NNNNNNNNNNNNNNNNNNN N!N"N#N$N%N&N'N(N)N*N+N,N-N.N/N0N1N2N3N4N5N6N7N8N9N:N;NN?N@NANBNCNDNENFNGNHNINJNKNLNMNNNONPNQNRNSNTNUNVNWNXNYNZN[N\N]N^N_N`NaNbNcNdNeNfNgNhNiNjNkNlNmNnNoNpNqNrNsNtNuNvNwNxNyNzN{N|N}N~NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOOO O O O O OOOOOOOOOOOOOOOOOOO O!O"O#O$O%O&O'O(O)O*O+O,O-O.O/O0O1O2O3O4O5O6O7O8O9O:O;OO?O@OAOBOCODOEOFOGOHOIOJOKOLOMONOOOPOQOROSOTOUOVOWOXOYOZO[O\O]O^O_O`OaObOcOdOeOfOgOhOiOjOkOlOmOnOoOpOqOrOsOtOuOvOwOxOyOzO{O|O}O~OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOPPPPPPPPP P P P P PPPPPPPPPPPPPPPPPPP P!P"P#P$P%P&P'P(P)P*P+P,P-P.P/P0P1P2P3P4P5P6P7P8P9P:P;PP?P@PAPBPCPDPEPFPGPHPIPJPKPLPMPNPOPPPQPRPSPTPUPVPWPXPYPZP[P\P]P^P_P`PaPbPcPdPePfPgPhPiPjPkPlPmPnPoPpPqPrPsPtPuPvPwPxPyPzP{P|P}P~PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPQQQQQQQQQ Q Q Q Q QQQQQQQQQQQQQQQQQQQ Q!Q"Q#Q$Q%Q&Q'Q(Q)Q*Q+Q,Q-Q.Q/Q0Q1Q2Q3Q4Q5Q6Q7Q8Q9Q:Q;QQ?Q@QAQBQCQDQEQFQGQHQIQJQKQLQMQNQOQPQQQRQSQTQUQVQWQXQYQZQ[Q\Q]Q^Q_Q`QaQbQcQdQeQfQgQhQiQjQkQlQmQnQoQpQqQrQsQtQuQvQwQxQyQzQ{Q|Q}Q~QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQRRRRRRRRR R R R R RRRRRRRRRRRRRRRRRRR R!R"R#R$R%R&R'R(R)R*R+R,R-R.R/R0R1R2R3R4R5R6R7R8R9R:R;RR?R@RARBRCRDRERFRGRHRIRJRKRLRMRNRORPRQRRRSRTRURVRWRXRYRZR[R\R]R^R_R`RaRbRcRdReRfRgRhRiRjRkRlRmRnRoRpRqRrRsRtRuRvRwRxRyRzR{R|R}R~RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRSSSSSSSSS S S S S SSSSSSSSSSSSSSSSSSS S!S"S#S$S%S&S'S(S)S*S+S,S-S.S/S0S1S2S3S4S5S6S7S8S9S:S;SS?S@SASBSCSDSESFSGSHSISJSKSLSMSNSOSPSQSRSSSTSUSVSWSXSYSZS[S\S]S^S_S`SaSbScSdSeSfSgShSiSjSkSlSmSnSoSpSqSrSsStSuSvSwSxSySzS{S|S}S~SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSTTTTTTTTT T T T T TTTTTTTTTTTTTTTTTTT T!T"T#T$T%T&T'T(T)T*T+T,T-T.T/T0T1T2T3T4T5T6T7T8T9T:T;TT?T@TATBTCTDTETFTGTHTITJTKTLTMTNTOTPTQTRTSTTTUTVTWTXTYTZT[T\T]T^T_T`TaTbTcTdTeTfTgThTiTjTkTlTmTnToTpTqTrTsTtTuTvTwTxTyTzT{T|T}T~TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTUUUUUUUUU U U U U UUUUUUUUUUUUUUUUUUU U!U"U#U$U%U&U'U(U)U*U+U,U-U.U/U0U1U2U3U4U5U6U7U8U9U:U;UU?U@UAUBUCUDUEUFUGUHUIUJUKULUMUNUOUPUQURUSUTUUUVUWUXUYUZU[U\U]U^U_U`UaUbUcUdUeUfUgUhUiUjUkUlUmUnUoUpUqUrUsUtUuUvUwUxUyUzU{U|U}U~UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUVVVVVVVVV V V V V VVVVVVVVVVVVVVVVVVV V!V"V#V$V%V&V'V(V)V*V+V,V-V.V/V0V1V2V3V4V5V6V7V8V9V:V;VV?V@VAVBVCVDVEVFVGVHVIVJVKVLVMVNVOVPVQVRVSVTVUVVVWVXVYVZV[V\V]V^V_V`VaVbVcVdVeVfVgVhViVjVkVlVmVnVoVpVqVrVsVtVuVvVwVxVyVzV{V|V}V~VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVWWWWWWWWW W W W W WWWWWWWWWWWWWWWWWWW W!W"W#W$W%W&W'W(W)W*W+W,W-W.W/W0W1W2W3W4W5W6W7W8W9W:W;WW?W@WAWBWCWDWEWFWGWHWIWJWKWLWMWNWOWPWQWRWSWTWUWVWWWXWYWZW[W\W]W^W_W`WaWbWcWdWeWfWgWhWiWjWkWlWmWnWoWpWqWrWsWtWuWvWwWxWyWzW{W|W}W~WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWXXXXXXXXX X X X X XXXXXXXXXXXXXXXXXXX X!X"X#X$X%X&X'X(X)X*X+X,X-X.X/X0X1X2X3X4X5X6X7X8X9X:X;XX?X@XAXBXCXDXEXFXGXHXIXJXKXLXMXNXOXPXQXRXSXTXUXVXWXXXYXZX[X\X]X^X_X`XaXbXcXdXeXfXgXhXiXjXkXlXmXnXoXpXqXrXsXtXuXvXwXxXyXzX{X|X}X~XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXYYYYYYYYY Y Y Y Y YYYYYYYYYYYYYYYYYYY Y!Y"Y#Y$Y%Y&Y'Y(Y)Y*Y+Y,Y-Y.Y/Y0Y1Y2Y3Y4Y5Y6Y7Y8Y9Y:Y;YY?Y@YAYBYCYDYEYFYGYHYIYJYKYLYMYNYOYPYQYRYSYTYUYVYWYXYYYZY[Y\Y]Y^Y_Y`YaYbYcYdYeYfYgYhYiYjYkYlYmYnYoYpYqYrYsYtYuYvYwYxYyYzY{Y|Y}Y~YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYZZZZZZZZZ Z Z Z Z ZZZZZZZZZZZZZZZZZZZ Z!Z"Z#Z$Z%Z&Z'Z(Z)Z*Z+Z,Z-Z.Z/Z0Z1Z2Z3Z4Z5Z6Z7Z8Z9Z:Z;ZZ?Z@ZAZBZCZDZEZFZGZHZIZJZKZLZMZNZOZPZQZRZSZTZUZVZWZXZYZZZ[Z\Z]Z^Z_Z`ZaZbZcZdZeZfZgZhZiZjZkZlZmZnZoZpZqZrZsZtZuZvZwZxZyZzZ{Z|Z}Z~ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ[[[[[[[[[ [ [ [ [ [[[[[[[[[[[[[[[[[[[ [!["[#[$[%[&['[([)[*[+[,[-[.[/[0[1[2[3[4[5[6[7[8[9[:[;[<[=[>[?[@[A[B[C[D[E[F[G[H[I[J[K[L[M[N[O[P[Q[R[S[T[U[V[W[X[Y[Z[[[\[][^[_[`[a[b[c[d[e[f[g[h[i[j[k[l[m[n[o[p[q[r[s[t[u[v[w[x[y[z[{[|[}[~[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[\\\\\\\\\ \ \ \ \ \\\\\\\\\\\\\\\\\\\ \!\"\#\$\%\&\'\(\)\*\+\,\-\.\/\0\1\2\3\4\5\6\7\8\9\:\;\<\=\>\?\@\A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z\[\\\]\^\_\`\a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z\{\|\}\~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\]]]]]]]]] ] ] ] ] ]]]]]]]]]]]]]]]]]]] ]!]"]#]$]%]&]'](])]*]+],]-].]/]0]1]2]3]4]5]6]7]8]9]:];]<]=]>]?]@]A]B]C]D]E]F]G]H]I]J]K]L]M]N]O]P]Q]R]S]T]U]V]W]X]Y]Z][]\]]]^]_]`]a]b]c]d]e]f]g]h]i]j]k]l]m]n]o]p]q]r]s]t]u]v]w]x]y]z]{]|]}]~]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]^^^^^^^^^ ^ ^ ^ ^ ^^^^^^^^^^^^^^^^^^^ ^!^"^#^$^%^&^'^(^)^*^+^,^-^.^/^0^1^2^3^4^5^6^7^8^9^:^;^<^=^>^?^@^A^B^C^D^E^F^G^H^I^J^K^L^M^N^O^P^Q^R^S^T^U^V^W^X^Y^Z^[^\^]^^^_^`^a^b^c^d^e^f^g^h^i^j^k^l^m^n^o^p^q^r^s^t^u^v^w^x^y^z^{^|^}^~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^_________ _ _ _ _ ___________________ _!_"_#_$_%_&_'_(_)_*_+_,_-_._/_0_1_2_3_4_5_6_7_8_9_:_;_<_=_>_?_@_A_B_C_D_E_F_G_H_I_J_K_L_M_N_O_P_Q_R_S_T_U_V_W_X_Y_Z_[_\_]_^___`_a_b_c_d_e_f_g_h_i_j_k_l_m_n_o_p_q_r_s_t_u_v_w_x_y_z_{_|_}_~__________________________________________________________________________________________________________________________________````````` ` ` ` ` ``````````````````` `!`"`#`$`%`&`'`(`)`*`+`,`-`.`/`0`1`2`3`4`5`6`7`8`9`:`;`<`=`>`?`@`A`B`C`D`E`F`G`H`I`J`K`L`M`N`O`P`Q`R`S`T`U`V`W`X`Y`Z`[`\`]`^`_```a`b`c`d`e`f`g`h`i`j`k`l`m`n`o`p`q`r`s`t`u`v`w`x`y`z`{`|`}`~``````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````aaaaaaaaa a a a a aaaaaaaaaaaaaaaaaaa a!a"a#a$a%a&a'a(a)a*a+a,a-a.a/a0a1a2a3a4a5a6a7a8a9a:a;aa?a@aAaBaCaDaEaFaGaHaIaJaKaLaMaNaOaPaQaRaSaTaUaVaWaXaYaZa[a\a]a^a_a`aaabacadaeafagahaiajakalamanaoapaqarasatauavawaxayaza{a|a}a~aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbb b b b b bbbbbbbbbbbbbbbbbbb b!b"b#b$b%b&b'b(b)b*b+b,b-b.b/b0b1b2b3b4b5b6b7b8b9b:b;bb?b@bAbBbCbDbEbFbGbHbIbJbKbLbMbNbObPbQbRbSbTbUbVbWbXbYbZb[b\b]b^b_b`babbbcbdbebfbgbhbibjbkblbmbnbobpbqbrbsbtbubvbwbxbybzb{b|b}b~bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbccccccccc c c c c ccccccccccccccccccc c!c"c#c$c%c&c'c(c)c*c+c,c-c.c/c0c1c2c3c4c5c6c7c8c9c:c;cc?c@cAcBcCcDcEcFcGcHcIcJcKcLcMcNcOcPcQcRcScTcUcVcWcXcYcZc[c\c]c^c_c`cacbcccdcecfcgchcicjckclcmcncocpcqcrcsctcucvcwcxcyczc{c|c}c~ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccddddddddd d d d d ddddddddddddddddddd d!d"d#d$d%d&d'd(d)d*d+d,d-d.d/d0d1d2d3d4d5d6d7d8d9d:d;dd?d@dAdBdCdDdEdFdGdHdIdJdKdLdMdNdOdPdQdRdSdTdUdVdWdXdYdZd[d\d]d^d_d`dadbdcdddedfdgdhdidjdkdldmdndodpdqdrdsdtdudvdwdxdydzd{d|d}d~ddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddeeeeeeeee e e e e eeeeeeeeeeeeeeeeeee e!e"e#e$e%e&e'e(e)e*e+e,e-e.e/e0e1e2e3e4e5e6e7e8e9e:e;ee?e@eAeBeCeDeEeFeGeHeIeJeKeLeMeNeOePeQeReSeTeUeVeWeXeYeZe[e\e]e^e_e`eaebecedeeefegeheiejekelemeneoepeqereseteuevewexeyeze{e|e}e~eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeefffffffff f f f f fffffffffffffffffff f!f"f#f$f%f&f'f(f)f*f+f,f-f.f/f0f1f2f3f4f5f6f7f8f9f:f;ff?f@fAfBfCfDfEfFfGfHfIfJfKfLfMfNfOfPfQfRfSfTfUfVfWfXfYfZf[f\f]f^f_f`fafbfcfdfefffgfhfifjfkflfmfnfofpfqfrfsftfufvfwfxfyfzf{f|f}f~ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffggggggggg g g g g ggggggggggggggggggg g!g"g#g$g%g&g'g(g)g*g+g,g-g.g/g0g1g2g3g4g5g6g7g8g9g:g;gg?g@gAgBgCgDgEgFgGgHgIgJgKgLgMgNgOgPgQgRgSgTgUgVgWgXgYgZg[g\g]g^g_g`gagbgcgdgegfggghgigjgkglgmgngogpgqgrgsgtgugvgwgxgygzg{g|g}g~gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggghhhhhhhhh h h h h hhhhhhhhhhhhhhhhhhh h!h"h#h$h%h&h'h(h)h*h+h,h-h.h/h0h1h2h3h4h5h6h7h8h9h:h;hh?h@hAhBhChDhEhFhGhHhIhJhKhLhMhNhOhPhQhRhShThUhVhWhXhYhZh[h\h]h^h_h`hahbhchdhehfhghhhihjhkhlhmhnhohphqhrhshthuhvhwhxhyhzh{h|h}h~hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhiiiiiiiii i i i i iiiiiiiiiiiiiiiiiii i!i"i#i$i%i&i'i(i)i*i+i,i-i.i/i0i1i2i3i4i5i6i7i8i9i:i;ii?i@iAiBiCiDiEiFiGiHiIiJiKiLiMiNiOiPiQiRiSiTiUiViWiXiYiZi[i\i]i^i_i`iaibicidieifigihiiijikiliminioipiqirisitiuiviwixiyizi{i|i}i~iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiijjjjjjjjj j j j j jjjjjjjjjjjjjjjjjjj j!j"j#j$j%j&j'j(j)j*j+j,j-j.j/j0j1j2j3j4j5j6j7j8j9j:j;jj?j@jAjBjCjDjEjFjGjHjIjJjKjLjMjNjOjPjQjRjSjTjUjVjWjXjYjZj[j\j]j^j_j`jajbjcjdjejfjgjhjijjjkjljmjnjojpjqjrjsjtjujvjwjxjyjzj{j|j}j~jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjkkkkkkkkk k k k k kkkkkkkkkkkkkkkkkkk k!k"k#k$k%k&k'k(k)k*k+k,k-k.k/k0k1k2k3k4k5k6k7k8k9k:k;kk?k@kAkBkCkDkEkFkGkHkIkJkKkLkMkNkOkPkQkRkSkTkUkVkWkXkYkZk[k\k]k^k_k`kakbkckdkekfkgkhkikjkkklkmknkokpkqkrksktkukvkwkxkykzk{k|k}k~kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkklllllllll l l l l lllllllllllllllllll l!l"l#l$l%l&l'l(l)l*l+l,l-l.l/l0l1l2l3l4l5l6l7l8l9l:l;ll?l@lAlBlClDlElFlGlHlIlJlKlLlMlNlOlPlQlRlSlTlUlVlWlXlYlZl[l\l]l^l_l`lalblcldlelflglhliljlklllmlnlolplqlrlsltlulvlwlxlylzl{l|l}l~llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllmmmmmmmmm m m m m mmmmmmmmmmmmmmmmmmm m!m"m#m$m%m&m'm(m)m*m+m,m-m.m/m0m1m2m3m4m5m6m7m8m9m:m;mm?m@mAmBmCmDmEmFmGmHmImJmKmLmMmNmOmPmQmRmSmTmUmVmWmXmYmZm[m\m]m^m_m`mambmcmdmemfmgmhmimjmkmlmmmnmompmqmrmsmtmumvmwmxmymzm{m|m}m~mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmnnnnnnnnn n n n n nnnnnnnnnnnnnnnnnnn n!n"n#n$n%n&n'n(n)n*n+n,n-n.n/n0n1n2n3n4n5n6n7n8n9n:n;nn?n@nAnBnCnDnEnFnGnHnInJnKnLnMnNnOnPnQnRnSnTnUnVnWnXnYnZn[n\n]n^n_n`nanbncndnenfngnhninjnknlnmnnnonpnqnrnsntnunvnwnxnynzn{n|n}n~nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnooooooooo o o o o ooooooooooooooooooo o!o"o#o$o%o&o'o(o)o*o+o,o-o.o/o0o1o2o3o4o5o6o7o8o9o:o;oo?o@oAoBoCoDoEoFoGoHoIoJoKoLoMoNoOoPoQoRoSoToUoVoWoXoYoZo[o\o]o^o_o`oaobocodoeofogohoiojokolomonooopoqorosotouovowoxoyozo{o|o}o~ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooppppppppp p p p p ppppppppppppppppppp p!p"p#p$p%p&p'p(p)p*p+p,p-p.p/p0p1p2p3p4p5p6p7p8p9p:p;pp?p@pApBpCpDpEpFpGpHpIpJpKpLpMpNpOpPpQpRpSpTpUpVpWpXpYpZp[p\p]p^p_p`papbpcpdpepfpgphpipjpkplpmpnpopppqprpsptpupvpwpxpypzp{p|p}p~ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppqqqqqqqqq q q q q qqqqqqqqqqqqqqqqqqq q!q"q#q$q%q&q'q(q)q*q+q,q-q.q/q0q1q2q3q4q5q6q7q8q9q:q;qq?q@qAqBqCqDqEqFqGqHqIqJqKqLqMqNqOqPqQqRqSqTqUqVqWqXqYqZq[q\q]q^q_q`qaqbqcqdqeqfqgqhqiqjqkqlqmqnqoqpqqqrqsqtquqvqwqxqyqzq{q|q}q~qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqrrrrrrrrr r r r r rrrrrrrrrrrrrrrrrrr r!r"r#r$r%r&r'r(r)r*r+r,r-r.r/r0r1r2r3r4r5r6r7r8r9r:r;rr?r@rArBrCrDrErFrGrHrIrJrKrLrMrNrOrPrQrRrSrTrUrVrWrXrYrZr[r\r]r^r_r`rarbrcrdrerfrgrhrirjrkrlrmrnrorprqrrrsrtrurvrwrxryrzr{r|r}r~rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrsssssssss s s s s sssssssssssssssssss s!s"s#s$s%s&s's(s)s*s+s,s-s.s/s0s1s2s3s4s5s6s7s8s9s:s;ss?s@sAsBsCsDsEsFsGsHsIsJsKsLsMsNsOsPsQsRsSsTsUsVsWsXsYsZs[s\s]s^s_s`sasbscsdsesfsgshsisjskslsmsnsospsqsrssstsusvswsxsyszs{s|s}s~ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssttttttttt t t t t ttttttttttttttttttt t!t"t#t$t%t&t't(tuq~9)t?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????y,K?b.-$r]h2uq~9?)t?L ???ةU#?_/?I?&;%?E;?_F?̏q?~?B3?d.9?_ ??cȞ?8# ?lvy?gv?Vb?z(.?GD?`h?SF?Ym]?eo?P?u}?sru? M?y?{D|?"?t?=?̿V?do?i>??\u?uR?: ?3h?vZ{?,٩?۔?֢?[jv?C/ ?]ɫ?Nr??Ln?db?Ӗ ?E ?{ɾ?ā?KDru?-?oas ? ?? i?kCZ??)` ?)# ?۽?3?65?P6?2^4?5?17?]tYd9? 47?h68? m?jo?{q?p#n?i~p?Ws?N6u?Xr?Ht?t?`w?RHx?O v? b x?rk?5*j?> l?&k?C`L?1%@~?Ч?+G}??b??o?>?Æw?8v?Ҋ?镅?d??֝?ǩ?< ???x}?}?[?i~?zJ?G<?Q?Y?|h?Hs?WY?z?|H?'d8F?ռ??ڜ?tW?ZK[?žNT??j?+&? ? g?t??Q#Ѧ?O/=?er??f?"(?9O?&?Ҽ?ࠕα?H5?mx?ӱ ?C@?Oh?XH ??vƺ?qF?vV?R?O?d¡g? ?Q?n?1?s?[???G?e1?^j?3/?=P?K?Z ?rp?р?bj?Y?Λ-?۲?K6? ϡ?r?f?Y2? ?2?oAH?lc ?6o?C?[S(?Gtl?'C??2?")?yŭ?`z?@}]?:D?_,??ET?f|? "? e'??罰?aj?f?f ?*?R?ph? d?ev ?g, ?<? ?d?Ӿ+B??^[]9?N<?O{%#*? J(?*?ys)?@F'?VY7&?#(?i&?D?y?&?s???W&!?@1A?9=} ?6f"?k#?$?Gf%?}!?*QB$?,"?k?<Nj?I?B?|?pg?t?F?a7?L?}_W?![^h?Mbf?E3i?lg?Jd?ns c?we?nc?^\?g]?}T_?'XKa? b?\\?sd``?,R^?!:?DnP?-_@?*MB?@?A?&C?pƩ]E?4/ C? D?F?yH?F?/DG?' J?FK?!!=I?J?";9M??N?^esP?12Q?&lgL?O?R۴M?\@2?m3?), 5?[p2?;M4?7Yv6?Q7?)L5?q$7?=X9?:?~8?SH:?,1z?Bk?Im?}o?O|l?PLpn?Zq?i?s?'?Kp?u?.Y?vvn?^H?O?i?8 ?"]?źc?\s?߂N?m= ?MTh?)J?೦?X?D`?Y~?v@3?)x?a?S?8)M[?̩Y?7\?oqZ?LW?V?ͯX?MV?UT?C9R?ꗫ4U?8FS?P? >O?WBQ?;P?SM? K?xXqN?N@L?jFJ?z>H?UeK?EyI?(RG?/zkE?8AG?sdBF?,b?}??g?XC?e?B?B&D?C?7@? !??[/A???=??Vi<?PS??b?~V!?<? ?4?OT?[t?VAD?cm7 ?s%?'?9?,:`?'쁊?&I?{j??b?El9?m?-Wf?L?K ?f?dF??yq?&,is?p?2fpr?paZ[?]"]?40^?$K\?n^?`? =b?c3_?+[Da?qq?ʸڜo?0~m?݆p?nn? k?V~i?Øl?HKj?'rh?Qd?>a.f?dc?ei?O=e?dg?g\u?Sw?uat?H?Qv?oZMy?Jb]K{?4Jx?>GFz?L}?&.Q?2E|?bL~?s?'WY?<d?U2S?!^?M?7?z?=Y?"?SGɚ? ?ԇ? ٹ?}_i?,>?Tԉ?hla?Ve?'?B8?? B1Ӎ?c@?2?ǝΌ?~œ?ն?`t? k? G?D~?e6?\_??ڗ?Bwؤ?;=?tk?ז'?Hto?֬?Rr(??>i?Dr}?^ֳ?1*k?Ų?ΰ^?;?v?fU3?;H ?C2:?9x?p(ڹ?ɿ?a8?ؿ??'Q?a!?95?B? ?/O?70p?U?*F?dF?a??f? %?k b? w?w?*L?"P??#L?I.?R}y??:K?A?!e?5_+?y?8q?'??}'?vݬ)? ?$???-X?=I?Hx? ?x4??W/a??=M=?^X{{?owQ?|??)?8hA?/y ?Աn#?pĤ?4/!?1&g&?:d)?>Q $?'?}d,?nh/?1*?|-?p2?{5?70?ZmY3?8?T;?6?N:?͜ѵ>?`A?.Re3=? 3[@?7lD?u`H?!NyC?vHF?H8N]?̰?,~;?M?ʢ?:? Ի?88)??e6'?qu?²?&:?"#?/??jT?.?q;?:?5愺?6EJ?,u?Ay ??мu|?zk+?uS7~?j oy?fu?ydz?'4lmw?LTr?kn?&k?j?Ut?Ym?1Wp?ʼC?U?@?M??#?4?bf?ɧ1?O.e?AD??c+?p&?6 ?C?= ? ?]? u|?p_? ?Qk?WI??8?T$?\lٌ? ?7?L)?}7?DF?:q|?G]~?Њ{?ߴ}? 오?ՙ?v??`,?Œ?Z?&h?-k?#?ֽ?7$}?.t?P`?:??@~S?B?R ??,˔?hxݖ?rÓ?ӕ? ѯ?A ?-k0?U?&'?BE??2?wf??fR?pq?? ?0Z?Ц?l5?YM=N?[AV?;E?!?B?Px?$͘?9B?h4E?c|@?,IC?X3H?R5K?;v&F?3I?L;N?KhDQ??L? O?sz?%FTv?|CN{?Vx?oՕs?dp?6͐ u?5q?QT?z(aW?߻R?U?dtZ?!B]?ZX?=1V[?=(C`?c?Oz_?A}4b? 6f?7m?(j?櫽n?É4Ue?k?sh?P3??O?ZS?H?`M?e? ?b?߹???`?p?uٚ?c?|m?K?=ͣ?[/?\ ,?N?3g?=~q?J>?Dj?,I?&?L? ?˩+?M4?7a?' ?deq?7i.??v ?-?Zm?Fr?m@ ?.?s?5 y?eǞ ?cl>??Ty?r?_?aW?[$?Z[?p>@?C/?;+?Sg?ui??&8?B?2@F:?py?0 ]!?-Wo?2LX?ȘC%?-)?ě<#?h(+'?s-?05?i 1?#6?\t"+?42? /?`L?.m?ؾ1i?gro?ėk?e?ppa?sg?#sc?xD?uժH?1yEB?*F? M? YQ?SJ?{I1O?p(U?EU]?=Y?U_?tS?6I[??Y3W?nܺD?Hj@?Al?M䮴?sdy?U+}?Si?nl{?J~?Nޫ?=rV?%?J9?]t>?d? "?*ߋ?o?uXN?9?u? ?[?j?m?#T?)Ĝ?ym?Y?#C|?>P? j??b?'?/&g?y.;޲?/X??S̜???ɱ?;?CL?%֋?}7(?#Ⱦ>?ɂ1λ?d)"?~<?Ѽ??m??.-C?Wy?F?j'??p6?~?G? _?zq??v?-?e?$?2٧?hB??IR?bX?_?l?`$?r??{2?\1 ?UM? ??ǀm?=z?d?BL?9?M?HV??ߣ?y8?8N??"{?!vm?3~?X? ??ƹ? I?S?>j?*ʥ?%?r? ?xh ?&r ?ZHM?~ ?\< ?L??vH?`?7K5B? >??`FV[Y?CW?n˝ZP?LQ?Mk.U?0nS?LU?{ Q?':T?XR?\k>??7@?=v>???Y DB?|WC?M>}A?Z{C?TE?khF?D?,8fF?oH?0J?;G?"'c3I?2K?m|N?,M?.O?J?eM?u>[L?=0?4=2?"3?*dR1?b2?x4?c6??D4?^ш5?p77?dlJ9?6?8?S:?9fh?QjSg?,bD1m?% q?IKt?u(o?%r?^bx?[H?J?Gn|?\!u?IE}?+Oz? ?}o?L-? ?ӕ?Sb /?9?̕J?J??J*?8=? y?-?`?xYd? E?u?~?E?? ?ƒ?,S4?P?Xk{?\?P/? ?%r?f'?-7?? f%v?Xo?n`?|R!?C?ϗD?g?&ϫ?hu?%6\?b<???)lV?\&"/? ?}s ?y?3j?SU?5VO?b?ՓKk?d?`pA? ??hR??6? M?s?O\?N?|n?_?? ?b?9??*7?S?.v?>{I?j?է3?v?FRx?O(C?P?a_?T(*?t2? ??E_?=?Uj?P?|? w?R7?LO?T?>{t?&|?S?'?\?hI$U?ZHC?S^m?#?a? ֘:?'P ?_H?|)?97Y?FL8?Iv ??4??*P?`?P? ?H{?-0ת?c~??\?*?!?s?x?vPU?9v~?_{mc?N4?z^?liA?#?W?o?&7?P?,ǒ? ?{?)?<;?Ҕ?sid?ͨ?%L?f??2xp?[ǰ?Ͽ?P,&?E???TI??.?N?bZ?#2?D?d *?& a?َ??d? =?+r-?Ss?mZ?8R??IG2?YZ?>?I*?<?o\?*䞷?WR?_?%6K?M?HJ?z?0(?m ?@׹?+ X?$I?<8?Yk?Fp(?wu? ]?(? ?٣?K]2?=s?p?H?o??P ?{1N?y?2ٶ?c??,?8?yyJj?}??Jڳ?ph?}? S?i#?r!_?پ?I?#Q??* I?%t>?A L'?p?j?4?]?6 ?<?e?n^?~ ?>?{?8bx?UK`??x= ?X29?u&8?/Ra?78q?y:?9@?q?f x?vdI ?}U?Py?Ѯ ?0e?G?y?W?c{?QL?w? n?uֳ? o?0?k?D?DH ? 3?j?'D?"y^?陌?_h m?No??y?Ү?韼?%A+?|g??WG?ÌQ:?/?a?'߿?+#?IF?$R?Yi?x&?4?d ?81?lY?x3W?ZՄZ?X?)YV?F^T?0V?b7U?zR??c%?;#?%?t$?#"?f0re!?\#?> "?f ?PM?r ?wl?qs?^.?6?Vr? ??\|?syw??zR? v?or?Ժ?X ?Lx?k ?^$ ? . ?ʪ ?. ?uD ?*Y?M ?b ?R?pxl?·xC?T?I܎7?je?m?گ?+b?꩕?j? I?a?V$.?_Q?ML?o?F?(?vh?Y ?y4Hq?8?#x?4@?P?x?Y?;hs?elr?Vu?۷JYt?$A2u[?*}8]?@Z?Z K\?]^?:`?>J^?_?.bGwb?Nd?)ʖa?W9c?q\s?ͭqq?&5o?4ur? p?ίm?],l?io?d,m?Mj?-*f?y h?e?jL?k?1z*g?~ i?&͜Gw?Ay?-Iv?4x?nS??{?OE}? 0z??|?M?W?I:F~?NU?v1}?2n5D?2??yk?c?-u?%I`?pbf?Y? ?X\B?a?oy?jd?8x ?VnZ??|0~?`]߽?u8?zHT?1?|?0? ?Ne??R1u??_E:?4\=?B?5a6%E?3@?lC?IKH?;jK?g`F?aXI?dzN?թQ?^M?f$P?GT?W0X?oOS?V?c~\[?^?Y?j 1]?6a?#e?y|V`?U[c?Onjh?۹k? nf? j?02?ހ?QK?atg?Ҵ?I/?tJ?l;?謏?B&?bN?qȫ?r>?<?hA???#^O?=v?\ ?p{??89?2?"-? y4?\/?l(?#?s*?{9%?#?cA?$?J???˕|??#U?w? E?=J?ރ%???m|v?(?p?@?mNe?vR?]R?qq?Z~?^?A?G!Z?폯?we?r?%u?||?1,L?B?G?u?S????1?܉?hq?`?ch?sH@?f?Wgρ?OQy?[t?|?KC_w?>xo?.7?j?T{0r?HGl?{ e?ht_?7\g?s b?=(Z?iU?WK\]?&X?}fP?JK?2F?~fC?GS?PH?LM?N?Ï?aS?^f?C??2^?Ǵ?8C\?3G?a-?y??׍?/`O?p?!?ϣ??ae?j5?v6?ړ??C?>?Q興????w,?euW?ɘ?κz?#Gn?7?EA?OJ?ۡ?[?Y?L ?eJӪ?73ϱ?3"o?$*?En?̋} ?a ?%?c_5 ?&' ?x ? v* ? ?e;??`?3٣??/ߚg?v ^?V/ ?s ?wGt? ?A?5w?=υ?:?? ?2M?ϊ?޲An?a?{*p?Y61??;?ܸ=?.?㜛?N?Rߝ?Rc?Ī+?KWPs?V?C?*5?S=?~2"?YX??} ?D??x?g ?_ý?N`[?5?®?%?v?aM ?V$? ,?D7? ~?d"?'}?~j?\?+̈́?M^?Y?f?AZz?Y?@y?o?r?\~?[Dp?E1jI?B?7䣐?#V?0?]?W˔?ʑ?J“?, ز?tuݖ?J?gҕ?f~? ?x#?9??0?d??\?0? J?3j}?4?Ei?!q?zE?>+?V?hj,?-o?\N௰?&=?{{?Oo?58ޯ?U?G/E?[t*H?TrC?eBF?s(K?2&N?ШI?֟L?C'Q?{0T?YFO?L>R?f$v?wvs?LBx?ht?FpDp?Y m?B!q?JJn?r?=? J??Df ?ws?(4??wNJ?}u?h]?$ ?#÷ ??-C?g ??T ?H?]3?A?iA?&>?mc?Qf? ?,U??\?h?_ *?Bf?L?{Q?B?t8?_M]4?i S:?6?w 7!?ap#%?=Y*?TL-#?3n)?)6M0?-?2?wQ '?bC.?Ч[+?5?o:?ućv?W]?b/?G??iz?y?[d5}?h x?߇{?3Vc??`V?H~?q"?Ȇ?ny#?A"?x"?ꁍ?jQ?Y~?YY??ShC-?S՗? ̜?Yْ? ?fXg?PB?rʫ?d:?5۩?V?Yײ?e?^D?ճI\?gL˹?ƴ?;+?!??]d?z?VZ1?-?aĩǷ?7 ?~dֽ? 5F?4k\?`e?&?圱u?5@?^?- ? ?&\??"?-?0:^v?S'H??%a?5I`?o|??t*Ro??5?b/?͂??v'?Yi? CC?V?#D???#?,6?s?H?<-?C}?a?gvj(?1$?*?2'?cB; ?J?HAl ?N+?yiZ??t ?Eh?]c ?:? /?y?5?:7?rܚ?\?xd ?{?#9' ?I?0Mf??N?Xx?ʧui?+Ok?Es"h?ai?nl?mn?]>k?xqm?Kp?Cu?|Cr?hԣ9v?q$lo?Ds?"q?B~f?d?xh?5P0fe?l?D=s?}J7p?*Qw?b۴*i?/p?H{m?(.?i{?t?/Fy??nT\?L`?I~?S0-?/ʩP?LE?>r?ic?у? U??YtG?GIg?ҩ?zı??rA1K?u?^k?H ?]D ?7s?AD??m%O?:/?[]?x9?U. ?L?x???D?]i?I? uH?Pm ??*,? Ò?6!?a+??C?^b?#p?;?d?F??!,??H?,î?FH;???F?.~T?A,?ǒ"?jf?c?^Ux?P?rE?(?C}F?Y*?)?c?e?A?Z\1?Q?]?ޯ,?g?N? Z?2\?b?&.n?q???bJ?r?$V?J%?9? x?l?3By ?ѐ?/?Iw???@\0?x'M?7?%??O[K ?z<&Q?V?V??wt??w-&?s˕?>1?Eo?(?O?-E7l?d?IP?%?*?Ӎ(? ]??pea? }? ??n?7)?74?>?zu?d?z?8Dž%?z?%?)_?b?1 r?b? ί?iUa?@jm?]g?L`d?V~j?U?jq?]Xυ?]= ?_5? ?by?||s?A'p?qւ?¶v?t|?QD$?}JO(?#Dg"?"^&?\,?en0?j*?or.?6ᣂ4?L8?KN2?@6?{Y?1@U?|Q?=W?S?}~MM?U!I?g[hO?`*QK?Ε_D?ǭ@?ݶ?@B? ?3?Ϝ ?fo?ZK?vOh?8?kg?P8 ?g?=  ?]Y#?J?q ?ѧ;L?{?R%??5x?KT? XD??F? 2x%?8k?~>?c??hj ?g>?^6??8H?= ?ާj?9F??h?ﲨ?f%}?M?A}?0@?v?{G?ѷ ?B?Q|? F?u???]?S? M?J?I䇘? do?1}?ǭz?E2?m'?7Q?ƿ ?>9?l?'%?18C?/` ?gz?? g?j?:ͮ?6?eW?%V?ϰX?3V?\T?R?U??S?egQ?p5hO?`Q?nnP?pUM?L?=N?L?\QJ?ʓH?D0K?bI?qG?Z|E?ϝG?vbF?^D?z’B?ZVbD?C?O?q?\?R?@?nS??rA?+n@@?2=?Gqe ?/6dT2?R81?F.?V-?U/?e.?#,?@x*?iNE,?3<+?(?duTu?&3? ?W?os=??u?f>?L? ?l&?+?6?`6?iA?zS?Z&?Ks'?%91%?ܼ&?(?*)? H V'?^w(?Ѹ? $?k"?\$?it#?ީd!?pb?C" ?.W?4K!"?qc?6 ?T?)?"?R???} ?y?W?yt0 ?v?lQi? ?CD( ?)lJv ? ??E ?4DX ?~]( ?! ? Ln?|?ٸ?2??8e?+-?v4?kM<??: ?l?S?u?L??)h@?G?Jew ?,n?em??)κ?? G?ͼs??x\+? 0[?`ƵY?FW?Z?pzqX?^gKu?abt?"4w? v?c☖]?`?/Q%_?-Xb?}\?p.&_?̳`?!c?6"f? Yb?dd?ԍvzs?}tq?! #u?ۉs?+Dp?Un?Phq?PBo?4Kjl?y+h?/Hj?f?mum?4ni?{k?T!y?'/{?!w? z??4D??Zf?2c?tƵ@}?M?>|?h~?mt^??sb?w?g]?&Z?#?Co?#l?bi?:?9$ec?R?>?x?b7?Z??ı~?X?ߛ?l?GE?S?E"ܤ?Ka"?=rF?g?b%t?Ղ?7d-? Lj?*?G 4?4krv?b4?+Q?% ?6?`?4D,?sЖ?k?dfk?RCo?T5j?k:Am?O?RӴ?xϺ?q?(??sD|?ā?{~?zmXy?α}r?u? Ѣp?=U{?Eckt?}w?QF?d @?7S;? [UC?yL>?z'6??1?'L9?w{4?V<-?z[ (?J/?纏*?$<#?)~,?6%?h ?p?, ?I(Y?6Q?0?zi ?o?J5)?T?mH?@ݿA?=F?G1? ?_p? hP??+i?*0? 4Z?x5?@?z.?ӻ_?p?GY?61?V$p?Ɏ ?Cy ?5Z ?ee ?|~ ?) ' ??ue?w!?4դ?^ ?Sa??P???[*9`?W ?ȀP?%_?7?9 ?Ś?l ?J( ?h'}?= ?WY;??2O?쐠? 7?9ne?:P?O;??U?? o?r?C|?.Q?%m8?[ŻD?rW?A?Q>,?%V ?ɞ?.u ?O4*?UҒ?Tm ? ?P?y?9I? ?&%?8ui?Eϭ?t?84?Wj ?]a9?$$??P/?s??{T?D.E?z7??)D1B?5[?09?36?TV?ȅb?N_?`?7]?^:jc?N`?G_?։0X?M\?(Z?=V?K=Ʀ]?,i[?yY?lr???j@?|u=?d??KN?j 1O?0M?HWN?'gfT?MQ?O2R?IgT?lEO?IUS?H xQ?NUB?aEE?OC?7F?aDA?g)0E?VgC?m8H?Q˱K?qI?0L?xQF?DJ?A&I?ƒ3?@|5?#ӆ2?1@4?W){7?~L9?;6?,(O8?;? >?8:?VQ+?#fv??f>?D>?Z >?ƿ3?{3??|3?Y;3?;Ԋ3?ܚZ3?y 93?'i3?H3?[3?α4?ao3? _W3?%4?YG4?%aHU4?S$34?ri4?ʾG4?OV4?Ody4?4?r4?[L4?$۾4?#t:?SN:?mF):?5_:?7>::?,:?#X9?b':?t8?<8?/l8? ֻ8?,V}8? &H8?T#8?_FcY8?48?i?)[?Vu?%d b?Б~*? z?&J?_/i?BQ??qx?cP??0??Z?+&?*}!?z?6?=~??o0X?6?C^?6q?c?7?|)?V;?3?j{ ?;4??eEj?|p?iB?Ȓ>?լӿ??$lF?c??8յ?um?E?D?O`K?GO?y?X?I?Z?_?`?Pi?l?g?}3`?"???u?$%?Y?? ;_?&bP??l?|?;?y'l?G?7}?TgQ?8%?XE?}4 ?8? /?gA ?V^?Mo??B?j??͠O?|?Ykß?F?lv?Z*?oʪ???| ?ϝ?g?`?μm?ؾ?6̥/??"?p??Q:?U?d?FH"? z? ?^$?'ę?`5qE?U:?t??/?Mh?SԳ?&l ?v܂?]S? H?ڢ?]y??L8??+Y?}0?zda?Ǒg?SN^? d?ՏYX?؎m?*s?5!0j?"q?4[=%?x?-v-?*?:?y?G??9w??l,}?3??ܦH??|u?0 ?EX?%_1?_? ?S{?P_?׬K?w%?9F +? [!?|v(?vy(?V6,?&?!׈*?YԈ0?m4? yy.?^2?8?by?K?CC?7DG?k?pC?\]?$?UD?|J{?aњ ?b=y?$ ?_??TN3?$ARS??!W?w ? ??i?<?G?"?аv?4?e?@9?g*?7?u9?˜?c?g?R|o?VF?-? c? 4?V?i?~+)?mɺ?uK~?l?qDg? fw?̎s?6Qo?ju?~8q?,Gk?Kb?vf?.`?MFm?'Wd?*j i??t?dܥ?qV?0-?~걋??2ʏ?9ޜ?ު*?lUX?\ב?(y?*+?fM?]b?8e?R,.|?΅?fy?!?:%S^~?e?u&C?-=?X˧?Ԓ?yZ?&<9)?hu?7]?ᐜ(?Q$?[ʿ ?pIbr&?"??".? T??eO?F=? m?vã?B/ ?ja ?ܒ?bQ ?H?uc?5=??Z?D|?{g?mr?*!?y8?!i?-?sRo??%f ?ʇ??8/?l?S#??#͒?i?Zݶ?t?K"??lJ ?Ը?\a?1Ps?qgY?d>?Uc?^}??T5?[K?A?E?O+?<-?j?s\?@,U?Z!R?HT?AQ?$ƻV?jR?/VT?[{O?:M?СNQ?5Q O?#L? @J?{,M?UԙJ?Y~tH?;E?'YG?SD?1%I?E?E`$G?=EB?ȚBA?hD??ܒ;?09? 0:?zU7?UI? h?"??Yq_!?V?R#?F? ?#a? "?^$?xS?N ?"?A?#?Y!??v ??l?q ?? ?ul ?, ?, ?i ?^?vd?~?, ?M?R? ?b϶?P{?QGn??c?u3?]?o^r?㌼?0Ze???5%?u*?V߂??? ?l?]) X?\^?{r\?\CY?ym5]?o[?*GW?I:U?-'~X?ƄV?m#v?I2u?sx?QHdw?=R`?pW=c?/A_? a?`e?>A";h?WOd?g?bBs?ֱۃq?6|Gu?Ds?זro?Imj?o9m?k]i?lq?]bldl?O *n?z?6D}? Lzy?|?h?ۍ7?QI?]?ݽ? f}?se?5r?c]?qv?ӓK?2~g~?^p?\W?>??Γ?pgF?_Ҹ6?Bz;?SA??‘:? =?&2B?LF?nA?IT5h?/n?r?-k?*p?:M?H?q?g?kˬ?+ݦ?`ө?Q!? !?giZ?O,??yj?v?(B?0qW?Qaە?nb?n5?Α)?F?(R?ض$?AR_ ?Ōx?*f'?-?T%*?v??3|?Yv??)^?O??[/a5?\Ϫ ? ƹ?.^?/??ض{?u.Ԅ?j?~@h?/e?L>O? C?@"??X ?z7?T?*u?k?O~?om?]?/??@? u%?xO?ɜ3?!婒?;jw? k?'`Ԏ?IF?YK0?vS?Z??i:N? G)?X@ ?}򾒝?dҢ?+?ؚ{?-?*?ꇈ?`[~?:!??z?)6z? t?}?kAw?S[ɩo?]z_j?Kr?pm?Sce?+P`?_SCh?{/pc?,#[?aP?U?D‰M?Z@^?G%5S?ܖX?h]\P??G?۳?RӷF?"7?n~]?w??ݶ'?{o?{n%?hh?aJ?Ya?ȟy?k)?1?1??K?8>?Fb?NjT2?78?k/?@↱5???{;XF?>[I?]?DZpP?+-W? ?NĞ?qu?v?>N?!bJ?dj,G?JL?tyI?dC?Au??NE? LA?W\;?UJ8?󙈻=?F'9?_4?70?L?6?2?A ,?g5)?.?+?(%?9!?f'?#?Ľ!?zVu? ?Z?f?#?v?|? ~?C[m ?`<?#f?C?W?2g ?% ?j^?ȩ~?Ga?d^?3!?v\?e?0G?䥨?b??s?|?쩓?2]??P??7?':?$Dt? Z?D?N?HD?eM?0$? ?ݎO+ ?F?~_,?k?8H?" ? ??25?W ݹ ?`o ?v ?{ ?) ?PH?t ?5Ȅ?V%]?HK1f?⡶?3+?3h[?=J?#1?-5?xt?e?g޽??8?Nf?f?&(I@??PT?F?szj?=?;?Ó?9?K?ě6?9 kD??#g?F ?9>|?6 &?=4?l(j?F? gI?uG?D|W??lPM?/'w?,뎌?]?m(?Eҗ?|??/b?"=?IS? 3?-?36?_B?'~?QC:?퍢?E:?k/3?Ӗb?{ۭ?ш3?v7?? o,?HOF?x>K?LR2P?QN?S?%};_I?҈P?M?LF>V?vһY?Cc\S?(.W?*oo?Ni?ogl?HE/g?17p?tl? 4j?#A]?,%ed?`?,S[?Dg??zb?i[_?<3K?=uXG?C?X7!I?(E?J6?No?]N>?Z ?C?dL?!6w?V?{x?.{d?!??6?t?>l)i?Q??ȟt2??fZp?ɋ??viq?h?5x ?8@?@#?>T?Ea?`y ?#?Ӭ?ˇ+i?|U~??\vh?6 d?n_?y_y??!!?1?IL(?,?bT$?v?»2?Ax+?'?V^ $?$ ?t?E+(? L| ?Ȟ9Y?/S?v2y?O!?]?5 D?l"?y&"]?e4O?kpdV?]hH?,Xa?M>U?4O?+A?G{4?FT;?3-? 0G?^;?5?n?Za,r?8ku?'q_p?X^ts?9y?0L^~?wWw?5}z?wir?Z?e?bJ? ?,U5? ?b?X? !??Q:?<˴@?mm);?і5?ic1?!e7?7&C3?+&\?o?Z7-?*_c(?B/?! +?w?$? ????Z.T?y{&?hD"?~0?HPP? T+?Q))?w,?{)?8['?7%?ͦ'?ta%?=,h?'9?!?к??(D??{?*io#?%E!?#?˧!?i"?E$?o?q?@\?E ?z3?]ɗ?x?zw5??z1+?'Y1? /?9)B3?mEݻ1?Ĝ-?d+?i/?.?S?iU?h>W?ހT?V?X@_?uPY?9z\?+F~`?tpMX?BM]?& [? t4@?ʣB?5>?MA?~֭)N?iQ?MO?l$L?V0%R? O?*N?E?_J?QG?(xC?K?#H?En]F?^u4?V 7?iV0s3?k_5?v#9?,}e=?}WA;???,7?X~F;=?bĕ;?-Ԝ?AR/w?Iy?Z~?%%|?si F?;^x?J|? Pbz?ڧvt?U=r?z7bu?>Os?`CWf?#mh? d?eie?uj?Cjѻo?Jm?\ }p?Ā h?Orm? k?9a? ^?zc?FJ^`?d e?Mk?Y?>ch_?V|?X>r? B?Cf?Wvo?&Y?qS?Suy?"3?V'2?`,&3?13?j2?rc2?q/2?~}2?N1k2? Vq2?xFJ2?qK2?5TP2?`Pf/2?Y֎A`2?#>2?dN2?/1?p2?1?@1?u1?ȢK1?U_1?61?tk1?y̚1?Kpz1?MK1?,*1?gZ1?}691?- 1?`0?1t1?.0?\L0?ĦSL0?mq0?)!ù0?t_0?Ej0?͙0?vPy0?;hJ0?}+0? Z0?eR:0?fo 0?/?˫0?`y$O/?qm/?( /?/?/?;/?|n/?1(/?qK}/?SO/?ԔP>0/?fP^/?߹>/?,N</?6M.?`/?/?r.? ~ߪ.?F.?8.?_.?"Uw.?+LA.?ы.?ǤF?91vF?\_^F?F?_F?K\F?"F?~_F?ʊ'G?VTG?EG?OB;G?{'eH?c>H?)aH?nDH??ltH?+(4H?H<H?*GH?OH?{7dG?uG?Z0G?gygG? G?MG?{*;G? ?B?sB?y4A?P$K'B?:A?X_D?H}D?geMRD?UYԦB?!YAB?$ B?s>iB?E_QB?3gB?MI {B?PiMB?(KWbB?#D?C?Co'D?*vC?C?:C?X&C?^C?YhC?=C?)!C?B?{xC?n "C?GLC?SqF?GFF?cF?O4XF?pF 0F?*9>?T0f>?PnOd>?Lrbfx>? =>>?}b>?jP>?,(>?3=?=?'>?Y-Q=?[=? w=?>˲=?5[=?\VtP=?#)=?Nb=?2;=?O=?/?1>?D >?>?V+e>?ƺ??1N+??I>?-O??&Ox3? ?3?TϘ3?983?_3?dZw3?_uV3?Ej…3?Ie3?+z53?rz3?C3?W#3?ы Ζ:?(53L7?H7?P!.8?!7?MM3?4?2I3?ޟ 4? ж7?+Y谒7?7?L7?zqn7?LJ7?׀rq7?ķq[7? N&7? 7?977?.u7?<\J6?t\6?[6? 6?n6?+Lt6?"M6?v6?6Q6?-6?'b6?:>6?1' 6?~5?-6? 5?gj5?)~j5?-5?cҠ5?d?F~5?M0[5?9^5?!k5??c85?:65?k4?c.U4?Q I5?C[5?8&5?c)B4?־pe4?-Wͫ,4?dQ4?87͈4?wU4?ݲt4? ~ϙ4?R4?nZ 4?V4?"=4?q:?٘yXK:?!:? \:?vD%:?^w4:?й6:?u,:?-9?29?~n9?%!9?or9?Sk9?Z29?ֿ4&|9?b@IF9?!9?W9??T%29?IN8?58?}F+ 9?GR8?X>8?Zl8?8?ZI8?=ij8?^(E8?,e|8?WV8?~e!8?'7?/28?h@ 8?rs?PS?Dε???K?T1?b X?w^Q?S? D~?JJt?lL?t*?FGe??rI?i3?2?L?ݽ?h[?Q ?ń3?P??5?J}?]?=A?w8?N.?Z v?,2:??6??tV?[&?u_? l?(?悵?'N ?3w?d?h?{?+??d3??4>u?q;?d??Z?<4x?}??????dU? ?S/?)?u?u^?d?lJ?s7R?p`e?fV6?Vz?AKL??3z??gn?{:?HV?x՚?xX?r?v?+?/?a eF?O?\ɐ?HP??]#f??a ?Lѫ(?p?>P?HRb??.Fp?;? ?M??I??I?JB?Sp?y |??)iӖ?r?*C9?zW(?CF? !?gw?);?:?·?>?bU?.d?Z??3*$?(?sp?T?wE?iO?QV?^?OV?G?gb?.$1?v?iv|?h?-?&? }[?p+n?0?|?܌j?A?mh{??\??xTM?T|#?yY?u?/?D5?!v ?2S?yg??^?L ?2o|?õ?PIW??Pl?Ҟt?+]?bm??.?x??" ?/?B?tji?x/h?%{J?+?l?PVfm?Z?e ???-O_?g}L?p?92?M(??}??r?nT?6U ?1?CY=?m#?\b-?ꬤ?yV?lޣ?? ?arY??+`}?^RC?˿?[[%?'?v?gA?Sl?lNt??O?y?W?9?x?HQ3?X?+q??&?]?}T?;=/?XI?Lݤ? b?Y Ό?wǡ??Ԙ?5ņB?ځT?"bjnH?jN?OW?cD?J?P?f&+?V%?B?tT?{?Ȓ'?n>?Ȁ "?"ڣ+? r2?5(?"0*&/?f-,?cz"0?P^m*?yO.?ز4?R8?2?*6?d b?c?M|^?+BZ?5`?Y1]?nʼnV?e=R?]h Y?_T?M? N3E?q.OI?UB?x?ʶ?C?+M?A?iYaK?;D?s||?=?b-??Cr?+?58?b??mV? R~ ?J?  ?23? QW??Ŧ6?N?LcLɹ?ʹ?W)|?f7w?bs?V3z?#0v? zo?pg?.>k? -e?qF r?Ai?USm??𑾞?Ȣ9?PTz?ʸ?h?Fܨ?+?*!?4?,:?P"?DK? {?Ĵ?ʗ~?6?o??I?a??jO?4Ν??h?'B,~?A?c?llժ?1}B(?J ?_K$?Ʋ?]*?1 )!?-f$?zXZ?^Ý'??'K;?SXw?/ ?Д?R?r ?M?LS ?'b?u,?$?}f>?ʭ;?M?"?L'?Z???Ps??b&?"Q?ƭ??&h?۔? k?Pu?#U?;2?h6B0?UR?Gf2? ?N%f?s~?ET?w?5K?!j?-I?Ra?od?no?J:zD?x%?Y12?R?^P?oT?$Q?][KN?#mL?8O?3M?>ԓI?\E?!r1G?C?9&J?䬪F?6^H?%A?QR??cD?#yWA?[Ҽ9?$T?RG?o?- =? s;?WB??Gj}?RC?s{??~?Ī?!sX?Dν?Y&?FQ?}?^?D&?e} ?7~?}Xל?j j?z?zs??1+~? AD?ovJ?#E?GCM?ܦtvG?z_??o6?$3;?$G2?cA? 6?K;?\5|??N}H?O^?i-?vp"??7t3(?'2?]?ٮ/0?nܳ ?$?sȢ ??T0 ?TgP?wD¬??U-?ʪ?)?b?'?kw?vtf?R?q?Αh?Uxp?Ȑ?_ӌ?~?؆?w?0LƊ?D"?x ˰?0uִ?1Ү?<?{?a?K?&?@Ͳ?A6i?69? ?MX?0 ?X?]*?;?L ?L>??SV?D:_t?[hPU?w64?Hp?*9?^?/a?IF?^. ?9}? %?ɥY?ט.?k??k?= B?Z9?n?9\?,}M?zC?ܿ'?.=?+I ??v!h, ?mFr?R}?>?~?lA??]r?n?AA?ˢ?€J?R?L??7p?P]?h^J?S?39?>?d3?(z?b?W ?l .?J?"? ?3[??i?Ц) ?y5 ?Zp? ?s6T??q ?`0#?zk?> ?dr;?@C ?E?ѽ ?B:]3 ?@?Ax ?ٰ!?{q+V?s-M? Xol?\?q?7?C??b?f???\??Ւ?!?T?W?V0? :?9j?p$\?4?/J?6?hgX?霓?Qyh?c?{? ? R0J?|%Ҋ?A?O"\Ɉ?w?o6?F0 Y?x?C땡??-wΚ?"Ǖ? ט?::?p)??*Sݲ?!?ƣ?#&?=t?Դs.?}?īѨ?@̯?8?܄f?,?J}P?cT?mPM?dQ?X?2 ]? =|U?VZ?k%j?$Wva?Ge?֋qcl?Uq1_?h?sd?tJ? EF?yN?]I?LB?=?E?%w@?1P?f?H*?I?4 ?tA?qy?<?%?xiP?2?]VM?ij?#b!?-\U?i?k?|?r]A?y??=|?6>.?o?&?T*4d??!?n ?k$?:.?Qw?G8!?o?l?QN?#(u6?SB?uW T??5(?p1E?_K9?=ˢn?=u?tKq?wx?I6 k?|X"t?p?4{?num?BXw?,}??o?PlB?K{?X,?7?24?QѤ?fm? ]?B?aqϓ?=??k@Y? ɐ?o㡊?lٶ?d?H?_ޱ?M3?x!?Ϟ9? ?3θ?~?6Tܻ?&?3~?fGT?A?Ec?&<k?M??Pt?UJ?Ϥ?BS?b|?@?)2)?G?;j?ɚ ?ed?1?z??`?ɳY?1r?$@???T?5q:?tE?K0?Y ??5Q ?')?~/^?δ?./?'n--?!?/`?#s?3M?~?w-H=? /49?6;0?:5?j,?;?SeJ1?n+85?r? >X ?0??*Xw?(?d&?I[$?nT?Q-?ř'p?kL%?b?:?]w?=y%{?~}?o y?Rt?g ?Hy?Znw?"{?:r?on?u?$o?xwe?.k?tyh?nDb?Ql?Srh?D, e??_?f[?ܼa? _\?gK=Y?%b?J?D'R?vy?'Al?z4[?g??uO??t?(A$+?J*?-*?&*?_*?AX*?ί8*?v*?x *?i)v*?,Z*?b *?֗g*? oA>*?f"*?*K*?!\h/*?=*?s.)?*?:x)?|;)?i뢳)?w()?tݨ)?N>)?JE|)?&]d)?=)? 8a)?PE)? Ln)?YqR)?4*)?][)?QO7)? )?r1(?^ (?(?](?'X.?_qL:.?P%g.?)I.?.?-?S(*.?/= .?O-?F!-?Vt-?#) -?*-?ɞG-?Ϡ-?ri-?TR g-?w+I-?lu-?'W-?*f^+-?G -?RȬR9-?;-?cZ,?Qul,?,?ρ,??~,?e0,?,?X6>,?>$z,?*Q}\,?L9,?Wj,?!?,?0",?C{M,?0,?kYro,?pp+?מ\,? &@+?+?=y+?^+?m|;+?t+?3u+? m+?]+?fX+?Z<+?ɇN+?x7+?ۉe+?fu,+?EgI+?ĥ62?I[i2?qc3?JS2?m,k,2?m%2?It٣2?:.2?U2p2?rRN2?f02?]&_2?-V-2?  2?H=2?zZ2?b1?lVA1?m|1? 1?v 1?TM1?㪿 1?Yw1?Mh1?&H1?}x1?3W1?m_0e(1?Pu1?E71?1?{0?{40?0?/,S0?&?0?OV0?v0?0w20?4\i0?1RI0?#+ETy0?6wX0?R)0?X; 0?u90?Ӄ0?Qj4/?14/?$g+/?z/?i/?߶/?/?`/?֪Pm/?M/?j\}/?Qvu\/?r&./?L/?WBK?P[K?XK?M"L?,ovGQL?{MqL?ī;7L?NhM?1 M? = N? 5\M?=M?iM?]JM?&aq~M?:M?]R M?ZOM?= M?9NJL?ϩL?V5L?EeL?L?\KYL?!< L?OF?Y~F?՜_F?ܞF?H?&F?I2"G?wF? G?϶NG?'{G?`g5G?G^bG?<&˴H?x҇H? hH?7H?̜ZH?A-H?N#nH?AH?+H?tG?i;BG?V ՎG?ZH?`iG?"*G?F?ۨ 9B?TB?;7HB?"B?riA?7A?n#qA?IA?CFT??}I|??y=??n|g??ʥ??h??TW|??$H??:"5ԒA?`ZiA?f.A?GoW{A?6u?A?-\A?UQA?@)A?r@?S@?c*A?-#@?5IJo@? $r@?@?m@?N:H@?#??}@???k[@?J @?jR2@?JRE?>^6mE?_^F?v)=E?DE?iE?V̪E?,|E?=E?E?@"PE?9E%E?(ԹD? D?D?FD?ʑD? afD?үD?H>zD?E ;D?m D?1}OD?^Ͷ;#D?<:C?PڍB?bB?nB?<%OrB?0B4B?aB?4pB? FXB?W2B?dpK}B?_dLB? "C?UC?jIC?zC?pވC?R0C?kL\C?C?C?*v5=C?iC?U"xkF?[BF?EoF?*[F?mF?+aIE?^t<2F?h8F?b>?Ǵ:>?!t>?';L>?Z.>?xm=?|$>?i7=?/D =?gs=?t?=?)=?ncu=?M=?[X/F=?f`=?C>%=?dX?'e>?eŮ>?5Is>?Ma>?5"';>?Ar>?fP>?->0>?Ѩ'??`"cQ????GAg3?5;3? #2?q{3?[3?,:?^m:?xm:?w4ޤ:?܁:?-`7?E7?C87?a57?)G74?b;4?̝et3?7Y$4?q1?7?;cvQl7?W/ '7?RU}7?V"wH7?$7?iY7?'ƅ57?p7?K6?bh@7?jW6?x/6?Nr6?.s(6?L_6?Cr6?7O6?i 6?2_6?#F+6?a6?;6?;6? "5?O65?5?<]%5?;gDޞ5?7|5?Ά35?&5?S8Y5?55?kܬ65?5?OIi5?GC$5?GӔF5?`4?4?lËI4?$r4?Ԫ4?V4?ϗ4?h 4?|&4?y5?24?b?5?(G:?5!:?G_[:?:0:?da9?ec9? :??9?Ӳ9?"O9?a9?l,F9?Ag9?xB9?A{9?P9?2 9?eb8?+9? 9?!J8?[<8?)8?8?|~8?i8?]8?&{8?OC8?oW8?E"V8?,Y-8?1gt7?N)N7?uo8?E7?XNS?]R?X R?.uԂR?:R?V6S? ufS?| /S?tXDS?=֢S?7S?nJuS?3(ݤS?MS?`Z~S?8S?FVN2?#*: ?y6?ge?&??$G?>W?+M?q ?:D?*b?$oh??A/?ED?/T..?=k?6 $k??ޠ?<;?;?ř??oiP? |?BN?>??`?ĺ?!?y?ߝ[? `[?{Y6"?sU?Щ\2?>?k?b?c?B@C ??E??,#??Q?_?Y9?4B!?a?To\?=w?G*?%?\(?Aac?F.?ǒ?I???v? ?+=?т?}5s? ?td?yFS?"ۀ?i-?M?voL?7x?I?/?MZ?ґ?f?K?/?;? f?H?C ?HÈ?{?}a?f'?<(?ryg?O- ?d? Uˍ?@޽?&j?]o?¿=?Y??X1??M/?P??t*??K0C?X ?N?Gq?f?!?$?BO'?k?w?;??fߋ?K,?.? ? M5?!f?R?l)Uf?,)?bt?ii?[n?u@?EoJ?Ѩ?.{?[>R?r7?E?H_?D?NVHk?pt?t=$/?_?Y?tV???q-3?)ݞ?+wp?׵?:?<9}?FO?7'?9"?Kt?} .?@]?6?fw%? \?W5??+m?nI?*?!?~e?;zR??O.?q?06I??{1a?T?c$??a%?tSu?BQ?[?tsY?j?᭄??ھ?D2`?-?r?"?. ?] Ds?=P ǡ?|?^?6Ԯ?n$?cv?ڗ?TX?.TpK?F*? *x$?ǧ*0? p$,*?Q!?ll?ŘII$?]x|?5?:?/?y25?MO?U?0\?!QdjS?GY?ÎԒb? Fh?&_?5f?H 2o? u?4Cl?Dr? ,?E{?J? Y ?b?u?? -y? 2?4C=?ԟ۫?" ?%?e?'Eh2?xk$i?R?Լr ?~`n?{;%?u ,? #?M,\(?Ct2?"9?8 J/?Pl5?1?@S 8?x4?"ޠ[? YW?KE_?CrZ?Z@!S?AI?ĆN?,eG?.]7V?L?*$mQ?+'?&7-?2a2?h*?tz/?h? SM?Ѹ ?v׃?wcV?-7d~?ϓJ?ZR?(?]5 ?]s#?4,?WEma?cI3??c3Y?^b?VM$?A??-5?٨?(%d?1s?f6!9?=V$#?V$y?0??6??Ҋ?Nd?kk?[Y??B?b?6K?6|?Sx?M禀?y\}?[*t?h).k?ķ3o? _dg?._y?jԚn?Nj~Qs?6~?y^?qNY?ӗ?Zy#?xF?6?!?ؒ?>i+?˂e??,?x? 3u?o \?N١?}4O?4 [!?Bp?u$??.[?FY?a??a?> ??p] ?V?GR??K?$S?0-P?'K?I?uM?YgqJ?EHh1F?Dv(qC?䎙G?ͦE?z@?)0>?HB?&V??d{?O?U=?S?]=T?`;?A1E9?0wa=?Y\:?>F6?F4?7?bh4?D1?Ҭ-?/?v8+?E_2?s-?,/?$j*?d'?^+?Y)?:C?a,,?"?5r?O?(C6?_YƷ?~3?ɾA?L?!%?5g#?̦&?#??0 ?|dh?\?K!?B?]u?ү?#1 ?dd? _ ? ?`W?b ?´?$ ?&O/ ?fP?K?XȘ?IK??F??̄? j? b?~j?9' ?'J??^T?Bo?ȗ?_?hZs?)?F?P??½Q?˒?Wxs?\?[0??!Du?qh>?y?i<?o7 ?P?[~}?.-?)x ?MUj?g?F7?[A?R?3|?n' ? ?M?L?co?w ?gU? T?f?E?5?4 ??{??IYd?l`z??$?Պ??Y>?r#O?A1?kj?}&l?{)?X? 2?P?A?#? ?X{? ?ѳc?6Z?m sv?׌?|e?!u?3?5?'4?G?Jlԫ?(n?>0?qw?(?~.$?ޅž?f?k?_&?PcK?э ?v?&/-?b4?71?G8?w+?Kh4?M5%1?H;?q??:57?=?C?w[H?>f;A?&;F?ԌL?p:=Q?^߰J??7?EH3?.?{(,?-9?+:1?"j5?J"?{.W?He?}0ϰ?Я"?(.?`$7?b?;Q-?/i?[ܖ??u4?4?ُ?[C?=?9!?/O?@?FNƤ?:EQ?3{?|j?9ym}??v?.Mpq?x?p@%It?qfm?y)h?-o?:1k?sRd?I_?J-f?b? K[?V?$PR? P?]]?ΗӊT?BY?Ioҷ?|&?vތ? G?Y[?%?f< ??t?mm?Ȧ?ݟo?oz?.p?B?1???*n ??Lh?K?Ya?Rt ?4?K?*??i`?y ?h??wF|? ?E? \?#'?,1??&?J?.x? <?_?xM?V(?Pn[#?f?zP&? 2!?N?K?~a?6j$ ?@}%?_?D!? -?݁ 3?8}g+?G0?Vq18?tZ=?E5?:?uB?UEG?n @?0E?Dly?Q?`E*? ?u^?] ?i{ ?hw?߀ ? :?l#? ?ot??s?m Ww?h?qOIH?)Q+?іuc?÷??w?]?RG ?_]?T ?[Iq?:=?CGj ?nA? U?"?=?G٬?KI?m\?B?Ȫ?{j?{?"??Мc?%? q?͒͡?7&?X?uIi?`e?7ĕ?ʭ6?͜@?j?~?x+?7+? 1?$p?(2?1?_ê?!s?$;m?sђ?? H?$?Gk?(B?#W?r?| ?b?pŶ?Zl?9?/?\(?殪n?N?oħ?lU?) ?hp9?LS*?u`?x?K@?XZ?ïv?`?u7?ws?Za?)T ?g?8BF ?0$?q)h?,?7i?n?OM+? LJ?X ?oQ??;;?Ks??>?ޝ?*?^}?V?L ????wA'I?qX?68?P!=?>3& ?g ?|*, ? ~ ?5?7|?@s ?GĚ? +?t-?9 ?o?_RC?"?O?0?}<?-}?//v?e?K? (O?Sc+?Q|fv?ʱ? t$?> ?HA?e_?81?g?1J?_?N0?ő|?w†?>?Ck?8TU?$?K?*a~?nXN?ۥ?a?ۭ?fc??);?~ ?@C%?z-?3ˀ?L,?,[؛? #?wy?5e?]S]?zߡ?MP?I?-R?%k?OMI?=?uuBLR?<՗W?/.PM?;JS?N4\?Qtg?͆,b?(Mm?X?Q5a?7j{f?mqH?/Ϸ>?=pC??7?0EN?l??VD?1!??"3??3??.?v ?Y?5?A;^?2C}?CDh#JG-?W)-?ھEU-?S$7-? -?f,?Mel-?nI,?O ,?Dͤ,?r,?"Z,?aUQ,?nx,?=2,? 2,?q]U[,?=,?Ƶi,?*Q'K,? ,?|,? (.,?4,?P 2+?=N+?+?[+? X+?? +?ƺ+?hr+?Vs+?"@:+?b V+?d++?ހ+?dص\G+?c+?<2?5[2?e2?V$2?I𣏕2?}Jo2?<2?\[2?M2?}KY+2?pׂ`2?3;2?vL2?Ѧ1?2?D01?1??1?F1?/T1?*C1?nf1?wQ1?4w1?=)F1?j%1?d7^W1?prl21?&1?0?tq'1?)0?n0?e0?j0? B0?m+0?Yh0?d0?T.x0?lH0?>lc(0?DX0?fCp50?% 0?w/?0?rr/?k"/?/?3Έ/?ZϦ/?u.m/?M|<|l/?U"y/? e/|/?wR9.?K/?>+/?L\/?^H8/?$/ /? t.?;/?;+.?PQ.?*(.?s:@{.?'.?p..?CڼU.?ʵs.?HĨ\G.? 7.?f/a.?Z.?#bK?™I?}@?H"A?@?l@? ER@?c'@?5d[@?qn@?X-@?%iE@?NB@?R@?F -@?$NV@?WE?OjE?)E?VHE? QcE?1~7E?nwE?:PaFE?lL? E?$D?2E?^^D?mD?E0׎D?4} D?ޤD?W7,dD?u7D?|ѺzD?LD?s D?'tC?F D?#C?}gu B?jB?W|uB?^"C?aB?l_B?@B?UbqB? k(B?_B?B?tyX"eB?'<ԀC?Uk}C?Z^C?2ÚC?suJC?īC?%EgC?ڜ+?C?JF?MF?#pF?i?F?PE?@E?F?E?X26>?U5>?#K>?8>?x†=?1T=?`ʆ=?M=?U,=?ws=?JŬ=?po=?öL=? #=?Eb=?a6=?Yh?c*4_>?ca>?EG?>?>?xeyH>?qڄ>?K>?aO'>?U#??bQ>? ??")Q??8v|??29??hk??G 4?h3?!3?V3?!3?E3?En3?63?Gkq3?ȝ&M3?M>.͊3?x[3?T7m*3?4ܴ2?񷢉 3?Ol2?ɭZd83?2?f3?&!:?:?٧:?ƒ'G:?(* o:?D:?"@:? Y:?Zb7?,l7?oݕ7?[x7?24?R-V[4?r4?"F4?MHi7?ڰ(F7?Pm{7? 6T7?4"7?գ+7?I17?7?A6?7+6?CN6?v6?]̜6?Rwzq6?.}6?6?nL6?~u(6?gg^6?ƙ66?Ҋґ6?V8[5?26?\5?}5?`tk5?/f5?4D5?Z^y5?R$ 45?V5?t7x"5?k/5?\ B5?6Nd5?w҄4?y4?m:o4?wʛ4?9:H4?e5?1֝4?w05?W%B4?4?v5?^ۍ:?j9?ɷ9? 9? X.:?Ϲ9?|_9??9?QUd9?9?zu9?}q99?78? 9?8?-K9?58?9?iV/Ƿ8?+T8?V w8?w/8?r@mh8?Z '@8?W8?[.T8?*acm8?m7?o<7?l/7?R3Y+8?a7?{87? b$S?3P`R?(R?ؕS?-/R?+ۗR?}gR?OR?+-zR?gSS? S?cS?D}S?֙4S?uS?6cS?7"#S?|S?ŵ7S?qj?f<@?ȷ?w&?|E&?&$?FB:?|4?к.?~(7?)71?(?LƵ?#?†?<`?^L ,? & ?J*@&?8?`9;?$JA?m8?=?J?V?_D?yR?e?w?_?wr?]|@z?t?85}?8w?Lrݿn?|Oh?^9 q?zhk?1b?]}$]?je?`? O?LW?"wQ?a>Z?thT?")K?ZE?0 @?ơQ=?1^N?C?YH?Kͷ?*\? P1??^\?w??5?a.e?^ ?Б?~vu??.S?[?P@?K?&t?3?L#T? ?l?zە?#{p?e%?M#?%??y,?r?B˺3?7?P:??H ? ?u?Z?JXͽ?i?mg?4w?}K?cݚ??4?s>?%V?Pْ?ޞP??X?1@??Ym?0=?i?n1?Y?ِ6Q???X?7?O? V? ?k#r?Qs?sڦ? R?E??C͐[?x?v?sz??[??_A??5 ?C??Cx?>?<*?g#?/?(R?*?x?3Z?bB?AM?Kb?Y?N_?J??Vr6-?)I??].?sQ ?e?y???_??R(?D+?`?=%?"d??fO??YLq?gI??OPt?V$?tB?Dh?,5?`Y??dV_.?-?v?L8??Ҽ?(}`??_?p}?[R~V ?A?u9e?L2?B}?$?tSy?F?R9??1؍?-?넁? ?>?b"?v{Ő?c ?h|M?^?1xп?{3T?Z~?#?Bʾ?>d?<"?VU?|.?ֵ?ݗ ?z?KF?4Ǩ?aǢ?~?*_?es?kqr?t&@?ЉI??E?b[:?-~M?`B(??LpD?k)? 1?be#?b4?LI0/?F?~#o^9?>f#?* _s)?Lx.?k:IG?FxQ?V\j]?X3W?1-c?VtM?!?oX?AD^?'i?v?s-p?313W~?#d?o?jv?v/?40?Ґ}?P 8? "??5?')<? #?l?PP!? }?6M-%??#C?zA??Z???0)?" ?z ? ? ]?L?g??kv?`G?n ? &?\?U?/?#t?S?9p?S?]}v?z?y7M? ?=?5y??*ED?D0C-?Mˊ?&?O?PW:?w?pX?W,U? # O?QL?UQ?W8 EM?NI?C?ZjF?-[uA?*BJ?zD?F?ʥ??A ?8n-?-F?Orn?d ?/Nc?O97?=R!?A?7 9?5?X~&;?7?!2?;-?˷b0?B5+? 4?-?Zo0?!5(?%?vA+?Sh#'?=?o^?R?*?:"? ?o0W ?s1?#x6$?Ţ?5gW ?r ?bGW ?3?$Kp ?$T?R?9z?w?GV ?.V{?;??t?5_v??I?ga?J?)a?r^?Le?{} b?Fsв[?W?4^?=Z?S?X&O? ٓV?] R?A{? wy?gv?j}?7h?>l?uIe?,i?~ p?U(Rs?Kpw?1!K{?m?jr?v?^?? Vm??fxߐ?S'ۚ?d ?y"?z??2*1? O ?c?6@?.[?8?w?y?U?irl?7?$zn?Y? ?UwY?E?J4?*4 ?4(?j?$i?;??r0$?E?.$?9?i7a?o]?-? d0? vf??VW??t?jK?b? Y?$??%?q,?؆?GR ?Ym?߳?8L?+?g? ?G*??&i?S7?0??73?̎4?m?x?g#/?%\)??iB1#? ?a+?+1M?i %?l\L??ɀ?א?<4? 9?n\1?6?h>?p=C?E;?.A?OH?BN?|-F?L2K?f6S?Y?"]Q?/ V?X_?>~e?;\?b?Il?ur?Ubi? Ko?J y?E̸?]FZv?n|?N?P?l:?j\?9iݓ?%w?J#?\^?wW% ?Jg??a*?#!ذ?gE?oL?9?>!=?5?5*@?!V9?d5?)P.?6?~?$4"?F=~](?P"h 2?<?.?k"?bT)?dgD?VL??,c5?+9?,U?H?L4T? ?h@??B۩?7?e?r ȧ?8Y?萛?t'??2?ן8?(d;?7?~?ٓ?p?^׏?S?"8\?9?i?u ?l'{?Fv?!{}?3x?# r?lm?ÚOt?,o?b.h?Yld?'X\k?7f?6_?gLV?P[?a3yT? Db?;4Y?T ]?a?Ze?Xm?\r5?hQ?mF?6_c??~dc??71?׾g?D?l?r8?7 ??n?_Y??!9?lg ?"??8R& ?+kp?9k?s?? Z+?k1?P!?ll??ZY?_#?T.?G~?A0?&?HV ??U?CZ?ҶO`??@5̄?C{0?Q?qQ?W?\/?/?V40??SN?SIL?~?=?D$?KВ?O?[)?u?z^q1?YF'?FB??K#?As? ɺ?};Z?? h?@r?)D?n>_?bGO?(h?zTfG?# S?%M?o.Z?tC?bįM?S?Q??+?9ǝ?GD?IZ?t |?J ?4fv?P4?y-\|?_*?1p?&ڐ`?7^h?7Z?Y5v?Ӿd?l?A d ?VQM?DC ?' ?A_??RS?{~X?0f8Z?T ^?sUkX?]E[?^#?gj2}?gڃ?j?eCy?Щlu?0"{?Qr[w?9kq?Rm?9s?竘p?5&i?a?Ne?@_?p5?l?mc?Sg? ;͟V?AS? Z?r˺V?$%O?lK?w\S?0N?]G?2C?#I??D??>?i8?sy;?.4?.v@?o 8?*};?Oo1?Ú>-?4?/?[)? "?ܧ?%?jt?$CUf+?!E"?w%?w?r9?V??@Y?Ich?2l?G&?˚S?|B?*?Ah?@?_?Ǘ ?V]?NXc?aDI?* S?+.Ԗ?U{1?kw?j?]L^?FF?,?$Œ?)?IsP4?H?%%Y?N?Vh?i??<?nh?<٢?q?J4??z?kd?)'??x=? ?c??U?cy?%u c?Y?*? d?l@?v?? N ?Z?#)w ?1?.r?Yݟ ?G[ ?t?kE?3?.?N/?υg ????)J?̹?N@r?6[?ݿ??Y?)I?ћ?q`?~{?wo?lSx?k~?߳?w ?|;4??Ȃ?n?z?V2?f ?QԘ?9ߡ?=?Vq?(3?J;?G?"E?  ߬?ԛ(ʡ??gY>?[?{R%HT?\e?GE\?]/J?to?|q`?R>W?Y1A?A3?^,N?I??MWt? j?T?IF?s?qOL$?jw? -?t1?"?2/?LPz?4 ?6Aj?LQ|?떛?w /?Ku1?sڏ?X ?,ۣ?;v*?Ȕ?/ܦ?W?%}?{_?<?P^?e??]۫?<?[?#?$gl?51 ?-?o?7?]X?M%?X֧d1?5c?~wf&?qO ?]?m8?dD?l?)o?(?ՖX? ?I,?p?DZ"?BS?0<?$7?O$?&?v ?D$?)?M,?&?uUM*?Tː/?k䭚5?fێ2?{u8?+%}-?D Q5?|F2?Q?ȢNG?%"L?@MD?m S?'N?8L{HI?3ir;?[:B?z>?158?(k F? @?Z%=?q?>g?ް kl?gUc?@hts?h?-Aǜl?j_?GV?MZ?P?c?ǐ!W?C [?$u?#k{?6o?v?+5?O_F?nX?'? gn? =|V?'\7?cAN?H?*?f?&?1-z&?y`&?D&?Zfm&?߂F&?(;-&?1hI[S&?G9&??Y&?.6%?4 &?F&?}$?g%?j%?o8%?%?%?͙ה%?dBI|%?5@%? {%?{}b%?EK%?W8n%?q*fI%?[)]0%?U%?TI<%?gcb%?L(w$?H#%?~P %?im$?g$?K"Am$? $? $?(Y^$?ֿ$?ga$?7ҽ$?qd,j$?R9x$?u$?gQ$?aD69$?~, $?#-$? ^=]$?W,$?nD$?*7#?.n#?vs#?P+#?ؿ#?Vfܿ#?#?0#?o6#?,w#?#?gZ#?qT_#?gG#?Eq9i#?Gl`Q#?tb$0#?3e#?9#?"&!#?h#? ~"?&D= #?"?he"? "?3C"?"?M "?;"?3"?"?}8+?oI@+?UG8+? 4)+?џ+? j,)?l"t*?a1*?T*? *?**?o%u*?Q.]*?vo*?SD~Aq*?V*?5|*?Ab*?[|:*?/ *?P8G*?-*?2 4*?#A)?n\)?dm)?*?_)??,)?@ĕ)?/$z)?)?bx)?2_)?˕B)?2IVm)?:R)?nI'?t/'?փV'?F;'?P8'?&?ek!'?ӫ4'?I&??&?'^&?+qŸ&?¤&?p&?.NaT&?F9a(?; (?v(?<-ݒ(?Pk(?BB&Q(?x(?](?b6(?4(?AC(? )(?Kd(?U'?'og(?@'?t 0'?‚ڱ'?aj'?!&2'?'?b!d}'??'?_'?-nBc'?H'?7p'?RH+V'??&)?o)?X#}6)? )?-q(?(?x(?9?(?qYm(? (?Q(?n(?ğt.?c-?nR*.?H.?{-? -?C"-? -?S:-?-?xA-?;-?[aDc-?AE-?L2r-?.+Q-?+]'-?r -?Pv2-?)-?y,?[,?1̭,?B[,?\.޲,?Nr,?j,?pD%,?x,?㫄Y,?Ç,?h,?;,? k,?mJ,?9(*,?y%%,?<+?Sf ,?qd/+? Fh+?`^x+?d.+?'F"+?>\j+?p|T+?jq+?٬E+? +?f8`+?1',}+?(42?52?a׀2?2?]s2?’5N2? Y2?lŒb2?s)2?{M2?gU=2?y2?FA1? 1?{1?)Q1?|| 1?c㉢1?Te1?ǸKh1?j(C1?1?QU1?;1?],0?:@j1?3J!0?oo01?0?W0?&0??0?Q<0?a0?oh0?E0?f={0?vV0?ܧ#0?6/?R0?$/?30?rAT/?&+0?;UͲ/?QO/?bk/?j8/?dl/?+޹H/?7F4b/? 9X/?zl9.? %S.?J&.?> 8.?h$/?&.?HG/?ph#.?5/?tq.?U/?.?|Vm.?.?`S.?4~.?Nz.?m.?)K?O[K?q/.x.K?,*lK?5WBK?)4I?~fgdI?RII?ޓII?I?.'I?yI? I?ɯI?J?9I??oeJ? v}K?IJ?.WK?ѐJ?_+J?N{HJ?,k|vJ?Aѵ/J? J?$YJ?)J?_n!P?*P?ƪЊP?)۝P?rP?I7R?0[R?arJR?XiR?  Q?uQ?&Q?MQXQ?Z=Q?C>Q?hBQ?rjP?}HQ?8P?VanfP?0r:Q?iQ?-Q?qGQ? q[P?,P? nP?wDP?]Z/O?SbLO?=fP?0ԄO?xO?CG:O?jO?kO?O?{MO?MXj~O?\;1O? ,O?$N?^O?\N?4N?AvN?W;[ N?eL~N?yGN?,"qN?Q@^N?G5)N?VgM?1qM?IM?*ZM?xK?VR,K?zK?a?K?#7L?}FL?3ڌK?p'.L?RuL?24L?{\L?$;L?5M?q^M?[M?tsuM?š7/M?m'L?43'M?@"L?BFM??#L?7M?2q+I?F?PG?aӽF?}60zF? 8H?IKݨH?+H?wm~H?P0 I?4[H?kxH?d*HG?.G?f#rG? DXG?f?&G?'SkG?ݕG?8TH?d=qG? k H?B $zH?u)G?H?e6H?3*F?ոReF?r F?ΝGF?9A?棈A? A?/]A?iA? A?'/A?Yާ??z??N??Ԩ@???Լ??g??X3A?n[7@?JZA?%d@?mZA?kX @?JA?!ѿ@?o=@?n;Gk@?Z@@?dR@?hoY@?k@?ǝE?ZE?yvE?&8{TkE?É|)E?R?D?X(fE?^D?K:E?}B?3C?63C?n\C?C?2< C?uIC?^EprC?Bm3F?7E?%sfF?hHPF?$HE?a.ͅE?f(őE?mGE?aʎ>?:`=?Jn=?B:=?>?Ug =?TX=?D|`'x=?A^L=?K7=?d=?F =?G^S;?\ٞ:?v`';?\5:?Ļt;?8;?#Y;;?D=?!Tv2>?@jn>?F$>?tEL>?֒>?W>?TRL>? Q>????;t?QB?DY?XF?=?ZN?) 1?_?3?U?Ts?̄?t4?*??I?D68?>㸨?ʇ?N?}?ds?k?1?'dN?#?Br:?=R>?T{?Aߣ?(y??T?d?[͟?0{?GY?ຼ?;?Ѽ? ?h?/f?N?:f?7?vka$?v>?"6M?)O?R=?AP8fU?c+>?)?l3?Z D?0#?R*5L.?8?[J?uQ?Wƀ4??r3H?`_?͇j?(O\?|of?8]OT?b[u?}~?kI? Yq?RB??0y?%˂?f>e?|ق#??f~Q?Yȧ,?TEG6?)?_1?ٶ??I?h;?<#D?j:Fn?ITg?r?|k?Wp@?r F?"N =?D DF?m`?񠰰L?Z*fV?OeQ?+ʛC[?֏d??L?RR?RIW?s6\?]x(?{1?WH&?*-?a8;?*{C?r:v7?hk@?;p?:;H?fE?ke?#pM?}c?L#?[*Ե?QE/[?頔?V$Q?}?Bm? }p?3G?NW ?O ?{?֢+?Ͱ"?(??([?G?8 ?@?/d?k?[?̮S?+²?h# Np?6p?, ??!ѓw?4{?'?ju?@S?{J?*?h q8?Ũ?aU?@?LB,??U. ?9$?u?A_h+&?ь@?ٸ?7nO???r ?a?@??&&[??2e?`T?]?&v?0C85?;[?m?M+?h(^?6o?+??x˺?)?U?Ej?f{?='?߁K?X*FD?G? ~@?M?ҸD?P3GH? ŊE=?[&9?%A?I;?ɚ? ?L1?V u?\?0;v?λ?^i%?65?雬-?a }1?*4*?67?.-?xv1? ڐ&?!:"?-*?)i%??S ?X?\??sx?8 ?7r?~ ?8?uYq ?1?|?ʧ?]B?iB?x??P?b?pq]?]Yf?\(b?ٔY?!0U?;dr]?zX?qP?kJ?R S?uaO?BY+3?8z?P?rvH?w9k?7ap?_ŕf?Cl?$au?m]{?V1r?z;w?G48?'?Β?}/v?Ӳ??jEa?M~y?r?,_?KW?U?/?_c?S?-,?A? ??;L;?wu?4?%?Tx׽?.S??46?#y:?҇C?O#I?8 @?( F?qN?JT? 4ϫK?R?;,hZ?f?w`?.m?%QX?[Ua?Zng?Y0s?|y?1`m?S"v?I?J?U7Zo|?C?Gk?g\?'Y?!e?Ŗ ?m*%?!3?Qzn?w0?f+?UO?P9?3?h?(?i?ܣ܎5?Ċ?^>)#?sz?,?8.?x`?>yD?-ZO?M 5?KInE?@Y ?cR?ZP?< ?͠}?z[?ż?B?+aU?t???>?U@?+Ԍ?lq}??T?Xe?P>?Y?K?VE?("Ѱ??rn/ ?9|v??o?i?K-u?L\a?eil? 1< n?z?#Y? qP?1dZf?\?TrΊ?!? ?X?m&?*?#_$?έ(?5}/?TEd3?;!-?_RF1?V?-R?զM?qhnT?0/O?5vI?QE?qK?5sG?@?27??<?I5?{7 C?Rۭ9?u>?a߫?*b?{?аI?*??s0?# N?6U ?st?p=?b??14??ؖ?/_\0?DWؘ?Mu?X??& ҏ?6~?ҵp?N??ڨ?N0{?к}?#:}?)v?1z&r?x 2?XyȆ ?eJ??'?hX{?J?.Oo5?ӧ-?[@R?W?7O?T?9\?6b?/a8Z?}_?Nog??ƫ??X ?p?(# ?2*$?hQI?c?h?NԾ?I?7j~?O>? \L?????!;V?ͳ?d"?~D??x?yHT? ?d]?Er?;e?蓰?Y[?K˙?i?Vs?V,S?mc^?zX N?Y??0?7?㗸?n|?/h?zr?WVcc?]?D?xn?;x?x?Ms?#5h ?I&?ڑ?Jǁ?*?|?=|]?߷a?^2(Z?RPv_?1B}?јsu? 9y?Pqr?6F?Yu?rVy?|$n?%se?]JFj?ZOc?%#r? Ղh?}ql?p'!\?V?;Q?ԝY?_ZJ-U?M=?2}L?2>zB?cyG?/L2P?h??qn D?|DI?X|$8?:T2?t(:?B!6?+-?(?MP0?&B+?%En"?}?Z?wKe?n8y%?3<?W?qt?]x?Kq~?qs?$$7?>?L^*?C?Ki?s?͚?VU?1_F?x;?*?nx?d:??Շ?ᮌ?=kQ?ƞ(?j??q?;/g??9~?^Q](?;6?Ԅgg?YC?_y-?໅??O?zt?fi ?/?0PG?F?^-?[r?MI6?r?" (?R?mz?*o$?!??wn'?*?̆5??<\>"?Ӵ+?F55?x%20?I9?~%? !|4?/?.GK?E^n>?@jD?CQ?~WR9?I?_C?mDh?%5X?`?P| p?$2wAC$?[$?wG#?O؈#? &=#?##?V#?#?d#?A#?3nX+#?ar#? B#?Z#?h{#?n 5#?K#?-jc#?i "?#?׊w"?2"?Щw#?1"?"?Hh#?ȕs"?&Ȓw\"? :}"?Pe"?';E"?0RU ."?,8N"?ꅼm7"?VF"?ap$"?i"?3a"?C "?R`)Fo"?"?N y"?"?n!? I "?}d "?r!?@!?!??"!?#eI!?J~2!?V!?7, ?/=ȟ ?N eU ?>j ?" ?LCr ?`83T ?G3> ?O\ ?HF ?>( ?7U ?{0 ?aN ?Cxx?bN?] ?C^?Q?zס&?<ߓ?N?f6+?6+?dQ+? {6+?mEϚ+?6*?z+e +?~*?J)?1)?ZS6)?}I)?x$*?6*?NM=_*?>yHk*?{O**?R#T*?*2m*?H):*?3*?^$[R*?XUl*?D!*?.)?*? )? uF9*?`g)?Uw*?Zes0{)?´Z`)?5)?'?Hw'?~'?3'?A49'?Գn'?%9'?O|'?,/}'?fQc'?!$}''?q'?)zI'?뭑-'?=W'?|<'?^`۲ )?`w (?Fz2)? +(?x?(? %4q(?jU(?,(?P>(?j$4(?a*(?u!Z.?p-?#.?qJsy-?VM-?]F-?*-?ٳ-?k=%-?J_-?xF-?!Tn-?Q>-?b-?X#-?׵B,?_a6M-?4 -?œ$-?,?l?,?Ձe',?,;,?M[r,?\x,?s[,?I,?{[Y,?P8,? j,?nH,?}H,?z>+?X%+?9,n+?G(,?gV+?rO+?) +?bk+?JSnj+?5Q+?cV+?93({+?<+?{͏2?Sy2?2?e^2?oR2?(2?Fl2?"=2?=E>1?81?aG2?5I1?"1?iq1?| ]1?G1?yZB1?s1?jA]1?Ѧ,1?I0?W0?h0?A"N0?k0?Hi0?(0?_Q'|0?PD0?D0?Z%W0?Vzd00?hg/?b/?#0?/?5/?m/?l/?]:/? :E/?%/?ٻ\/?L^2/?h8.?o֭_.?B|.?b6.?`W;.?G0[.?vy.?2RH/?)].?v.?I.?7?gО ?Q?s ?V!??'??p&?&0??fD?5)'?;d:?pBW??j?9M?4a?xX<?w-'?sF?s̱0?r?x?~ l??Yy?p?IS9?̀y?7V?3 ?"3?i-n??k? Wn?cՁ? b x?Y?EE?c? iO?)^1?u!?Gd ;?T&?H?%u3?6:?|o?ި?L?>M?(gO???fB?hD?'X?|?ldM?&sv?""h?\ U?r?9^?!CA?A-?J?za"7?@?tw0?l#??Y"Ԕ?c+f?c?)?@~?> ?繰?Sv?` N?_/?}Z}??Wt?D?Ll?*A1˚?% bK?>!|K?)2)K? WRK?aJ? &K?&K?VOK?0^I?} %I?<>I?ҿwI?S2I?WjJ?(=I?Nb\@J?cI?I?QކlJ?[J?G3iJ?[4J?4!J?WI?^BP?EHP?E}WP?huP?ܔP?w,P?NP?FdqTP? RnQ?~Q? qQ?cvvQ?ER?8QQ?؏Y Q?,;Q?ڂTQ??+Q? zP? ;Q?uQ?ӂ;Q?>-P?dhPO?DRKP?bx"P?V?ZO?CeaO?7μהO?f-?O?XO?΅G?bbG?CeF?ƺRF?ʠSF?aRCmF?uʂA?19A?3A?p`A???(cPh/@?l.3??³@?ˈ @?17lu@?ău @?Z)A?ka@?w,@?у@?aȄJE?LE? 2eE?K.> E?y!D?ƙRD?kD?`D?vcD?1D?2ilxD?!ĎCD?%GC?Or)C?MC?sӕC?ՂD?,dԱC?mC?VA?^]A?rA??o=?e8=?b;?w;?=?h+,>? r=?/=?3mf>?>?,$>?ݜ>?iW>?~VH]??::&??]W??bt4>?LGK[??]$????J2@?,S??sZ!??~S, 4?I@14?c2^4?St4?XJ4?S43?̱3?(&d3?O3?Z<3?+ً3?DTe4=3?o3?04]3?"32?Iʇ2?Nm3?62?!;?:? v:?^X;?ɝ:?:C"~:?uAC:?m'Ξ:?Ӟhk:?jc:?B5?24?>r5?5?="=5?m6J9?sL "9?5.T9?88?zh9?;*9? H9?.8?>dl8?. 8?*;8?~'18?V0k8?mH8?" 8?2s,7?'b7?Ux7?{J:8?k)r7?.&7?jR?+R?"R?݈(VR? LR?rO S?WQ?7 R?WaiR?W[I?R?M؄mS?^sS?> A3S?MS?4gTS?[]R?rS?#jN'%?%8?? D?IO?<??@0?xJ1?=7?r-.?sq4?8[=? .,D?\:?-A?p}J?P?:WG?AͮM?1*W?Bh]?_+VT?Tp\Z?boؐ?Zc?w|? w?jZ0?->}?SAJw?i{?"Pz?@ p?e)CGj?cK0c?UN`?&s?5ug?uŚym?"EQ?XGΝ?c??+?J;S&?BB?G??Pj?em??3_?R)?W?^Ъ?M?6??L-H?y̭?S1?$+?hD$?I-?.?|N'?%'?`?|!W!??q?ȯ3?̸ ?!pC? {D?:?#?<  ?y?f'n?9c(?#PN?^3G?`Y??^H?Τ~?+? g?]?9?5S?8D?v"?:5?8?m*?V (?k ?G?~[%?d!?/?|??NW?_%F?ˆz@?Ϋ ;?;yC?"bw>?q W5?ѧ)?w/?ZwL&?D8?R-? V/3?%?:?A;?u% ?Ô?>?<=?}??Վ>?Zb?`?Y[?N?]?⻁?J#wԃ?P ?Nl?9z?\}?F?ֵܻ?d]9?>(2??= $u?>?u?o<?(Յ?L?[?Mt?h+?8!?1?sǨ?@>?_Vc?YB?QŐ??,]L?ecv??kD? y?ߔ?zy??뵧 ? ?~폅?f?O??i&X?U?{.I?EM?уd?LuD?|x?[Yd?"?ji:?9?D???(҉?._B?|F?]_?߱S??~?U|?'?!?,Q-?Ub[?`)??6?sͽ? ? ? N?F X?jB?,07?Mc?g?!br?N??q?ޡ?b?H-X?$O?I0]?L2 V?3?#=?B?(?)3?EF?;L?Ke?=?ÇF?:m?Yv;?E~P}?b$u?+Hp„??g?y(-|?b?t?{ю%?W.?\)7?@??ӟ"?a.?E)M37?+5H?*S?ku??\L?[Ci?K?-Y?QxR?*ƿa?H?n?{U?Q%5\?p&d?3?j=7??Ø2?f?G$X?!??"?&m?]?A?X'7???J?`}Є?l??h!?\(e?-?03?J9E?S9?B??CI?m6?3k?}A}? JTq?) gZv?1]Z?~D?O?u ?)?ik?i?)?QS?@p?~?k#?3?'N)?Ǎ1.?dY#?7?3r0?<+?=?mQ?yY&?J֚+?!&?U?WC?Jh` ?Qq?ڏH?\O?bD?FK?r;V?-N9_? xR?Z? Vh?Ix?eKlp?+?Cc?tx?(Gp?ԻԆ?\MV??nx׊?Cd?Kx?g? ,?k3?#]?k?pV?ơQ?zw?N(?w?g&?4Xsq6?3+?Y"*?NybF?Ar}R?b9?$PM?Rw(? 6?O?Z?xe?×?K??N ?aӔ?S? ޼?2?rd%C?ә?w?έ??~~?q?d'?_$? R?Y ? ?T?/aɠ?rno?`N?%i? ?q?Rϑ?2(X?!?=ڄ?z)ޑ?+??y? >g?Eǂ?Yz?ɗ%r?fdv?D~n?/}?jr?ڵCv?I?j?W)`?*=,e?K]?^m?c? 0h?'+?a??;3?p?E,T?"?a`??NfӖ??X2Ċ?ՏD?a{?r8?̩?HYz*?!$?2?T'?m ?Ue?^[B ?2VR?[?cJ_?)[ ?l?Sw?-ߗQ?u?7p@?{?H?u?1f??*p?hY?DǦ? i?By?q?^??S?;?W.?n?Y?Y??sh?xf3?+ ?5??wf?_?? ?ʖ? P ? ?ґ^?U<?mO??N ?mvW?(]? T?XuZ?wmb?~Lg?й_?ae?lFNm?#rr?fNk?[o?C@?]?w?(v|? !u?M?sI z?=+e?b/9?~m 4?0.?QFP7?b 1?Dh(?T=?TT#?Rv?e,?ZK ?Re%?25??bҗ)H?vЭC? .L?m8=?]eC?s4H?6vQ?!fW?L?T?/L?p?1?5n?1 U?F@P?5F?"&?!?/fʸ?]H?O,? _ȵ?ȭ?D?.G?eC?f?LJ_?d?K:u?Bk?t]p?9[Ix?h?-!m?Ur?Ԝ? Y\?KK$X?a?1t*]?2ES?i8M?冖X?UR?<+=?. B?ԣ8?B:<?2sF?Ѧ:K?YIA?F?r4?Dq.?4.8?St2?v(?|-?;"?=?{,?i?%?^޻?riw?˨?c 0??޵?Y?]?9?? P+E?@N??Wg?շє??9H?3{;?_ z?Ƀ?y?̄??q?8-K?]?S?,?x?-M?G$? ? ?%ۚ?w{^?H+?;|?̈́S?ħ46?{!v?x:9(?nL?'V`??=?e4C?<?T?9~˦?pDJ?Nں?<#?A&n?Ҹ ?q̆?ۘY ?b?LĿ ?? rg?|LX?aKL?I?>?DC?>?6W?˼?J?hx?t?O@?g@??;7?A"z??A"?<? ?,9?$2b2??%+?˗5?Q.?uV?wO?[ -H?@?@j<?jPR?3$"D?hjK?YNu[?[?{B?0@p??z?ki?*?o-ܫ?B_ ?J_?@2?#?ȧ?:d?rٞ?De?;[ij?D?g?KN*}?Jɤ?:??dP?df$n?V;@?6ST?'e?n+t?{,?nt?{>r??m[?!P?SX?^?Yd?#?[S?U./?. D??(?]2?E%?XP ?ɍ?r? K?rJ ? 3?u)?3=?9O'?O-(?mnU2?/H?KnͣT?h*ha? Jjk?G.D2"?J\I"?G%"? Zk"?o%9"?#"?S"?`h"?v"?!?!?}!?nCG!?"?Z!?o6!?O!?G!\!?"WF!??0!?yM P!? ;!?2!?Uu9d ?!?0 ?}Ϧ%!?6 ?_5!?tj!?k=r!?!?*!?:f!?qy!?4N!?fUi ?O!% ??څ ?8M ?Q4O ?m- ?I@:e ? | ?_ ?_W ?l ? ?u?B99 ? ?]j# ?0A ?G ?Zn ?%V+ ? hx?'֏?t(L?L?@z?Iad??jm?~ 9O?]59?Ó\#X?B?6^ d$?*֥ ? 9-?,?F,K?%H?&!?8?9!?Zc_?95]?0:?^s???˻:?GR?_p-?k?1? e^`+?TKs6+?ba+?|.I+? &+?%j*?ź*?+?UB*?Ÿ_)?9tH)?_v)?)?x/})?|󈹤*?sQ{*?G+K*?4*?-SQ*?:**?l(*?E)?A?g*?t*?:*?Ӫ4k)?m׷.)?OM)?ZX)?B|)?Iʖ2)?J`P)?hW/b)? '?.&?Os5 '?4s'?AV&?ǭ&?<&?-&?x'?0j(?3(?OEO(?»զ(?p(?DY3(?N(?93l(?G'?_[Y(?('?d:'?J* "'?Iԧ'?:}'?Ճ'?R'?AKU'?eqf'?_/'?͊#K'?7w$'? H{'? ='?AX'?OP(?(? 3o#)?CY+(?ֻ(?U_Pg(?ӷ(?ӌ(?-?3v-?(Z.?^-?$`l-?o-?N#-?Iӌ-?0݌[-??2-?4h-?feF-?Pf -?a,?T-?<$,?+dXZ,?(Vi},?W|,?z^,?l,?جp,?':,?ͮ,?V;fr8,?)2 ,?8 N,?(,?X+?t^+?$'+?Qps+?UP+?;ߠ+?z+?2?8(1? HU2?[1?w1?3gF1?0.͓1?Gme1?ɯ[1?Q*0? $}41?q`0?vQY'0?iw3k0?*!0?G,C0?x 0?Ih0?9>30?ϩ90?B /?k@0?)0?/?ɝFt/?/?kD@J/?Ɉ/?br/?ZC/? /.?^ /?E/.?'kD?1(?X>?n)1?wF?p?AI?I ?~+<?jD?LN~?DV?Ҥn?0?}l|? ?T'? z??qn?Kp ? 8{??1קȽ?#c?1?εRD?'GW?i!¿:?8R{N?=j?-}?:a?% t?}[?U??PG?z1 {?0$f?ܙ1Q?rE??C?Y?N2n?N?z9?L %?fB?t2/?a]?f?w?q8]?,̔(?d??tF?o-?A<7?? +j?kE?߁?_)/"?凋?^#m?C*Y?LW'w?y&c?4gD?ނ0?N?$|J:?"F2?\ ? |w%?in?z?n?@f?fs?7DANI?<I?GbI?BV:.I??-iP?|=ڔP?|ԸP?M,P?Sk5P?rP?r!P?wQ?Y%I"Q?ThQ?p6R?# P?WyQ?'2Q?HP?!ʄ+O?~O?aO?-;NY>P?-0O?(1vO?\4T8O?t4AN?xfKpO? O?kN?~N?x>N?*iN?x@9N?, M?q{[N? CN?gǥ?M?ZhM?/oM? i M?L?<3\L?+L?(zM?V{L?٢L?L?6YK?{@M˫K?&h"L?f"K?T H?XmH?QH? D#D? ~C?MZ^C?0{awC?KD?Tt@C?ԋ'C?$ڠA?ָB?u*w2A?i5XB?|DA?YU(B?ϗA?៻IB?5B?R:s?"=?~ޛ=?͆M>?!=?y@?%(>???m}>?Q] >?VZ??ߓ@?wԴ??Q5@?.??}7m????{ 4?b4?=64?!W4?]%/4?t94?e4? 04?2?0Z3?^v3?g33? O t3?R 4?=<3?=53?@"73?N2?2?: 2?;3ef3?ԅ!2?3?O";?~E:?:?c::?JO;?^:?`#x;?/Y:?q :?eb:?$<:?~i9?:"f9?t9?zg9?CE7?2 7?S!{7?vh*7?5\4?K4?pT4?4?016? 95?Md5?~5?]tY5?ZI 9?,28?)};9?k8?i8?s 8?j8?W98?Sw7?3q`7?OȬ7?DU7?~}S?_S?/KGS? S?b;5R?RR?=$R?tQ?dR?Y@R?vQ?(]?KZ? *?!g%9?!?*'.?;?"/w<?ᮞǵ?.Ǯ?@?D/H?*=ʧ?Ѡ?YS?;YTa?SQڙ?n?r?F?!?z&!?XUz?s?,7~?@w?$l?Ee?]p?gnhi?^#_?LX? b?RB[?ǨyQ?J,J?D#T?ˁN?76C?vt=?mpFG?}@?ٓM6?]q/?)9?ᕝ2?N(?*!"?f\5,?y%?W?=?տ?1?μ ?<@?jO?eɞ ?%??O?qI?ōbA?n?*?c?Ѭ?Ju[?tu??YY?g)?W?~+7?~|E=?՜4?D:? 2D??J?A? XdG?P?8:6W?buM?ۂ/T?$]?#5c?.'vtZ?JL`?5Ɩ?~ˋ?iC?J7?LR"??Z}?~j]?/?w?pGj?fp?VSg?(qz?vm?gjs?*j0?p?s?j*r?q??fz??\ ?W?)F?M? ?\&?C?aC?E<? ?0w??S?F?2Š7?™Jn1?Я"+?^G4? .?($??`(?9i!?[ S?~S?Î&?kB?V ?C,?)C?y ??;!?ߨ? ?B?y?%P?:<?i?^>?ww?EK?W{?y4S?N\??X?V?eg;??׵?9ڰۻ?i ??d:?R:??adF?WnaA?s_؍K?F?չ`<?0?;";6?Y>.?JvA?#p:5?{$;?|?y?P?࣯?h?GJ??^?̡֕?{?]z??^7dˆ?(n(?`?@?D?̴ݞz?m=?O~?!t?Di?tn? Auc?aN#x?#i?lkJn?s(]?FP?"~PW?*9K?s~Oc?gS?S???t>?0?x5?1G?k>? x?L? { ?.?̤U?M?Wsi?!l????$"z?*?Q+U?@s?@蛂?=U? DH?39&? ?r*?|gA?ch???V?#?%?x??+?1\?/?b$%?< ?YM??~)?n#d?l0? ^S}?]3?[ܑ?lQ$+?fqo?:g?(? ??H?LƸ?'hҟ?_?!oW?8R%m?]d?}9?uy1D?y3?{ ;?Xz"N?[?5F?/"4R?Q<??9ԝ?!I?<?}?.[?H ? X ?KQ?ͪ+ ?ts ?\n]?mV?-?QCu?-?*?lɳ?&(6{?f?q?*sk?)Xƙ??k?h? ,? t="?Qc5?*?w7?e?(7 ?V!@?I ?G.@?I?~?' ?>FD??U ?(j??Q2??J?FN?3?nָ9?As'.?:3?t~ ??W@F?vH9?I??W ?el?? ?,?t?. ?L)?jh0#?Y.?^z'?⁗?/?A?w?Z?bB ?U!?*? ?=F?b0\?QUg?Z^a?87Pm?96Rh?Z?@S?Fa?f'Z?՚sL?;F?\R?c K? ?t?Vz?T?Wn? C?1o z?_`?A?G?e? q?^4?I{?:ݽ?$;˞?dx??d[?;j`??jg?=T6T?'?0j?c_?ev?G?u:?x4[?Jk?ۦo?яJ?/.?}D%?e$6?RaP.??}@ ??+?&2%? l?cX?nl{??عN?qG?ӖW?(Nz6?%?m|?S?=w?4?cu?Z"]?]VA?۴b<;?&5??O >?NxJ9?'/?3"?;(?/l) ?K{2?*7%?Xk,?nu]?Gj?H?;aV? MfO?$.E?(1Z?c,K?$#WR?$? ?4?YB?Q?q&?zF?x6q?M?"?}Q?|E?J:Dz?ྨ??;?v;L?QΨ?D]ѭ?,P?ߓ?Nĕ?DzcY?#?{Z?^x?3 ??vQY?T?J?-?2?j? Q??ZG|?CSf?mR%?峯?Jx?s"?͓1k? ?0sIu??`]d?b`?l\W?-?omv?_6+?+X? 4 ?-4?n ?z?Df?o?Fk?Zd?;sO?>?/t˚? ?~Rĭ?˧H?>֠?Zd?`U?oK?i?g?:ß??Ԉ?U?,?mm?ӯ?B???7W?{?WRm?F?V?[m?|(?dpoM?b9B?JH?ۢl?v? D$$?AK6?sb?M)?/}$?.<̤?J?'?f|??b?s?{[b?R?R?1i?b?kŲ]?%u?_=?#[?RorT?V?:?J?zۼ?Uh?xa#??c'?梂?5?IeX?6.?gd?&{? d ?5?W?1f?M3?w&K?Tɠ)??Es?F?i?1}j*?͉? ?Fg$t?tl?=Ane?J^?Z?so? _EXa?h??ڏ?gBӫ?F P?-?£?ٜ?}[?YQ??Qy{? Gw?~?wh~?V2?k"?'?]?O@?d'8?G%A*?х1?Y/&?ga<?r-?4? U?3_G?ɢN?#Y?]C?_J?쁊Q?Js?ǎ?K?}M?x9?Ӻ? v?!$??vX?V?nFX? ?Xo(|?M9?E?a{?W?(? ?Vn??3?,7?Y?M?Y?Z?B?;=? gC?[j0?B?ϷV?2Sf?_9"?TR0k s?3?1? J?k5?59?z ?eÆ??*%?V?ߑ?qi_`w?*te?sG? 7n?x[T?qB?;(]?o”K?dD1?u% ?N|(:?y(?@7v??;ƒ?{J?*L?|?4>?[e?O?L̸?l{?/=?y&? &??R&?ӎ9v&?Me&?g~H&?lDiqv&?;%Y&?۠,&?t(&? KU=&?*&?3yׁ%?^]%?}{&?[*%?4(J%?6p:%?Ǎ%?#wG%?ڪ.#?,r#?I(+#?@3#?v#? $?5$?uM$?ͭA-L$?V!$?t$?N4$?v%?^%?bMst%?;SoH%?%?C]h(`%?( ;u%?1%?`)%?lk.I%?0TBH$%?m$?vy$?xw>$? "&@$?r%?d$? $?ݹ$?xb$?RW~~$?WtJ$?1dܱ$?0o$?l|$?Ȱ~#?}:ǥ#?.#?Ae#?z T#?{ֲy#?ߋ#?f!#?t9M#?<`7#?Y #?$gHa#??/V]#?/&p'3#?>_"?Sŷ"?"?7;"?kW#?D"? '"? ?[: ?ԗ ?u ? ?E"?K%}"? Ǩ"?4P{"?D'"?j$y$"?~£!?w'P "?:"?%[P"?e gf"?~`d"?_X "?B7"?zkM"?!?H!?7=!?S~!?*!? #0!?#P9!?Q@!?C{CY!?uBD!?&m!?;~lR!?9z_0!?!?!?o2 ?E>!?! u !?#!?"-!?~Tؕ!?6Wf!?S4z!??Wө ?7 ? ?ɀ ?$SJ ?3G_ ?C^3 ?=F ?lDt ?8 ?6[ ?qqn ?ƃ?*Y ?З?u?rIy ?q0 ?" ? U ?QGK?r?Ta?ȑ$xv?Nd?QT?-ki?r~?j?毜6?+*q ?[ ?1_m;??T?? _)?؄ ?a~β?Jo?~OJ{? 6?-Q?bp:?߭^^?}Oɠ?vd\?~״?(;e?+?c?K?=?S6+?Ӑ\+?|q+?N8+?f*?ڕ/Qo+? +?u<+?*?}g*?Aq *? *?ѼS7)?߬))?u)?d)?X2T)?j)?,)?L}*?^~#*?P*?~*?)?槎6*?{QЦc*?%)?mxO6)?^gZT)?2vr)?]$)?ez)?b ,)?v J)?&? &?qw '?Y&?3\&?? &?w.&?ܒ:&?? '?|2'?~4'?-?9-?Ը-?nFv-?8I1-?r(S-?6k -?K1ɋ-?^, +-?tM-?5h,?YӮc,?$,?h]`,?%<\,?%q>,?mW3-?: u,?bǒ,?NC,?6Ó,?rFj+?S+?K魷+?`cO,?*C"+?,?a`\+?cS2?fN1?Ry1?~'2?y1? Ł1?>=f2?p1?0?d/?2n/?H0?򒳈/?^q/?*}3/?fd\/?yUmuN/?}8 .?[YF.?ż4-?\r/.? \P.?k3.?U靺.?u/?rth.?ӧ.?]1.??FjG?Cȳ?5B?ϋ?-jr?Zmˎ?GXz{?:%`?xapM?;>i?ណVV?Fh:?VI(?JC?iN#y1?\H?i <?fet?]? ?᫼? QZ?x?ȍ+?_9?ǐ??v?KD?}/1?CP?0;?p/'?X| ?N?V??2?Z?8;?`w?߹>?/o>?bZ>?Γ=?gnB=?kf >?^*Ӛ=?ڵ[@?\??I]??H\??j@?r@?>?ӈH??բ??6??eh4?;C4?pŽS4? s4?t/4?:3?13Ia4?`L4?[x2?˭2?-2?5Er2?53? U2?)dC3?ߘ3?$h1W2?r 3?dm3?@o`;?I:?3:?Ҵ/7;?*:?{I+:?\T9?O:?049? k9?`9?9#,9?rB9?eUUb7?U 6?s\77?з6?7v[4?B85?.,A4?}+5?ˍt6?\5?H]S"6?0y5?7![5?F6?I6l5?&5?#66?8q5?XA8?! wa8?8?8?td7# 8?.kó7?i}i88?:a7?C0]7?Ya7?DL7?"67?'ڵS?йbxS?!!R?DQR?KcR?] OQ?gR?JP?FXR?W}Q?).Q?5RQ?-?9x&?',[? ā#?MNL|%?Ǻ@?ؐT?eY?5S?ܧ?3eb?]{??? ?ZE?V?o?g?b? )Ё?.#z?_~?3~?>s?\l?Ҙw?Ԩ_p?he?+U_?/ji?b|qb? FX?7NzQ? [?϶T? }J?C?QpN?"VG?=?L^6?@?OV9? /?\A(?3?]\,?v("?Wj?bY:%???M[ ?m?P?FN???J ?^/ ??g/[? ĸd?b^?5ꂹ?cq?;%?G2q?U??^i?ȶk=?PE5D?9Rb:?@?sJ?g5\P?4 G?g*N?!ZW?c]?%T?>!sZ?6c?]:Bj?7`??f?T?eO?J}??y+? >??&kY?K}?p?7=j3w?=Nm?t6v?v"s?az?a鉩?Xk??!?N?5??c?/?S4??;+???HR? 7?<\?nV?!u?. ?3d?cx?h@?`?s[_?j?7?yK2?D=?Ͱ-8?V,,?1r%?O2?Z)?Y?L0?6?K ?լ@"?D1??q??1?.?` ?G?%??68?()F??6 ?5]?ي?|]?O场?qyl{?~U? ?9x?\2X?VF?Vß9?+D@?~N?& 7?z @?/[F?ЈǷ?KA?'[? ]U?MEb?/L?0????h0_?Ş?۰?dR`?~&|?Lr?Y ?Sw?ՁPEi?_V?u}_?UDN?ؼcpn?+($Z?c?f]?5}??n?(y??A0?b7s?/E?q~p?#Ë?V>x??Q?E}6d?U?p:???vో?vˌ?Hg\?]mb?G?Ӵ?^g?g h?x2?6W?H$?"^?jF?s/?x?Sw*?es1l?#sm!?`" ?U]5?R ? %?͒?SZ?)T ?=`n?G:?0?si?ml?iڱ;?x?`Ti?k?L=?Fx?X?o0?~>? ت?/?kAX?=m8?hw4FH?(e?r*? @?SO?2er?{?N&']?no?O@? Xj O?j0?@zC?0)F^?[p?2eQ?2~g?h?@_?$'v?}l?l>?A$I?g3?hd??]rmU?{ b?F؄K?M67X?h?E: ?3??ݱ?-?W砊?e>o?FC?g""~?^??Q??C?xm?s+?uˏ? )?ԓy?йx_?'?9,Y?Q(?}Ԧ2?315?:M(? ?'?ޣ?^??Zq?"?ú?af?W?ߧ_?~3?3{??i9?4Qd,?Թ-E?4?{;? ?p%??PQ3v?_>?q} ?Z-?.k?HV?܌!?Ѵ ?ٰ?"?2b?:>h?&\Y?%`?늗Q?L~#t?L6g?11z_?J?+W4@?iW?D#L?f?χhv?{س??7r?jlj??-?\Q?s??Qu?b[?"+{?>Ŭj?r@?_?wV?&c??"a?"?0M?λ?N+?{?x?K(?G6?d?T.P?{$?e#??n?O}?(?57?Щ?r?|U??d?l?Ba?Wli?*Os?}z?؜Dp?=x?&qӔ?Ԏ?|'A~?tx?1?o?:?ຬ?B?~s<?H?T_B?L&6?r (?9/?S2#?(?2<?o,?(3?BEe?^c]?M]N?mU?f-?M ?\!J? ?? ?)N? 4?3*?X7L?8u?QV}?<"?)?A>?~2%?)R?v?*p??&$!??8?#? W5?UE+?I??_?yWX?. S?":f?2+{1?x9?a-?_x5?lOA?.N*I?{D]=?;E?Dx?vBp?Hh?"t?.xl?`?MX?5B Q?yHqM?d?T?Ԣ\?&߫?n?3!g|? )E?jఐ?XI?ɺ?͊?kUȠ?ۨ?uKœ?Qؤ?휇?v?ȴ?^?/?;U?f"?7B?(? ?j?T}?p?~??o?A?޵ ?R?<?,3_??T?vt?8s?[Uc?r?:?Jc?#??g?bP ??Vi ?|a?*D?nHu6?q‚?`?b ?fZ?㾶?6j?j?;? 7m?p ?d?az?ղ s?d??TK0?(?iJԅ7? d~0?6DM?h`WxT?gF?RM?mDN?7 :_?R;ƼV?BhR?XZ?6g?JCp?[c?bGk?Ex?23"`?pt?ǹ'}?%+?;[?\!3?<{?N?C(R? ?1Ka5?ζ?7i.?.?C)|?&??:[?VV?40M?}e"?࿇q?~z&?H1?M.q?#?VӐT-?k?b},?L*H?B2.b?@G~?q0?p2?U?ה p? ?.ߣ%?:mK?i?_68??@ז?G]7?{T8 ?\&?F ?g]9*?gL+?|?sϝ?AJ?d] 8?6\?-ޱn?+֊?aQ? Žb?C9 u?Lo9?/Ӱ'?ێ@?z0? t?t@?w`t?Ƙ8Y ? WK?QV?^;w?dA?S3$?›?|??IH?)ۉ?C녴?:?L01?۱tw?m?8?ـ?v?|x?*"?~cwH?тգ?թt?`\&@?֔}?:c?#R?zl?[?e?_T?@(Z?77ϫ?h{?PO?V^L?NҊ?T'oi? ?J2 az?Ģi?Dw?~(r?]Y?8BI?vPma?7`dQ?}X8?V(? XA?ꝧ0?A0s?a??}W ?kZ?9a?x?;V? j?؇&?ýj&?f(\X&? ퟁ&?O5N&?b.&?(d&?=-B&?*1Gy&?˝%?+Ҧ"&?,X%?P%? J%? %?_vI%?.%?;g9%?~v%?j)#?WB#?1K$?J?#?2 #?9#?s#?n|=#?h3$?aCbW$?c$?1A$?O-^a%?;%?<|%?PR%?j%?H%$?z,%?%?q$? #{$?h<$?]1e$?Ͽ $?wVf$?*5ų$?`u#?(G#?õ3Q#?Tl`#?#z(#?"nM"?f"2#?3#?/ 樽"?"?8i"?/[Q6"?+i ?DC0 ? m ?2 ?I !?;P ?a_* ?b ?u%̑x"?XZb"?!&&y"?2Wܭ3"?_ "?%FJ"?>L!?HuP"?4DY!?9"?Tv-"?H=!?52!?-p!?6N`!?Ą!?*!?}+g!?6PK!?ѯm!?8W1!?B `!?D!?Z<#!?7Ud=!?~`t!?||!?>Q!?np!?o ?B! ?Ze# ?r_Ɍ ?SqC ?* ƞh ?xV ?", ??v ?w-y> ?GKrVQ ?CA?Kd ?b*' ?er?( ?N{?|B?eGgH?K8]?E2?eE?P]q?ߨT?$~Z?r2o?J?xu?L8?©?[k2?O/?ZY??եA?m9 #?mE?4N? Nw?W?.l?_%?/#?T?fX˚? ,?d?j8mǯ?k)?+?t+?)O+?/d2*?x+?F"+?70T+?#&*?*?C*?u*?<)?I*?gD,*? )?NSGm*?޽)?{ai'*?,)?2A)? 1%!)?BunR)?c(?9"ȓ)?.En)?N)?&?ʑo&?A2&?vED'?eţ&?Z:&?!&?A'?JA'?\~&?!  '?YY(?ؗ"'?A@9(? (?=ܮq'?Ff'?EF'?jND'?}='?(x'?'?79(?qW(?HcZ (?ه(?(+(?_h(?P(?S-?rb-?殿-?w-? $-?Y,?I-?-?oo,?C=+?Xv>,?۷+?Kǥ,? ,?jh,?#,?"<3+?3ػr+?VgV+?m:+?#M1?1?uFN*'2?TDT1?Fu 2?031?6;0?q1?]AW1?Ú.?S/>-?:K-?.?~b-?i0?0Z0?(0? s0?O0?f/?P"/?=g/?ڜ00?/?.1/?v1d+/?:cQ.?Շ.?&>%.?PΦ.?`@;.?MY/?.?%D.?Yn.??^2?@?É?(kr?[ ~_?G}?Og?JL?W:?T?&C?|(?rg?(<0??M?b'? T ??A??\gj?{?6ҹ?VN?s?c%?8Z?GHF?m1?uQ? 5<?`2?\~?N)q'?Q}3?Wt]?A??(?M|?:`?SU?x׺?@?;?F⢻? 䍻?Uo?50?!.?&TG?#hf?O?ޏ?lgo?%V?Y? [oh?! ?[? \?㢏?"l>?oF ?l:$?YO?ȂC?9>7B?5& ,?0i?߸ө?X?=7? 5Œ?8k?N?tsY?̛n"?zk?^gI?ZF?/?CY?̆3:?r?T?#?<?8o#?b?e?S"?T'?}v ?w?%?}%{?_z32?i?UO? {?lof?`W?4F@?&i?'M?')?Ux?ւ*??<6?6?d9?X̐? ?nQ?NQ?z@??=Fc?T)K?ҕqJ?j6K?O K?{jJ?}(I? I?ՍH?v:4J?Cq"I?ja+DI?ߪICP?6O?:o O?qN?\'~P?LO?=N?}+;M?m%CM?؁L?ׂkBL?K?cK?2\N?%-M?IĘL?,L?܏DE?eF?WLDeE?cF?|bH?wryG?k@F?oFH?2;~F?H?#pG?6A?4A?A?o@?!QB?A?̃A?g"@?3%&@?,ZpGA?bAO@?qaupC?uB?zuKC?x_D?=׷LEB?':4C?>൬C?U0D? a<~E?Ya.D? D?[%?c&|=?b}=?:->?,%i=?=X=?␥H7>?߽X??V{[+@?۶*>???5?M4? KR4?q 4?t4?4?܂3?q`=B4? 3?5jk2?yTF3?`2?ErG2?Y!v3?/2?.3?=$;?*[ɯ:?FPt:?,U&:?I;Yl;?v3:? :?vz9? 9?r9?t8?.:?h 9?@y9?d6?B_5?\L5?Bء\R6?Q5?s6?*:N>5?Bѓ5?P6?va]6?\wf8?yQ 8?Ė8?x78?`Ϩ7?v}7?i2\7? 2]y6?\7?Ru7?{qh7? ~aS?AS?߶bҏR?2RBR?!3Q? ZP?ޔ4? G?^_Q?]?%ʤW?4c?fPCN?/W??]?ri?R9zp? nc?Ѓl?wC?5?QW?c?.*?hw?`~?%s?`vm?Zz?+f?iF0?3u?,o?Py?澰?l?"V?q]?W?ћ?Ů@?]?g">?6m?6?5ƭ?23?/??0?P?!n6?RP?;o?Zo@?0[? ?e~?Bv?J?ץ8"?F~ ?!o?Mg?)Xh?B?FJv8? |/?$@3>?[5?P] &?vY?,? "?t1?a?G  ?E?x?1K?;?Yz?S?Ia?!ݺ?DXa?Wͤ?Pp6?wF?\OR?)=?K?B?2j?2u?F1-?E?Y?6?/V?s*?GR?̥\?רTŞ?^V?/,}?֏?A?;Ɲs?3^?-Ih?+fW?q~z?]~Mc?*n?=m ?ҳ?T+?LO?G?7?,W?]]?G?#%U?yfqK?=L^??^?#ױ?w?bv?|?Ԫ?<?x?ݵh?&֠ ?FU ?*3?U?t&K? ?`a?V;?, ?-~ ?P^?fM?'ץ?{2X?Rz?83r?FJ?(~?:sr?Z߈?G?>dl?"Y?_2?9FQv?J?\?D E?1jZ? Cq2?M?:B{'p?c?&c?-j|?!Ap?|e?yb~?+@ q?1d A?[?HN?Nz4?Vf?QG?~PT?Ek?xX?JJ'?: ? Ivr?FN?l"?j?IZ?$#?ڛO?}鿮? i? ?ws8?3>?cɓ? ͤ?*'?mbi?jm:?u)?opS?v6?:k? A?>2?p?l?1ZZ6?]?)??;H?FoA?x?3)5? M'?Y"? 0e?hY?4M?{?sc@?@i?"]?jƓ?f?.o??=? ?g]u)?M) s?Qx? -?Xp?1H?;/{?HN-?Ԉ+-?c e?nԴ?r?a?EH?[y??MO?@?F5? ?F,?D?W?>v.?]?t?鵃G?bf?@d ?Xn?R?,9?M:?[>?4]̢?T}??"(R???*I?Qt?Ls?l>(?hj?.a?uX?Qg?$_?P8*8?WO?bIC?rK5?nV?3f/@??K?4b?Jj? ?ֵ?w?]P?؛?p^?'v??Й/??a?b7 ??6lt?KL|?N8p?`S^?by?e"?Yr?-;T?~?SY? 2?O!?Em9?FIA?_^u5?#Z=?S)I? R$Q?s8E?,0/+M??o x?yiZp??|?C2{t?3h?EX?|4`? U?2 l?\?fd?ȵ?GU?hmք?'?_BE?,Myb=?S:I?A?qE4?OC,? 9?ɶ0?TD4$?4E?T(?iB?$R ?}1 ?}xŢ?sR?\?6?*^?̇?7GZ??p ?KN?gp?`?98?z?pѠ?gNh?М?Y?q?t??M?64?%?8?uV?N?+;?H~???ί?c?'E??la?x̲?t;Z?Hx?(?bW?k?=5?U?Z۳'??В?"?j? F???%O??wB?s)k ?\x2?ծ?V,$? +?Z8?H?Fd?ݵa}?g?FW7y?q?[7G?cx?gXrj?b?Np?Ri?f?o 4?<"i՝?nsh?b\Z?6s?{?2?*!?#B(??!?{K[?1"T?]$0b?9qO[?Hi>?W0?/^7?b7L?_ÜE?S)?0S?xh7?>? E??։??dN?)&0?̫ԣ?t?f?}? [,?@x+?;ذ?)߽?8?e?W6?s>N?QP V?&I?R?&]`^?šΕg?=Z?+c?Y?4p?-Qx?cŴk?EOt?id?!N?P}?^?U{?Bz?&L?G?9?·?F§?-?O?q̗?Yއ?}2?J0?w?o¿h?S5?8o?QJX?3\YH?U_?c9"P?8?()?\@?N0?܂W?E ?? !?Rzs??T7? ?!M??_?vu(?e?y>?ί? zu? @?0?wp*?x|?ɭ??>?c?5??O(J?$(?6MG?.h?*?Z??F ?[R?P+??+?f2?gT?w?c~?s$w?~+?G?EGX?$8? C?ڿh?ш6w?ALT?)ab?^x(?1BW?4?Tw: ?aA?l-?*?$0Q?Z?O;]??&%?%?? ?BM? ??1SA?*܉?Mزh?^[?q/x?eM_f??*?^fp?eޖ?N.? T??J?9 Wu?ŷd?'I~?N!m?|3yS?jB?* ]?cK?GT?ߓB?:L]?gHJ?q71?Mzn ?(v8?t#(??jj\?tM??ؼ?~5?;#?ưn?C??O>?_)?#U? ?1?ћ?V??1?w ?;?2)??W?5? '??TF?;?cK?m<?%t?x|?ϫ=?2`?}?ݐ? |"?a?e!:,z?aDX?u2?i?-}Y??q?c_a?DN2I?y8?dfQ?>[@?y(?L?۵0?\ ?~??~0?M?]#!?_?T)?Wy?Ci{&??YڔX&?5&?;u&?t5&?}&?OR&?$&?y#?9@%?"%?*%?6%?-)%?l%?zب%?7%?ayU#?_O#?n9#?&i'$?>"#?0#?{ݹ$?`8O$?^3w$?t+$?4_$?rPB%?/N%?'hX%?Hb2%?^$?$?[T7$?Fc$?Fc %?ֱ$?8$??L#?p9Y#?`Tk#?e6#?SSqI"??r"?I7#?vt"?MטԎ"?f"?톿"?"r"?A ?u ?38 ?}M ?E, ? !?F@ ?ha ? >"?ѭ"?*J"?T"?Ӎ!?>^!?7)!?%!?%!?}!?l !?I /!?YCk!?XM!? j!?Rn!?58!? SPW!?D ?r^ ?JiX ?yy ?&: ?X\ ?DT ?H$ ?G??o?!N?IZy?QC?>!l?ZW?DD-?{7D-?|A?MV?4܎?f2E?ji?%T9E?Jq+?)t9?# j?ő?Wv ̥?th?5}?2r?ơ?6?4|?N?}0??(Z?3'+?q="*?V+?Y'+?;v%*?U J*?+J*?)?G )k*?:(*?hn*??Ju)?CR)?)?^)?!(?Qy)?])?]b)?"[&?yu&?mfF&? )&?pr"'?wV'?w'&?&'?Vf(?MЉ'?Q'?$L=(?xFZ'?`'?:'?/z(?=k(?. D"(?tC$s(?7~n-?[`'-?֠҆-? o^-?P t,?bt~J,?*j,?ޝz(,?#-?>M/n,?ޒ<,?=,?N +?wL,?,?=+?I 7+?[Z+?h+?7H2?);ׯ1?Ryw1?L#2?INV1?/2?'Ϧ1?;)1?]0?0?C Q>1?ιj0?@%.?Kʎ-? A-?m.?ѻE-?.?`-?C=I0?2/?7z0?CL0?&$/?n+Ae.?[DvA/?:ݿc.?X/?P,k.?5U<@/?%(ʇ?{rer?I䙙??$~?و.]?ҫ9?J"\K?&rx(?Z@Wi?49?£J?XF?n8?'?a ?r8?$s?~Q?I?H[?$DD? %"?^{?Tf?Woĺ?F[k'?1bG? ]?5v?)R?h?"(\%2??>$=?9f'?%@?v?e6?UyC?;:?7?c,;? N? q?9 ?9tI?5[?r ?n۪?7??WNMa?3W4>?}?]T7W?KV?'`L?P&;?!^?]`???o< 4?jK?}Im??ވ?z~v?L?űk?!/?\pM?!?t???t-^?cq?S'?I*?B???vF?U?p)|?T_?hǧ?,Fp?пB?8#?{S? 6?,?6??x ??%pS?ʶ?֪?67)J?*0J?rI?:6K?o/\H?= gJ?(&I?hN?i M?lL? .O?Xv˃K?\oM?AB^L?wF?x& G?&*E? @QF?DT5G?܀AI?@zBG?Y0;H?1A?1LA?Fz@?~B?W;OT@?QdA?TA?U7.|C?)pE?o.KD?M٦%E?nB?ۮHC?g,D?mBQ2?|K>?,=? L B>?$u-??@?Fד*??z*@?5?(]4?68Q4? K44?q 5?%` 5?M4?}j3?R2?NEg3?+5}E2?M?o4?/ ˺3?l=3?]2?B:?,'9?~9?ۗ8?:?9?3 9?-86?MX& 8?'7?gM6?E 7?M5?^܉8?,qy6?SKu7?7?FB:?~"S?R?k>R?#N>qQ?SP?nL?|O?Aw}.P?Riq3N?㕟RP?ѺVO?yTN?՗j?~E}?SiT=?-?q1?.v?cVj?í.?S0?g?sa?V@?&f??5Ϡ?o5c8?[?؃?Yħ$|?L?KHҀ?mtt?ɡl?`y?9Rp?]0d?fIj*X?4 a}^?c+Q?phh?NX?[ӡ^?ϚK?߃%D?R?pqH?T<?f]/?MO6?9{)?@?\t0?[6?!/ #? F?;&*?{78 ?P(? ?B ?Q3@??ԧ7?ff ?B?Y?? ~?kl?  T?L8?? K?UT?pzJG?BfsP?o]?ao?~gf?5uv?Y?Jo?CI"]f?Ba?6~?OM?Saf?^v?'v7Ʉ?5?9d?ŀD~?U볭?Cǵ?Kk?1?!6??2z?ړ?"?ϥ?!?.?Sh?kAu?`\?"?x"?/4???E?8?Z?;X*?IG"??pl?KK???Y?ru??و???x?ؤ}?i9C?;?M?P?H?9w'}\?TrT?L;A?B5?WYPL?1??4!?oP ??S?n~и?4?<*?7?P|ih?I >Iu?h_?߲? o?#du|?NZ?su$?hu!?"???9%?nA?mo???3@?M%?;M ?8,?Y?i:?c61?C<?|?&Ě N?hg? ?7?d\? 2X?qfPr?U?`6o?ѓE?+hd?7?i?o}?x?r?'SM?`?Hk?xJC? ~ ?b?Rā?^9?\?ndR?????9Yq?"x?oy?ku?5?◺?Z? i?o4?]W?0?B,&?R`5?ב"?M+?@r?6q? !?2}?kb?d D?Z4S?-:?IFn?>74\?k`M?< ?2 ?oo4??߸+?cŷ? )]?i{??<~/?ic?H?å??a5?Q?jS?W7?o.?井ח?oVΈ?,4?I?>? <7?K?\E?έm?#??g?R0i 1?*$??t4(?+5?? ?湑??H0lE?ї?Y?YϨ?Ÿ?h?"i??Ҥ?07?uP?( d?Ut?%?wᵥ?;e=?e@C?`W"?s)?a?:&?$Ul~1?Va9?|/-?`4?];?\?O?2v?j-?2??Ho?* ?`???D??g]? IA?Z`9I?{R<?NE?7m.Q?DX?.KM?,4U?G1ʈ?4?Vx?1i?6M}?:tp?1†`?Fjh?,ȱ\?^u?:Qd?=bl?8??ւ?䷌?7t3?U~H=?=`4?}A?h 9?w v,?D`$?B0?:+(?@?]p?[O?ӣ?B# ?'?[S???#?U}L?V?,??ްP?R.?m ? ThU?D?6?)?g?w6?Ă!?:a?!W&,?5?Fۦ?Q?[?Ot?E?C<?۰?'?[M?TE?@==?I?B?:Q;??0?(?gD?mw??I?J??Ex??H?O?g ?V=U?Ε?N?Z ?'?g2Ew?i?^Rp?}?4a?d =o?zv?=Ȓ?E?΁_?ڗ?Ií|?nm? Տ?i@U0? "?D_:?_*?{`P ?Ah?)Z?>?#L?VI9?Ua?#\F?u²T?&0 ?"&l' ?= ?Qɘ, ?O # ? ?Z* ?ߨʔ ?6G ?Vg0 ? ˩T? ?o?}?H??Ѩ)??2?b"U? ?Z?ί?t?{?`e???a?N(ۣ?5ℬ?Ȇ?ۥ29?2W3?KY&޽?޷v?yߛ?>?I?|H?N? V?^?# Q?LYY?a6g?D)p? b?Hթk?"!y?ǃWȁ?5t?-e!O~?t?gђ?K?R?*ݿ9 ?pIB ?-5 ?2h> ?j6ԗ?ĸ?mU6??W6w?=??xg?%W?"Io?#b_?u1G?X8?ygYO?翙@?C???qm?H!(?j#?Xy0?}&t ? ?3)?@;?NF?}w?ebq?rdC??7?Ty???]?1?l8?ke?տn?Ad~?~Wo?ݩ?Bfv?H_?p;P?nMg?>W?|UA?3&2?hZH?|!9?r@"?J?h])?i]b ?>?K?Q%?K"?8h6?n? ?m?#ǫ?ÿv3?Bh?:?#; ?d|?֯tC?Z?8?Ɋs?Zu?Y&?O?\h?I`?59?@$B?#ט?? #q??Q???-??pk?'%?$?\?v?bA{z?,? ?}g?iS?DZs?^?VBJ ?:tv?ڎ?Q?N0Pf?>0U?K6p?^?] D?2?PM?u;?6N@? ?:}i0?>)?Yo|J?/NJ ?x%0?'?K????>o?S?H?}?=1Ŵ?0é?Q&?Xla?GKD??)VĤ?Fa!?8?2Y؞*?^|?~??kR?&&?}?Z<?p?=?礤?~zK??a(n?.? DG?ai?Bő?YKy?[i?+WR?q?Y?}0I?Bwa?5R?Z;8?O(?զeA?瀿/?9im???n? H?}?;?J|?2?Z?9?`Ug?bjsU#?9L,p&? A&?>&?P8`&?XE&?%?$w2&?QUD%?w#?}JZ#?@8s#?08#?d,%?E$n%?%? =H%? "^n%?Ǎn%?%?$?/o$?S;$?G$?/#?|No$?f]H;$?}~)w"%?X$?i$?H%?qM$?Z$?J_1%?~5 #?w}Q"?>#?G#?{"?XǗ"?Fn "?*Ry"?e+V"?RX("?,h"?@d2"?ݺ ?YN ?' ? ?* ?X!?:= ?!?H0!?U!?mB"?2!?Z!?сwB!?FJn!?۝(!?+n!?"lH!?lt!?L) ̚ ?o ?m> ? ~ ?a@T ??# ??va_??CK?]Vs?J?i?͕?X??O*?! K*? 䮚*?:`C*?+?śg*?v*? )?|)?w.*?՘G)?i8v^!)?'(?e)?{)?Ua&?&?Cz&?Rln&?E*'?N\oz'?D[/&?''?F|o'?Tb?(?=k(?R!(?ůmLw'?蠅u!(?{+'?7HN-?,?!8,?-eH,?-?ђ,?N;"-?G+?ߐEJ+?ӒR+?`ؐ*?M %z,?^g+?vǟ+?^D<2?RO1?2m1?G0? 1?I@0?Yi2?crH|1?yjKɵ0?1?n1.?/?Rn.?q.?Dg/?#*-?'AI0?kC\.?.?(p=/? f1?|u?Ҟ9W?r?0k?U8?c&? cM?8u,?? ?$K??S?AB?t?ԟ?m?q?I?e?<?o1?6&H?wzs?M]?S?:?ZrW?#m?/O?=?B5?nD?"֚k$??P1;?˚&?;H?b|.?LI|?q-? ?)ٲ?y?G f?(/?x?L? 4,?gyf?{<?p-2?%N??3!?o ?Uiu?8 ?*~=?88?(+??cz?N?JiP?5r?!R??ܰ?Z\}`?cÂ??L`?HO?|_?t+?tgd??G?i2?Xkg?PjĂ?1*?+m3?j=?˗_?B.J?0?Q٬?H"J? ̝L?GK?H}I?4s>_M?sK?&`J?#auF?x,vH?.~G?}E?sXI?E,VG?;YF?CĞA?6)C?^ŕ{)A?%!B?vD?P&E?acjC?D?aM?Tr@?jFr??2ǸhA?%s=?NI??#HI@?tp W4?,E4? 4U3?pL3?5?4?߯:4?{ד2?l,2?%Vj3?tq2?q9?|6?b|x7?\7?N;8?<<:?}V;?շ,9?V Du:?cR?Ū~R?[:IQ?w&pP?&YO?M?|N?XzL?nO?@1M?PL?`?8O?]{q? 0E ?g-? 9?b?> {?Kh?|Nj?&9|? ?)sj2?;T5?jao?) ?KQ9n ?4y ?~\ ?)J ?Hf1 ?q{3 ?, ?S ?[ ?N ?7 ?U?j ?F7Õ?$?}}?Wt?*?pz?p2l?- sOb?G"Dq?oh?LsX?fN?<^?p U?|r#IE?G5;?zuK?ѵ@?(1?=bvC'?=:6?2-?]d?y4`?)R#???f?&3?d?n?5?h?!?oV?߱b?NN?_\?سn?=}?ՇΈh?kY4v?E?U?/U_??m/???{?bX?+]]?R? d?1k]?H ??xx`?P?fO ?O+?a>?L.÷?X?;V?,?M3?R1?N?/p?=;7?~JO?썳?^?,0?΍?|4??V-?x[??&?Uw?:&?4; ?Mxk?Ɛ?ۆF?S:?5cpGT?u~H?g-?jO?Byz"?7{v?P <?s?6*?+?(*φ?m]Ю??m¹?.CpW?aQy>?QwoJ?g?!q:?TY?5m,cM?xP;?ھĶv?l?G?,i?6-?uA?sݯ ?^)?8? +???jZ?&Ә? X}?F ?!N?rbS? qQ5?2?WG?mL?oE??~a?,?Bc??^ C?e??{?#R?4r?KH?'?鏕~?fd??Aڤ?˴#q?T!?NAl?¦kC?&?? S?빓?OA#0?xiY?,?H$F??2?(5|*?e4?ɀ:?ss?;Z9?"x?^1? ??ZU?^@?Q_Ls?d?ÔE?Zy?^rH?bE?/yh?](?ީ?q?0:?`Ҍ]?$?? *[?tX.?Σs?l?;1?VQ%W?~5??O6? ~?Z?Y]B?y?4T??.M?MX?x[hp?+ X?Md?J~?!pR? d"e?Kq?lt?giJ?2Ϛ?أ?,?N(F?ޣ?­F?HQ?2D?G?g{m?V?m?A?&!?.?7,?yb?6?Wph&?! a ?o8?a?kޣ?#??)?ia ?/?aq=?q8?zH? I0?1EE?Z?**?]H?X}?HC?Su??+?Ku?ܠY?\jg?!V?j?%h?-|v?R?^QN?7?̩,??d[?S?HƩ ?­?>"?@?B?[C?0 K ?/? !B?pJ?:}9? y? U?okg?Ц8?ieL?ote? mw?j?⏳?.?Cb?WTT?*i?u;J?m/?1???Gu?+!?S\ָ?>̅?Gtck? ?ٵ?b`JM?D?,`?HTS?+? c:?L,?e?^ J?zј'?'Dp5?[ɹ?01 ??%??̳?JK?hV?̒?]`?z?'Z?8?k?K?*-Z?#?#)?Z"? $1? U?bo>"?PN)?J2W8?~jMA?-T91?ؑ<?'?̨?v z?q?O?|v?9?%v ???=M?y ?KKL?4IJ?g X?ǢdQ?vc`?굷E?hQ?@^X?ZЈ?、?I??sM4?cE?9?͓r?Xgp?|?+PU?#,?+b?P&2? d?Q?"?5?du?(7?{?B1n?>B?[||?@'<?cL$3?4(?TPj@?X`%5?FG?Ia9?%*? "?}th?Ok[?us+v?dh?)mN?9B?^ֹ[?T O?]: ? Ta1 ?$H( ?j6 ?A,, ?3 ? G ?<# ? ?V` ? . ?{T ?ETB ?^|?(?ٯh ?D?r ?6> ?p]?2??=?r?:X?@X3??Ml?@ ?W?:jL?D? ?ŋO??/J?RH,?lRR?~?1T?h9?OWh\?qf?G5U?%`?+6p?"y?#j? u?PT~?\]?3?~f?Z?%,b?eF?eC ?|L ?H? ?ɥcI ?49U ?Im^ ?on R ?~S$Z ?4g ?}p ?9$c ? Pl ?ߔy ?4 ?QJu ?xO~ ?b ?r ?Ŏx ?i ?pO ?OGl ?*! ?BE ?a,; ? ?H˓ ?CL ?.|AU ?*L ? ? ?+< ?P~ ?䍰 ?ID ?2d ?=T ?4'8 ?[[ ?eS? W?j(?v?Hc~?<?(b8? jUɠ?ǩI?Akv?aҋf?vZT~?/l?HTV?sG?\?N?d78?A(?s`?? '1?%?zW?"u?CG?V?Pb ?B!? ?Ѻ?Dn"?>H?IG^?ѳ)?KL?[F?>?L!?nm?|锵?i甥?B?~? ~?B??]?զĸ?A^ ?Ũ?2?<?Cu?#X?m3-?l(ȹ?a/??^N@]?C?3M/?kn? ^?uv? f?`O?c$@?EV?Z0F?}}0?n!?jƖ7?yg(?Hc?"?8'?r ?SEG&?eU~?i ?>…?o?GC`?F'v?.4h?)R?b! _C?йvY?:1J?O4?ۇ&? <?t=}-?^y?x?c?պ'?Ə]?[I?M?y?i"za? N?3'q?H–?H?Iu?Mx?`"p? f?G"?'T?չ? t?z6?G#?5"?0_<??ZT?Tк?՚>?-Ui?D #? +\#?ĝy##?c,~#??#?9Q&?@&?o|&?D6&?%?%?r'%?f_|%?D#?4U$$?KEY#?a$?$<n%? ]IO4%?%?9]W%??n$?A$?.$?m[L$?]%?YFr֓$?py$?q"?c"?-d#?n."?L[z"? FD"?b߬"?T"?З6"?:!?X"?)/!?[ ?|9!?b)[ ?/X).!?C ?+,k ?- ?.!?=N!?{!?(p!?rI!? ?)N!?q{!?q# ?Dc ?Yu ?퓧 ?,9 ? ?z3W ?Jq ??C\?z?zat?Ű?Oo?Ѱ?e?k 5?(}V?w߈??(o?? _~8?_?dɢ?V?h_t?W?@?ź?r? *?r)?+"A*?wlD)?Cwt+?C)?pCi@*?YXeP*??(?Z(?v {m)?zz(?kȧ&?9{$&?K_a&?܇Ȏ&?=$'?d^~'?x&?5Qu'?0U'? !(? h'?3Y)'?d,?+? ܷ;,?y&-?[a+?,?"fA,?!F+d*?MƁm?+?"+?! +?kd 0?߁z0.?eK^/?G(1?-?as/?D0?1#1? d2?{0?kS[1?_aa?@?~?gFU?m< ?=/?e34? L ?B?>>?5)?MJ?'M?i^Q?hT?opI,?5I?Ș ?nY)?#f?-D?_E?qHi?t???6 ?qG?(?uXr?\?\S>?|w?q2 ?(#?9? ?,?4| Y?a<'iJ?h^~?f/?V?#(?2O?R?}o}^ ?L$?A?V 5vp?3^w?Tc?E?{?Ғ??up??Pn#?-m?Loj?(e?Wi9?RZ?9XE?3$?EgU?7e:J?x^H?@>G?E?8gJ? lɣH?vG?+aB? ~2D?%ǔC?"ܲwA?3E? C? MB?_du?Ҷ%;?ֹʉ?Q??4?$_4?VT:3?у~6?i2? e5?84?5k!8?A4v:?Qpd9?yX;?6?q8?!':?}`R?@+R?NTP?gR]O?pMN?륶K?N NM?_I?7mZM?ܙɚK?CHSJ?VlL?b>$?{?6[Y?^?ۉ96?Ц"\?O?t? ?:m?oYW?`.?2u?{F?TD?!!?j?)K?Fl4}?/o?7Vҋ?q@V?Ícn?$|?i'?a8?P?H?b&E?s2?Uh?$V?PY?_?A?(_g?+KL?0o?\3?cƵ?hۖ?'?,ʺ?Ξ%?7?Yի? #?ﮥ??+Q?`@?҄e?&\@6?@4kI?'?e9?|}?m, ?.>?1+Q?m֏?2NL?3?Հ ?¨(?ȸ!?eɂ?9Xb?*uJ? &?58?v2?EW?X5.?@8>@??$C? |G?i?q?0?pE?\~? =Ȩ?ܣa\?!N?r?=L?}a?9g?C^~?ޡ7?-?ߺ?ArOh?h?2'?HG?\V?L.? }??3Z?e?i?{?*Ŝ? u1?誠?e ?)>?ʛm?C+?ON?h?:o?F3;?id?s{y?KwZ?)3?{?=>?Dk?O?Ӈ?}?qN?UZ'? ?]jR?[H? {??;???Vdք?7?R6?gq?12O?5L?ufz?&Fi?>?X? R?!g?N ?X?5σ?1?Fs?M?H?BHf??⼀?kH?ƀ?B?b6?s?c?; ?KٌC?/?2?c? j*?X?B)?/=?M@w ?L,7?Sd?Y4~?$?L*?FR?l e??`L?GJd?SP? ƭw?GB?@j?ӝ?:?1,?^5 ?C ?WS?4|*?!sR5?A$?VJ/?U]'A?`M?:? +G?HhF?ҩ?H'? ??.G?)?>8="?D"?iO ? Y?k.eye?R\S?h`?#?mI?q?d`e}?vl?R?F%y?Q?촧V?*V?e?l?J6+?֞?em#?8b?`E0?h&?vNJ#? ?%8?á?#?PgC?~Y?# ?/`?W??5?n4?t?S? ??~5>?y?w?Nd&=Y?XM?BiA?)=3S?/H?rgV5?U4DW(?SG<?ۨ/?1Z?@B?m{??w?p>c??E ?r *?M*Ov?^`?G[?jj'7?M ?$յ+?Tx?%E?p#[Z? g?|D ?ޠ; ?+2 ?Q(tA ?Xa7 ??( ?s ? =q- ?a# ?k ?;"L ?&w ?i= ?FL$ ?S<? ?"wW ?"Z?r?2?h?y?͞ĸ?Z"?Ԟ?˂1??6?#?C'U?K&q?4Vnn?"GW±?dᦾ?k?i?U?K?hf9?d? gp?,^?"X=j?.t7{?߹;?g?Zu??. J?l5?&򱱍?Ӓ*? RN ?'QW ?BQJ ?YAT ?,_ ?P%xh ?m] ?)Md ?tq ?`kkz ?L)m ?bu ?q ?j~ ?~ ?y ? ? ?Q ?nԐ ?< ?V ?͂Ѥ ?߬ ? ?66 ? ?,| ? ?uN8 ?| ?yCm ?H ?j&0 ?2 ?P=H ?7' ?ΦZ ?i'K ?F0 ?^^? ?{?x?^? ?=h#?4;?h1?0C@?_ t?_"?*&F|?D=c?G?b&U?ʙ8?Ȱ_@k?CF?[2RT?*?b|:?=l37?!?f?̞?4??/?aG??pv?%N?W;?xc?K| ?X?{??q ?xݍ??7?mY}?.Am?2ۅ?8u?Tv?r݅? b?  q?ﵭ?~J7?:}?`?ts?=/?#?O0]?M?20e?%̦T?|?>?"up/?(D?`4?u ?Rd?%?~?'???<= ??+?+g"?ꓭ?,?Ssȣ?Ň v?Ϊ?wn?c`~?qgo?"?$L5w?N`?BlE-R?zth?QhY?.`كC?Q4?dK].@?HU?iG?72?$?' 8?YH*??g?-8n?c?v?B??N?? ^5?+?V ?%Z??v(,?i?@S??W6!?yR ?xv?J㮪???=?kz?wf?Ni?'q6?RG_?" k?6Ȕ?ǰB?- ?iw?wgS?_$??lo? n2U??s?H$?jo?:/?z ?6Fȣ? ?l֮?rg5?`ƛ?e[j?h?T?n7?#:g?M}?4:??'H'?9Q?7 {5?[J:?ImY?2/?8mX.?/Ql?3Y?"y?!c?J?].G?wLB##? 5?=P? ?"ga,?6Q>?b?I?8?-'?T?ޮ??T??1T?_?qK?:o?ñ?Jܾz?,??s ?أg??N ?G?J?Dk?O?fM??o$? fS$?ذ?%?;$?9@$?P&Ev%?f$?7Sy$?s#%?B "?tk"?R"?̀"?tal!?B>."?5cA^!?s8!?2_C"?-w$!?[e!?; !?ܪ ?GM!?rf!?w ?sY!?]z ?T!?pQt ?Yz69 ?h~J ?SvpY ?zx?!ہ?Ѵ ?V$?I??i^Q?H?60?[cB#?ïY?2h?h ? 2?nX??^J`? ?4ƹ?I)?@3)?'g*?)?ny)?֓Pl(?Fq@'?e{(?`\'?u&?)viݷ&?7&?K&?-0&?1Ȝ<'?4^'?^}'?]o&?Jڢ&?&'?-,?e+?[%*?}\ .?#(RO*?!4,?{ +?ƽwk/? 1?10?.y2?-?b0?IXS/?$+?H?)H!"?џa?j5??]*?\1?#P??'\_?w?`KC@%?EWH?$1?[S?:Hl?S?l@?.g?W?L_!Ŧ?|ӏ?9?faU;?YA? >?.hZy=?;5?rd7?ܗ4?z5?39?g#;? 7?9?Q?#QlQ?| O?fM?򫓝kL??H?_dJ?YlE?^Q1K?NH?樳4G?:)?Fvp&?o?pux?)?z*?T3[?d?=^?ɳv?Vҿ?>D?wk?CR ?vz>U?͙h?rs?[?|?0&?ot?;_U?At?^wbG7 ?c,V ?h_v ?2 ?hm ?/  ?C k?{??8)7?n2r?q?4e?;=t?[V?,?*"6R?p?D?r+m?q#9?)X2S?򣳌?e)!?8^?uy?P?7?I$z?,F?z4C?j?q@?K?K$?ۼJJ?o?MM?߃?ie?ԛ?w4?rj@?+$?)X8? y1M?0vZ?KD?ꪠT?۹&e? ?(?.?Y/wg?s?NMHb?up?+ 7?f\?T1?9[?.}?T-?tqD?S.t?n?tֺ?(b?՗?jc?3?ݡ&@?c?np%\?oov?sk?Lt?U?=&?u!??Ԧ?lMBv??ϼ?bGs;?79Td?2|u?P?2?PgAv?K?_?DP ?qIG ?Q3= ?5N ?C ?rOs#3 ?"] ( ?HЬ9 ?ok,. ? e ?p ?I ?. ?``# ?O' ?p{__ ?@4O?3?yp?u>?!xD ?r4?ݐ?,?/|չ?c?Ԯ?6?NzPO?~??3L&?x3Y?a??>o?q ?{?YS?5n?& }?$]???ҕ?md@?`3Z ?5i ?)˲a ?\q ?{W ?d: b ?bi ?ty ?zK ?zBq ?y} ?$ ?,C ?c ? h ?,g ?W ?;s ?#`ع ?Gh ?Dĵ ?pı ?qt ?IJ ?ة ?Y ?, I ?Ái ?xπ ?X ? ?.81 ?'X ?=F ? 4 ?ݘ ? ?Y?F~?W?$J?r?y~?-4?Ժ?|l۞?k?頣?&ے?Ds?^P\?r?q~Jg?oE?.?ԹQ?#8?} ?b?hT!?^ ??1D?ec?)?\? ?`]R?~#e?k??oy?ᬧ??W}??,?cjl?7,\?o t?eNc?v?Hx?7?䓳?BH?۱?::?fE?K?fx;?skS?XuQA?O*S+?"dAV?? 1?is(1?>IJ?Pl?&?}?a0&?'%i?i6ױ?is?X?x??Ն?3?(? I p?>S!a?x? g?An>R?GC?gX?y^&K?ڈ'5?4+ '?w`<?#0?,*j?N) ?y^!?{Q? ?G.??>~?L-s?NhI?)?a.?$2G'?$3?Q? j? 뺦?AX&?f?ҟ?=F;? K}??J*U?5o?7b?v$ҥv?ߵi?xT?-SG?Hr[?:M?y9?7+?V@?٨42?؀x?Co?9#%?k?.x?kjj?xl?]q?]U@\?& N?P5Zc? . U?w??C1?.0DF?D8?#?=?Np*?*??i?"ɮ?`?˸NJ??X?8c???:?RL?Oq?,{?6?Z?$K?" ?w^?&({? t\?H0?hߌZ?YOk??X/?&?X? ?0e?G4W4)?r7(?1rF)?)l (?4)(?Wq;z'?J6˱!&?S"x&?Yu%&??$'?Hܓ%?m'?j{&?}ud&?BO&?R{ӆ,?2/?*..?c,V+?93?0?OjWT.?},?*?zT)?T+?o\)?bC/"?.iv? 1?[;?G|?I?y@ ?aZ?$lTc?<?K?U~?m6?8=7?r1?4tU??ч#?^`?@_[b? )#?x?M?xX3/?A?}Q?c@R?Zڃ?}?/B?@0l?؞?Ia?Nbe?[)^?-/?Xll?ЖI?^w?&?ⶔO?sObr?GIߌ?fpN?3B?j_h\@?I=?~;?u4D?sP@?2=?n+6?9If:?Mu8?sB+ 4?.;?dB8?ʲ6?sF4?i< Q?BW P?q{}M?6YK?iI?dH|E?I ָG?Vc ܌A?}ٿmH?vmE?/'k>C?U &;?j p?Hʼn?Ny?'?J?Ӎ??P1\?*.?+?gm8?j֤w?n:o ?y?]PA? .C?F2W-?0?q1?"ă?<,3!?̇?1?w ?{??W?3g~?D?5K?d1? W?j&? {y?(P ?f ?ܧ ? ?7 ?+ ?0| ? ?Q ?YB ?=;' ?yl) ?c ?Pc] ?M? ?INٯ ?3 ?ՠD ?)մ ?~ ?h/ ?WF ?fO ?=9cA ?z2J ?CY ?w;b ?5'qT ?U ^ ?ڏ ?VB̜ ?V ?{ ?S ?9E ?ncS ?Wh9 ?t ?@=l ?tu ?g ?8s ?Ip ?z ?<< ?B58 ?h9F ?@ ?i* ?HS ?D0 ?i ?# ?߁ƹ3 ?mX+ ?0eq< ?= ?uҙ^+ ?M;{3 ?/li?7U?^u? c?@?:ӵ?A?4-?JD ?gO?v^R"?5?jpi1?jk ?yG2?K[? ?L?y?ܾ? ?w?jl?(5?v?ԟ%??S(?yS?o?p>?KǦ?n?#?;?5/?L?a ? ? ?`a? XI?9x?[Yjak?LW1?;"?VS?wX<?/?֖j?*Y9d?&'?Haq?0P?s-H?vj.?&u?U?e?VG6?9?*)?BmP ? m?T??ߤY?oG@x?Oϓ}?Mp?JA?O(Y?x?x?ڣ?A?┳?ySL*??ŐU?mib?Ƒp?X=?F3*?nP?$|?NPm?`?t ?sڂ?3?o?u[?v(?[0I?q_h?!uw=1?ԆeU??4?{)N?~>?K%?J?TST-?f?vk?? ??Jz?" 0J?%h?Ya?fǒ?E%C?'Ą; ?W#?IF?-?8J?l?Ns?{? \?l??U7?t?s܇?%4?.ߙ?4O?ɮʮ?C?CDh ?<?[ k?9<?:wL?•0?|]F?fI\?= Jk?m"V?Pc g? $?zL#?9:?]1?Uy?cݠ?^N[?_~?ɐ?9R ?u?ZkI??%?qQH?~=?|??3zm ?5?V ?=F??F?XF?// ?4?!|??[+.?Ѯ?yA '?&V?Ѐ<?!I?6rb?n:X5?J?g X?+n?}^|?{Ľc?+.Mu?m?eI?H;?;?Z/*?TB? ?ez9?wI?:bZ?qq?^[r?)R?L{u??%J g_ ?IeT ?I{J ?qQ_Z ?qR ?L8@ ?Ƴ4 ?.=H ?R< ?: 7) ?\  ?fB&1 ?N"Y# ?> = ?>? 1 ?xR?i ? F?; ?R??ه=??ˏ™?+?I?+W? I?# ?\(??=z?A;?~?4/Ú?NQ? :????l? b?j ?qlu ?se ?glo ?R ?Zʍ ?{i{ ?O ?ST ?ú ?$ץ ?*} ?`C* ?) ?WX ? 'W ?Ԙع ?' ? ?t ?הt4 ?H ?k ?( ?eX ?jg# ?8h ?c* ?Rx?@?$? l?D8?(Bp?vv?@Wz?Ղ9?R`t? ~c?T9?\?ƣC?2m?:cM?܅K*??g?lڄa?)=o4?2L?ʩ?LT?3?JbA?f[?6$\-?hf ?v`?S?گ{?V?eSŽ?cϔ?z]|?dk?B?iss?91[?jFI?2b?7Q?̕?0?P(?k?GՁո?s]?r?G޴?6?"0#?6r??D*?&p>?t?[z?\af??Xh?' $? 8?_?Y(?t}?J=?CVx?0I?o"?_?WXD? Q?%/7?22mi?o`C?(Q?vU*?C?z)7?sI$?m; ?vQ?t;?F]?bj ?/?Yx?s?~x?~l? ⋪?b7?;Z?ֿ?{ v?W?AS+?G)?^7?E:r}?do?Je6?}yv?[Lb?/T?SXh?d[?X5G?H9?^>N?L@?+?:?2?,$?9*a?K"?W?j`_?1vj? \?Fb?q?9d?M?x~?? U?*E?S 21?}c#?OP7?#*?f?9~?BĐH?H?xlh?`%a]?j-?_?4WZ?%?Y?9a{?L;?}?jf?d?g?`u?Q?dL?7h?ϖ)K?z,5w?R/?! l?F@U?5?!K? }?Ap?V?ɭ~?:ΥP?cb ??S?nA?;hF?Q?:u?O,?`P? ?My~?)?GVtM?6\w?l9?EMʲ?Cdj?~##?/R??7ws?W`!?`9? yZ?< ?ZC?X?@?`v?1km?nK?>V?@R?k#?"Cy?nra>?g+?֜KM?\jf?%6?xe?ݢJA?*y~?P?M?y]?z,?s ?q?e?1G6?U\ϗ?*,?;2?pal?j71?l#`,X/?[#}2?Ǩx[0?bl$?#?ˑ$?_#?a#s#?ߵ"?^Gi+$#?&"?em#?W2u"?_)#?u%?o%?؏g$?:$?tg,"?V !?pux"?C!?uMdU!?rf ?l˚ ?ci? ?ЙGx!?yڱy ?X& ??JxݽA?GL?2?h- ?=$+M?"?u:#?=Ki?Q;D?|Pu ??g)`?HVS?IIצ? +\(?8a(?(?|j'?7n`'?rW%?+&?lB%?f&''?G&?Y%?2,?o*?ۍ-?UT+?k3)?.pq (?y )?.((?K?蠯0?\??c ?n?f?]5?q[/?y?3\-?{l?_?FO]?S?#?K)@3}?\;?گv???!??;???iLM?ͅ?\?@?=?fCے:?T*7?}25?it l??W:?67?g92?0?65?燓1?\gB P?fO?lnK?zo;*WI?<]F?؎A?olC?"?T3?)ף?0? 1?&20q?kF?Cmd?Q#}?4!E?F?̉0W 3?_^7?P\w$?O* ?X7T?Yzn ?ųP;'? 1?se?ܮN?>M? H?kzF?v+M?;GL? ŌAtE?^1GB?(FJ?EXH?G%3*I?ig8?i|'y}A?>&=?[J?)?t?'?^4?ݭ?mw?,8?_??h?rI?t.ak?J> ?U 3 ? ?{p ?N ?Wӎ ?} ?fZ ?w{ ?? ?hn ?k| ?cxA, ?=Q ? ?g( ?+G ?]p- ?W%?|?e+??#U? ?X?ɜ]?Qn?v?S9?1 ?@?%O?g? ?l?=W?u n??9?X1?2/-?&Y?J?aDu?SG?h^?z?`b (6?.)?S1`i?,i?S#J?<D?t,h?jb?-j$?C?|: ?u?.?[m N?N%?\??y?Eg?_ ?]%?Vg?`p?UL#??2?vn4?a.???Ο ?j?L\?Τ?W?,?fF?? 4?c?R?^? \z?w?m)?X}̺?%p?! ?S2,?lj,v?hoz?Ue?g04??S@ĥ?1O?ZE??D?P^?D9a??n?u?aA?w?,?q8#?SK?+?ȼ/P?o(Vq?`?(a&G?m?Cc?' t?=?ղ1?[ ,Z?qL?>,9?9 <?|PPw?,b*F??HcN?%z#?ϐU?-?ry?3 ?L ?x3.?MHC?`Zq#?i;?]@WY?|?Uj?b?!gQ?|?{k?[?5-?k?U`?9tI?^l?VZ:?YY^?Z?䈫?n?Ϊ?n` ?PRًX ?:/k ?Cb ?xEP ?.D ?Z ?bO ?49 ?C+ ?镁C ?h4 ? ?  ? ?F. ?Nf*' ?} ?1G ?#s?oת?!۰?}y?n+M?r]Q?J? m ?7?? ?F͚?{Ϲ?}F?i??)P2?T?Zp?sꢏu ?(њj ?|Dm ?9O~{ ?#4M ?&I ?CW ?F ?h ? ? T ? T^ ?B3 ?L' ?B1 ?{ ?U, ?Jն ?TZ ?] DZ ?yg ?L xY ?ܞ ?3 ?RB ? ?g,& ?uН+0 ?Gf! ?FpF+ ?G0: ?*:D ?DH5 ?F? ?`?V6;?!?V?!s?)a[?`z?<}l?A{7~?Gxv^?^k_?G>q?>?Rs?u!?y ? OP?%Lo?T#!?:h?^?ͮߞ?9?D4?}C5?%?m?S3)?Vj?xtz?]CSY?~=o?PJg?Ujw?ݜG?YVZ3?MV?yD;?Rٳ?x?˗sy?w ?R]?q º?0{Y? Ff?\A?n ?[&?ovM?0@~h?_B?T=U?:> x?$X,??6 k?Kw?b?C?}0?tlKT?b/<?)>?R ?~s)?YE?8?~?h?/aE4?!ʌ?N?(??ng?VF?ß%?%o?WU?I}?kX?A?o?3pb?=ȶu? #Mh? HU?ԠG?si[? ]O?R:? +?e/B?R(!2?Ջ?tđ?̺$?*?Q-?>Z?\,?^`u?˜]?FűM?j??V?E4mo=?}z:"?{.0?A?|!E?4S*"?]j/?:K?ގ"?bum??Z?k?ay?SO9i?^(?Jһ+??J:?t?y?rHİ?0̶??v_? ğ?GkQ?~n?F"?p2p?zi?} ?;0,?]K?s?eV?M2\J?s?-Yd?][?B&?iRW?&eӤ?S?Ʃ-?4ӷ]?e?(z?y?[m-?D21z?w?Z ?%?(.?J_?66??#/С?*?3te?b?>#X?M0 &?.0a?.OQ?W:i??(c??#Na?c ?3?-?ϑv?H?Uo?:m?27?~33?N~}50?>e9?u -?u3??lܵ?0?آC?߻;?eRR??z~߃@?߶;5?,;? 8?Aw?k5>i2?<S?EI; ?mQE?{? ?3?^w+?2 ?-ĺ+?bi.?GD?iA$?;.?Ca">?d_!A;?9?M35?PlT8?c2?ZpZ5?P&?j2?^.?U^+?I?V#?ho?Se?$Y?%q?&?Hx?.>?WըI?֓d?%'W?YQ}?Ƅq?@n?mx?+?J??-<?@Z??^Z??2Bۮ?$d?W?5k?u3^?ܓ ?6 ?px& ? \! ?js H ? ?#* ?6y ?U ?ԍ ?|N ? u ?y ?.b ? ?<$* ?֠H7 ? ?v&^ ?T ?3Ҿ ?X ?Vl ?4') ?vG ?u5 ?fj ?G~ ?F ?1Q ?N' ?$٥ ?'[ ?X^l ?]c ?2Yu ?#U ?̈d ?Xl ? 4[ ?(!X~ ?WV ?ݢ7 ?DYu ?|.σ ?RuЎ ?P ?*]4J ?$^ ?s V ?* ?o($+7 ?ċC ?E ?g+P ?6 ?9zB ?mU?-;?Lth?|D*U?Z/ ?ؚt??WY?Ҟ:?Ԃ??ʷ|?F̕?]Q3Xh?}c?tH ??(4? $?n"?6?6?;?R[R? Q?d?)C? +?I$?NZmW?q ?|.C?A?Ŀ?(v?T?>و?JY9?|^`??Ϩ?8zIoQ?@;y?2?. ?dl.? ?fAY?g&^?M?f摛?h?65?hHz?[im? <?+?r#G?Y\,?72?TG?$2W?\???Y+??ºף?(\?I?"M?7iC??Nc$?DH??&?4?esv?h?w_w?)_?=dZ?O?Ru?;dQe?P߉[?q?b`?'3û?*?KM1?cC?7?x?jw\21?eJ[:?}&?};I?^+c?lr??IY?`}?<Ӛ?%_Bs??:J+?O??ƹ;?ft?q}?J_`?^?`K?\ ?$U?W?F7d ?σ sY ?RLr ?efg ?cM ?lU? ?ylh\ ?K ? 0 ?m ?k! ?aC ?4%)W= ?i ?M) ?g?_PW?DZ?_?{!?9 ?R?k ?Z ?i'F?P(G?^;?d~, ?\~ ?t ?*)u ? ?v ?빟 ?E૘ ?j ?^ ?6 ?Wd! ?a ? ?U ?N' ?0+ڻ ? ?*x ?k ?fmJN ?g_X ?SI ?LdS ?3izb ?H3wl ?s|] ?Üeg ?a0 ?]: ?\+ ? Vn5 ?^D ?lN ?m$l? ?AG~I ?Eۑ?b;Z{?C2?vr?]d?9L?$uT>y?0\?<c?c3?R6?,P?ޱ?t?gO ?o)?,HǙ?9\?~3?Y 9?ED?5X?O2?b&?|ָd?O1.?2I?E?Kk?& '?K?A?S?nO??v?%?cWE?EH?}cw?Pb?H*/c?KFn?ak;4?)`?G!?u?msD?p?o #?K?%?(,s??_ ڊ?=B?EBx_x?R?6&Q?E ?MԲ?])_?/ډ{?dY_b?un?&a]V?;<?O-b?^o?WaJ?s!;?V?'D?+?E?<4?|[9#?pԐ ?u?3?#??2?V?a]?Ӿi?x?ZwN?ѵh8?\8Z?*΋C? +a"?/NI?YGL ??-?mŇ?uv?!?|?<?41)?]JO??p7?bΥ?>?,\Zw?xdk?KgՄ?!A ?qiv?N{?`9=?Z#?9. ?7?[ ??|?[~?{?!G'H?E ??2?Ydg3?E.?t?Vꝶ?ZJ?F8M?$?unC f?0O? ?-3o?Wf?oIM?B?iK"?sX? O?\w>?Y^:?%?>?.nZ?4l?1)??9*s?K2kG?$?bI Ş? m?C?^jH?jTM <?U]B-? *?hjj$+?qի+?Ç-(?F.)?o(?F (?+"?_!?4;\ ?֩n! ?]x#?yBz!? ?b04??z-?,``?@۵?"4 E??ʄ)?]jn??$?v(ʕ$?nV&"? {"??f%?Il?1+?ˁI0?rm5?2?c5O>1?:+?Ǒ.?);,?)(?> ?^X~Et? 4Fe?pPd!? _ ?;l?[D? h-? %?_]J?Q?Q4& ?dAZ" ?I40 ?izD+ ?a ?`c ?;C& ?[ ? ?ΰ ?7 ?hL h ?I ?< ?9 q ?-X ?+E ?X{ ?r}/A ? ?: ?Q) ??K ?b ?e㵺 ?.Ha ?S  ? ?BP ?ً̪ ?Ėo ?t ?m ?AG ?({ ?Qd ?d? ?Ǚit ?W ?M\ ?KEO ?,Dl ?u,c ??ʩ?0'4?c-?,R#?'?X j ?fZ ?V} ?xVo ?߈I ?EN # ?q6 ?<{s{ ?^ ?/ ?f1B ?%?h$3??ݓal?^ ?{|$ ?,, ?< ? ?q1?}I?}?, ? t&g ?Jo_? ?- ?U[ ?B ?+3)¢ ?  ?M ?n6 ?Fdjo ?8 ?QM ?.r ?E> ?3 ?kt ?2 ?v ?( ?q ?{ ?+s< ?V ?M( ? ?$X ?3b ?XS ??Y?5:T(??4ّ?:c?jP? Ūp?^[?ͩ=?y,?JH?|v+4? ? + ?z"?wE?}?ʘV?? ?η?`v?ސ??5? ?}+5?6h3?*&9?s?P?zZF??9N!? ? ?&?k?1}O?9Bq?᲎??_H? l?m!~?h?k J ?&?fB ?Dž ?-?3̼?:ެ?SH!?0qv"?*!?9!!?F"6?g ?D?__?<~??v?;O?Bav?񏰱? 7?O (?A)%?Pyn:#?:,#?4m~"?m}!?1=- ?A}9?T ?)~?bğy?78?!?{Ǖ?}<?0W?)?u`Q ? Xs?Z?C?#Do??? ?־?N$>?.>? Az?i??? ?i{W~?q?Rp?æv?k"Jc?HAW?xSsi?m]?e#?NL ? S??Wl?U#K@?1}?̈́?n]? K?? 慖?XW`=?b|0?r D?I7?+Ҿ#?- ?f ?h|$J ?SŅ?XJ`?^??t;?]D}?P|%Z?Z,?%$_-?C1?0A?o6?)W~?o?1?q?xe|<?}΍?H?dnץ?!??B?4M?BT?i?Zvy4?;‘M?!h%?4I?%$] ?U?S?}?' ?ݏa? X ?e{?}?lS?D??Ea?ڇ I?au*?_S?14?]?*c?,?- ?e*?` ?X ?a+?.ض?Yp?x ?V?!?iw?G vp-?'`Dc?Iĉ ?i/*B?V؉?2/ٹ?~?Tn?9RV?3C~?^c?g ?S ?Ek?I>d? ?mes? ?0i̘?~R ?70r ?[`?CT?=< ??^vO>G?5/?`Q?_r?g|?0?AIP?;?TU-?֌\?'u?! j?J*?I2?+?p?1=P??8<?,j ?>+3?i?c3? ?V*?Ng?Rj#?Z3[??<{??s^?HF@?F )s?3`?Bq?925?mN,?\ݙ?8۹?ߘ?s?kT? ?q?ğ?Ji^?3rz{?:Mܓ?N?o ?uq?c??&0|?h:"~)?Y?Dr?C?ZK?#{?H?b5X?  ?mG?46?V_?9?u?Ku? [??$U?ڄD?o?XF?z̫"?TbL?h?\n?V?b?ʠv?>K?̱@W?8Bc?`Z?b՟?6/Ug?VTt?LE}?k? -?GKj?+?{u?Ə~?}0?tjOj#?G7?.@(?ڃ_?yC ?W5?LX?L??lK?"2^0?q+*8?jW? ?7ڑ?~z; ?xf@5 ?eSJ ?"NB ?e4/ ? JP# ?J; ?// ?V ?, ?'a<$ ?,& ?‡ ? ?c/ ? ?zv ?Z; ?& ?D ?`^. ?h ? ?7% ?! ?x ?=y ?#n ?' ?h$. ?NUf} ?xm ?1 ?vwƋ ?E M^ ?GF ?%| ?X?h ?˜?,i`? o'?6mD*?@L?(J?&?,?tfh?`?#Z?Fv?mVR?YsZ!?9Ƕ?"Z? ?wz;?>?74?!?d?s G?Q?͢?qI?.z?_? G?[!?bȝ?.*?!???*ފ??גO ?7x ?]y[ ?a6 ?atW ?:2 ?ab{4 ?? lw ?9M ?0м* ??f?wH ?%O?r- ?P ?/O ?Nv ?p / ?^ ?ݓ ?  ?K ?k= ?/w ?>') ?OX@ ?"e ? ?gݭ ? ?g*d ?* ?. ?l * ?0[܋ ?Q֊ ?Kjl ?Njw ?HYb ?8%d[r ?#p҃ ?J(+ ?K|=~ ?l2 ?8Y ?ATP ?ah ?a ?O2 ?I  ?@6 ?d ?O?n ??;^(?ؗK?'0?#?vt ??[B?%k?A ?u+ ?jS ?Α ?zN ?ށj ?ց_ ?" } ? Їv ?U0 ?9y ? ?hc ?{  ?oA ?-x ? ?J؀ ?FU0% ?W ?  ?}5 ?*? ?P91 ?R; ?n&6 ?; ?Ը@ ?nYE ?V]?2$?s~?j=?j?,? ?t?N-c?Ч?3΢?-?mG?k"n?)Oj? hx?42 "?L?9/?9 I ?_x?U^?ƒ7?-o]?̠"?0x?]=?/?O?}Ͱ?_~??7{?Xdz?{?3?.v?<.j!?9k[?=X?[`5,?T!l? I^??f ?! ?'] ?p]q} ?lh?U ?' ??! ? o ?Þb?zH\?f^?svۛ?JfF?0 S?92?>{;??_?8qrp?l u?Q-H?A _S?كc?ğ?=k?06?(OT?. ?>'?ۮ ?I]?#f?_Y?S?;`? ?:; ? ? ?I ?Cv< ?eߔe ?v« ?ߔ ?s' ?RC ?-u#?6d?p“ ? [?՜?zq܋??8 ?>V. ? $ ?+2= ?] ɛ ?85 ? ?- j ?~ ?4L ?5L ?'/ ?62* ?):: ?{4 ?F ?u ? ?DŽI ?۶F ?+e ?c ?t ?') ?n ?5J ?792N ?Hm ?c ?q ?r ?ȧ ? ? ?+ ?g ?áo ?Vc ?mSHs ?GP% ?} ?/X ?G = ?{ ?U& ?| ?| ?o% ?UH ?b7/ ?jw ?9!5 ?% ?wdJ ?k D ?C[m> ?KO ?2BI ?( U ?(^_F ?GP ?)KK ?*7P ?/MbU ?tZ ?&6? ܆?_?r9?{?b@ ?1p?6/?FT?D}?u,?v?2ы?يb;?V?]6"?lk?qIxc?SC?f(x?ʯ??k[?5u¶?e&?(?J?k?g?3ž#?'?=0T?jܻ?=?YG'?~E%T?)A' ?b@V_ ?Xaٸ?M}F ?Ԡ ?Iw ?̃@ ?" ?_ w} ? ? ?c?{ș?Ț~?.FP?3W??(-? ?Q%$i?p?59+?$ V?D?#1?1u? ?X~?5?W,?X]s?~m?bADs?kDh?UZ?yO`?qzg?cM? b?fe[T? ƾ/[?:6H?H?՟?.vx?r?B;:? Tê?v t?־?k6^?>#?T}B?>`Z?g?jj?yX?Bc?@G?0?總;?'F?&*?bN5??W'?ԫ?vG?L ?-?En ?_ ?᠏~?2(o;?/?IXM?T@?L';?9A?zkG?5?3;d ?n9' ?HeE ?) ?I} ?\G ?Ye ?) ?Tbu ? ?lL ?) : ?^) ? ?| ?@k ?/[ ? ?" ?^ʅ ?t ?r ?b{ ?p»I ?F߯ ?-  ?> ?#> ?&V4 ?c ?& ?" ? ?i^/~ ?y=J8 ?,#. ?ΏC ?"GN< ? ?5+ ? $b ? Y ?80 ?k ? ?Ի ?.K ?c!" ?^ ?} ?FOS ? ?d` ?G ?+' ?,JW ?5 ?8 ?gd ?* ?7 ?kp ?kY| ?$}! ?o% ?` 2 ?],&_ ?j7), ?_ ?% Z ?foS ?(d ?a^ ?cM ?c!G ?X ?CcR ?Qy=j ?Zl[ ?,?f ?ˈ` ?Ǫe ?kIk ?b|p ?b~?ꨜ"?Y?s(H?gP?*>^5?r)?4<?p#q.?O1"?g?nH??c?$"(?{Z?(%;?Xx??%d?%?=IIy\?Ö@?.E?U?2?+ ?(Gk ? Q ?g] ?" ?QW ? ?hs2 ?Zh ?3 ?>F ? ?g+! ?Y6 ?蘅 ?|4 ?QG ?3 ?hVދ ? uz ? m ?5$t ?9}r ?" ?" ?& gy ?VE~ ?l= ? ?RwN ? ?LJ ? ?*k ?~ޛ ?t?IX?,l?of?l?bn;4?r;?+2?I?Y?+?b}+\ ?"?"?Q@/?(+C ?+ ?EM??ZW? ?7 c ?S(Y?ʙ?9?Q$?G?ж??[??5 ?leby?"c?9;U?x\?AL?V3G??W4?j=?3=#?>?e^+?%V4?2m?<^???9?'2?mۓ?g7?1 ???&x?)?L?2e ?a{W ?<. ?{S70 ?iM ?#j  ?S ?A ?|}j ?/5K ?K# ?R` ?0 ?6 ?3A$ ? - ?a~* ?EwY ?=]AE ?CdN ?f@ &w ?(\h ?˼ ?7{ ?b0 ?u {5 ??K ?wL ?8Z ?I9: ?(2J ?@l ?bhQ ?K_b ? dTR ?rG ?%P ?Ǹ ?~ ?Iz ?5 ?3g ?> ? ?2; ?S5 ?8 ?T&7C ?dz ?Icǖ ?­ ?)ܞ ?6D ?iݫ ?[B- ?@ ?)Z ?ƛ ? ?: ?$ݯ ?w ?Db ?LP?H)?"` }?qI?U?nŃ?8 ?;?.0| ?$l?+K?u ?v4?x?uH?zW?*@ ?(?{v?'z??(5c?0k7\?Wz8!*?&~I?(0?SoU?wE?ϭ\\?{C:?$ 6?!?d+?c'?rE*?)?°.??ke?' 0?JB??i?%]?}c?;L?ZA?_n:??"?i-t?;<$??ߑ1?X_h?N??V(?n?q ?q ?KOc ?LQp ?w| ? ?!iʓ ?j ??Y{ ?ڶ ?\ ?(Ǚ7 ?0K ?_} ?6 ?c9 ?6>uf ?Ug ?5O~ ?ն\ ?3J ?Bh ?z*j ?t ?i ?` ?Y ?a ?{ ?f지 ?Ѵל ?2[ ?k ?{~ҫ ?H+ۨ ?3L˞ ?)ң ?ˡN ? ? ?ݮ ?NŻ ?u# ?)Su ? ?2 ?]* ?P ?fǠμ ?W ?> ??M ? ?e ?rR ?s ? ?c7. ?`ƅ ?@ ?Q5?ae?|Õ?t\z?Uv?ͽ*?R8?03M?fLIX ?X ?&$?!%q ?)v?£?~?)?Es?x ?1?7?ֱp?j6?p 7?V? "c#?:_?dl?%9Ε???gOMf?>5?w.e?I?FuU?CcJ/?CEA?]?!4? ?FgJ?4ve?zΏ?}?S_݈?͔??c1?ǔW?Hh?C?$?;?Ie?-]?-|G?WWњ??rN+?FQD??D3?>? J?-ۡw?q9?A?+c~?d?^@?U?w3??D?F ?H ?_Ƹ2 ?`MV ?e&e- ?Ca I ?Ū7 ?Vz ?4N+ ? ?Km ?@ ?C⢱ ?( ?^" ?:ZC ?nͩ0 ?h. ?+0T ?] A ? ?Ԓ7 ?j* ? ?Ca ?* ?Y ?v ?2;* ?qQ; ?p~ ?^ ?4u ?\v ?)j ?=t ?0| ? &h ?%  ?f ? * ?[m ?( ?RҤR ?5s ?Q!b ? ?r ? ? ?9a?{4I?h;?uQr?J ?HG?8B}!?豘?ɶ]|?Jk?J ??pr?~atr?]x?{?i^Zw?H;r?r=/k?#̄?50r?Fo{?QX?*Dg?@mJ*`?(i?h?7g?oJm?Vi]?~*b?r?÷y?g?QxEUm?vq? 4?ty?w(?{WK? bss?*g?c}L ?F ?y ?Sw ?` ?-_ ?x ?H ?w` ?xc ?רu ?s ?uj9 ?2$ ?fj, ?SP% ?*u_M ?i4 ?h6©A ?pt ?ܪD ?j ?i$ ?G(S+ ?tز: ?lEq0 ?Ky9 ? . ?Mib' ?k~# ?h +4 ?$. ?'I ?OA ?G) ?W# ?V ?O ?4 ?| ?1^L ?K f ?-&-?r$CY=?P?AwQ$?7Ih? &)b?Rc]?dW?f9[?Pc}T?M? *|4?zQ?H?*A?fxfL? ?&pxG ?R: ?C[lT ?3hC ?xL ?rPH ?רo@ ?"]: ?pwJ ?&|E ?2L4 ?3. ?h? ?r9 ?zO ?T) ?ໟ# ??U) ?ը. ?"\4 ?>ő?(?ӑ?f1f?zHF?h=?+4?Hs>? w>!?P4?/)>+?m,?װ7?ǩvA>?yֶ,?Q7n2?D?eJ?\1;8?x<>?w[/\?rP?4ږJ?!rP?OV? nD?*?=v ?& ?-م ?G ?Q ?(`- ?x= ?+ ?Zu ?`&e ?*X k ?G| ?2dZ ?C0 ?x ?bL6 ?b ?0!zQ ?Y ?yOS ?8fr ?P1_ ?/Bh ?ea ??xJ%U ??+O ?&-g` ?Z ?뒄J ?KD ?hiU ?TP ?_4 ? op? ?0p9 ?,gj? ?D ?GU|J ?t?K?zP\?V*k?9y!?!?> ?%?!?d'?~5?+i?--?3?cђ!?Iy'?3mD?N9?i73?9?8>?(b-?,z ? ?.;' ?P ?Z ?6ބk ?V ? LH ? ?R ?I ?' ?8XЃ ?( ?BTfm ?iy ?w ?5倖 ?g ?oqn ?m ?$+~ ?~%w ?:k ?bff ?}gv ?Eq ?DB` ?}t [ ?wBk ?k,f ? 3ÆJ ?eǢU ? P ?U ?#s+[ ?؟1` ?2?_]?Lj ? ?k, ?h>?); ?&x? W?T ?

?Q ?3 ?MSH ?.{ ?f?% ?mB{ ?͟ ?W ?ߪύ ?C١ ?Q ?w ?*aiw ?7L ?b| ?ɛV ? X ?7F ?4B ?8* ?1 ?h ?" ?1 ? v ?#4 ?u ?~r ? & ?xf ?[ ?V ?(yL ?#U ?؊Ͱ ?l: ?t ?3 ?! ? ?\Ę ?dR ?}!]! ?>q ?퉤 ?޲/ ? ?J,> ?F" ?9 ?: ? ?-0[ ?{4 ?G# ? S ?zm ?0 ?cJ-N ?zݠ ?e ?KS ?e>H ?J0??ZG6?D2?" ?z4>l?ASC?R"<*d??= eJ?cP?wu?h? `?kF?4&Z3?[}%?"v?nZ?a ?DnH ?:?!. ?F ?nn?Kz?2d9sj?] ,j?~̋?LT??"n?wju?AEC]Z,_#@uq~9@)t?=)9???,?΅?e?kG?% ?ۯY??[?؉??Fg.?U?KB?[P?aAx?*B?Α?eW9?!u?)&?Dm]?!?F,,?Lk?w?ou2?5P\y?D46?r8?V+?~['k?7M???jݥ?E?\?g;u?L?CÝ?HUI?LrS?].?^چr?{Z?z͌?g֐?c[a?,4?;?E<=h?z?oϢq?i'Op?<E? %K?Mw?!uaCh?Sc^?E?R?\$? U?рT?TaJ?pSɏ?A7r?K?eW-?$vX??I4?Q?x?% e?&x?y({)??da?x\M?(s?[V??7?F?Ԝi?P.d???R?>?JBO"?f`Mt?{sa?Q?q76?T-?q9?*bI ?o?ǭ?Ew?of?Y ?Ź ?!֚#? K??pb?ҵĈ ?h/ ?jUH'?Nt?OM4p?3? )qm ?kV ?c\A?ؒ6_?6-L?nN?pWa ? ?#5\?A-9?Dz$?Wj?l1$e ?% ? z?9?:?h"(;?f9:?.:?ʢ3;?OMmV?U? 2?d?w~?V_{?K.?x?rVG?)NL?.+J?JH?8ġK? Vb?N_?/]?>>ca?l^?l:mZ?-W?Z[? ,Y?T?ͤ*?K(*?*?R*?`*?@*?_*?s*?qY*?*?]*?WZ*?Om*?*?M*?h*?u*?EG*??՚*?{*?j*?B*?_*?ں@*?*? +?f*?{*?m'+?;i3H+?a+?_ 6+?bk+?|Ò+?'^+?+?dX+?+?v}+?"^?`i_?O8^?dV_?j a?s3b?w`?Oa?h4]c?d?E-Cb?)Oc?*e?Ff[f?He?aNf?ێ#h?){\i?\g?0lh?'ej?wk?'Ci?Uv6k?=lTm?[`n?Ezwl?m?Co?$tp?^o?Np?tDr?\s?}q?(Tr?t?H}Dv?6?t?u?-w?x?c*v?dZMx?az?Ja{?̭y?4Д{?.}?~?0{|?q}?6!b?e?$mh?ud?lf?Nb?4~ ?;? #?aQ??ˮU?Ƨɂ?T?9?W0?D?23S!?C?3 ?9#?0?&?/d"?$?(?r+?~&'?#*?.?|&0?,T,?X/?=?23k>?X??d>??l>?eR??Jƚ@?$r??r'@?ߠ>A?4A?i6@?%UA?B?@|C?WB?u0C?.M6BD?8 E?:FC?|孢D?E?OF?3=vG?[DG?ޓlE?G?8F?{R9?V|9?0:?&/:9?1:?k ;?oV;?^:?|l;?Af,?E??6[??m:?@?0?1?%?G?:r?=?Ĥ?IF?1f?QU@Y?Eg8X?"3W?(X?ǼW?#2V?D3U?oV?U?Zx9?K>:?9?]9?9?k:?v;?Ż:?`(;?1S?T? S?xHR?k$ VQ?hR?gQ?+fP?*ByO?^ P?AO?iON?`eRM?[^O?pN?b:`=?|P >?ٕ =?r=?R>?q@d??? a>?+)?? @?@?R??Ov@?S]JL?l7K?ߪ4M?'fTL?߉K?)J?;;uK?xJ?BQI?U|H?7I? H?=7G?3F?%H?{үAG?bF?T$EE? sF?*oE?c?~D?E=C?H9 D?0D? B?&,=B?KA? v,A?RP)\C?NBA?B? €8?a^7?lq8?gw;8?Xyf7?x%6?[E7? %7?VW6?5? 6? Y6?ԁS5?4?[5?̚5?U$\4? 3?@w4?ʼ"4? L(p3?CX2?id3?73?ۏ2?a$2?2?BU2?Uj21?v8U1?k1? 1?Mk%0?W0?"1? 0?40? I/?Z[0?^c0?름8?T?֤0?ɮ??PL?Teܜ?_?j?f@7?*|?o"?χ?u?W?:?\?[׾?| u)?;Y;̐?v>?a'??Rg?xB-?T|?* ?6M?܌(???1wm?sk?e)?̖#?4(?iz,?C%?-i"*?ND?S9B?|":F?ݒC?6r???+f:?qc7?;%[;?#9?ir?5?q-2?6?U4?]Q&0?Eޞ-?˱x1?R.?< +?;(?T]f,??')?i&?R#?j/7c'?T$?&?d㩲?S/?ݡ?2-!?5#?[*9w"?' ?DJ?l?7?B.%?u?_??7I?Jˮ?X6P??‡? ?[fϜ ?$%? ? G ?C.?!t ?#A? ?/T \?=?sҸ?&??Cy9?se?Ԧ\f?)=??5?;?sWa?j?G?dj}?V/Q?ܮ:?b?D9P?{'?¹?;?*j-?tt-?TЭ??)j?FUh?v%O? g?w?89?t@&?_?FO?F? ?~3>?W)?%?Æq?X|?]R ?h?a??%4? ?K? ? ?UdG??qZ?Se?H͔Zh?.d?.f?LD?GߘG?;G ?d;xK?W?7?5?߿?üJ?p?t? w?e?ח?b5?}y?Θ? ??Y?J@?=?|?Dq?8c?W?LXI`?DZ?̃?)E$?T?͊m?dl[*?{jN'?ϜZ#? )?|%?=( ?a?32!?n=?9?i,??6?Z?#_?Po??enx ??bII ?=>?_h?4?I*7??ؚ$g?L ?fG6?4?qt?E?;)?l9?;9?ȉ5G?h? vH?s?[:=w?֘q?u??{?~K?|y?\F_}?)?ѣ?&?ܲ?n3?P?@?ءt? A?H ?(?G?]?cͅ7?:?-.?o?,\?W)?}&? ?FG|?Mq ? =k??XY?MIM??Bup?d?Ĝ ?$?ux?ω[?$?bW ?wZ?L r?l>?doʿ?EDF??J,?t,?NE0,?;kd,?{,?,?F,?> ,?Xɂ/?f../?&w/?ܱV/?y.?g.?eH/?Y.?A.?$-?QYg.? .?%-?aino-?P/-?V/-?V-?cN-?-?)-I,?,?.{+?/,?}+? +?OK+?5|u+?J+?m+? J+?@+?Ǯ[+?@s-?O1-?f,?|)O-?X-?,?0~,?ܱ,?%N,?\D)+?;b +?YO9+?I+?Ax*?k*?$j*?2-*?t#H,?G,?b,?eS,,?+?~&+?++?L+?*?@C*?*? *?X*?A*?H랩*?*?)*?qч*?LH*?}*?#n*?*?*?*?E<*?Q*?zug*?\*?D*?Н*?Ǎ*?HZ*?P*?P&*?w+*?J*?K*?AI*?GQ*?*?+?~$+??0*?B/+?nE+? n+?:"i+?y}ݡ+? z3+?D {+? U+?<_?qna?U_?VNm`?/0%*b?iTc?ea? ¸b?Q8d?$e?9>c?w e?9f?2c_h?[Gf?vg?4Si?𗟒j?}|h? 6i?rhk?_Mm?gj.k?Hvl?oPN_n?o?P?im?:o?nOp?nAr?ULp?q?Ls?e7ft?،r?Z:t?!?>v?rw?u?m}Hv?hQx? Sw`z?KkEx?cny?n{?R0}?{D;{?|?`<~? ?gu }?;N??ۨ<@?K??+[.?xX?\?t??B4?Q?4[ s?kȯ?=!?y?.ʈ?.?87?g!? #?]l&?fQz"?%J&?Tq+?raW(?],??`%?A6*?n'?L0? G3?F/?F1?5?e8?4??9E7?CX;?C >?9?*A]?х?t?mΝ?և?.?^9נ??^N?\b.?`?b?]?ɪԪ?ߢ?a?34?q s?H?a ?r?6l?a[?3Ŷ?Nɪ?)ǵ?H{?T?5n?t?j_?6ה?a u?xV?/F?٨N ?ǃ?II?J?>>?W?~$c? o?ϸ+?7P?A??W\}?׏?a?P?DV?*O?zS? lP?L?fQJ?^K? L?S(,K?i4:O?GK?NA?V?{d?uG?I3U?"v?v,?/#?R;?8&e?#?Ys}?s麽8?NT+8?Z9?q8?a<7?t7?r7?yQ7?*6? M6?l6??(A6?2-?y.?-?-?E/?9:O.?.?\I.?ob$.?d /?) .?wb~.?|5?4?sM5?75? I~4? 4?4?~;4?0?U1?i1?(0? /1?e1?m82?+1?j1?#2?&͌3?f3?nQ3?i2?eN3?̵2?=5/?8L0?T/?u/?Y~0?-#'0?/?x!n(S?#W.R?S?R?ci7Q?3iCP?ҒQ?P?L?BxM?J=SO?(zdN?$ O?*OL?N?YFM?U_I=?Lwe>?o`=?Ӭ* >?+åK?J?ML?0!K?ghG?!7H?hI?ѵ I?<@J?G?[cI?峎H???;??n׸>?&LLl??Y;N@?P{9A?aӋ!@?s@?)A?qB?CVA?PB?PݔvC?;D?QC?, C?; E?+F2F?ZE?F?_D?n1F?\eE?,8?fO9?9?O* 9?39?By:?(s;?Q+:?ԍ:?#;?=_?r#>?P=?Gg>?rm??o @?S??8??@?A?g@?U9A?v@#K?2PK?8XL?{K?Yv+J?QI?AJ?I?,fzH?G?,mH?aH?F?;4F?:>G?"WtF?6#FE?tʀD?KgE?;;BD?x_C?uOEB? gC?aA?[D?uB?`C?A7?Q m7?W=8?. 57?T6?\_6?].7?>?6?VI25?/Z5?Gq$6?`Ğ5?w4?1a4?s5?!D4?z3?v1s3?'4?+3?(F3?G2?2!?3?7n\2?`/?Z.0??ui;?N7?"U5?u )9?"6ѯ6?ݚ2?=0?h$4?M1?-?,+?;r /?p,?QG(?!O4&?x)?j_ms'?`#?R!?r$?"?*^?^o?I?j??q?X < ??q?4̄?ר]?"??l?dgz`?? }!V?͝ ?թ?j-?~) ?J ??.` ?2u ?c`?q?Z3; ?y?Lz`?h"?U?".H?(?}5v?U?^?1(?D?P? x?2?J^?|3˨??K8?o?. ??C?C??̯?nt?!? ??{:a\?`?;;j?"Ư?U?k4?@?Lz(V?@v??i6?ZR?M?~l?7?4?&XT?%b)? n?v;L???ٞ(ع?!"?;?O?a? Ϻ??Uu?a?^{?#o?Aw"P?x@?F]?V]?4?g#?L P?Vk>?YV[??:?r? ?u??4ı?f?htP?;K#?˔}?oJ=?X(?qp?{*I?ၵ? ?.:5?)x?,#?p? ? /?Ia ?_}?zB^ ? I]B?[jXh? #f?}$k?1癶i?UE?fŹG?C?iŮF?`E^J?GL? aR?ԝ$8N?yP? sHh?~e?S.b?f?Wd?v``?W]?ɾb?wD_?fZ?ykT? W?TΗ_S?.is\?&uV?H-VY?6m?p?Tl?>EJo?PI?& s?˷v?l'r?HEu?yy?A m|?z+ x?z?%nϩ?M?§$[?ǙQ?;"Z[?U"N?`+}?.̀?ڞ?,R?9?~#? y?Np??$?_i?*"d?E?f ?˸b? W?Z = ?7?MkP?OE?<]I??ݪ?Mˆ?Љ?JE?lSA?V"G?p5`:C?soi?jkJ?S~?~y?3?sù?}a?\D?.?UQD?oDԆ?޾?d~?}u|?a`?yL?\?ٟu??3??].?$ ??`?1?38q?Hȁ?J;??eH?4qE???m?/? ?je"??Oh? i?KC?rb=? |9?c.u??AS;?6?m]2?l0.?,?jQ7?K~O0?r{4?З^.?P*?2:'?1V,?F2E)?9#?+O ?5#%?)=!?y??@M?ĩ?bI?GK^?}-?FG?C*?K. ???'%U ?ܼ?Jׄ??Go[?2i?3g?Fu?/T]?(?/?D}?0?R??/??#E?H?^L?P&G?sJ?OaP?ӹXT?ZN?ngR?1X?=\?=V?xZ?a_?c?~]?˹a?b`:g?f k?e?i?QXϖo?W[s?0],ym?q?*w?㋾{?Nu?E3y?5?U܃?F}?k?4?Ѻ?pG??b?P?)?v#?@$?e<4?O. ?Oū/?n=Y?_x?=S?P.?]?&-Ӭ?' ?KѪ??5?+?L?4~?ƣ??0@?FI?gy ?C?Z? v5?jw?d ?q)?'a???7m??r3?lz(?Ѫ?"3?K?]V?]?G?^?` O?|?%?ح?9?U?:K0?T?q`??<3?F?dt]?-?e5?`+o?q?GQ?/=N?_G? P? J?\A?\~;?ΫD?QC>?H5?jR/?_ЫG8?72?KN(?"?gX=,?%?(ag?>~??P?Iؐd?D_O ?Yό?U3ne ?A??7ߧ3? .-?B? qR?g*c ?E)?~,?V,?4>c,?贛,?M,?1/-?kS,?f{-? +/?b7.?;TN/?m/?.?QA.?.?Lg.?[-?sRo-?f-?@1LP-?M.?F -?!-?#?,?|DH,?,?C۴d,?;*,?Lܸ+?g(+?+?OJB+?D.I+?m+?0+?Ց+?5J+?(+?"^+?s8+?l[.-?(Jm-?IZ-?lK-?9-?!,?SA,?l-? ,?'GS},?nE,?E,?!A_,? +?A2*?kA+?*?D*?| *?{*?b*?@,?>+?(,?ޱ+? +?Ȋ+?/+?;+?*?h䇡*?fv*?P*?zG*?*?1*?q*?Ŗ*?l'*?*?*?km*?w*?_v*?ރ*?Sq*?*?*?r*?՜*?*?*?XҀ*?]*?*? (*?m*?jE*?`)+?9Q*?#7*?&"+?y&g+? C+?0@rx+?r+?,V+?3M3+?~`?ov8b?!h`?3na?LHc?Axd?Gyߖb?c?㞫e?s@f?=e?eC>f?t h?Gi?_mg?͋h??;j? 'k? 4i?;k?Gm?vt^n?l?m?|h?ֽo?wnp?o??Kp?^?r?s?㠗q?Mr?%t?)8v?R8t?ڊu? ? ?=>?R ?#71/?SE?XrM ?Y?iY?ĢJ?o?̎m?? _?:)?7I5?n?wr?&y?W?I?1K?s9?T(#\?Y?J++^?X(<[?*W?d0T?rLn_X?9U?q@?C?!^k??ЀB?'BF?|I?ND? G?K?j'cQ?2N?䧺R?sjJ?cuP?FQ8M?`\?5n?,q?l?8 ʟo?E?6?N1г??ص't?;$w??Řr?ZOu?hK%z?n+? &}?o٩?Ux?~?J{?K_?6|b?AБ(^?a?}Wae?llBh?d?5f?o&k?n?2i?Wl?[Cy?>?{͊?n2?oAե??`?,c:??"?F?H?$?As?էB? s ?-r?Kӝ??8 ?y"?TJ?]Vm?ؔu??RZ=?l?2Ӻ??XҴ?-f?m>V? ?yV?љO?Ծ?huY,?Rd?s,?"1?NH?*?Zю?HT2?5[?xF?t_?P[?0??j?lť? k?q?m ?_2r+?G -?0?Ɇ,?>.?"s?g?dY?\3?.o?m?(O?R-?XR?]G?ǫ?{nZ?n\ex?;ڍ&!?*B??#?>w(?J0h&?7<*?q"?`(?us%?oN3?)@5?'1?,aAW4?T8?JXS;?[7?G:?,>?b8@?{Ca?:K?f?vB7?7uΘ? *?{z?}?^_p?w v?~n ș?1',?&fͩ?#]?[m5?_7L?P?d?,?Z?眅?bY?8{?i? 1?Ϸ?@E\??˴?f?]I޳?-Ō?Bo?~?|?^?yCp?Ӟq?֔?A?q?L;֩?LS{?p:h?Q?j?u?*?8K?; Y?>$?Gl?fR? ?M?F?@8?N?W??#v?gK?w|J?VE(?Cl?ƋM?>3A?m?MC?9?yD? 9?ki? rxT??@jj?;??^Pg?u?Ig&8?Sݕ7?fw8?W9B7?>7?܀6?;RC7? 6?zh5?[v5?<6?5?r-?R.?})-?S.?P/?&.?ŧ/?ƒW/?'W.?n.?_J/?).?4?$:u4?{85?L4?3?tI؃3?~)4?So3?V0?I>1? X0?'y0?X9W1?l!1?1?;T{1?c,2?3?2?t7H3? c1?qg<2?d2?r~0?ł/?-qc0??"0?n"8?pR??[??X>?<>?WF?۬sJ?jɵI?K?[ J?^bG?H?"H?rEF?,/I?wsdcH?_G?ߝ??}Cx{@?]?? %$@?Cn6A?J-A?,q@?A?ڬB?_YpC?s)LB?C?;6D?E?ÓD?I> F?tC?%TkE?@QD?38?X9?jQR9?O~Oi:?gu8?9?FN9?QeY:?ſ#;?eae:?)RB;?e?+;?"EÙ=?kp`f?lg?Ige?*g?Uh?`$j?ݚ]h?li?r?vkq?L暈s?y?r?Pp?Mo?p?汝o? m?Z[k?ꖓl?j? rn?k?6m? [?Z?eY?k)[?Y?`6LX?y AW?X?2؄W?M8V?k>U?$"fV?uU?\dGT?ԇJKS?T?S?9?9C:?ȂW9?U\9?۷:?P#{;?:?n-;?e?l; =?=d=??V"y??]F`>?N'??N3@?@?v??M@?ȋA?NB?pXA?A?AK?k+.J? ΑK?bJ?NI?хwH?I?.H?ޙHG?nF?C 7G?=G?!kF?GGE?`sF?/سE?D?(gZC?HC?걪B? D?UC?ED?}w7?V6? {7?P@E7?Mn6?}5?P6?>36?a5?4?5?5?qo3?j[f4?~3?j3?4?`)U3?t3?k/4?_2?2?X$)2?Iړg2?bq/?/?'/?ha/?dt0?11?Ƽp0?q0?#o1?^ 1?ͺ%1?O1?IZ0?l/?e0?L<0?w 9? 9?7?)58?v]Ć7?{V1a9?7?K{8?ɣ? ? e?Qҡ?~39?L<?Q??w??Z?qH`ф?jC?+??#⸇?'Vz2?<?Cy??ϯ֘?Pٺ_?Um™?$*1?Б? ?얌L?F?h?W?yfI0?Lߐ?XTN?d?/?^??"9? k 7?7?1?c?}*?="C?{XQ?lJ?ԤF?%JM?Qz{?0'Z^t?E:=Gm?.w?p?=4f?'_?6 X?T?ACi?Xo[?cb?&?j?7ܘ?U?T?^??кӠ?R ?m??e%?A*?Qّ?ps?IU?4? Y?B?<?jG?=SR0?J>!?g?[՜?E'??92?܆?bSh?&x???:(?.?ek?F\?8Ɣ?UL?r?%E ҥ?0? ?C? Z?pT?-A?nd??nawK?Lj|ߑ?v9??}~?䐆?N?fx?r?+]{?.!u?nN;m? 6g?u:p?\9j?#b?~52\?De?_?HJW?@9PQ?_Z?GT??i?YWLe?!A?? 2?ސ?.s??*Go??Q?|?Tp?! ?j?9?u֊?ҵ!?3~?N??? Iy?E^t?|?w?vo?ϕj?jr?W!m?.e?G`?nBh?z[c?y"\?(SnW?0^?AY?tV R?4N?<03.U?]P?.=[dI?ͥD?.yL?Q^G?k??9w^6?8";?mY4?PթB?C8?ZJ=?eh?_H?,#?/]d?!?F(?,?\ &? P*?41?]6?ԫ/?,A4??? =?=A?-(>?A}p:?͐7?P;?.79?(}5?[2?`N6?_w4?S[g0?-?1?˜/?-+?(?9I,?~vͿ)?{Rc=&?ژ#?~G'?Z?!%?_Fa!?%?t)"?9 ?xGy?F6?,y?u?{?<-?8O?*?4ϣ?+y*?!?B?d?X][??P?Bn?=Z ?H3-?QS ?sCI ??ٜ ?y?]?MZh??O"?Ѧ1?#ђ?[O?6I?Iϲ????? 魩?H4?ۨ?jg?L&?4?]sK?e?#y?J?~wQ?$3 ?Yך?򪸻?J? +?4???#k???I??թ?W?6W?k9!??!!_?2?? n;?G?Y+?S䗕?{+?ZE??z8Hk?jQ??t?%?Q׺?k?9|?N?U$gi?Y}j? j?iU?w~?l?Y?? ?|CJ?]N'+?OJ?!&??b?$?叉?6??Z?yh;?;#??`{?\e?TT?NU?|1?ht?ҽH?(?(?z-b?*!?/l&?}?K?^E?rf{B???c?Ey3`?"3f?F%/c? )^?"W?% [?=K-V?j.T_`?%Y?\? 3p?`s?Wn?MFq?q<??fܩ?r`F?a?Ȑv?Qzy?Et?,z":x?˴w|?cY?Q-{?}?d զ?4 Լ?+X?E?Q>?aF?OȀ?^?0??-+r? <+?p(?,K? ?kP?5?mI?F?L-z?J/?On?o?rlc?gW?1?"?{U?&??D??} ?`? ?-?VGG?i?ϼn?}ܗ?R[?&?M ?tP~? /ͽ?,#?`q?$?:>?)h?A:?S??NY??+B?CP7?q?1?]-X?ur?P?Cl?w%??`??8?Lvr?%?:?il?ԉ(?M??UY?+I?W}/?$)?Ҩu?悌?]?VJ5??@ຌ? ﹮?8?@?Wū?#j4??>F?CTȞ?f5*?rHٳ?5 *?>4?? Ks?i?y?i I?wau?;hv?|??TZ?5Il?jO`?\f?钩o?Ń\? J:b?Mi?[S?W7WM?.V?O?]GG??]qA?;I? D?iH;?3')65?mj=?jj8?_;](/?#Y)?FEZ2?h$,?%"?@G?p\&?Lٚ ?W?s?D,?{?/{g ?y&?W;?XP? ?$?_?N?1kX,?~,,? 8e,? ,?1-?lNWp-?U?-?ב[Q-?.?.V.?*!r/?.?A.?퀱-?1-?=-?3#m.?k-?N.?ѿ,?L,?F,?E,?k}d,?] ,?=u+?+?j!+?`;*,?Ӹ+?H+?ts+?o L+?Ȱ+?z*c+?T'+?+?1<+?!+?t^+-?@d-?dP,?%)-?>r -?R-?]b-?R-?e,?},?,?sJ%,?BдA,? ,?U\a,?K,?ca*?**?J~*?γ*?fFE*?ؾ*?n8*? +?Zp+?+?uf+?"+?O~+?I+?)*?tmN*?X*?䀙*? ˈ*?En5*?t:*?H*?Ԍ*?C~*?&֧*?Yt*?FZՄ*?e}*?u*?H*?F<*?*?3Ƒ*?-*?$*?N*?a*?8*?@*?8*?N*?crE+?+?De+?*?1+? +?s#a?]8c?`?xb?/ӎd?pkf?z?Ӯe?Ig?c?~f?e?Bi?|j?[=g?Y{i?TE{k?L\n?@_{$m?o?&k?Qn?#:m?3MpV?+#?)b?sM?}"p?[ >r?ǁ|o?Rq?"ߐs?f3v?t?azw?}r?\[*v?4t?x?:D^z?4qw?ӝy?6{?<~? u}??Fk9{?5~?F}?v?,qQ?/q?)KC?>?z?c|w?U?^>?&v2?{?<*?mUm ?@ ?8 ?c~?jP?jh?@??M[?x?" ??[f?B$?{?0I?O ?-?Xv?^r'?ꍽY?voV?׀>:[?lOX?ȰT?ǤXQ?gNFU?xR?DoC?uO8F?B?@D?(I?>ਠN?!K?mMO?nG?NwlM?pJ?8Y?6\?;I_? D[?/^? q?Q*; t?qIIo?r?5?a?X|Z?FX?Mw?|?0z?Nu?ۖHY~?Rw{?Cf!x?`b?h? ~^e?qaj?Wa?[#h?ce?Ey9m?x4p??#j?On?+iu?m??&?ǿQ?uh?K?ɠ?(ѕ?H3?E`???I(ם?S"?t.O?"?E??؈??<{?5?R?-2?8􃃍?!z?g?ȟڮ?C x3?'?ŝ?I)V?@?Ө?T?c?{d"?? a?i6?#3?zy?]c??MԮ?ɨ;?L?ϩ?#??)J?! ?t, ?)r?~& ? ?%}+?-?J^XE)?f@+?/?M*2?-?1?SN/?:*?0|?e5?j?׭?灢[?J}c?QU?:$?Jز?PL!?B '?+$?K`)?fU? U&?1A9#? 5?8?N3?AQ6?;h;?eM@?4&>?GC?@9?uj@?>?K?7+?Wz?i5?ݵ4?:gfS?*z?|@??rʋ?,?gݻ׊?6?:?ɗ?@?&j???~?E??d?? aǝ?d^?NC??~0F^?Gǝ?Fm?Ch>?>˪?3?(?A?L#e?5?ɇ?7?f+?R*\? ?O? +???ͬ?>?of>??yF?S,G?E?*aF?sxI?TG?pH?4EI?mG?.H?UG?ٖ@?Od8A?7A?*B?! @?A?Yx,A?PYC?RE?E2D?A#E?5B?[)D?'C?19?<:?ohj9?'T&:?;?|?@ӔPA?0fA?FPA?@xA?d#6?b6?r!5? 6?hl5?f5?&qx5?.G5?ׁ5?fߘpE6?g6?pU16?AVS6?͖c6?056?mvu6? gژ6?6?j6?Gz6?u7MK6??7?@*87?>7?G%7?]?:%MF\?`_?:{j]?Bȃ^?zc?7d?yb?gc?<1Ye?M?̹df=?nk>?/PQ?oHAP? RQ?IܲP?",6O?ydM?iN?FL?NO?k'M?N_N?tL?@B$K?eL?WTK???ehP@?3?? @?/A?1եSB?DܨA?~DB?@?XA?izUB?8J?YGI?J?:.I?YH?uF?]G?>eF?RXH?١F?5G?WE?YȩC?{D?\B?l_F?+DD?PlD?Ht7?Fm6?D7?O6?w5?™g5?fwW6?5?Ա2?4?,3?3?ȸ3?ʞh4?6'5?.3?уƕ3? 3?Xl4?(,:2?ͤ|1?@>2? K2?U4R/?/?>.?V4/?C̻0?#Ik1?a1?ECS0?.1?Y40?$ 1?66/?G/?=L0?ǂ/?Xd:?ُ9?z8?Y;:?~{9?7?2e U7?s}8?mv7??TVꙢ?tg?y?uҝ?$*?H? ?)n@?q?o,?k?tt?x?UԂ?WY?L?9??.?=?-?b?Re?;5?Py9C?t/?th?Uk???Ola? %"?F?Ԛ$?B$?S/ˍ?Vъ?dU ?8"8?[m?#'?_g?^2!?c"??fơ?OF?脦h?[r??A?c]?\s?&HQ?9e ?$?L?X6iƭ?S?쥱?0_?!O??ij#?לԛ?Yd?T?s%?nO ?N?Q5?H]?tY-ld?v?-'?D&?#;?1C?dWJ?lB??ͽG?V?mQ?#߇X?w6N?opdU?0{?;,e|t?k~?I7w?\|m?d/_?򖥅f?n\?qOp?w2Lc?ɱAj?8@?k?qvP??,@?j?K/6?}+? ?_Z?`8?dg' ? ?Ŵ?L?;/?RN?'=?W?/Ԣ?/?4M'?ġħ?Y׺?4#?),??F?E 3?u?"6?6?R?]'?>?|R2?~?JI? 9?[?])?1R?p?&?=iyW?l?u;= ?%?= ?k>?jo?C:?c=_?f?^7??B ¨?N)?Pw??b?Sɔ?Iv!?첗?!?M}?j;?5a?))ˆ?hT~?3"_x?O6?{?:s?wөm?!Bv?a3p?ֲh?]?Xb?Z?z˕%k?! `?ul'e?.Q?P&L?MU?^O?õP?>l?-?r?pi?Z?P?Jhp?.k?@C@??c?ӎ`b6?±0?ꉵ8?C@3?x[+?g:&? ??F[-?d,[#?̉(?哋 ?.D?URW?g)x?`?W?CU?b ?_$]?ug?\J???u5?F}jF?j ;?`з@?@I?}37?zB=?^B?x?>I?j?|Н?GW?TN?ezF?J?hY?XjlLj?ƃ?hߋ??'|~?Ly? .?QO{|?Kt?o?Gvw?F]r?vj? be?)Fdm?}z]h?S`?1%M\?u=uc?se^?M=W?vb!S?wJCY?U?]eN?<I?iQ?uv M?YE?:;?Eq@?n/9?MeH?kk>?RC?NEYI?&?#?2̩?4(?X֤?ZW?'X$?[,?01?$C(?g&j.?6?h ?r8?Yh:?5$3?Ū0?,J5?@'a2?h-?a++?Pv/?A$,?R(?$?$+&?>m!?$b)?_'$?$CM&?Ưy?/32?W"?Ek?r?1?i?(]֧??4e˱?[`e?~ )? *? _T?#l?}Ze!?+W?ĵb?޲v?t5 ?GhD ?5/I/?W} ?,?΁n??g?7(?j?a?b?"?sc?'??}v?Ί?}? ?/?v?)ޮ?6,~?vx?M`?v?::8?~{=?YG?I?0յ?2?sjW?wU?].?\?q?o6 ?X?guz?kt?D?t?@?jKK?h?dm?ѿ1?[*?C?/|Ҋ??^?k»?`?h?]?Y#%?10pػ?A?_rh?ns?N?P?2m?7!w?ּ?)?ݝ4?!噄?=p?Hs ? ?UG?Iץ?_F?s|G?D0?ىk?A"?J}?k?ю??BCb?8?@?`jȠ?b*%??ׄ?-J?U ??=?@/W?З?qm?k&??3?n?#?7 (?‹??ח ?zVK?i?-6T?=?Eb?9?h @?KhK$?*(Ƕ?}V?-?!Ƹ?D?5PZ?JLW?p2?1?LtP?B?`YI?2@?k;?Ͷ[?Ê;?_ߧ?E??T?3?6?C$#??y^??Co~? z??YWٖ?6d? ?Jy??δ? {?K??w4?10?o7?[}3?ҥz,?\ӂ'?!O/?{Z*?0#?;~?ѯ' ?=; j?8X%??_O ?@?a?o?L6?a ?4 ?^i ?T?s7 ?Y?FBb ??7E?QE?4N?X?Ro?^;?_P?i? ?g?H9V?)B?^ I?ZE?YNsL?UBA?&ZE?YqH?SO?qv3T?^L?Q?§X?a_?SY1\? 5=c?F-A,V?nJ\?0_?N mf?7 j?/"c?uE͆h?G,0o? +s?cl?9?q?w?E|?;#u?TJ1z?9|o? ?˛~?^f}?)HE?@?'?ܓ?cȇ?9?]_?HKA?TBZ?UW?v+D?8???[!? _9?K?ϙ\??r)E?j5? MT/?59?wo2?- )?!#?9,?U1&?R'??  ?ij?E?L6?W ?P?=!?RXY?;3 ?.? ΋??ZcI?bɉ?L Ʌ??$A{?g? }?ސw?s?d7iy?Su?[o?z;k?Hq?nm?X9g?;c?di?/禚e?. ? q??zҟ?EQ!?݅#%?x*rn?Ʒ?#?C[_?[?ra?#ݯ]?˨ҬW?0*S?Y? ~U?O?}K?GQ?M?$G?}ҟ D?M%I?urF?E'@?eC<? tB?y:>?c8? [4?NP}X:?$u6?Jqʨ0?y~H,?1(?n/'?2?LG~*?ʾ.?8?I?iۍ?2̗?<DZ?lp?< +?:?/'T?c? ?? }?Rj?/?ȅ?RpN?W?1?o?5?׭ƌ?}[?t-?C?Ip,?w?^?4O?Ѫ%?:&ְ?$,?2?Ӯ?gO?g?l=?.#D?MH?#*?(%? h?s&^?}dw?au2?kS-?'q-?H.8-?h-?{#,?!R8-?FFq-?.?-?B.?R.?C@-?.?bk.?qV-?',?ɞ*?~D*?q+?*?@:+?7熸*?Z+?{*? c?&d?-b?c?`f?f2h?5e?ǧp|g?/_j?VOl?۲Ni?|Bk?Gn?N~?qZ?md7?q?/)?.`?P?&{Xm?t.W?`?ıd[?ݜ?PV?L.GzV?TQ?S?VN?%X?S?}_Q?=E?38L?VI?"%C?PxN?gOJ?+G?U? (Nd?_Y?z`?v#]?i{X?"Vb?ci_?a\?,h7t?O?)y?%|?w?Fr?wS?o|?,fy?sv? (h?>o? l l?,f?t?f,n?#|Gj?Sﮒ?}?Θ?a#?Jļ?Zݐ?,< ?^Em?3I?$?1?U=L?\}??Jj? ?ζ?4?p?8 ?~?E?]=T?HgȽ?Yhj?)K)~?O8?oŷ?)?P?u?7?q.ܱ?`R2?@??h?Ջ ?^j ?֌A?`A ?(N;F?fA?؊ ?T6!?7k(?o$5?+? 2?.?LRDz*?"2?'P?0?t-?O;?鹤B?y?N,2?4?*'%?vΑ!?k'?w<?+r:$?ٸ| ?\A8?i$PW=???lj??|??j ?d?-?Yʡ?[?T_Ò?1^?]Ñ?PIvƝ?bj?X~(?w??a#?;?Y?Ut??' ?q@?jm?!??ʧ?qPh?iY??+8?C?)? ^o?AC?k2S?n/?],?*ӏQ?-~ڲ?Uh?.t?MM?8ï??C?3?r??*???D?!%?͋Yk?W?)+?U?8?_7?'c I?J?G4K?BNI?XJ?z2O?M^L?hjM?*&O?~K?VDYN?ծ/L?1??3S@?3w>??? IF?, H?\z(G?[CE?xMH?q G?<9T4F?$A?UAD?zC?! A?# .E?ɰKC?K8pB?v:?W\;?X9?4:?|H?;=?7l:??&;? >?'=?1b?ԥY\?`^?.`?"~_?2Ta?OJH]?!_?Iu^?3[?-$Y?8V[?){wZ?|dS?6S7T?QMQ?:*R?cU?X RX?LV?OFY??2PS? W?uU?VWP?3O?QUQ?ZO??/Y?j?U?$8?5%?3m?Pn:?\?=k?-i?l\x5?@ƤV5?@5?p%Ef5?45?4#5?l-qD5?VI#5?4?4?ƞ5?T )4?b+y4?DJ4?.@4?er4?~Vk4?,OJ4?6c{4?tY4?+<9Y)4?TC4?L}84? }-i4?@3?)R3?^3?(똋3?,x3?Q3?63?3?Ac3?_C3?Z)s3?0R3?O"3??@m\3?VgS723?g3?S 2?2"i2?xS 2?N2?Nj2?}+@2?u2?~mĐ2?*a2?(A2?ԫp2?`P2?5:!2?I^2?.u02?V2?w1?1?FF1?ߞ'1?_`|C1?pٶ1?A~1?Y7ro1?=c1?lU4??e ??:F?? wZ??5>?nT>?k>?b6>?i$̗>?/p>?h>?ASn>?qLI>? x">? h[>?N4>?GΑ=??J=?$=?|=?G3=?_s=?ѫa=?ɴ %;=?=?Ia6?-j>6?Kxh8?͘?8?#F8?u8?[YR8?(v8?Tb8?.8?PS 8?"6?8?8?![7?7?V[7?ڣ 7?`c7?4<~7?~([7?bH7? ɱ7?j(k7?dΎ7?T6?6?C6?˶6?%6?17? 6?W~57?^B.67?ӝ-Y7?DE#7?e4aG7?6W1^{?_y?s|?:1z?ktx? v?#hy?,w?\ru?r?i-t?ɿq?qAv?Us?XWt?b?[e7a?} c?h'b?yR`?#Q^?c~5_?3]?w=Aa?ce^?0_?'c?Q'Be?Ec?Tod?ܶf?g?T[ge?iLg??S??f]>?w`??“P?qN?uP?/O?t5JJ?M?glOMK?MiL?7M?#J?g1K?[L?@?{oA?M:@?. A?@WB?ВmC?zűA?2B?(5KI? yKH?ڃI?KH?2!F?XD?oE?>FC?qдG?BE?LYFF?$8]6?S6?Q07?e6?裞u5?74?eP5?IJ5?'~2?j3?2Pc2?`32?pt4?0 4?bv-v3?1X4?\1?*L1?n2?A??R5?W ?9f?,[?d3bщ??.1'?~P:?}?dɔ?ى?kxu?Ѭ4?)M&?Vl-?-5N8?tQxR"?f(?4o0?W???m? vU?XX?m?M;?? ?[?{}? ۆ]?ѣ ?K!?%3?|7?]X?2~[?"O?6}ұ??G?2?83?/.1? ?K ?0H?郡?'c??<գ?E?;a?5%?T\?H?Y?$?Rh7t?+?>K?WJ?W?S?Dm?,bR?j>X?*Q]? YfV?[ =[? 8?s* Z?5%,?G?O䀱?z?J빴?=xY??O? ??-??-?S?˛??8Љ?dC?Ϊ=?A?j?8?E?.z?)u?ӿ>}? j(w?So?Uvj?x.r?ڂm?Ve?`?P^h?x_c?[?Z|S?W?evO?FiO^?;S?"\W?@sK?)KA?q]F???.O?D?yI?储7?<ѯ?b!Q?a(r?|>?#?8/$?kWr1?2 *?)L4?j ?bZj(? 7[ /?LBg?ӣq0?4?&1???K@e?}74?g??Cm?p2‘?õB ?V?[O?*S?L9? J?0?s?iP?qC%?O{X?D?2?:x7?v?&d? ?T?.rR?{3?FL?ia: ?yh?a?TE?LEh?I]Y?[h?"?m? ]?y? Z?f?H2C?ZQ?+F2?nV?D%!?QMs'?;!?U?4??ߕ?d?T?Du?d?wl?\?Q?)J?D bX?biv?J+N??,%2?HG--?S(U5?B r0?;(?"?|+?e%???+H ??GQ?wZ ?Ees?}(??*]?H?G<;?l! ?Է?|c?ʣ?OwW?3?ƭ?:?zv?^?m߱Y?UqH?tS?=>SN?_PE?NmV?J?|TP?O;_?Ðe?BT@Y\?b?* hj?n?ʕ+g?#˶l?ЌPs?1w?q?9u?]|?n qe?RSy?^!6?Q_L?Gm#?Z?* ?T+ ?n?U<?7y?Ѻ?X?nP?~?ԝ7?^ɰ?bh?NQ?/Q?s#?dp?]=?!RGY?C?i Q?rq?ل?}u?@}??? Н?yY?,r?I%?Xtޒ?ku?K??F?j"?JN?8?"? -5?EW ??p?k?ąR?a3]}?u@?仔?;?5D?%?Sʅ??n1Q?g??2R?zvw?{yY?i?i3m?U?_?9°?[#??8̵?f?Z?}n?'?sИ?0?]5 /?_J?$H? u?6^?vy?q?ѳ{?>8!hv?,j?V?bp?cتu?ϒX?m d? ^?hQ?@j?Y?m(_?8CQ?dEJ?DG >?Tv0D?q6?=ܿ`I?M1;?A?h\S/?Me#?0)?q?2e#4?i2#?wQ)?.HF? ? r.?x?\(9?Ҫ?xf[? ?箬-?|KL ?)?3|?V#ޏ?o֋?5ԇ?˵1΍??RՃ? ?e?Z^?.{?<w?3}?EJby?+^ڱs?.o?u?İq?Hwk?7g?m?AEi?9]c?v_?+ze?XSa?.l8?I\!?P3?fqz?.%?)?K#?a#'?[?`W?d$]?Y?kES?RO?)U?XCQ?r@K?3YG?vM?I?6RD?q}/@?;E?$S/B?!N<?3j8?_["M>?ꍰb:?4?vf,?T0?,G*?6?G0.?c2?V6?!?g ב?4Mݕ?X?NO??^y2?]$?^= ?L?k$`"?{/ ?+Up??jѦ?#?I?_ۻ?TO ?? ?Q? -G?LE0?`P?kD???#?;~w?^"??'T?'؉?G?s(^?pB?_ 9?o?&|?5D?U?yh??s?2?)6?r<?*?g7? ?c?H$?8\r?^G?= ?헛b?s6>?C.? 9?6(?OѬ?N\?%xU?Ѫ?t??G?t?]n/?<.)?kU?BR+QQ?+1L?NH?FsO? bJ?vC?/nV??E?.9A?^:?g6?k<?H8K8?; 1?K҂-? Z)?\8M&? 3?Ռ5+?ރ/?U?Y]Z?\S?2X?LT?П?v|??9C?V%@?`?y`?cU?_ ?|D?SG?] ?3?v0~?`?a?`z?ťu?D9_|?}ώ0x?&-q?l?Ɗs?Hn?@h? tc?/^?Wû\?< kj?&Ea?OQe?T ?Pdŭ?o??Ab??B?u???sA?|é?"l?r-?4 >.??-??-?F.?"-?P.?(-?IÔ,?h,?T,?mQqi-?S,?El,?ak,?)q+?k,? ,?+?b\+?i-+?w+?\'*?++?MF*?ʱF+??h?|+t?)av?r?T0Wu?ix?6J}?Iz?q9l?2uw?ږ|? 7H?z?N?{a?A+?w? ľy?.=?*/?0?yE?^ ?"D?U=?WL??:A?• ???P?F)?'q!?(]?jLk?_+jQ?l_I?o1aM?*pT?F?yf Q?z M?&oXW?2d?qjY^?2^Da?>[?IJh? /T?cb?y`?ͳ\?,Ly?%hl?r?Oғ~?| g?E Jx?dTq?+dc?o?+?Z???? N}?{޿?߈?Eƃ?fG6?ߣ?y{?۳rݻ??ͯ?Gl*??gK ?  _ ?@?e?`7?r{ ?I?HQ?f?vv ?hs?iVf)?s3?|s.? 0?M,?|&?6?n0?T-?+g+??,M#?m^?c-?łV(?q ?A?gdp:?QH?? *3?㵎:?)-D?ГaJ?dg??iF?MG?xÀN?GG?m?ok?iI?9?1ғ?DC?>5?Vh"?ӌ?ם?B9?V*?u`?cr+?1? )?L?^ؑ?̌e?z.'?ۮ^?$0?=)?c?\??ҩХ?ml?チn?v.?=ӫ?4?0F'?l?Y:XD?I?ᘪS?[,?;?!۷?kݫ?꽷l??h\?1v(??Z???ds%??F]!?u$??By[?h?,|?C?"?J[?`su?Vk?Q~,?1?/?"?9g?h5?F_4?5?qu4?\3?n~2?R3?P23?.?#/?"x-?裴.?y/? D2?Z1??s1?6b0?Xu2??T/?;0? [0?̼1?xg 5?!6?z6?C[5?>n6?Q%9?VA&7?h8?s\(:?eyD7?W@9?2/:8?nH?nI?c/TG?GPH??J?+2\M?~L?rFN?i&VI? ^L?W J?(HF@?uA?ش%??'@?fF? C?֏D?WG?7b+B?Ds1pE?MC?3;? 幘?y[??S=? j>?ta?\?B^?F`?ٕ]?΅"[?Cb?/T]?<\?ZMP_?9vY? W?[[?#GtX?R?U?7PET?g'P?YV?bS?TR?QH O?M?9P?6M?B??i?TR?i?u? L? o\?L|?Jϒ? Q?5D-?m8\)(-?ןo -?誥5-?-?%E,?d2,?Xd",?U,?{,?8&<,?۟M,?g,?'|,?`,?Ѹ,?M m,?xKD,?b(,?nQ,?*M5,?1A ,?5E+?(,?п,3+?S3+?+?nJ.+?;&H\+?>&+?6uW+?{v+?JS+?d+?tH+?Lq+?C?T+?J-+?0+?`+9+?`+?# 0?H 0?Ň˚0?[M70?َI/j0?DdK0?7k3y0?Z0?n,0?g0?<0?̋F0?Xv/?I/?,/?Ѡ/?dǍ/?6/?-/?qp/?~u/?0LW/?$/?Ee/?9/?g)/?L.G/?)/?c.?.? /?i.?Ͼ.?ɒ4.?rҍF.?SpIP.?^"㇆.?[}h.?k.?^޹v.?fK.?F-.?1Y.?O;.?5.?@-? V.?UJ .?!1-?fܸ-?-?y+-?T{ƛ-?Ӗ}~-? 6a-?hR-?=xb-?igo-?"5_-?C T5?U/25?Mc5?QyB5?ne5? B4?\Nu!5?IbH5?Ve4?4?i^4? 4?AB4?dLi4?\84?Kx4?WG4?w&4?pV4?! ;54?˩4?ˤ3?V*4? 3?|X93?3?<3?v&53?V3? Sa3?F[t3?C3Op3?C4ܝA3?/q!3?WP3?#ׄ 13?YW3?؍72?L3?6F2?+TW2?hb]2?D2?ɜ2?{Y$2?v"I`2?P{2?-6ʆo2??@2?G 2?;O2? E02?P12?~*1?AƱ.2?u*1?61?)1?g 1?G1?ϼ1?a1?R1?e1Igo1?͗A1?&nY"1?O1?01? R.1?K*0?1?܉0?Xt:0?c0?*M0?L0?\K?`bK?msK?3K?&SG?vG?F?UvF?F?{' F? E?*3}pE?Z_fE?GGE?%jm E?鋻E?H`*E?΂fSE?D?aD?C3E?( vD? zF?GI]LF?m08xF?\x`F?*-F?uE?UCE?f_dE?"2F?>iE?C<9E?~m I?\H? I?/H?!H?zH?xH?WH?5h"@?ڛ@?<@? @?u1v@?۔Ąp@?Ŀ@?V@?'#H@?.m @?Z@?1k3@?7 ??A??WE1 @?jp+??n????J??Tk??{nX??9c1?? ^j??jB??Y ??9坔>?d ??fY>?z>?L>>?h7z>?U-+>?:Mm>?A]*F>?~>?[dW>?Q>?? >?ZBb=?xJ=?-=?I=?N U=?* 7=?*N]=?)#=?#K=?H=?\n=?@?ڼFmA?&E6A??g]@?- A? 4^A?\A?HA?kicnA?s=A?A?" A?D!A?Y6?0C76? 6?T@6?r$6?}E5??+`5?VJ6?.5?85?d+5?˺5?L~5?n2r5?wQ5?T~5?Լa5?4=?~ަ=?1 89?G&:9?#A9?(̣8?`R8?'8?T-8? &8?5Rs8?Q8?6}8?܆\O8?Z-,8?Hz_8?<8?8?2u7?Aw_8?_{7?g37?@|7?ߍ07?Yhj7?J7?wGh7?g_7?@ӺE6? 6?Y6?*6?|}7?47?t=6?@@&7?vX7?(z7?oI7?ќh7?W/;?&\;?XAV;?ӓ;?Xp;?J;?a ;?WvL;?';?[\;?U`<;?y;? :?A1;?:?ǐD:?ѐ:?Ш^:? :?̆rk:?>G:?_z:?,X:?USU?bU?,8bU?J U?ŢGuU?u6RU?|A'V?/;2U?-3V?WXV?pV?Uw6V?aV?V?ۢZV?DV?k"?9m? ?t8WM?TS?Z?}?{?{5.9?9W}?A3]z?`x?D"k{? y?5w?ldn$u?)x?)ˌv?=s?mq?t?r?hM1b?s_?Qz`?ӂc?b._?m`?K4@b?.;d?:uf?&3c?e?=Zh?ci?s/g?Yi?%PBk?c=5o?pOm?Yp?_j?N6*m?4k1o? yx?rx?(/?"?fπ?~?>?k?<8[\?9]? I[?wd\?4V^?:`?е]?ȅn_?:Z?X?Mu[?ҲLZ?*[W?Y|U?@ǓX?sgCV?̬IT?R?p!VU?/S?JQ?@hO?6 R?gyP? /8?8 8?? ??q@??=?m@?K(X$??YN?S) ?>3? p?J?v]?\k?sfA?X?OӼ ??C.??͚5?D*=?g3?,/:?D? [K?wA?>;rH?a%S?nZ?+7 P?_W?]z?|a?esm?Tfg?t?=@~? {^?愴g?`m?t?w??&G?2?I ?6ߓ?^?ǚ+ ?(p??b?9J?Q?;Е?A?~v?[ժ?9e#?R{?9?$WX?^?j#Q?T8?M?0? ?宧?mo?z?cW?R*i?k?9?`Y?cyq?d^_!?R?(`?G%*?9sz??48?j]?> u?ыh?B!n?Kc?A:z?iEl?,dr?V%H?U8C?L? /G?e??T ( ?;vr?"?~n?OKh?P$? ??u?*M)?NF#?gn.?.'?xE?1?$?wR ? +!?o ?~?|I[3?"B=?7 8?\BA?,?;3?{g9?Ľ?0b?gL?|??|?Tt?Q??!zz?5PM?}@|?=lf?Cu?P[3k?pg$p?oޑ%w?Y9i?1ͳm?r?`?kZ?2-d?_?* T?jG?|M?Gd~eE?X?I K?cQ?Y8?:6O~2?=?9? 9?)Y?An?܅ ??z?˻ %?TӬ?=?hܨ,?M3?x'?p1.?ֱ8B? 12I?|n??*VE?b5?1#1?8?G3?>-?0)?Փ/?dBa+?Y$?yG ?~'?/#?`?Թh?߷?.ڞ?1ʳ? ']?%Aʩ?@W?:qk?Ty?=/x\?Vݙ%?g?#vH ?}?<˚N?(]y ?aT?}?e? {?,RT?(?Pd?]!?H?4?ۑR?^$T?R?K9?͗?BQ??UK8?>L?#?t>?@W?[)??S$?3m6&?8$?WD)??$3~?q?[S4?.Z?/?M)?F? [2?Nu?ާ%?+?k?+?ʈ?Ԝq?Ke?[?/ ?0Φ>?:(?Š?5?7!?j n ?nX?^.??C3?wS?l?ՇN?Dl5I?ⵐB?cL?6wUG?b6?zWx?b?1?9⹑?57?ҿ^?%?׫?+?_V?"Lx?LG?A?O8?.!=?(3?]B?<4$8?ڃ?@??eaH?_h??)?kX?N2]?Hr.?0)?n=3?zk,?*!z#?2?El)'?Y!?Rb??r?{?xF ?[Àa?E?=8m?%u??< ? ?l+?H?S0?Z?:޻?8_?nY?۩L?yR?H?_~\?JN?iT?J?zge?Bn? yj?Pr?ab?Wnn?Thj?#w?Y|?1r? ny?9?lT3?pO~???|f_?Y%d?kS?0?Z q??0ӊ?:oȨ?gխ?.cV?915??6(? (u??m?>I?uؿ?܍??H?>?^J?&QJ??)3h??S?h5?UI?|?nQ?5?p? ?tD ?G?5/?]s??m3?_?(?Or?ȫb??F?w؇??5???sui?p&?.o?`N?yJ4?]kt? v?3?k+??7WA?,w?҅Y?KK?D?bȑ?W?p?_?Ky??c~?Ro? K d?NlBu?)-#j? KvY?3P?I? _?buU?IL|H?F/@?NL?Y( D?O8?y&Q.?8JM??CA?%6?+g?|?"y? .?Y??AH?vT g?rYi?z'?Ƽ?y??Jt?o?rj?᜿ar?c.m?/ @e?`?4g?|cb?ȃZ?qxU?H]?QX?X7P?esK?)S?mMN?_.TF?.9A?>H?' C? <?6}J 7?B`>?̑/9?"1?ߌ%,?'^p4?x}/?M'?"?Lo*?Ek%?r?@~?Ud ?hW??/?fY??P5 ?[?dV?sQ ?uFK?Gz?DzC_?+w?|??>?=e?H!^?S#5?k?C??=ՙ?L+? @]C??P ?_m?.?F ?k?hJ?luW?Ɂ?&O?cDŽ?9?V+?C?¿A?W?m ?? 2B?X?$U?O\q?#0?L?(xv?hB ?_i?+P?aμ?:?+l?v?A6L?)Ш?w ?)[?/>?q{?%??~:@}?M?J?Ο4?=??lA?R ?8<?G2 ?t?E?r?T=|?'˓?Ə?ۋ?XEA?r̍?W?Q?R?Z )?3t`?bW|?j=?';~?9ݮx?+s?%ez?Ff v?Mo?Ak?oNq?]_m?.g?{c?Vi?5e?_?Y\?5a?z7r^?c`Hi!?I@%?̥H?BM#?s)?},?&q'?>*? ^X?(+S?'|Z?4)V?O?ˣK?%R?cM?G?D?)I?F?Q^L@?Q`<?TH1B?Uޚ>?sw8?b0?!:C4?݅.?cO:?\2? }UG6?xҗ?c?T?1?W(?%c??Ip^?m?H$?0/ ?/]&?s81r"?8l? @~?k8?y ?8E"??U?(/?JZl ?e ?`22 ?)xW?U? 5?z3N?5??9?I v?3?W{?7Y?w ?ǝQu?&??(!I?ҳ^?"?~p??? L?o F?E,Y3?= ?8?"?49?hM&?:Mb?~?9?h0?v?4wS?mA?@?EGR?P01?x?vB??6Ҩ?ru6?P??Z~P?Y?b?$%U? kjQ?VL?XS?@?O?+q,:?G?Q>?DdJC?ͅJ?;?A]@?;oE?5?em,?,?3hm,?_-?[g.?],?)S^-?jW+?#r+?Z,?ҥ+? d*?S*?J͹*?,*?(+?'Ĕ*?4S+?|f +?D x*?\Cu*?As*?5{*?K}*?q*?ŋPq*? ,*?4*?-*?R*?4w*?Dͧ*?*?%ع_?We?Q$d?h?f?wZb?`?be?^`c??j?Om?4l?9o?BCh?m?Tl?9zq?rt?mGko?-r?۔?9~?I.?T ?#\v?{?|s.y?N}L$u?zH~?]ٖz?[rw?!?\Ț?+?4?ypKE??᥎?%&?9?3? ?B:N?D?' ? mB?K?oKf?lr(?Q}.?[-?&b4?²2?K_3?i1?Mj4?K?I?/2dF?WlL?p JvI?G?d+NA?D?3."C?iF@?h:F?1C????X$]?J8 Z? ^?(Z?闱0W?䉑T?X?6U?VXR?^FbO?R?wP?)iL?!:J?N?xVK?vo\?R&?X?"$?r«?՟?=J?L?$?׫?4˂?Sbo?6W."`-?,mWC-?]b&-?țcQ-?;AT4-?3 -?ҷ,?i-?N,?KP,?z,?Ri ,?S,?<<',?j`z,?U,?V=[,?M^,?"~B,?= &l,?gO,?ByS&,?-X ,?כ3,?U,?Sl+?J/+?Vb+?vE+?-pʶ+?+?G6+?W}<+?:*?=.*?&T+?Q'&*?Yh*?*?Py*?4*?IԈ*?f' m*?qn*?z*?}[N}R*?U:i7*?f|~_*?0mD*?:d*?'p*?Scb)*?}3R*? )? d)?Pf)?s͢)?])?kb7)?Zս)?Vt7)?܆~+?ia+?2~+?+o+?! a<*?(b E+?5'q+?9)+?][R+?eO*?U+?vs12+?];0?*i0?nyњ0?_\=y0?{K0?E,0?w&&[0?"<0? 0?$;-/?gv%0?.O/?kp/?o /?QE/?K&L/?QY/?qkt/??Ѻ/?j/?P5U/?V*8/?8c/?vp-2F/?#M+A/?e.?eX(/?A /?.?)Ğ.?Z.?u |F.?z .? uτ.?;|sR.?U.?=f.?I.?t.?5 W.?V ,.?a.?b9.?ճ.?{-?x>-?Yf-?, -?EE-?(|-?Mt-?#1m-?^(-?ٷV-?_V-?GD-15?c5?W74A5?#5?I4?x4?!`5?^mV4?F/4?ԟ4?y4?[14?tuf4?%eD4?˥v4?\FP4?*T"4?Ѳ4?Db/4?w,_4?U3?V3?_2?_՞2?qA~2?>V?2? 2?%^2?!"@2?}zS?S?uS?z "1U?"^wU? :DU?ǹhoU?6 T?ovT??~T?\T?_,nT?mDRh=T? T?S?]T?WCT?KOT?I S?QS?L3T?,wS?VS?/hJS?;YS?a _S?C/S?tbR?yoJR?FR?DWeR?3]qR?WXR?#. R?t_mR?Z(R?DQ?}ۑQ?nrQ?]=R?L}Q?t R?5ŲQ? Q?OaQ?; Q?CT[uQ?1Q?Xu"Q?gvKFQ?PtQ?pȈP?z'P?}P?^EP?i0=N?-wIlN?6<"N?oN9QN? rN?;N?3 UN?)ƖN?t N?Ɉ(O?N?4O?( sP?}DP?)VP?ȜYP?ь3P?t"O?O*P?_yO?hUO?* XO?#r'O?ɰ >O?` O?|TtlO?O?É#bI?I?1LI?K|sI?G[K?7XK?rRK?uՖK?.,fK?`ؐI?8I?LVWI?ZI?%J?GT&CJ?_gI?uu*J?]EM&K?|LJ?˲9K?V9K?p_J?JM9oJ?SœJ?P|VJ?d?tJ?LJ?!٬J?%6I?xSI?,]I?Wh6I?كD?zrD?HcmD?؄D?)'GD?bVD?_JYD?56Z0D?Y'B?s,.B?;A?/LB?x)IWB?bDB?$ DB?Ç jB?0zC?ҳbC?q*D?C? LC?@xC?QƱC? dC?+bG?7uG?RG?'G?ʭeG?'\>G?¥F?qF?G?,F?1hF?tF?+SF?) F?ډ%D?BE?RkMbE? ҪRE?m7E?5E?3 D?K0E?D?PeZE?-V)E?D?\FF?DF?f0I]F?0F?w 7E?'gE?|bE?\E?xH?n H?^@I? H?딍H?H%ZH?^rH?iTuH?+}@?f?˔@?f@?@?Wl@?DE@? }b|@?(W@?6cZ@?(tK??/1@? @? R??*n?? ??^??tE7|??R9T??mӏ??)c??]S,????;??c??X>?~L>?8^1">?wj>?>?oi>?楥>?x>?B>?G>?lfQ>?`->? X=?&=?~F>?+A =?x=?۟Y=? U=?!&E=?>8b޻=?Q~Uh=?X~=?;@?3@?$2A?ŇO A?P!XA?ނ2@? A?S2A?e~A?M͒A?cϑSXA?ɾ mA?A?H~B?h1vA?N:*A??iٚp6?pTI6?e6?" Q-6?B&mU5?>P6?$ 6? A(6?+Q5?g?5?¬5?f[5??ʋ5?lH?Q5?|}n5?`D35?uM^5?iI^R5?oo5?x&0=?3; =?T=?1,T.=?\9?D1<9?˅9?*3J8?5A9?c 8?[W8?pJ8?_t8?8?o8?B(L8?z?~8?6]8?? M)8?5\8?Kk :8?pz8?E7?w 7?7?NJ7?Sݼ7?ͪ7?<7?{6?7?d*6? V7?W:7?$ y7?ߑBY7?a7?B*7?RY7?/x7?⍡V?[eU?QOV?ˌ9$V??cV?ep2V?dճrV? a?O1?1"?bd?F?,.?(Wp ?v,?w?|?*C?LR2 ?%u?Ej=?<?0?^~?-` ?u8I?CPj͌?ST?C( ?5 ?J?؍ly?xp?rF§|? r?\ΐl?6v?1o?'+'f? y_?zq`i?fb?Iy^Y?hR?tR\?_2V?ʡL?SHF?<8O?fW{I?Ҕ??K/9??#C?=o <?M3?h-?(I&?#?L>}6?N$)?<0?aU||?8ZCy?pz?xVw?樉}?:Ry?%xz?P!v?2r?et?%up?Pڱw?ɰs?@t?zNb?nKd?=&9a?lc?ǨQf?4h?oe?=g?j?mjl?Ƶ^$i?k?n?{@?Dq?bm?o? ?ʐ?!?N?lۃ? #P?P|?x?,~?ε\?fj^?z@[?4s\?j1]&`?Tb?zc\^?zX]`?azY?6X?=w[?pY?LfV?T?xW?RU?PR?+jLQ?7d!S?{,2R?\?O?i-M?UP?o[N?xn=? >?Gc9? @?qA?c??@?|[ytK?<9LI?9L?+KJ?XTC?8G?$!=E?e4B?u-H?;#D?OXE?=?kO>5?s<3?0#F2?;=4?!3?_^1?о/? ̇0?E]P/?-2?00?"1?ey9?-t7?E<8?x:?Ҳ\Z6?7?U8?{?T?bS?'?SZ?"ߝ?rcqG?_ ?ԣOs?ϖ?<7C?2I?c'?shF%?a60?Hm>?֗b7?v6ME?j˴,?8?u@?eٽL?mm[?ET?@d?0G?FS?.D [?{m?arcu?`O&d?\n?sQ?(4= ??y ?*y?L%???x?K?R4?0 I?ko?.? f?,{?km-?o?W=i?C?fo?eOT?c{|?Վlg?P?{W?~ٚ\K?1j|Q?يU^?E)d?D&X?ϴ_?uv(?oj۩?x ?j6կ?㲚?P?1?^+?Ґ?'?tE?^gÍ?'k?|=p?#&rw?Ym?&Z?ߑ@[t?d(|?*PE?Zb?bP|?Q'Fi?Agm?GX#:!?Wh1%?0?u+?d!?ڷ%?ܠ?8{?5?D;,h?n1Q?B?dK?I%??M?q\?5?)vK?OѿV?8{ ? '?v6 ?tt?ib??rJ"?HLd?qx? ???."? 7??;?8?;?UN?8 Թ?M#%?مK? 3?@V?5T?M]M?w4?Mv?x ?8q?R?z??y?QxI?hG?E)R|?b?т_?H ?+?{>?H3L?-??pN?F!J?bLS?(!)N?LwE?(c??/0J?D?~a9?{(3?>? 7?bCt?Vlq?0z?Rw?KP9W?#]?v\[S?0Y?ʠyc?M׊h?n1n?wes?T_?Q!g??_m?>?*h?Q̎|?um??+0??d/v?$?[?O?lѣ?و?&k?E?М?Y$ٲ?Eq?[W ?H@??ao?L?qf5D?F&7?t=?gI1?~E?37?-wg=? B?=?2M?ID?,%An?x{,u?V:Mj?nvq?ɢع{?v$?w?K~?sb?ǯ?앩?5Ͻ?8?m?9?~?g??>?Yr?L?Ƨ?d]??Tk|?S0(?D?Q ?<|?VJ?,K ?x?p=[?V<?Bk?(Z?m'?DH?q?2%?`?2?{?#?LI?4}:M?n ?\zU?:?5?0ʳh? 5??F?!7?M?Ze?[Y?*z_?du? Q?Xǻ?A ҧ?VDZ?c˕?Pi<?PQ?X?a?ռ??JV?ic??D?G&B?b3?Cz? ѣd?I?o?D[?a}|?e'c?&n?}`vQ???p4H?"G5?CvY?k??"eH?g?F+?")?Xf"?4?oΝ5?(7?7&?J?=r? a?I ?=Mb?j8??ԑ?4?R?qQ?&}?9?bf?=p?CB?h ?,n?*? @G?6Dr?a??V?x?Ka3?hZu?GR?""?Ҫ??h?ӓQz?fu?Zo?w?tur??Ej?Cse?,:m? Eh?5`?vZ?c?D<]?,xU?6P?ҐXX?GS?7wK?r\F?M?/ؽH?EA?B,<?C? `>?2{7? 2?(૩9?܌4? -?a'?~/?Bx*?"? [?z6%?yRe ?=? ݡ?Y?9= ??SF?&hP? ?Є?R|?3B?M??,4d?k??0ȱ?kR?,-?j?OuiN?j ?T+?j! ?*v|?q<?h"?i?6?/?"?XZ?R.?_2? ?x?/I?C?&?B[)?Z?N?nʥ?UV?mܹ??'sȀ?&=?z?W?? ?H?.?d?ovb?.Ƭ?> _ȴ?r+? "v)?S?b? R??Q(?k!I?|wi? l?&4??/?&M?]V? ?GC#?/?Wۮ ?~p)?K1/?&?kNj,?4?:? -2?R-'8?_R?0L?#]\F?@@?|5=?:O?@ C?\/jI?V!#?Cw:y?/?U1g?YJ???# =?H-?c?}O?Ķ?yi?\?I-y?e?e?[# ?;?̀?5m?ϭ?oA}?p$?ˡ? ?&7?搁?BQ?"lV?᳕Z?FT?pX?PM?AGG?*r&P?CK?Z9?;=?,N4?g*8?B?~E?=?3Vs-A?q@0?L\+?@,4?+.?>_?c?g*]?ԺVa?>?x? ??O6ۥ?W?[ޚ?TG/+?w?h? ?‘?U?M4?O?i5n??cUb?s'?V=H?t ?%u?Bz?bKv?L|?y?fq?.Sdh?&4@m?Te?t?j?ۣo?vÊ?Γk?? ?y?3<?z0J?H?q?;_?9_?p)1?7?ޣа-?$-?b^E.?c6-?U斥,? (,?,,-?w8,?+?mEH+?Bk,?Kް+?\v*?`t*?h+?Z"\*?IPea,?x\-?,?o+?hc-?\0k,?f0D,?+?X1+?֗+?Fx\+?*?r*?*?siiy*?/*?Fݸ*?z+?*?٢n*?~R*? y*?]k*?\%*? l*?n*?_?a?p]?}`?Ng?~e?X!>d?"Wj?1hcc? }h? f?1bm?s?Vp?cv?ak?42s?Xp?yچ?D F݁?Ly?_xօ}?9utv?>a?R1{?w?0 ? ?c!̇???\:? ?z?]?8?E?0iV?dgYd?(jL? W?Pr?l7?2U?h&)N?祻e?V܇?[v?T?!w?[ ?+Y?}`I)?5?B?A M?ީ?/?9UE?A?H?r>F?6C?JhH=?Xk@?ua>?;?lB?wž?? >?Y?S?dkV?Q?!PjZ?2*S?ӅV?{k?O?;IJ?*L?ҬzG?WnQ?ޙJ?h@5KM?va[?[ _?s.AW?!m\?m7%?c$%?ۇ}%?s}"%?+%?۹%?c%?I:%?\%?_K g%?C Ո%?mp%? N%?0|6%?bX%?,U@%?ضp%?kZ%?;d+(%? (%? [R$?hY$?"$? $?qo$?Juے$?3~0$??'$B$?_>{-?^-?B-?Lq?l-?A-Q-?;+?V%-?U-?0j4-?|)3-?V,,?o,?%,? ,?oʙİ,? $,?,?a,?Δy,?f\5],?b,?^il,?:@,?[,?3$,?$AK+?P,?ΤF,?]0,?)+?4J+?2+?6 %+?_x+?/=z}+?C *?l )??q)?u)?hK)?JT)?%)?B|z)?pg)?=x7)?`+?!=k?+?[p+?sR+?*?+?n(*?M1A*?#{]+?CR2+?+* +?ߛ@=+?\pPj0?ITL0?4Vy0?_0?li.0?Aň0?@0?0?ݴd/? xú/?x/ 0?/?N0ͮ/?"+/?!0/?0=V/?q/?%S/? D}/?5-b/?pr6/?(lJ/?ʝ7D/?t1&/?A.?8.?9An /?.?ͤ.?}F.?.?>rE[.?hŪ.?cd.?w۶.?Vp.?G.?&?\*.?! S.?W7.?В .?7Aj-?'6.?H.?ڒ-?紱-?C-?ݿ-?qXt-?02-? -?)5?M4?45?. 5?U4?_y4?& 4?p4?14?xa4?< SǛ4?JJq4?C;4?T3?Qe4?3?]9K4?ai\3?mS4?XQ"3?1^ 3?A'3?BQx3?x3? 5=3? =Z3? 3?YR3?3T93?VxW3?..a3?(fb2?ek3?"#2?<^2?e"o2?;2?2?(Hy2?)C?2?Bُ\2?#2?ȎP2?jƹ?2?D\\2?،[2?01?mh#2?j+1? R1?f1?Վ;1?7&!1?ۇ0?^e0?$Rm0?S10?Pnfw1?BB7=1?FZ1?B1?eʇ1?0<1?WSY1?S<`1?V0?#0?ޏ'J0?VK1?K0?>F0?A6N?pTQN?M?Y_0N?~M?K?p L?׆K?MyK?D :L?LiL?2bL?FSSL?:ƗL?6L?yL?=L?WM?Y}M?I0PoM?m1_M?^oNM?y_L?v*3M?ӮG_L?o[eM?82AM?"׍0M?sS?v7S?!HDS?ZZWS?YkS?*{T?7T?xU?eT? T?1T?SbT?=hT?BOT?3VRCT?7PsT?22WS?`@+S?}qwS?I S?6 S?ōNh%T?ҜS?7 AT?S?m: R?lE5(S?@ER?.Oa7R?ԃR?6kR? 叚R?&7RR?ZQ?'W!R?;Q?տP9iR?[@R?B15R?PQ?R5Q?~FQ?Q?%Q?o5ZQ?^ *Q?fC1nQ?oTAQ?7&P?P?8%Q? P?_! P?#2mP?Z>P?ZWP?Y%BeN?GE?x|zLE?1-}E?jF?mE?<;E?c1F?$<~E?e._E?+9fF?]XH?W YH?&I?xH?H|]H?1!H?z>H?z@?L`C@?QPg@?0hw@?tmoY@?k @@?i1e@???{?? '@? ??<t??v??B1I??u4??5I??&{??&??)j>?)#Bi\??8^??Ia#??1l>?>?\.O>??'k!a>?l>?;f<>?u2v=?^!v>?>?Y:>?UH=? w=?Whݣ=?oQ=?x]}=?{Ƌ=? =?Ő3e{@?2呝@?NI@?od͘@?3@?)*2A?9!nA?5^A? TA?"JA? cA?u A?IA?9B?ZBB?H7?*a 7? 67?-&x7?27?{zHe7?s7?O2,Hqy?s?:%|?~Iv?nl?X[-f?7o?Zfi?h_? dY?ɍb?M\?uiS?jL?$./V?ZO?ɰUF?y??|I?5o+C?+R9?B,-?l%k3?ŨS7*?IF<?CkI0?06?`y?s?6v?N >r?A{?It?w?Qd?+h?Yf?MQj?e#c?w h?V=f?U l?m?q%"@?8{A?y'I?:lD?=eF?xJ?8B?G?x~E?zC=?#?cI=?cH?G_y?. Z?,Ze?LIp?U?^ ^r?Xv_?8i?q ?|=:7? ԻI ?/?=s?٤Q?ij?PFr?4xv!?`3&'?2_?8#?8s? -?1?E I?#<? H??#a?* ?A3?e?&WR?jW?#? ?kyT,?F?芘4?Oǟ?՛x?K>?]?=?:U%V?#?xŗ?ej?h\e?°q?Pk?|R?Y?DG`?YmK?Xf?hqV?V]?ڈ?Gg?Ph?j<4?Ӵ?!5iw?H֤?:?4x?xV?lTr?^?mi}}? }?N_?@D?la;?hO?U&E?^? ?CV ?G?Y_?F?/[)??}E?;OX?+ ?W1?0qH?~1@?۷u4?R_/+?9?2?šJ^y?r?4i?ڼz?~\?LKc?@ U?^?T^k?<*s?f?зm???*{?H?Q1p?TN?O?d?)=?V?&%٘?+ū?J>?շ?^۰?bl?!?zt?:%6?D+?_|xX?^??hH!?ME0?|;? QiG?n0'?NJ96?巒9?9?]? e?J屴?<8? J'?D,??މ??gM?{غ?̮?V㣃? ˁ?e5})?X?Ǯ ??1x ?»@B?]|?M?wl?if?N#?J?_95??)?e-?.3k?6f?j"nz?\u?B|?Ow?z!Np? k?cr?Nn?ݠSe?c`?}i?sBc?l}Z?U?s]??W?uxP?2xyK?gER?SM?{ }F?X[A?fH?jRD?ל=<?Op07?2??dZ`9?2?Mw-?lD4?L/?,;(?R3#?&}I*?iX6&?Cgm/?d?̤g?E?.0!?Qx??t?P?Y`???!?-9X?Jd?ϸ$?q?DX?u?h¤?2>%?5?q]??k՗?q1c?XA[??1?d'K?h?5_?(ng?AuL?\z?`'?La?+?*<?m`?FMٞ?t?p0?P,?W?]?ޑ??1?8_d?6{?u;?h4?8?%?ܔ`?"]9?v\?G?*6¬??;LZ?s? v?6J?L?Mpi?FM?Cq?Yy?<?pM}?Zgj?-?p?Y?`#?O<)?Q] ?1&?Te/?95?~p|,?։2?a\s;?U&@?A`8?J,4>?Bz.X?ER?~%F?dsL?> C?g^MU?zI?}mO? G?N=V?"?B.?\j?$?&8b?ys#?U?vԧ?P ?|?]B?ǝ ?lw[?y9l ?<? ˋ?6??il?~%#?6_? Iu ?%?l擟? K? ɢ??@Լ?&Oy?;z??<?6?!?nׂ??֩?j{?⪄?(~?Ju?Eo?y??beHs?@ j?0֔^?dd?88[?jZm?QtRa?aJg?r?yΖ?pOP?%?/?T,}?;?܎?HK?/(Jl?ψ? Ѹ?y?t?7}?gX@w?B0lLo??i?r?&d?gl?Mc?)^?Zxf?ia??cY? jT?oi\?`чW?H,?2?')??3/?GO?MI?xR??M?rKD?FI<8?Q9>?j5?UUG?<?ɻA?a?WB?,?u饠? Gz&?r\!?9)?#?J?t?9Ŋ??ENU?w??G9F|?hAd?AH?:`?7?|8 ?J?7?cH?ʄ?Aȱ?v: ??d??u?h#?U?p{?!$?9%?yC~?1?H?'_??3?/Q?±??H3t??A ?D?S?en??ĜΥ?C?i??'>TN?\Q8S?r[?C&W?^A_?JQ?)[W?K[? rI?9#D?ץL?fk9G?8?E'@@?-+<?=S"2?ÚBC?ka7?E;?P V-?^6X'?M[2?]+?)doc?ovh? w_?A@2f??Xw?):?ė?y?ܶ?(ؚ?P?$??ip֚?4??~?mrBV?}?PS?x?e*?Cf?z0{?хMf?ʖ?zGn?9w?Ym?;l[r?#.;k?L{?hp?PEu?XU?^s?Mق?FO??0hü?˭?;!?9'%?#|??.:s?-?(^,?-?;+?z}.?rn,?--?:Z+?J*?m*? ߉*?XE+? *?J*?|y',?(+?Ŝ7+?8P*?+n,? 77+?O杤+?m*?-V*?S r*?0n*?1Wg*?3^*?ͯ*?SlJ*?i /o*?ۮc*?Ob?i?o]f? Pn?_?Jj?Zf?@s?y?E}?COx?Ll?T?Smo?,x?O?}?#/c?#r?oW!?@6?RLӔ?BB4?)u?:??$ W?lz? h?Fp F?\Ã?Kwg?:V?7)? R$?+$6?s?u-S;E?ms-)?i\?W?ur'?l?W^??G7t,?8? ?Z˄?p?$s?vlx?i(?3n?10H?R,?į-?,+?,?>.?Q?x1?eh0?-3?v2?X '5?X-?ژ7`0?O1?x`2?L0x6?{On:?Wa8?9u?1A?ZH?RXM|?{?"4K?ۇI?z?UFW?7 s(?A-\(?4(?ZḨ(?MP(?q(?z)WPs(?pev(?&0̀(?&fY(?\>(?f(?`;K(?p0$(?K5 (?0(?(?NZ3&?nm)&?UuqB&?*0&?5&?aI'? '?u'?5'?m'?&'?'?D2'?1'?+Ƣp'?N]'?"}'?\^eW'?:='?tc'?!.LJ'?U($'?7A '?0'?j,'?7r&?&?9&?&?a&?k&?j&?jn&?c&?;B[&?MĔlt&?8XN&?*iI&? g&?&?T;%?%?JQ%?Սd%?^W]&?<3<%?M(g%?S%?>1I%?FoO%?86a%?'z%?ܛ%?S%?j%?ޏ%?G$?a1%? %?V%?K'C;%?dl:$?HJ1F %?E#%?%Ŏ$?Vw$? o$?K$?0v_U_$?_cG$?[(?SF)?F*?p*?ճ*?)A*?ZJ*?BVGk*?*?@Px*?֏~P*?+5*? `]*?5D*?D*?)?H^c)*? РB *?)Rl)?8)?"f)?)?[)?[zf)?8H)?*B5_)?z)?9^)?p߉)?n)?;NE+? .)+?W+?D7+?b*?A' +? s*?d} *?-+?Ȗ *?Ŝ)*?lS0?6\20?m0?FdG0?w3b0?i=/?e]&0?H0? 0/?/?J̜/?A/?V3/?۫R/?7Mn/?O4/?ay/? E S/?k.?Ơ.?$.?*6..?.?xQ^.?X(.?C.? .?+o.?K9(.?IC.?^-?S-?[-?2?wU2?s2?4>2?|O]2?CM\m2?M2?^2?Hd?2?bZ2?MnX2?n3+2?:e1?;1?'2?2"01?%!31?li1?1?DÂ1?e0?Ӹ,0?hsa0?>߅0?6:1?0?ѐĸ1?#V1?cc0?d0?gp1?pɕS?(?YD?o? ?[?gp`?8!?d?SÑ#?b}7??-?mX5 ?sg ?w ?Fzf?_ ?EQ?2T?cL?q9?LG?HuO?͛X]?E?ů]?v?jn?kWq?E8x?)Y?KAE?fc?݃N?~C0?ݑ?r8;:?@q%?b?][N??j?t1???5?ss?G"})?(?cPEH??_h6??yw?ʕ?ɐ?+ 5c?@{N?)m?JX?"γ:?x&? D?Y0?a]?_^C?_T/?zq?ԕ3?sw.?I4??4?9ME?3r?2۷?n`?֜m?Ҹr?i?Jm?D\|?_? ~+]N? b)N?Է@M?\PM?ͨM?ќ?N?dM?!M?L?-8L?G$K?FL{[L?\kL?efL?`?L?~ >L?)QL?&% L?1޻L?=$}M?#M? <HM?~XM?:L?C%(M?_]M?ygK?Qy;S?e VS?S?R4/S?پupS?x/*S?VVzIS?"yuS?>T?%TT?K>T?2T?kT?`T?T?T?,S?OLS?fnR?5ĿR?*ӊHS?(aR?IR?}R?ηKR?V,Q?hR?wp,R? _X`R?H R?xQ?Q?|Q?VQ?Q?4*}Q?JQ?m#)Q?kP?hQPQ?4\ Q?]@P?mhP?͓P?;P?WMP?,(8dP?@? @?%[@?b)'@?)%??pX??V??Ȼ??Qo??6??ԏ??BT??&@>?sZ>?2i??6gP>?/>?טP>?ĸ>?$Yo>?i>?Vh=?oH=?'gI=?=j3>?D)=?X9=?y@?=@?bD@?69Lq@?:4@?6~K2A?!@?> A?wA?P2A?CۖeA?6dB?vZSA?A?KIA?KB?1 B?t~^B?SsB?vjm6?zNq6?ڇ_6?rI6?<6?VKE6?w76?Z6?`,6?xA6?iK5?5?5?o{5?mX5?ǫ]5?]y5?OP;5?0pe=?nf=?%+/=?U$}=?i[AvP=?ֶI ;?CN:?,HӍ];?2-:?5Η ;?o,~:?hfU:?.M:?CG9?:?.:?QpP:?I/U?y٥T? eS?U?9vU?\9sU?4U?-lT?8\U?ʏKB(U?jqT?`V?V?{|mU?SAV?[V?7U?gW&?yZZ, ? q?Oy ?{??a$?iZ?:k?pk? `?~_?~M?9?Ӹ+?=?E?90Hz?+F???KMQ?-?IZ??A:?F?eg?!̶?}%? 0?\ ?|?(HA?C?>?IS-? }KC'?JKF!?%l*?N$?30L??ا?n{ ?ɋ?a? ?/ ?; ƙ?H?a_?{X?Ό?}\\M?k?pܤ<?*?=wy?I?%U\|?"s?Xl?YhXv?e2p?v3f?N8_?i?Fb?WY?`S?NYC\?<a8?Ÿ??$ag:?S5G?$r?x ?1+?r?O?뾇?R?>ܣ?K?D?o?Ei{?U? .w_?q̍?$D?*$%9?.?Z,>?sZ6?*hp?M?ɮ??51$?R'(+??(;2 $? P?xwt?lc?)$Y?xɖl?VW|?J?b?v/j? !X?oa?|g?Fr?N!?uDx?il?Fw?~.&?zp,?S!?b(?I!?-~??k6a?2, ?7.?@E?Q|?U=?<W?S?Щ??ԟ?=Ox?9Yb?~?Ѝm?Y[?^`?Vg?or?cD?g;?8NL?B?ۛ>#3?P/}?:)'? X?ovN:?FY"? -?T?6`?+K?}mvV? Hʉ?.,#?@2?" ?N$*?]j ?X?} ?2Zl?h@?>??5H?1?: ?4=?F?ݰ{?E?EB?k?@Yn?~d?)fg?W?? WJ?]}??}?1?_+ ?̸?`ܺ?>a?(???{#B?/X?ħn4O????xG?e8?.mhS?'9A?I?7K81?Bn%?ľԳ:?S/?{?;?!u?=8?7|?{tRa?Gh?uo?9v\?hLv?Xe?Jl?"M⤌?qՖ??+`?h??5%?h?(F?ÕT.?P倫?'*?>R?Q[\?Ʊ?d-?z?:,8?;sy? ?~7((?Ʊ}??nd1?l,!?[ ?Utk^?Y1?"B?H%?(?Gp?>}?'_?[??? "?v?;S?0S?$,? ???]b ?#=?`'??+o ?B?U?t>,?P=?]RJ?Q/z?JK}?ԍ?_:?zu?Bt`z?Rp??~u?uz?]Ol?}f?Pp?1xj?5k`?O"Z?Jd?~]?0+T?~hK?D"P?2]F? W?޵QxK?n2P?Ze(B?T<?-F?v??@Ą6?-?n1?fۥ(?mݰ9?yA,?1? 2$?/?i?#qI?b(?ߔsu?p!? I?F?zi?rA?Is?C?ATb? |^Ф?G N?]?s^?I?T涯?K?͵?Y&J?(e?jRy?2y ??'?x??,:?~?G4?(?"?9?T?J?D\Q`?vM?Y?Lu?9۫?\ı?&K?s?|S?i?ؽ?[&?0 %?޵?|?ٍ?@S?Xŀ? .x?ID?cd!?C2B?e?o8w?J5̿?( ?c?!4u?>H'?QCT?x?f1?e?Ii?:? ;?`1?j)?4NI/?}O<&?%,?둳5?w;?2?YS9?.VA?3F?'??|BD?Мm^?GUX?ЖL?YtR?%tI?[?J7O?U?>?ԣy?:?2?ZM?r? C?_?t?i?*XL ?b(??1? ?ZC?J ?k?)?m"?d)?1[?uڱ%?S*??W}X?Ι?5 9?ּ?ʱt4?PV䛠?G0W֤?Ok禎?ʫש?@'e?+b?>?wS}?8 d?'?/L.I|?Owv?U;?Hz?Hép?d?Ej?]a?EpGt?hg?p1Q n?؂+?4 l?D,?2;&?C?v?8i?=%{?:h??v/?7au?o?{?'s?͛\i?}_?p~d?Z?Gl?hU `?ң e?z,#V?g܀rP?IY[?7]T?7 2?NT8?-G+.?il6?zJ?2-??q]D?<1qN?<?/B?)v_H?0'1?RȨ?n%?ҟjZ?~ ?"jx(?V$?ts?֍?R$? ?ƋF?T??*D ?L*l?J?LN ?ZUF? !?U|?C?G?B?0`?0?s?Cq?{?_??+?B??Y?Pb?Lb?󝛨?3:>?%?1?Jڼ?YNf?6?K? ]?;ɲ??憒K?1E?c7?Φ(?xQ 0? iEz%?=?2\8.?M5?0"h?q}C"n?*rf?,Ck?#{Ѹ?c?X?$mM?U?`Ԛ?^?!/ʔ?Jr?x?Z?\Ŏ?"ʆ?%?L?0~?.Rs?19y?Ppqp??\fv?<`|?J3?TkL?#kn?؋?3,k?g?8"?LΏ?+=v?w?q?X)?)?0#?Q? ?TX?y??/i?|ZL?Nr?J?9?W?~ ?ߴ?i8?s?J?^?F ?( ?V`p??VZ?hR?>yJ?V?o=N?,Byy?gJq?Gui?U]%b?4]?lu?]te?Vm?,?Gm+?#m.?3,?*?~\6+?|Vl*?ű*?~f*?Is+?Ŝ+?47Y*?֖*?7o*?HYQk?t t?x{~?:Ȁd?g?+[?{a`?JQx?cl&n? jYCk? Y?wm?hd??T?М+?Kn8?춓9b?۠ ?@?iɀ%?-LԒ?6?΁?gآ?%= ?)?G?%?i[Y?+M?"DU?9,?br+/?hN+?/|--?422?89?55?e>?_Q/?k7 5?car:9?kC?{I?NIP?OU?=?F?\bM?[?6˼f?H R?d\?Zp?>?RCM?1G]?~V?Kڼ?*s?H??փ?Y?#: (?X(?֦(?wl(?VI(?u (?#s(?<(? t(?FX(?wutv(? f(?#c=(?s%;"(?_6K(?Z.(?,!(?>'?`:(?R'? -O%?ҋ@&?X~(&? &?7 &?{B&?yhZ&? x7&?TXM&?8Ǥ'?t'?y1c'?XD'?%bϠ'?re|'?sh\'?o'? 6p'?H.V'?cʹ#|'?5>e'?w7='?>1|#'?RK'?۷q.'?} '?@&?<'? &?!&?x&?!&?_&?2&?gr&?-^f&?)f&?)&? |&? ~&?j%?攛%?9%?yҡ%?%?%?e%?֑c=%?ܓE%?\%?v,$-%?g1B%?1s%?D%??LY%?0p%?$?hL[$?i}$?嚫$?L&%?Q*%?'$?;Rr%?x"?r $?x+$?Fer$?YL$?I$?ЈL$?$}m$? "$?& $?@#?DɈ$?e#?T,#? }$? 3t#?y&#?״$?NCZ{r#?]\#?`E#?inPe#?P#?$/#?S͈#?$d#?R$"?:#? w #?@/##? a#?W#?5h#?Ha#?wW{#?#?&#?U"?y"?b*3"?$"?!C"A_"?uH7_"?&u"?)@"??"?bh"?A9k}"?2"?}0"?tH"?{BX"?^ ۏ2"?aQ"?C>"?誅n$"?S:"?zQ!?ug!?k!?sE!?{؅!?G^o!?!?)x!?Y!?ݭD!?pc!?JM!?~k,.!?`!?#(47!?0o!!? 1!?n!?R!?w;!?I!?-9!?%q!?)u!?h.!? ? !?ܹ ?MJ ?0 ?. ?)Yk ?-ۣ-?TTy-?ºS-?߭-?:h-?6?.-?Hh -?F C-? F!-?@5+?%+?k,?(EO+?k-?,?,,?tպ,?^l(,?],?񌤐,?3i=,?R3g,?rW),?R,?SN"O,?Ș;y,?ިҦ+?> h+?؇+?I+?Tt+? .?l+?a+?ՄV+?$B)?!'#)?%R)?e6)? )?%(?d?)?l,-(?iE)?܈*?ıki*?A:*?*;*Q*?.b*?Ui*?G_*?ie8*?? \*?3P*?A)*?¾F)?]R)?E)?)?, *?k:+)?)?ZAԘ)?q~Ta)?`t> })?qȷU)?URh)?;o)?)?ř~?)+?;j0*?ĚvL+?v(+?F*?+*?]J6*?I *?9`;0?0?;_0?xڤ,0?h! /?NI΀/?>0?h"/?@/?}/?o9/? ٙ/?4zT/?../?Epeh/?TB/?ӡ.? /? [.?ې.?`8v/?ٷ.?՜ .?.?܉c.?sS.?_[.?Z8o.?>Ҭ'.?t-?!-?xlD-?&YC.?3n-?.?!M4?,✠4?}S5?<4?CZ4?.4?8h.4?oZ4?4?FM4?ko4?vDC4?3?h3?!;Ϗ3?a.3?0 Co3?< Z=3?3?LmU3?X 3?a"2?k6]2?uGx2?#3?|2?!2?fwr2?M{!E2?z2?X2?c2?<81?<1?Xw\1?4*2?1?,1?+P0?qr1?GK;1?`y1?%']1?%=0?W"1?(p0?o0? 3&1?{X0?̊.0?x?~a?m-?K?4i\?_؊u?5?lIr~?z`a?p N?37k?X?A;?gԃ(?7D?/1??t? ?Ü?? ??+#?Xj?4D?2? A?%tx?? ?s?5[;^?lB?dSc?($?6)7?PwK?$".?=sDFB?Q_?Tr?`U? \i? ^2$ ?A ?ٴ ?H ?0 ?Hk ?RqV ?/J ?? ?f1_ ?GТt ?,TAS ?J> ?T) ?ĹG ?_3 ?p= ?bP) ?/  ?Tc ? ?2FE*?m??>?LQ?O?$m?tjNo?]1?0?|>v?lm?X?w?|/c?>o4D?9Z"f/?KgN?d4i9?0?9 ?ޠ$?O?W|??/&?az?ⓙ?i"?zا?J ?%_x?M5f?y?`v2?3; w? b?}ʮ?m?SN?DL:?$X?_D?&??0?E_?s?A?ۤ[?6??t?M?uL?O%^M?~ߢL?=LL?̠@M?j372L?K?DnK?D^ L?rsK?-"S?NS?SzS?S?M7R?a,S? WS?$|-dlT?m1S?'$T?^¾T?uT:S?V 5T?x2S?;^MR?8AR?RY}R?axo-R?٩NR?&IrP?S.P?WQ? ]P?s`P?SP?m|ZP?)35P?>ήN?1= O?qN?LN?ƫKO? !O?2O??O?ڊ*O?LgO?mD.O?[KN?xXN?H=N?tGN?6|K?8_:K? 1K?7ׄ1[K?nI?_pJ?~I?c&0I?aJ? \kJ?-ޱJ? t+K?VAJ?w&J?T߲#J?֋H?vۨ2I?C}I?xI?.eE=lI? C?>{B?UĻRC?NhC?hC?!D?P! B?HbC?%ӠC?L&C?iC?G?†)'G?Sa[G?^b0BF? G?G?ޚNG?0|F?ٯ(IF?Z}@F?AK{g F?"F?OtXOF?noF?ΰ1D?GƧD?fhlD?HҴD?Гc*D?D?brD?|/E?7|E?2~E?~F?_\XD?TomE?\ʸwE?=IqmH?u5H?gH?V\?H?'$OCG?ofG?"cG?N ˎG?@?}??ry3=@?Y??d??qx??fp+9??PZm???J*>?D>?J$>?ޥR>?PX=?D63 >?9=?&qRz>?0=?* ,>?@?&‹i@?'g @?f$P=?s|=?=\27?9 R7?˜7?:䗁;?g{/;?1];?tk*W;?8:?):?3[;?"x2:?2#:?Z%9?ة@O:? ZN9?)RtV?&'ccV?#w V?VsU?z:U?Z9U?4\WU?"*LJT?h_($`U?hWT?T?$h ?7a0?Mձ?v!?v #?7*?Rnz?|7?F?[A?u ?0 ?3oJ?'ZѶ?}?#?#[??絜?HJK?:j?ED&?N?$??سE?& ?gw??m{? Zjp?2i?pt?`l?ja? -rZ?x3fe?E"^?;&S?rK?xV?L|O?U_TD?ǿV=?w@H?+bUA?6?.?Gs9?> 2?"'?L=q ? M+?I$????E#?î? ?W?rP?JZ?JYn?Wp?!2? ?{sO?_C1?l?I ?2m??D? Z2?kR9?L24/?8o5?`=@?v8 F?>T<?_QC?(M?8zT?1pgJ?HQ?x[?j*Qb?X?^?&!?Ke?{ ?K E?L]HD?Aw?c}??n4?^w?-i?ip?E]ie?Ėz?gucl?as?6ӟ?r ??jZo?._?i-V?;;?Ao +?&'?97s#???d?)?W?h?B?!?1б?f'?^?B}2?=+?%?zy[/?)?ZM???"?(Q?w?C:M ?[?f w ?Z\?.??Y-0?$/?\ƛ?=(?&?׀-?sL?!'C?6E?U? U?\Hc?թd? ;?r??n?^G?3? y?^?W?٬?ɝC1?a#޶? q?n?'N-?&(?j03? g-?׸"?dM2?ts?mkL`?Po(??0?@u=9!?^ ?) ?d8ĥ?-;?dɴ ?8ٌ?t:??~4?My?qa?դgs?Hݡt?< z?l?:Bm?!Oj7f?s? j?r/_?f!S?/6'Y?NWM?c?!DS?{JY?~LG?wo8?ޞ\??y3?f@M?%a;?{B? ?` ?E?^?$Q]s?f̕lk?:Uo?>u?x?Ojiz?QЉh?bn? cr?>It?|ϲ?QaqL?,2mB?jfF? 7:-?;y;?"v0?ą5?42?V8?Hx??u m1?>4?9?P66?+?m0-?Ifט?Rg?x@?M?!v& ?"K"? ?O?s7?O?Z?%Ht?mw?||??_F?I>??i?}6?g?k?m\M?5H?d ]? ?z?9?H(ۑ?ҭ]r?q*zV?t?)*?~D?2?;?e+?2R?B&5?>?ᡨ?ΕO?T3#?z"?*q7.?Hh?-?g`?As?eoiL?G \?H|?8#??+?"D+?n#2?́t&?.?+?,?],\??xu?&|?mg?PF۠? I?6ہ9?4R@Y?pI?xʓ?c ?O?Dʚ7 ?**?R9?? u+??\?-s?9ʧ?qϋ?%jl? T|?Fzb?#9? as?N&?`A?|k'?o.4?hL?3w ?@9/?}?[?KBz?t;?{Pb?ci?&??oߵ.? #?H?J` ?Wf?N?:@7?Ŗ_B?Q:,?KAZ? 4~3?Bw<?g.G?fB?<L?v7t:?\lB?5G?1Ie?9^?TQ?DIX?YL?JTb?S&'U?pЙ[?^?N ?'.P?P.T?#"?c^D?f`?Z?!?z?|%? ?40??_m~(? ?kt?Ko,?\?EV#?{묭?xM?^oٵ?@?mf}??dI?˓?C?"?v`?yTٛ?l<?\ ??;?w?mk?q?BB"h?l}?8o?2uu?A=L?G!?L"L??:x?I?3 +??Bp?`?fh? Y?18x?1B"a?Tqh?bR?D#:?>E?gA @?[EL?]1`6?WZ?cVF?ZaL?@2@?Z?@HU?`}?p8? *?Y?>? ?X??1??.`r?r=?ٟR~ ?*ܡ?ʡ@<"?N(?V(?,9?PZ?nkq?Cl?1?b?CK??W(?s??@?A?mkެ?Mՠ?h<??e /? ?*i?E<? {??I쿰d?XRL`?YK i?(d?UtQP?h6fdV?kx[?:eJ?.+`?'JkR?rW?zC?3?c;?& _1?.xK? ;U:?B?BDm?~s?h?WIo??I? 5B?Gf?H?Pf2?EE?7Z?VY&?DXy?P?\tu?}GH?G|}?xP?nr>8?,^?6٢??)yX?n?Ed?fy? K?C?8 ??Ug"?3?S?0?ό?GD?yJ? eE?=?=?ȱS? a?E?.g?s?&y?R6w??)?4r ???S ? %?s?Fs?f=??G0?f?d?`n?I??X}X?wi?Ԡ? ?v\?9.#C?On;?)F?J>?#3?OB,?xܙf$?!Y ? 7?A'?H /?5#?L?]?Us??P-S ?+?Oq?(N?A;?A2?~x ?v՘?Y? ?J? |?!HO?)Wi„?9?+H??]1t?5]Y?.\,F?(͍a?`N?F?4?!?w<?x1*?ϛL?lPP?{뼸? ?tք?11?e?0 ?$cb?.m? n?OE?@Ow?dUO?kL?ܖU?1}?jk?'2?ʹ:Ht?\Y?YG?V;b?q(P?'5?T@#?1>?DN',?c?N,?E?)r?t? ?? ?>Y??!qP?*w~?1f?x?ٯ? %?TH(?Ε^(?+py(?>(?1<(?eKv(?(?ވL(?MY(?l<(?vhj(?J(?V(?=(?j6-(??/ (?r#'?\Ol'? '?5'?9o&?~XU%?(%?V&?5]%?N,&?kY&?W/C&?xAp&? A#&?~!A&?[aX&?'?'?sF'?F(q'?{þ'?sŰT'?5O:'?DIZ'?<'?Tir'?T_L'?7!'?.g&?a;'?/$9&?d/'?pS~&?H_`'?؛c&?ӝ&?y£&? o&?/&?$&?ūİ&?w4:%? %?@ux%?IV%?N#%?Wי%?8%?"@%?l%?T =V%?'%??%?~H;%?Q%?wZ<$?<%?-9;$?F4Uk$?ͤ"%?X$?1$?e("?"?##?#0u&"?Y^*"?֢ $?Sa`k$?R$?Ue^$?y&9'$?;=$?>:j$?Q#$?T$?CFj$?9$? /$?:$?(Q$?;9dWg$?D\K#?=#?#Q#?H:#?a#?l* $?rK#?#?h7an#?Y#?JM#?tg#?EEE#?b?#?e(.#?Z{ #?XR#?7Jl!#?N8#?`FH#?Uڌ#?ӝ|#?ܐ#? }»"?)FNf"?1$"?E~"?JKZ"?ήo"?0bC"?HV"?Kh"?uQY)"?.k,l"?vL[-"?)"? IR"?1}!?b@!?/,"??"? g"?1("?,V!?!?̑%l!?!?SS,!?(_!?Yt!?T!?ek ??@!?Ѷ!?It*!?mI!?!".!?ǣ%G!?p 3!?,_p!?!?dѓ!?pfBӧ!?@!?n!?Ű!?!??Ƨ ? ?U ?L ?jwM ?ͷϰ ?P[I ?UQV ?B-?޷ -?(O,?v~:-?j # -?U+?xh+?),?;J;,?d+?G%+?G?,?cfC,?@dpa,?~襏,?NQ,?n9,?_Iu,?/!,?*q+?p+?Ā~L+?u@N+?1¼>+?9+?Qf+?5<݄+?Lc*)?Hf )?2>:)?u&")? /(?$(?8q)?>H(?}J)?|țc)?2)?sL)?bIi*?kQB*?]Q*?t]*?sz*?)?ʈ6*?ٿm*?o)?Y&})?ȫ)? If)?>)?Wߕ)?U])?A +?*?wkb4+?zbE*?ۮ*?K-)*?.1*?gL*?{0?x/?<0?Tz0?)D/?/|/?]8-/?Pa?/}? ]j?H N?;?I2W?I M(D?'??1?Bc?F?DB?1Hf ?\??)Ѿ ?m5?xF?١@?[Mh? ȁ?i%o?q?!ax8?AK$?#Y?HI/?H>?6??gl?3?+wj? C?z??t0ܬ?!?62?iA_?؛L?)`?0KC?X.X?=is?\MC?jk?rz|?2,, ?Yg ?n| ?i[ ?u ?;n ? 0ă ?h(?O ?P ,< ?8b ?%iI ?0x( ?"^Q?R ?q ?6 ?Cn ?w ?8?u"??? @?7Þ??pW?"⿟?Nu?7 m? C\?#v?hX?C?0^b?] 0O?.?<"?Ϧ2:?Y^"?<0?S?!y ?U?Z?˲,?6H?v??s ?"(?A.?iK]??1ఊ?cYv?#?31$?c?b̒N?#l?PZ?؝ :?H%?E??z.?0 ?cn.?o`???^?m2??|?'c)?DaC?Mz'??W6Y?T?hR;?2b?5LN?qMkUM?NVlXN?.)=oM?{}M?]ԴqL?]L?u(L?5M?: :qGL?񉘩M?OL?AR)L?`M?WmL? .K?|K? #wK?8\$oL?>K? ǺK?5S?]S?ܙS?cR? /T?o}S?vzS?u=_R?KqQ?OR?OxQ? R?kO?4N?bsKP?O?nP4O?"(pO?jHPDN?2k5N?(0N?z PN?ՖtH?/G;:K?J?||bJ?yj??ȓѠ??=??Q >?.: @?5/??.6\????=>?4>?WT>?!ε=?u>?nz.>? ^}>? @?Oߌ@?Fa3A?@?5{>@?<??>Q~@?l@?.7B?=KA?r[AB?q]A?bB?U̮C?8A?ɧA?8-B?W!=B??z6?/6? q7?I 6?7G6?l=6?ȉk6?6t6?joE4?5?ċ4?o4?F,5?DJT5?5?ZN.6?Hd5?ۯ~5?b'5?H=?4e=?2 ;?}};?-='T?0[?ΪQ?X?)Fb?s&i?o^?^`e?$?k"?.?i?;#?$?'Z?!?)~?׫ p? @-w?c3nl?$?|ts?|z?}K?] ?&-,?I2?6??A???k?-i?i??f5?e?ž?Q%k?\??",t?fw?ʳ?K>"?ר?+?r?e&?ȴ?vY2?-},?*~/9?{A%3?n1&?~?J,?WS&#?O?\& ?1"?W?)s"|?J& ?2nS?\?KZ?OOC?=?BW?ͽU?;?ˍ??9?h;w?Hå?k?r?~h_?o??xLX?_?^?2?ٞ).?9ع?5&?윓_6?}8?? &? h-?JVl?o 3? /6??k\U?m>?Ӕރ?Q?l? ׅz?&.q?G`5?tmw?g?^]? n?Z?-4lH?6?Y?sB?aeyeM?;cӐ?ɜ??vۍ?Jjq?ڻ?Ydx?,'h?}g=?̫p?2 w?:>_?KoW?ֽP?%I?Sug?Z?JR?.7/?^.0?/bC?X+2?4?i #8?tv=?zUK?(b3?>A?&;?"7??د?4?Ә??G-? ??EL?_h?k2 ?3[?\!N?;?^?? ?? K]??9O?M ?i?f0?( j?Z?x ?-?a%܅?h|n?ɮ#?7?$u8?X?&&?_G?;t?߀?nS.?ȳQW? 0 =h?&e6>?1nWS?!?qe*?(?1d<#?њ2?wdP<?+?7??p?$?LL?d??򯧭?e?2?Fn?_?3n?%?c?uɃ̡?t"?j$?Ri?ٚ?|?ծY?H8?ކWjk?m@{~?9O:I?ɽ.F;?X! t[?GF?!$eS??( %,?)?P8?= ?1΃#?)p?1ւ?f֯? ?*|z?ȓ[ i?݌?%Xv?Dc!7?mW?(G? b%?BKe?[hU9?6I??f?4TX?Π?Q#?P[ ??,N?X?݊?}m?[]?jR?>2?ȝ?ʶ?V ?W?Ҕ?;~?[?NX?6A?T.?z?!R?_?m>Ґ?g&5g?صy?p◚?Tğ?s?-O}r?,1?R!?hvy??1F?'Q ?}1?J?=$,?e!??f?>B?S?oUy?lV~/?:>YS?ny#ae?k ?*F֤?+?w1"?gx?àO?Ct?H? r?$?%Y&?C?b̄N?V ?= ?mKH?5AX ?^/?9?̜?C\?]?9?m/ ?tJ?9l6?ӑ?vN??;k?8X?Zv/?\?y?56o?? X?ÖoO?6o1?hg?WL?m䎱?1߇?L (?G?uV?! ? u ?Ϗ?@??Z;?[O?=dv?d/?JUK?dE ?8#k?t?>%?^^?A? ??z2x?w$u?:+p~?pp?ƞGi?FJv?>l?_L?yTa?pS?_Z?!OAe?8lQ?^?.0W?2E?5>?áJ?pC?Y}6?R&?+Ƈ.?{)a ?i<?w+?:M 3?< ѣ??Mvユ?,?1H ?^K ?#?J^6?]?iM?ҳ?~?$/E?I?mn.?t ?A8?}?*b?r5?^?@d?#?d?;?Sa? ?\??-;}? ? ?f ?YB?gAz?*G?5F??:?'?u}?<?C?d?dL??''??d7???'.)4?=?-U=G?@(P?}1E?[ M?3ul?te?Bd8vX?k-._?k"U?`ai?"\?oYc?8f?J ?Kͥ?l_?)?{?s?r?k( ?Z?O?Gm[J9?Db0?qv6?"&'?/?Eŕ5?@H+?׻:"?!?Q?NՓ?6q?FƔ?b?'?H?l?}?(?l ?bN?Js?!6z?dso?Jm?rԖv?_;~?UȢ?sz? o?s&'?|I?G|?nCp?NɆ?kDy? 4a?FG?QTmT?B?j?M3O?RvyV\?;s{??G?k?/?%?sZ6?6+?y ?v; ?Hi??7"?&x?wp ?fx?D{?#v?S?QV-?ޢO?6K?nc\??g?됹?J?S?T?&^od?j-\?ꨆj?Wc?S?AA?J?L??<֭[?>U>I?,%/zR?uq?>Wy?=j?t%4Ls?le??.Nz?l^?&n?|{0?8? P{?x??QmL?$VG?SI=?2?-E?mn<?=?@??gH?" ?45?G?bȴ?e.?XW?mYyD?a??#G?v/و?P? ?}F2?7?m5?$\\?X^?#cr7?xW?ԯ!?2?gE1?GIz9?76-?ohm5?@ŒA?0I?6=?!E?Q4R?v|Z?#N?բZV?|?Ra?fT?W?9?V$|?<?% ?YA\1?0y^')?kt?a@C !?hc%?^>-??U=k%?cb?('k?ޤ^?ߜf?0ps?{?n>o?ow?esL?*9֥?zd?s?G:?f}? ?+?3?+?Y?eؿ?BǶ?_F??^ ??$>S?ヌ?|nc?u?l|Zr?,<?0 0?X?CS?V?cY?csD?_] ?҂?]?=' ?A ?v= ?X] ?֔ 1?ܿ?.?vJG?_у?y?Zxq??S{u?`v??6?/?/?l?5<?&;?I[:?iY+?3%+2?2 '?t.=?;.?5?K"?`B?û)?G ?h?A? B ?.C ?h?{' ?y?W|?2?P:?9 ? `ԃ?l?UU-Y?'?i\81?n?UY?mH7?E~@?V?=ܕ{?ɢ?E?{T?Ռ{?3A?H?!^8?@?o?4 w? a?dk~?-"t`?묔X?h?jT"_?P?wpH? X?d}oP?͒o? pv?dg?ݤ\o?iȐ ?[̻ ?^ ?pZ) ?Z ?vT׼ ?k´ ?rP ?y6 ?ͽ ?G ?&`> ?ʻe ? ,?ga*? L6*?R1o+?Wۮ-?Ut6*?p+?)J1? X.?Cb+?ʼni/?O-|?ڡǦ?;m?m[}??3<?PT?_L ? Eh?#?Y?I.?7?*?ҋ0?,yC?`zP?^`?2 o?a 9?lJ?X??k=C?ii?:?g=n?kۉzj?g#%??,??G?4+5?=G?E .5?̔P?ޙ)>?*#?b?DM,?.!?z2ޥ?@+?SQ_?K *? IJ?{s?;|? ??~w?4Z??(>?r?w!ϝ?0I?^ul?QB# ?ء$?a,?c?Jd?|?*;9f?D5q?[?4?՟?@X@?w|-?V?nҚ?e`[#?!?z~?s}?3)p?=9_?cCx?ˏg?T RN?Qs=?RV?)E?p,?8K<?4?*/$?M ?5R?1g?V?A?1~?xc!?2Qy?5U?}ѽ?r?Y]s?eX(? =o(?r=(? (?β{(?&[(?ﳒ(?D(Ro(?;(?)'?7'?T'? +'?&?E&?Z&?a&?"X'?1²&?^&?rGv%?;_\f%?y%?0"~%?{7%?%?46Q%?I %?M!8$?咫$?V$?X$?qm6q"?Sγ"?[*"?J"? l#?v=:"?T"?M"?÷ѓ$?w$}$?Ek$?݆M$?Tr6$?kNe$?$?G`Hj$?a$?1o/$?8G$??#?(#?'#?#?#?,I#?X#?Ҭ`#?m+#?ۋBF#?{u#?0J#?G]7#?k&ZR#?Pp#?L#?">g#?tV #?3<"?J/8"?+"?C`+"?KS"?@y"?cTBf"?˨ <"?i ,"?2iN"?0a"?:hV!?%"?M"? O/J!?Bd7"?KY!?2 "?[R!?@h!?c}!?5!?|Ke!?rz!?^6 ?=Ȫ!?> ?C6d ?3V"%!?l9!?++!?﫬X#!?-Y6!?ɺJ!?!?m!?%“!?!?8}!?8 ??Y ?q\Č ?sF ?J ?$ ?+' ?k ?KD-?fR^-?Y-?v --??-?d-?vO-?n,?,?,3-?^5,?B#,?Ժ,?){L,?0 +?,?pk5*,?*e,?r,?ձx+?`[+?1j+?P&+?i+?X+?*{+?!)?$,(?c(?4)?(?R(?= )?KN)?,ӂs)?Ϊ()?8o`Q)?UɱQ*?+"*?oio*?SzA{C*?)?)?)?y8v)?B*?Kݪ)?Y)?*?#6č*?*?i"+?ܜxa*?gR*?/4Q*? /?/?0?_uU/?o/?/?ͅ/?('M/?H.?9<.?4:.?2) .?VЃ.?gg.?L.?kK|J.?Sjn.?̾-?Rs0(.? l-?D ?4?.^3?zA4?/6&4?kyDk4?l3?3A3?sn>3?]7r3?h0?n00?yG:/?"P?`R0?D 0?Y2??yh2?_͎;&3?,h2?.n2?821?232?Ӻ1?z2?ز|1?}$2?6~1?SH0?EZ,0?XN1?OF1?Ӈ0?x 1?S0?$l 1?B1?qhq?Dž*t?* ?="?``?Lt?j?Z?cJt?\<?(.u ?Arb\ ?b ?|o>n ? wZ???d~?PC ?X`  ?+%) ? U ??V9 ?*V1 ??Uu?t?{H(?t?("l?_?#X?RX?>{ l?a?`}E?qQ-?X?9? Q ??Od? /B?"?q`?Q?Ib?kSX?Y'?F?w[?3ev?.K4s?6d?5l^C?c7v??AsQ?}K.:?ȟHd?ޮF?E^"?^ʍ?3b?k?|/?_wM?am?=?:mP?Z?D?Eg?ؿ?S?OkM?)־JM?,N?`lM?HL?;MK?$>L?*7K?J{-M?1T>mL?$|SK?yf3R? vs^R?;Q?yV&Q?8S?˔HR?0FQ?X{P?juG"O?L^^O?ը(N?Ѿ_N?(΄N?Q?'IO?HO?։N?C )H?݄]I?UH?:H?x]J?ˋJ?)I?HșdfK?,I?'9J?wJ?C? {D?+ D?qC?+kD?zY|nD?uD?LC?-SҲB?%C?1QC?tF?٢NE? WE?˒F?HD? ɴE?#CF?|G?K9H?F?;2G?W4N??N!>?l/??w@??3j+V>?j =?y>?OLE>?@?)(@?~Es@?A???XJ@?e@?l;H?B?ۻ0B?5WVA?RRDB?,x4j7?#d 7? G6?ܨH7?h6?쐤e6?Y6?Pk6?ZW6?a4?˫(5?f95?S+&4?\(5?*XT 5?Q z5?ǻ=?ɏ4;?-ٻrL?;?7??`ql?zBͫ?ۢ?2Oy?Y?fk{?r ?K0?c??)ކ?Mc0?,?>!?L0w?1?ez?H,p?kZh?}OUs?[l?u?@?e?&?tI#?G?eX?vR??G*?qe)?e6?d^?xڽ?q-??` c=?3#?l?W☺? ?d=?gr3?2#)? ',9?!0?Zm ???z?&?_B?W]P% ?"%:? g?D8?8;!F??c)۲?^b??-?«? ?X@?~f?-?{P:?AO$?_&3?pgz)?ۥ?V??WuU?t?Ш?,Ui?޴@?m@u|?ٙ?LT?EtGY?mUt? ti?`.}?6_q?^?weG?ᯛR?@?JSf?ML?SX? ??Ro?7WW|? a?ن ?zs?ai?wT??s9?qo 2?Q~d?j+tN?_\=?%/C?]=O?  t?+L?٩?91??u$? G?vNQ?{o`?S?m?e?L?I![?M??~~[?n*5??@Dy?^N?.?ʻ ?J;H0W?u "?[7?b4d?؈?7b?|xq?G nr?>:?J%wV?.b?&ߊ?G_D? 1`?kE ?72{?+!??[?t?fg?2< ?=??jMhT?kB?_0?Aܗt?a ?-Z?%9G?΢?D0_?Bz?@;ک?~o?yn?ː?@??T d?ceA@?u?[*?U@?!d?Yԭ?)?Y{?L&?k@?cV.?3?i,?<?WE?t$?n?Yh=?Oƚ?C]??ѝ.?TsX'?9?DO?!dF??I^ ?~B?U?}J?Ɲ#e?-B9?N3?t? OɩY?H?yޏ?Uυ?~?Y?a+%?.???*%"X!?YI?֤.[?'n?Q+??jZ`?9C?*|I?p{?g=r?r?W)w?h?SRO?+4[?xQa?0"AU?V .|H?>Wn?Lx&S?8Y?_?tA?/?i/8? +?dML?M.5?}>?0-?P?c?*^?oH}{?'Y4`?\.5 ?ɈW(!?S{??t?]f?Y7O?!?Hz?X?_L? QS?h/?QD;I?پ?FE? ż?ZH?y$p?u+?A6?VH>&?8?DԽ?t?3C?,?E?ڽ?#:B?)J?4>?UH? :nS?l?j7a?PZ?=*g?"~s?KQ?gpd? Aj?!*]?5D?3?j#_??o9? S?ɜ ?G?D:?S7%?klM0?jI@?_?sj/,?xݨ6?9?c?H t?ƹ ?ˬv?׌?`|)z?W?-Np?Jލ? D~?yÉ?X?mt?>Cm?W?K?F ?}$ޖ? ]a?br?/W?Dd?(~P?{?M!_?-l? ?Ŀ?թ?Oi?L53(?ۄ?{1?#?gp ?;c?!v??߆?[O$?s?9?^??Zz(?#?מ?̀c?%Q?:Z?T؆l?`O?zU"[?jid? u?l\?ځpm?(Xx?R[?mVҠ?-?$ N?jͭ?κ?ߔO?~?M1? ?Xև ?w~ ?g4 ?=P ?,z v ?^m ?Rez ?|q ?O=d ?oc[ ?=.ƛh ?ظ_ ?nR ?~=I ?$?V ?_ N ?Ť@ ?3+8 ?SNOE ?A< ?Y )j/ ?y&& ? ?>e| ?UŽ3 ?!L" ?H + ?=0?sƶ?bO?h?;S??u/k?j?=,@?FH?ۇB6?)>@?I~?v?Ϣ?9'~?.)n_?*cP?eMW? `o?Y\~5g? hI?Fkv?U,X?Cm_?Qzg? ?'8I ?R1w ?K ? ) ?TL ?E ?Th ?%2u ?w ?> ?}, ?x- ?]C  ?T= ?-h ?“f ?X ?LB.$ ?LHϔ ?(y ?~ϒ ? ?&iҦ ?/u ?ս ?c ?t i ?( ?] ? ?_+ ?Hv.?ֱ?ݸ߯?hV?#Æ)?2u?Iԥӎ?RZ~?EY&Ge? T?f3Um?_\?dzD?j/54?.L?t) <?4#?ɪ?+?X?r?ԎD?CJ ?>Q5?q:?Z? ?O1??:? ?z*?oN1?ǡ,?KX+?Ep6?> 9*? K,?EC?9O?+O? f?NW8?pe?o}?JOx1?Z6>?NcOQ?!Q+?أd?C?B#5?:Ny?E?W?SG?T( ݐ?3.oE??X1%.? |?-gH?ȿuv?]A~}?"g?ƈ?u?.???(?µ*?S]P?[؂_?R$;?X&BJ??-?i ?R?-?kK?UP?^q?-F?-_R[?FB??cz?Bv.?'n ?N? [}?0 fl?VgK?lv?!FZ?#ͩG?QHe?Q? Or? Ca?0o,z?}j?1gP?j??31fY?IiՖH?g-?u`?XO7?Bg[%?cO5?\t#?->?^*?G?f2?3??"?5?P6?SIZ??+s*?KV?H"$?vH?Ta?7֔??okݛ?U?Mr?A!?c"?(!?'#M!?w!?hdb!?M7!?r!?)K!?0ma!? w@ ?n !?^ !?ك ?Mu5!? ?vd !?MY!?g 8m!?M-s!?VX!?a[K ?,E ?|T ?Gg ?- ?7rD ?SqP ?q ?z2 j-?~w-?%[-?d-K-?y[,?4!RC,?[!,?v@,?NY,?=g,?I=,?] 5,?{B+?&<T+?H*F+?9+?0+?2@W+?G%+?\})?B+)?!R(?K(?ձ0S)?#I)?#/")?'H,X)?X5*?>-)?7ߢ)?s*?|?}Yڕ?qV ?~O?E[ޠ?hv?;??f ?FSdC ?u݃ ?k\ ?! ?“6?V ?F?2?g ?M8 ?/X?c Mm ???Rzw?p?1Ȣ??l?^x .?:ll M?~($ ?Ig5?+0B"??#+^?'3?,?s? ?7.?Rt?Q?w?w?ÈY?H?=_j?"<?: ?[mM?./?CW ? ?"l?Й9??"M?!I?IFM?-q(L?4[L?{pfN?d&]K?dsfM?8L?AQ?jn=bP?/Ӑ2O?TEQ?jW1N?4P?EXChO?LaH?(I?J8H?d1IH?S΢J?~^.K?T)I?ve0J?LbD?et`pC?3&j?WC?9E?WqB?y3ekD?TYC?ųF?[G?kWF?nH?DmBE?x8F?7cG?JY3??:>3>?>?r??OB=? ??5&>?.=?Zw@?󿝀A??? N@?3inB?koC?A?B? х7?}u6?#o87? 6?}8?t7?)'7?[I6?r!L5?MO5?;4?k6?>26?!S5?mG5?h) =?j]ݝ;? cT?'?E?6Kq/? '?y7?յ,?b?T P?Qrp? ƚ ?_$?c?W.?6??j?}?p` ?ML?Fv<?dKH? Q?yfC?}IM?Z[?8Rn?BYd?{^v?ɧ.W?p'Fn?ed? 7G?Bo~?XX?t{?+Rv?wr?S?_% ?g?A±??? ?zXȜ?SO'?I?T?k?phB?l?it:?.XT0? ?G u??a? ?ц?+?B?gW?rl*'?M2?s?}?? ?]?۠?c@?)O2?Z=?2nF?km&?v??Q?IOP?5`??ml6?t \I?w6A?hM-?ЛN#?K)8?g*?6vj?{TA? ?v?  ?ʗVr ?y?:(ָ?[܄?X?=m?8?ծJ0?UE?fW<?5B'?E@?>783?Rs&?  ? ?Un?EG7z?Z/?GƇ? A?Nkn?$tR?ýHh`?y;I?0q{?!0Z?CZ,h?]?:ߨ? ?>*? w?k͡7]?^=pH??}XA?AЌ\?XRv?Hc??l?@\̳?I-vD?Q?*o??/׺b?5Ep?`?_(?E"m?)vV[?SXЩ?H~?0x]E??UI?k)h?Q,? AJ?3`B?(ل? 8?\V? -?Ce<?'$?^:6?rhJ?cM Y? D?q}R?{ 8?r5?'??vv?\?~_?w=?}Yw?fT?$}̚?Kz:k?Dp+?cK?t?~B|?:?Z?BvS?np?^9x?U ?v~?bM? ?rT~?ݷAC?f^?82?ȟoZ?h6M!?xz`?&A$?QCM?|?m?x`?/U?f3?WL?l?Yzm ?Jd?yp;?A|<7?j ?}!U;?n?؆?;u?ծc?\]?p??)?;?W `I?%?&?⪰+?$?k;li?ab?;?aTK?fC?N?(0#?!?]¢?hWј?]R? ~?puMh?ѭ/?g'? [? ܭ1?O)?D??5 ?E ?8 ?>u?xӔ?zs?Soe?P cz?{o?frdV?" {;?B0I?oIK3?q(`?^B?cyWzP?h`?nS"?T76?[?e?gn??f?Y?W?o0?:t ?k?x?? Փ?O>y?4w?Y͚ ??*p?Tg?hƩg?s?C&T?J?ۼ?- DS?v?I?/ $?'O?.`[??NK? k4U?Cg?c^Hu?ãa?}n?cF?ӑg<? ̕Q?VGGtH?5 ?_ۇ2?*#?w ?>>?l? '/?D[߳?1?oP?2?֍?90?w꽏?'O{?{6?rو?ģ?g*?Paכ?YwF?B]&?V'?MEJg?^ۯ(v?`??tp?q?q????Di?N£?یPO?v͛(?"D?GvY? ?ĸb?? ?Q;\?m+??Y???#??z?u"B?tMJ?$(>?qF? j}R?qZ?vN?؝{V?G+b?+>j?Vڊ^?>f?E2 ?.O?0)?6 ?J?`R?Ow?"B?{O0:?{S(?#1? ?ު??,?ɞ5?!Dgs?98{?7~+n?h/x?M?[?[?Md?c?x?!?!>?O|?1N?BӔ?ʃmc?ֻ??1\?r6?,J?6 W?AK?ڽ@?L&~ ?Vu ?h:? ?Kz ?p#l ? d ?Ycq ?丛nh ?}64K[ ?AyR ?Ö_ ?BV ?I ?ed@ ?N ?ܠ8E ?&Ƀ8 ?#`3& ?-pwY/ ?Jj" ?hik< ?uÈ* ?6 3 ?;/B?P ?s#?4??9XN?g??/r?E 3? , ?T?p!?Z7V ?>Zr ?F ? ?ܔ0 ?& ?  ?K`c" ?\y^ ?T; ?־~ ?*` ?riЃ ?0?u?S?j '?,V?j?FZ? ??)3?rj??^,?1?[C ?*7?B ?Hz(?Qb?חx?xx?6?b?m?,?wN?&?˅?T?Px?j?[v?ѣ]?CP?IA?&3?ݎJ?>??+? U}?>_?:fn?Y?f36?2 ?w5 ?:BC ?F9 ?3V+ ?" ?KaG ?mp ?5uf0 ?ך ?2~#' ?Ig# ?zu8 ?` ?(8 ?_R ?z ?D ?+ ?l ?2 ?A ?EP ? ?29 ?j{ ?w ?ip ?ϫ ?&堔 ?+ ?<, ?% ?輪 ?N ?8! ?tH ?[ ?,\ ?[t ?ncM ?5 ?g ?c៉ ? ?#|4 ?a܎ ?1c ?& ?rJ\ ?n ? ?RTC ?S%p ?:״ ?k ?u ?_k ?S ?z ?^ ?@ ?|' ?l` ?`_ ?P ?)k ?6@ ?v:/7 ?re- ?,M&< ?>_2 ?]}B# ?ft ?%( ?: ? && ?po ?ڻ ?nv / ?@  ?Fe ?= ??GĆ?ڌ?T<?Mv?Qe?x~?3ֻm?KJT?nD?|]? K?L3?>|pT#?O;?+*?)c$?U; ?wc? A ?}?|??k ??W??i?M?J? O?}{??)?uoD?ET?-?;>?0o??  ?I?-E?ej??|?VϚ?O`߫?? "6?8?%?|`3?Cyo?8O\? K?ih?'H? 4?pާT? 3?? ,gb?W@Q?L{kj?$][?_Kd@?:1/? >J?29??'?z ?Q?'?ӔVN?ߛ ?Jd?K?v7?䡞+?&W%?N?N s? R??]|?&?>H1??vZ? O]?]rr?"?mc?:[V?vQq?x???x?]w?j:?a ?,l?Aؔ3?.K(?6^S?pWz?0º? Z?]?ǿ?ߙ??cCo?i^?hx?cf?KM?82=? zU?C E?/&ˤ,?sd?Z4?c-$? ?o??5? 騚?5?Mۼ?v?@ e?N}?Dկ?' ??K??(p{?z+oP? u%?{7_](?iPo(?/(?'Ю(?rCs@(?r(?M"_(?5tf&(?U0ݘ%?*"%?!%?%?G̥'?*ѿ'?g;T'?1Uq'?Yȼ'?i&'?2ƽ'?P!+&?Д&?_0_&?Bl&?Jg&?MC7&?&):_&?JæJ'?C&?h'?Gq'? X&?X'?0c 6'?r*>%? %?b]%?'"%?gI$?7$?t#$?ߍ{$?dq$?]mB$?2S$?_L$?'b:"?HU"?&~"? J"?2#?bj3#?o)Ԅ#?*9Jp=#?h#?]#?-#?ʉ"?"?eN"?5F"?ļkd"?!/T"?q,"_!?3"?"?al!?cŝ!?Q!?²!?+*J!?U" ?>!?}ttm_!?b) ?!?h*3!?U)t!?@!?H!?a#k!?NF٠ ?O ? my ?= ?0z ?gl ?{ ?$ ?[+-?>,?L,?qjWP,?UZe\-?3 {,?P,?:],?7Z+?4l,?-%6+?[+?ˡ*?x+?9+?(?k*&)?7(?c(?9\)? ќr)?)?mzY)?{ e)?`P*?]΢*?z*?RhR)?^W*?*?x/?H.?k:/?F ^.?</?%-/?ԑNm/?l!#E.?؍-?"X-?uɹ(-?.?aހ-?F4.?ߔ 4?Ow3?I:4?G4_3?&Lp3?$2? u4?sW3?x3?y3?.r`0?@G*2?^0?yL1?]m(C1?_E/?2??_]??I?}?۰?fHҹ??T??\k?u W?|? kP?蕙?\M?Yz?~I?4.R ?"0 ?W[JNl ?"}A ?4)21?s)@?sL?N ?&?//?$u ?;?63?B" ?έ? UC?wU?.,?,*T>?Nh=?F??=?4>?9?u4r@?E0C?bsA?aC?U@??8A?9yhB?c7?^S6?v,5?4Wu5?CY8?8Y7?Jw6?4?Vyr4?.J 6?\wJ5?簏;?VS9?@o:?U&#=hh ?Y ?Ūc ?&Or ?AP;| ?jm ?$1~w ?W"?T^0?L]?$o?/D?_X҇?g}?_C?>he~?es?sӃ? z?7i?mc^?ko?e?T?,gI?E[?UO?B ??Z|l4?~$E?E;?')?!?9[0?*&?F4w?)ԑ???b?J)?D Z ?iS?N`? 2J?c;Y?h:n?0}?^Cg?$u?n?J`6?@?\ ???g?r\lN?Ži??@?\w?M ?ׇ?o'?4('?S;?C?<?ʕA?)4?5&?_?w튪?7Ű?z?n>?(r=?E6?X<?l?(?)bBD?r1?; ?*Q??m@?L?As^??}o?q"?XК?sJ?B?C+5?NmQ?D?|;'??=c?(1T ?6F7? ?X $?@з??bt?;_U?W?/ @?u$?Ev2?Qy/P? ?B?vp5?x~?a?1Du?FB?_vS? k?9@?9?vq!?]?'O?~!{u?vQ?#?`h?*d?C͒?ڹ?Ƴ,?V?8Z?( ?|?.|`$?n?T ?f ס?6E?@s?& ?-u?a?.(?>?QZ?Rh~L?Cbj?_{n6?NL?KZ?:3?v?aq!?iI? `k?>P?;??-|K"?5dl?ʳw;K?~I?ޝ?`?CY*?, ?."Wqs?Q??S?s4a9?w?oy?,?G;??@E1i?*?1$?֊q??ڐ?>P?OI_?ܘc?*?@&R??x=?\ ?H: ?F ?W,?4j?eӯI?tFZ?w? Pt<?sS?'d?8Y־?Ȳ???&6˦?/ ?E??E?O=g?ś?n7?*H?-?Z?w??:?A)-?f1?yY??dN]?Ko? ?kS?P ?q4d?F=\?Ib]h?at?CS?蝁?Yze?F q?AfJ?n+?ˡ:?9'?*O\?A"<?`F|NK?H?8?IO?5??4ϲ~?uj/9??P"?ڐy?#s΋?Q(~a?YEaj?rB?v??0x?BM̯?G??/?Vкw??t'??/T?0??B?3j?n!?erv?$?"?flh?/?n}?γ? (Z?Ee7?XI?>G%?0Do? dG?0JY?"U3?K?)#?C ??p>?zC?>8O? 2p?HP?7\??h?b?W?n?AĻ?Y?k?_p?%?G:BS?43?.Ae??W?,? ?O& ?GX}DK?”zZ?6R?(,b?3{(H?(S?LPZ?Fi?x(hjs?B!1Pb?ࡐn?i?N)y%?%w?W{O"?wTO? m9 E?%c\1?E1;?/.?ZVI?}7?iYkr ?> ?|l& ?6 ?^ ?[6; ?Kl( ?E ?3 ?aM ?gfɵC ?cQE5 ?uy" ?j+ ?u ?bI: ?K=" ' ?0 ?Y* ?_&Z ? ?; ?a ?@Q ?*il ?= ?B ?"C ?X@ ?U>w\ ? ?vZZ" ?PX ?EC ? OD ?dj ?l ?C爤 ?$! ?Ӿ ? ?fIt ?C ?i ?> ?m6 ?e ?*n ?Hȴ ?Vܩ ? ?,ُ ?(rs ? U/ ?% ?~#? ?7 ? ?qns ?9 ?T ? ?hK ?g ??-} ?^; ?d ?y ?X& ?)) ?>== ?V; ?1} ?xJ ?zA ?,T7 ?F ?!b>V< ?Z3- ?dt# ?912 ?9( ?Xk ? ?Ⱅy ? /x ?% ? ?>e ?_P%Z?·?,v?d]yi?Ƽ?Xwle?;T?1ޗn?S\? PC?xD2?L^K?^#9?SbQ"?c?.(?ޗE??M?g ?B?0?;??1f?Lǫ??s?.?YA?ݴ?ʺ?S?u<?9ƥ?gM??[_?:ls?Blc?J d|?UEk?^S?D]4C?[?tK?9!2?X>?G??}9,?2?12L?Q葞?E? x?ᑭ}i?TŞ[a?O??g6p?x?C3?s#?:::?EGp*?p?b?or?":B ??JP?d?Z4S?\z?u?S8?A??tGJ?+";?ER?d5C?=KJ,? ?~3?-R$?; ?āC?S?7X^?7ƕ?nS,|?09?0#?awj?'̨`?, ?C?B_^?d?\;׺?&j?޳r??UZ?Ѝ?W+玃?~-F]?;!;?9Q|?됒X?~1+?7H?L.?VVZ?ju8?k+2?^)?2o?:?@=?vQP?,}?-?T?Kk?DM)?_Hv?x·?I?-p?2)?'?QJe?0qO?x }?lN^?Ӈ?9?u$(?q?$zH?ò?wa!?+?l?{;j?˝?Wg*?1%+?O?Վ??w?CW?ٛ?:r`?J?KjSm?E,V?׸5?fv?@?w*?j1?d=$U?FC?=}b?f{LN?E5r1?-0?s<?ެJ )? ?wO?L-?a?O}?;5 ?3 ?HA?YJ?JJ?cO?h0D?֢?Љ?Ϊ?*?k&p?_i[?3}?vi? ?N?U?* ?YZs.?6? UN?&|@.?S?B?v?q(?)Y?]?-??"?D?< T???kE5?.%?N9@|%?tA%?¯%?pc^%?!e~(?E(?u(?=>c(?2k (?&_'? L*(?P'?%?0jpH&?R0%?%&?vW'?M\'?ֶ'?R$'?&&?"c|!'?qFiR&?p&?ik E'?&?Iq'?sg %? iB$?NDܐ#%? >0$?\ʕ$? _$?,$?EMo$?Tӆ($?p+#?,ҽ8$?ǩ<#?GZ"?^>[##?`)H"?:C#?zv"?0'#?+"?Lv #?\c#?D#?6#?T.#?-c#?r#? "?wUt"?o*Iu"?*"?KI"?@g"?^8g"?ϯ+"?$͹!?$l!?-!?VI!? !?{O!?([Ľ!? '6!?EN?!?ha!?UrH ?oNz!? !?eB!?A! ?.| ?/c[ ?椋z ? ? ?D. ?=w ?We!,?n +?^TU,?+?P:E-?,?(e,?-?ӹbb+?qݑ*?2_+?*?(?O)?\+v(?3(?IhV)?D)?z(?t@)?N *?2%X*?p)?6^&)?Xy@/?J6-?jȞ.?g0?Y"-?/?Uy~b.?iv,?<1-?l>.?[L-?'^3?Oz0?^2?m8X3?|2A/?P[1?ܟj2?N3?ߒ4?Ww2?R!4?BLjO?3z.?#m?G.B?ԟ ?al6[?}!?r >?J ??G?80v?D?#?Dô?_C ?0=?k?s?|x9[?w?p9?^?)?Ȭu?m?F?m:?Jv? O@?/f>?H??5+Q@B?UKC?@?&sB? ZN7?=t6?=MT5?l[b 8?Gj94?z7?e6?9V:?{?*=?:>;?<`>?$29?GW;?*a?}!?$n4,?{U?T3?:?$7)=? (?%s, ?" ?x0u ?P ?T ?kf^ ?4O ?D8Y ?O2h ?n ?#| ?䩗 ?g5x ?x ?V{?fF|?|?ߔ?k?JC?]]?u2w4??NQ?4j?K?w<'?v?V=X?_ZO?,?^&?)d.?P'?HD?Q9_0?oG?DC?]%B~??)s???\?5:[?`z?EF?2@j?VL?o??H4T?}?B{? f?а)?* ?=k?-?0.?P?E?n?4? Ҥ?[QCt??Bm=?W|?U?D?p{/?"zU?x.?o?*5?X a?z?}? Zrk? ?c,?nq??Ђ?őlL.?8]?PE?a?WIo?b.=?!U?<?YT'?K ???"5+(?U??&[?.MF?`[&?,?#8?o ?BI%? س?m?eWr?چ?D?_$?F=8?>@?w7?>n?q]0L?mD]?>脹?,j)?[*?L?G&?u=s?b?f+,?ἆ?C|?V׻?:k?6]b?.~L?;k?[?.Q4? Uǡ?̥"? o̱?Qi`?yAt?E>km?,Q?`ڋ?X$Ϫ?4M W?وC?Iw}?(.b?D\?|z? ( .?z/t?)H?}?Ck??^B?)?KQ>?Ě?S<?\l?Z?w?S6/?G2?X~?h???i ?G ?^?Z?"f?hT?v?`??@s?чB?&o~l?8y?I+?x0N?xt=?G_4?ڧCF?&? } AZ?z7A?"I?87?E?޿ ܙ?utW?gx?4p?Tz?W2?F?i??`?zں?fq?-?c?S? k ??,[ ?dfc ?!R ?rq ?[ ?\RAc ?.J ?z6 ?/@ ?撚. ?7R ?dgT; ?uPE ??%ݞr ?,?f? ?5Ƃ ? ?s ؏ ?Ԝ' ?D3 ?" ?&O, ?xG}_ ?R ?V& ?^ ?ъ ?l ]v ?v#7h ?y~ ?h0Zp ?7?R ?0^?Bc?D~A?&3.?`?lad&?TdYJ??`T?/Dr?)äW?"e6??lǶ ? ?uc ?Wƿ ?)t ?D ?吽 ?˝ ?N7 ?vh ?6Ns ?5l. ?Z" ?z ?}a ?J| ? ?rU ?/J ?ON>A ?qO ?q F ?/7 ?- ?o< ?U23 ?t# ?  ?VQ ?E ?asf) ? ? ?g?9;Y?2ȡfJ?hk_?kR?w?.xe??u6?Ilo?މKS?4ǷjA? Ik]? I?6/?Άz;?%O ?K?"u7?`b??c?[Me?&5s?E?l`?;Ы?Rݹ?\!y?fq?nB?? Z?޻X?* ?$K? |?B?J1? Tw?+W?,~?TUl<?p-?uC?4??S?|H0&? ???]c?*[57??L?T?;?s?c??J?9Ƅ?`/ ?2J?u\%?F2?:Gi.j?1Yj?&??h'?byP?f7?xxZ?-Ϝ?R;a$?x?H?Z?Z[?3L?ʰ?'?~?T~?f?QEy?̔?N?P5?m,&?I'%?wk8%? %?qp %? (@%?'%?BZ%? "%?d-;H(?"'?O(?L^˞'? @v(?jӄ'?؊(?eM&?z {&?&T^(&??Qw&?Yh'?ׅ&?bL#'?f[1'?&?m'?ZFL'?c#uu$?أ$?p,$?|$?'.#?H$?zz#?f! $?#PR^$?1\#?{۹F#?^$?5"?Fc#?IF.#?ڃ B"?{\5o#?ߥ"?$#?Jօ"?2I"?]"?~mi"?v"?Z٧!?'."?!?!?a_$!?\!? ?Zè!?yA-!?.3d!?uxn ?(h ?GqY7 ?(e^ ?BPj ?)- ?˟ ?Nq ?6;,?>n+?>,?[ ,? y+?t*?**?ze*?$ (*?Y_k(?\(?=(?Jy(? 4+)?+n)?#ֲ)?|)?y(?(AY)?8=1X)?.?wY.?F>_-?݅ZY0?T<,?.?gv-?t\˿1?5KS4?.3?4?c7B0?vDD3?\B1?Ah-?RRu6?:3?O?^"?-=?Ez?IQ?L"?8Z?d%2?mZ? !,? Yy<?$?zU?`?kO֏?EHK4?TX\?HO?{?kX?J)?3Ci? ;?){?`CV?gP??b>?n&?X?Lh ?"?3>' ?c?Ç0O?" 5?N[P?2!?gR?pH?QR?PF?R :?9/p?ձ ?x?uM_? w?/>E??I?3VEG?r{^E?#D?6J?mG?cgE?L??miB?A?ܲ=?D? A?j-9@?)>т7?tg9?Cf=6?K^m8? ?A5T:?[k>K?ʩ?Ŀ^?z?L9? 6 ?Ca?sE ?:?^-?81g?m)?m^n?'_J??|*??)*A?Gtب.? ?z ?H ?- ?-w" ?vq, ?&40 ?w3 ?S2 ?[ ?ks ?WS ? ? ?Fņ ? ?'T ?[4h ?Q}O ?AXr; ?qg? ? ?7L ?b ?Xu ? ?W ?*Fj ?U_ ?:^i ??`Y ?vDd ?2s ?@5U|} ?OOo ?Ly ?O ?U ֐ ?1 ?N ?LZ?'so?V?/?龡w?0 e?:n E?{ku?V1}?"ŋ?ZѬZ?I?ߤk?@VM=U?8?ړ?9(?M?L4D?ﶰ?e#8/?8{??{n?̥2,?-?>?'?!K ?͑?IW?_?fJ?E ?3?ވ?P?v7?w7^?mn?F?%Ҥ??>?L?G?g᷇?s?-?(?L? G(1?yߗ@?#?G?N7?w?@u{?"?r?z\? ?MN ?B ?*(?ЯSb?,^Y1?I? ?9'X ?p& ?/I0 ?;Z ?G ?BА ?; ?hgܚ ?& ?ӺYj ?w ?d ?K ?I;!t ?́ ?^Φ ?a?["?4,?p:?j/?rrE?`?SJ?Ê?gN?B?øx?B;?bk?O1?w? v?$Ve?eKq?n?#S?XAvB?\?ZJ?X1?Z%I ? f9?EN(?xI?f?0uȱ?> K?b?%p?H?&|?gHC?3?b3D?N?Ϊ?.?& ??E?c4?ʛ?c?v`?D? M?g~h? Y?Lo?w`?iZJ?!{<?Fl R?B7!C?>,?Cm?5? f$? ?T?%ؓ?lf?ᰞ??}??}?/'d?G??Sw?8?$ݳ?]CX?S8?*a~?%ޅ??L.?yGw?VDh?na~?'꥘p? wtT?r8F?R[?OM?o8?)?y??lG0?X? ?좸"?g?.߂?0r?n??˺l?"o?mQ?,Z?ey?ʁ?ܺ`?j5U-?#{c-?{?Im4?J&?I?g? m??ɿ?.?%n?+,?cʟ?(?'n?|/^?`?9:?Z?BSQ?Eț?uDq?"Cܢ?<[?}E"?{p?!?x? yb?8iT?n_i?t,[?Z??RB? s?=F?,rϱX? d}*?˳9?LGlA?EB?2s??`s?r19?nT?Jifw?Bt`?fH4?I?|c?(?le?01?*t)?4J?Yk?͝?0dt?&VcE?] ?%}.(?P Y?N? ?Ѯ8 )?]?#Q1?뾛7??bz?Ԣ3?mG?7?`u?oя3!?]8>?*>?}|?ἢ?T0?.*?s?6?Qs?f&g?&1i?1D?pɫ?# J?=+"?bz`? ;?S ?_r?~P?Wy?_QV8?jL?bڂ?NGOa?".?RH?i}?ə0|? 4?!0M?y?i?} ??Z?Pě?Z ?@7G?1/6?y{?.?;'j?Sڨ?J c}?Tv?'!c5?:B3?ZG6?M:4?DR&?9&?p:%?!&?D !%?Mv܋u%?%?-f<%?^^1$?%?|G$?̳-4%?'?4г.&?t/'?B'?&?sH(?Cx]q&?K?&?JX/'?'?,WI$?[s$?,'{#?,㌆#?d3#?\+$?z0#?>]$?,ns#?3-k#?L#?`"?Y|Y"?m(#?g)"?..3N"? "?Ov"?G'"?_!?$6!?0~y!? ?[:!?? 9sEF?! jB?\@?pl8?÷➚?YC;?)F9?]X7?S?NS?Ǹ:|5P?@1RN? L?qH?s_J?-!D?_K?m7H?ǥ)E??u?Ja?tCV?V?AN??jw?c^?%Y ?S?mپ*?X6?#J?E ?)K9?D?^7E?*l/?Vn ?^HrHw4??D<+#?6s?16ǝ?C?ӏ[J?)?Qz0"?oop?>5?g[t?^qf?TYz?2\fm?Jp ?Te ?ۆ[ ?w63gk ?` ?T&Q ?leF ?~?V ? L ?}< ?2 12 ?ಸA ?x;Y7 ?H ' ? ?j ?qɟ ?[- ? ?%@'" ?&o ?(kC? ?N? ?"OO ?U ?6'E ?L$kO ?{X ?kFt ?HZ ?:f ?$  ?0 ?>O) ?u ? ?y ? ?.^ ?G΅| ?߱V ?u ?^ ?X ?w4e?4?EHu?ϬO?%?(:?t ?@w_?}EU/? D?&=p+?ReZA?o?d%?sNJ?{Z?@4Z?g{?Wy?NՍ?W?ܹ?N?8?5?J]?Nc?h1?` "?;/?E?mo?ʝU?xČ?G2?}? U??z7IK?1?gd?&U?GN?5?RV;?L~*#?~?2*l?b?猚ȓ?/p?s] ?;D?(?? ?hl ?$ ?X ?B ?84 ? ?>6 ?{/ ?Z ?<J1l ?~ǽ ?y# ?P~D ? ?}8e ? ?I^ ? ?ȑ_ ?$Q ?踱g ?Z ?I:B ??[sl-?A'#J? fSr7?^6bGY?!_@?p l?)R?L (?u3q?>$:?sk?D/?n?)?pb?/?J}?aqЋ?{s_?(Ι?x?Ed?4}B?+?J.ϐ??ʤe?S?6Pp?aZ?wA?JZ0?qH?:Gg8?FH?!X ?UP'?pOW?]? ň?ZA/?Р{Ε?w?"pif?+}?s??m?@B?ކ?0?·?ܾ??D׏?.@SF?Ct?q9IY?\J?a?P?~oSx;?jt-?MA?!4?E?Q"q?} ? !x'?N)%?XB?: ?C?rN?FZ? ?e?ư?J?SbbS?6?Z)~?|? ,w?k3?bQ?ҩ?"i?{=X?|-w?l`?jL_-F?Eg7?&fM?=4>?IQ)?_?Fi0?Ȯ"?42 ?6)?܎?;?#ƣ?8r?F)?Gx?rI?=??I?L$?<?𡈳?rr??$?p?%?U?0?'a?6 ?y?\?V??d=>?u??Y?>?;'?hm??\']?}0?H~?ͬ$?J{Fׅ?p?*ڑb?yw?<7,j?G̠T?<-F? \?(JM?;߷?1-?*h^Dn?~M`??ʍ_?:?C9?fw?=!N?,Q?0?C4^z?J?),?ll|?#VT?t?&?5 h?="?9-?59?Ta?jR? #?Mk?B?3n??]t?~?סh3?XWe?C?ʖN?튝?w{^4??1?s 4?&Bu2?@&?%?P/z&?_&?-a%?)@$? "C%?8L$?ѿ%?Ϛ$?9K:%?{d/'?,p'?1Č&?NT&?cF$?lU#?f@$?{ #?KLEk#?"?7^#?ׇO"?cz#?FQ"?DW"?"?ȀL!?!?!?fճ<"?.X!?Ӻ!?O' ?ko ?n)?jd ?> ?{ !?Y ?K ` ?7&5*?G*?y5+?p *?-Q7)?ed((?]k(?{l'?ҵY)?u(?P4'?/?e=-?de/?Ws-?"o+?CwdD*?2+?A`*?FyN?&?hz?]̍?H?8;t]?\}A?Wh(?{o?<;?(E?'d?.RS?kcQ?a??&`?9h`r?u?8v?\n?]? <+?T?@KK!??h?4^XG?v_?4o?j;? ^h@G?p2rC?m@??S%q?۞]?a'<?N ?C(? L?{P?1}7G?JMyI?{5?!L/7:?:&?s ?t,?I3 ?&Sc**?=3?ŠS ?Q?ZEZP?%{K?=4H?w]O?ϘN?CH?ګq]D?1wƾM? lK?<hL?X8;?+tm ? ?F ۨ ?T ?8ģ ? ?*3$p ?]ڐ ?c= ?dj ?C ?< ` ?h ?#` ? ?n ?ёK ?f ?fi2 ?PJ ?@wؙ ? ?nn ?[ܕx ?} ?R9s ?b ?cRDk ?') ?_ ?0 ?m.o?9+S?p[?yj?S8??^@)O?-2??&{? 0?,1m?S?t7?t4?qR?ϼ@?gh?c1մ?k?\]??ݻ?.$J?l? a?m?YBc6?995?_~?IȂ?P?&`?/?FG?(~ ?O?l?z^S?=?w%H??a?ja??,zJ??M'$?kavu? +)?BJ?蟒?p=z?G:?gF2?NV?g?\? L?;U*?MoU? ?1e@?&??݅,?)?2H۬?mY^H?=z?ө5?q#?b[t?8??ꎽ ?Z?AB?c$_?S}l?#?i?Z?7d ?{k??[z?B^?uP7?]m\S?_!?fE?? o?jL?_y?*?֗?]z>R?|o?%b?x6̍?r~?ꡂ?H ?d?<9u?. ?j ?w{?L ?c<; ?T ?p5 . ?DNI ?n ?q ?^c ?ۨ6_} ?+s ?ie( ?î ?5_f ?9 ?  ? ?լI.?L?iP?dȧ<?=ik?;s ?,!Z?Ax"?Tv?B?/?(m ?cҲ ?_[ ?ۭ ?6 ?tY ?Oy ?ԛB ?Z ?h ?lz ?cR ?xf ?l ?\Q ?p_ ?o~L ?Pv ?ZtY ?f ?  ?8S ?}M ?R ?. ?YG ?fB^B; ?2S ?; ' ?WH ?hMK; ? ?{ ? ?M ?Ư ?I ?L6+ ?i ?7 ?* ?el ?? ?ĖL2 ?`o ?Ilo ?keo ?D{b ?4v{ ?jp ? Q ?ȼ ?A ?p=f& ?? ?Fr ?ux ?;U ?@E3 ?PD ?d d ? ' ?'= ?ףN ?v; ?w_ ? 1 ? ?< ?N % ?Cw ?K ?eU?@%>B?čb?R?[St0?-#*? =#??;(?+fK?B}*?ũi?e=?91l ?*/?QK?jA?Jd?9N&?o?Yр?4y?d_?v.y?{?P V?9A~ ?U ?Qy=??b?X?G?R,?,^:?pO?1CV?6,?# P:?0?[c?2?=Q?йk?V>??0?y*?D]?$`M?T?}=B??2sJW?aWn?)l?PT L?-״a? ?x?F7?J1ؗ)?~`??NZ/?9At?L ?!?9?4?e?F`?ʳ?@?4:?wq?9?qP)?I ?Z?#t5?9ٝ?vs?~á¯?y[? V?d?4G?ڀ ?W^A?^?-? r?u?'??C?#5?vΪ??qa?=(j?[@]1?VNϢ??@z4?Z?uɸ??h\?˹l?"P'?h<+?{pa??5l??#|?7?Q@?&D?~Mt?Z?q @;? 'l?+ .=?@'?)L?KUw? ?l?C??*j?e?n?,y[?=?rz?ӝ0?*S.?O1?޽.?Xr賤/?i)%?8$?xf%?-&?0N.F ?=^"?&_)?o<(?a]'?کm;)?K$&? ީ'?umk&?m^$,?0[6W)?˸*?W,?a8'?3F *?Eb(?З?T!\E?5S??e6?wR*?Kܐ?8 ?ƗL?b-+?`<?IU?b?V-?6f?Rww?#P?,?Wh?:W9?vZ'6?`2?3_?M7A?C?i18?ul>?ݰ6>:?+P?^=?vlRs?#?Ш-e?C]X ?D2 ?Qr-? ?ݖ?N*1?Rϧ?M0&?ͪ{?0/@?l7*=?}N3.*_?kvK?lS?=?Gk0?D ?T?}󁜅 ?) ?_< ?? ? I ?lU| ?Nq ?Χ ?ax ?۔g ?)\ ?,Un ?rb ?şQ ?ا!G ?JxW ?P~L ?xs\< ? a' ?2 ?Ȑ!# ?vA ?j*, ?c6 ?l[ ? ?dZ=b' ?< ? ?| ?)\ ?;} ?( }= ?@ ?L1\ ?N$ ?, ?cL ?r; ?\ ?!oc ?X1 ? ù ?![\N ?)! ? ?' ?:# ?c ?W_ܵ ? ? ?Ǐ ?.K } ?@֮ ?k ?Fo ?1f?1I?z?АZe?R-?Ux?[X%H ?;-'?I?0'??N[?l? })z?db(?=(?c@?w#j?C?Kվ?N?saS?F?E??yB7?t!?j ?b?,`??ː?4@*?bKx?5?m] b?Ԉe?C?[&#E4?=^?F?r2?[8N?m͊y?Km?#%r?<[(?)?Y8/?Q\m!{?56?S=?({i?=#8? 5H?'?@X?G3?6?$?M7Z?{}?B)?d?by?p?tb?y??v|?S&z?N ?gD/?o\z?f&?&ƕT?aEX1q?-+FK?Y f?8:5?m+?V?y'Ϲ?6?L4Ƃ?=b?^ӝ?nMI6?P_ ?QxL?`m?P ?ԛ_\< ?&E ?;\2 ?XX ?Mq ?ʷ M ?4f ?S ?f ?Z ?FR^ ?} ?. ?]Sڷ ?; ?1J?FԠq?;V4?;m\??G?'??͢H?pd???2 ?5 ?yh ? P ?K ?]o=y ?}(" ?d'Ü ?05Q ?˼` ?W]Up ?BLT ?@:] ?Rh ?V x ? ?0u4 ?  ?i_G( ?2 H ?(] ?xP< ?/kgQ ? ? ?Ph  ?_  ?{( ?N/ ?X ?a ?C ?RH ?rTB ?k| ?rk ?o׏r ?N.] ?jK,~ ?ʵ k ?vPK ?GھG ?6- 1 ?%5; ?NF^V ?B& ?j= ?R ?"D ?V} ?' ? ?z ? 5 ?D ?GYS ?3dˤ ?g8I ?NP ??[I ?QiԹ ? B ?㨴 ?O?[8?vi?uM?!wZ!?mk?z=/S6? ?/?*2,?TM?ƕ?w? ? 2?Nغ?_?ka{o?gD?9["J?J 5?ԓ?wZ?K)m? T)?|c?S4 ?w^?W/? ?eV?{J?r?L?ۼ8g?:??Lφ?W#?^x,?v6?MC?w e#?N4?@>?ڏ9?'Ŵ??o?`?n?A?!?~&?>@?U?H'-?+=?6$Yk?S|?=]R?mc?'?b ?1?Ư S?I0?ͩ1? 2?^^]?Q{$?"?8W?5f?H?>Э?Xf??I}?M7h?ڛ?wg? -s?.R*7?+u?N?8a?ۺ?p?Ź? L?2ʨ?]?gֆ?_H(?%H?v?_?Nm?wZA?R"s w?=;Z?jDI?'56d?UgS?I?X8?u#?|B?ؐg1?gl ?t]V?h??((?-K ?=?}k?ac?lk?H?ܿ?y/?,}?'k?k\F?w?ۨV?g0?aI9?Yw?'<ۜ?G?fS}? i#?g?'h?bā?9k?t ?3K?3?nb?tWp?!?Y?#-?!?c??ӗzG?߆?a9?nl?D}Y:?:͕?wW?#?${@0?Ft,?0zUj-?QS-?3zBf*?R-&+?*?q,+?~D$?Xq6#?vL"?+H1"?248%?#?p"?;5>!?[(I?R] ?|l!?}Pny!?!D?mU!?]~ ?$4c ?\? Q?&?"'?kA$?$?S}w (?J(? p%?"76E&??N`?0Q(?S:#?_??=Ȼ?.iX?]8H?a?->%?2?57?xu65?0+3?;6 .?k0?϶.?4ׯQ*?}W?Ÿ{?l+? #?`ako?2|X?Xd2?EL/?| (?+? BL6-?b8?y۴{'?8r4$?rY/?~!w"?d6?](?zc?iD'?ҷ?YaS ?DJ%?^Pf?i7s?SdZ?!~2?Rf?Rp3{s?#h>?FAF?|P/?"07?~N?q\Z?qAh??/.sH?BD?o??3+m?Ui???' ?Ol?>?N?O?ulPA ?B ?)E ?us ?g? ?y;n~ ?@L ?}gh ?V?u ?Ԋi ?ps~ ?[lq ?}Ɏ^ ?R ?e ?ԟX ? G ?:zl0 ?D`+; ?y΄' ?k2eM ?d!HV5 ?uc@ ?ёJ, ?: ?]I ?7*q% ?k  ?' ?'V ?(h ? ш ?:i= ?L? ?KQk ?'r ?.2 ? ?il ?o% ?9 ?J_ ?׆N ?_^O ?y* ?oR[ ?b ?e? wm"?'МC???rk?(?LN?wp?ЭKc?c]E??, ?}ϻ?;?b(?2$??w ?Z<Ԥ??::?NB?#vJ?׌?r)0L?(?:`?#?(?5UM?<?U*Zh?Y?=Cy??Q<?A?oVo?cF?#>qt?j"? ?oI? Yk?{??_?+_?{x?J?_?eZ?^ ?ZQ?`k A?lw?<\?ΦW?9??x" f?]s?,@?D?P?=u?QyZ?É?x\?| ?# ?*? ?ƴsC ?[L v ?hI\ ?bQ ?L4 ?_ ?-x ?^Ƭ ?b ?8 ? ?^x ?O* ?_ ?GIn?Q X?"lP???fz?/M`?n:?!61?^`u^?}'?BaNX?KOp ?` ?l9$i ?l% ?"n ?Zq ?> ?(kuf ?jtB ?1+L~ ?wӒ ? / ?InE ?  ?$g7 ?\W[ ?^s ?ܲBM ?'d ?-P ?7 ?|R5' ?ɞ ?@&ω ?[=dPw ?WC' ? ?s ?-* ?G ?aX^ ?  ?w\ ?oF ?]1 d ? ̦3 ?"ug5L ?w{sw ?Q6! ?84] ?gבD ? ?~ ?> ?󌗕 ?u ?Y) ?dA ? ?>Vd ?6 ?y6 ?H9 ?I ?Fq[ ?6@[ ?%? ? ?Cgw ?'0eH ?d꧇ ?@5 ? ?4Q ?T ?pYK? ´-? cj? MG?5s-?C#?F)?~a$?yN{?("h?{wk%?"?2d?ݐ[9?b?=26"?Wz>6?Z I?o\?% ?0a?n ? G-?K?m?K8?1Rf?ݝw??G*?8?PE*?V?a-?ذ=@?Vi?^!*?e?~NX?t?,&?K{?5$:?3v\?BK?J!!?~Wb??T6?"zG?&?+? ?? ?D<?1< ?y??aui?X?X?s^?=S?'?9?zv???-j"?|أ6? ?͊_ ?K@h?=g ?uy?&nJY?Ni ?Z ?tJ?)"?ة?R W?*?ŭx?dGMJ?NH1?j?$?@l%*?cY?X? ?2?NA`?u?0?¶/?m?.H%?p/`a?]?B?%uB?란?&)~?5???}?\D?B?Sf/?9J?G=i)?(?}73)?tT&?C&?&چT&?A׵%?| ǰ?G^z["?ɽz@1!? ?u\"?$9?U>j ?,d?5_#?nb$?"D#?R#?2yrB!?z&5z"?!?er{?E9:??-?S|r?^?!?UF*?6V'?^%?YO%?ڇ$?ю#?d?"?b5F!?A?v?_Y/?)K?m  ?bV ?m &?~+?0L?H9E\?[S3?_~6? ? ώ?_O?U??Ubt?Mq?!z?`r7g?5XlZ?m?`?"!?>Q?-^K(?U?GE?!?AG ?.?2 f?fT?29t?h!I^?[0?yx`9?!?`U(?+<iB?L?hZX1?^:?pC?2%?M??)?e?U?vʼ?w? cf?u w?89'?姙 ?Z.t ?m ?͟ ? ?j34ۇ ?ozz ?_2^ ?v/ ?V4m ?` ?w ?+h ?&S ?X*A: ?3F ?e*3 ?>"[ ?0@ ?1 M ?F 9 ?m', ? c ?!8 ?q_ ?Wl2 ?aD1 ?:π# ?e?Ec ?[ ?E$ ?T ?xP, ?X ?J8 ?.0} ?Oi ? ?gx ?@K㑰 ?HI ?W ?R ?a{?Q3?spB??Q?U;?Od?Z']+?QG?S?IӅ?(?-?0~Vv?QP2?%9?z1iZu?D]?:NTp???s(b??O?^?3t?xOG?%`?g &?/)?Z?HlA?%٤?ۇ²?WH?9bd??۽?H% ?H@ ?U'm ?:QW ?"". ?X8 ?AO ?Gf ?9  ?>?x ?4<> ?#9+ ? ?$ؽo ?Σ ??s ?< ? U ?@2 ?C ? p ?ARH ?~+$ ?|>f4/ ?X?i$ ?Zȣ ? ?@QX ?3~( ? ?.ߍ ?m ?nk ?Y} ?w ?ޜ ??> ?{7 ?5U ?;4: ?pD ?'3 ?X> ? ?V ? ? ?[ ?+ ? ?F*N ?v0& ?͠ ?)` ? n ?ӿ ?v ?+d ?)O ?$Z ?qI ?$T ?41 e ?ox|lp ?hn_ ?Gkj ?Pnu ?p^{ ?U ?_ ?;CC?*?&j?C[<?Q!?}K&x?;[KC?hz?jx??O ?5?XSg?VI3??3k}?26?W?(cv?*d?Zd? ?*^Nm? ?i@?`? q?̤?%W!?.(?N+$?)?[Ki?Eȳ2?9M?q{ ?@!u?1v[o0?b#K?b?U29?Z\ ?m?кI"?,?0?r`?+?DO?_?Y ʭ?͞ 0?S k?Y?v?.'?-|?FHo?M`?a?^??nު¼?R?4w6?> *?h?6F?!]?ʕ?;5*??_o? o$?w?"[ߑ? B?v6& ??"*5Q ?S ?=; ?Ӽ ?ߑ ?+v?Mq*?+CuZ ? x?h(\?E?%M?1a?CrL?HQ*?˵I?+NBD?`8/?I_`?Kߞ??J$?}q?~? =?knU?Cjl??#?=f%? D?̰oe?A#?H !? ?Jz^) ?>$V=??KO_?T?4ъ@?qz ? 9֯?o%g?~>G?.&?(u?x?q |?% {?(r??Dz ?Ԙ??T~e?O@0?g|?3\?;t?GJ?G5(?!(?Pg ?p$$?u?sIL?): ??tlS?ybeF?CBV9?S?֛?ay?t?d?<!Z?6?ޭއ?T t?}Nf?dz?]Qm?DY?L?ܘ2`? ZYS?`??N<?q?"?- ?̎? U?CWD?M_?F?iS ?a )? 2?4+ ?øߪ4??."?0?c?Pr?ڈ'?Yܵ?FcԨ??v&!?ܞL??f9?Ov?R2?.J%?$^,?I ?e-=k ?\z ?ά ?d ?&> ?ܽC ?;Iۙ ?5~V ?:r ?uq ?|5} ?%c ?M٠G ?U ?؟@ ?5n ?qO ?< %] ?Wm9 ?w) ?ReG ?53i: ?l ?/b ?7 ? Z ?&r+ ?` ?x ?' ? " ?8'~ ?(w ?R ?:%, ?mF{ ?[, ?e:? }q?O??7?wm?i?F?s?Ɨy?'Pp?`(?Wv?K %t?aĈ??u4?2R ?/k ?!|:} ? R?!/ ?=` ?bwa ? s1 ?th ?'y ? ?| ?2 ??~Q?Z?]Z?pƥ?QO ?q\? ?6J ? (? ?NMD ?i, ?֘q ?|_ ?$ ?Z)hL ?UK1" ?C ?=y ?Uf9 ?NJ1 ?W,/f ?I ?Ҝъ ?fb ? ?$f ?d3: ?ݑ# ?|4e ?^= ?Bz\ ?k|M_8 ?失- ?*K ?n9"# ?G ?c%2 ?N ?bo' ?U~ ?y ?E  ?c6 ? ?S ?Ñ< ?}-C ?',&WN ?"Oi< ?'ǿgG ?A1 ?\T ?Ql ?<} ? ?} ?? ? ?Ѕ6?aZ?q!Uc?T'?i?Oʬ?ۢ?Y?%?ʩK?g扲?gMC]?=?4d?z?ZT?$? ?\D??}?O??["?O.?JW?S'??8-?:V?;?]պ??\Oh??QgHG?w?v붛~?'K?^O?s(?j?r!P?dܦ{?_?)}?5?rK?&Y+\?8?w?vp?d:?R? Z(?)Zw.?d$U?kY?'? >?q|+ ? Le?- ?2*~ ?W ?꥞p ?m ??S) ?= ?H ?dR ?^?}?^?|?5+??6k6?wj}?xܘ?I-?5C"?/-?< ?:?ZF?1Qt?ų?d?Q0?]S^?傧?],.?z|eR?1n?0?@:?&z?&$? ib?]Jj?m?A?v/u? |?ѼV?3??ee ?\9?$}@????GZ]2?x[RF?5qG9?3f_?>%?a?P,?]D?wrv?Kgӛ?_x??p?~Y$?6s?0̔?.ty?0f?,=.Y?];l?_?L?|5??±S?KTF?Yyv?Am?kt?ⵍ?KF?#X6?@bWj?\ ^#?)B?Jg-?޼ ?D-$?`?ֽg??q??=4?^2?+w?i-?A\?P?8??e" ?1?" ?a~; ?΄ ?C`ֹ ?xLӚ ? m ?{b ?귃 ?z ?9keV ?5h ?j.OI ?k+o ?-Ma ?ɛ&s ?l|A< ?WcK ?& ?H  ?/T ?'@ ?n6+ ?67N ?e ?eGw ?ʱU ?Dʔ ? + ?>X ?U^ ? \?m2?!`L`?0??^?wy? Xo ?e ?t4ΰ ?vٌg ?[Y?& ?#  ? R ?̓?!v+_ ?Hn ?Ii ?[j޾ ?"_tZ ?y ?Tr ? ?9v ?:Z ?B&w ?aD ?5= ? ?ˈpq ?7 ? ?E*@ ?M;h ?" ?! ?i ?} g ?hԛ ?]r: ?{0 ? ?dK6 ?ک+ ?i4y)A ?)5 ?R` ?1 ?4i ?C ?Y* ?F~ ?D ?Zx_X ?DƢK ?X@ ?^ T ?KI ? ?7mM~ ? . ?5 ?`  ? ?r ?f90 ?A&u ? ? ?\ ?#e ?8X.)p ?Ld` ?Fk ?҂J4{ ?c ?v ? iH ? gO ?YK ?0 ?V ?%ѫ ? ?H\ ?ri ?V& ?. ?Ȣr ? b ?#>?>-?I*EK??_0\?h?E4?Z?=h(?.Æ?1i?kR?S}?i+*?e#?ZF? ?P??1}?=L,?$K?U?wN?l?k^?w? 5 F?8X?.[U?R嚒q?&=??2Y?Kt?kSnp?i9??ј?N?t?? }gQ?~b?&? &~ ?K!7x ?[{B ?&m?? ?Ϳ ?5 ?ޥ ?e[e8 ?*PD ?dP{ ?;t ?;wU ?ƕ?}?`F?Y?%|&-0?`8?h?]Kk??>g? ݉?w??){???MB?Rz?`pA?2ҁ?_w?WN?%? ?I\Ѵ?&rg??V^?WQ?ҧd ?㑭 ?u< ?˂T ?C(1 ?g:l ?U ?X ?۵ ?>ڴ~ ?7 ?QD ?J[4 ?Cj ?$N^ ?o$ ?~F ?4BM ?C< ?~C ?+8 ?FBp& ?k ?gO' ?c ?\ c ?1M ?aj4 ?2 ?  ?[Q  ?ڛ ?HI} ?˶js ?p ?DI ?GӒ ?m<)A ? ?(R ? Y ?@c ?g* ?䮭 ?Jư ?q+7\ ?;g ?s4 ?0 ?Lw( ?DD> ?5 ?) ? 4 ?DH|\ ?@EG ?4R ?Mjc ?+> ?nN ?O^4Y ?: ?"x ? ?3C ?mlS& ?ۊ ?*1 ? 9H ?q ?^L ?,h) ?WE ?r ?{ ?(-n ?>x ?7Ϟ] ?t ?ܿOf ? ?Z>y ?`!Q ?!_ ? ?RNs ?=z* ?h ?$~ ? ?2{ ?A ?# ?kRB ?g ?ȋ ?"?ݬ{i??@Ƨ?0[/?@Lg?4?E÷?,C?Gc?~ ?1?qI?x.b??.)?nj?>+?8?gw-?-?[?xꥨ?\?pA?n? 4?#d?6W?Ef-?H&?z7T?wB?euY?R? ?ȡ/?$_H ?WJ?˜4?U$E ?^d ?:D$ ?]y* ??z ?oѺ ?!7Ӂ ? (?N `?]D?}-?Ԁ?td[?0@?A o?$MH?P^?(c~r?/y??c +?:H4?B?B:H$?3l?#p޳+?%N|?og ?K#?wI ?:.?*?c!?Z/`?qf[?h?4m?Xx?o/h?6`}?Jbgm?u?w?e~cY?'?:F?:b?wqN?g!3?";5 ? vR;?I*?v<?Sy ?;H%?f? ?- ?;r? 0?Tٽ? _?H턜?ع!?n?C?L?%JYs? z?ˇŒ?})?eѡ?^`?b%<?Qh?]uE?i??$?W ? C? ?Krڰ ? ?5G ?O ? ?>w ?o!qU ?Enf ?,U ?t7 ?' ?`?c ?Ju ?, ?8.m ?3 ?V ?4B ?W^ ?"@ ?6 ?Ș ? ?^ ?) ? G ?^ ?jg ?]3 ?w) ?2-) ?g ?N ?Q< ? ?j ?[j ?!` ?-t ?a`l ?95 ?GU ?ٌE ?aw, ?+b ?sB ?7$S ?g# ?MIZ ?d9 ?.>#6 ?O ? ?Jkv ?ǴN ?_G- ?J& ?%>v ?XW ?@k ?$}w ?[g܇ ?I ?2 ?D ?T ?#! ?~ ? ή ?7y ?8 ?4e ?C ?1C ?:l ?z ?" ?f4 ?_ ?5 ?JV ? ?zoSe?sE ?8Fڠ?xdz?eĝ?d^9?y?3PX?grJ}?f&u?I+<?Wp?5?q4?> ]??{5?v5 ?>o?g}?W. ?4ь ?l2 ?z' ?`,_?锈I8?B?62?K?Wj0?ڈ%r?Q?_,?*E[?4w?Pŏz?:&??O3Y ?8?J?)?Nٴ?cD?~B? ???!\?;5U?Ԩ?&n?g"? h?=8l?@|W?0:w?3+`?C?"?Bp2?n]R?ӪK?O6$?G4?#?湣? f??3^?]?t?+B?x>?$?U?y%qjk?l?<:$v?]ޣ?p?t@߲?C?ͦ?U3v?p?0ؾ? ???Dl?}P ?b ?' ?VqF< ?G% ?? P?FxՋ?IWݑ?.t>?,4҅?5i?=fw?; I?fo?L)Y?{ig?8?}[?f?YT? y?o?Zng?I˘c?،V??"?Z4?Y* ?3 ?2< ? C ?z( ?< ?zC ?dVT ?&"E ? I ?ܧ. ?<>< ?XSS ?e ?҃_ ?*lk ?rd ?@Jg ?: ??Xk@ ? = ?R6i ?8Eo ?e ?k, ?$~ ?$õ ?M3 ?ڨд ?0rT ?csY ?AR ?SW| ?H5t ?x ?) ?I ?Dȍ ?D,1 ?0} ?} ?w ???% ?-ޙ ?[#?@ ?S ?U ?b\ۙ ?!C ?U ?N ? ?<^u?Ό?.U?| ?h1? ?y&l-??X$?:5?J?{?'?W f? h?^<?{p?er:?L_N? ?<*o?\ ?yZ?pF?C?fh?ua??;?e7Ή?=|?`u?j?S?0o|n?vւS?CL?d1?h;?&"?ֿ?, ?!?33?I>C?88?)~?4Mf&?ڦ?+2?ί?{?F8?Wˌ?6ȧ?E?_Gҗ?H$N?)?5 oY?r9?.*I?{KQ?K_BB? ?z)?-"?F*?Dy\|?mp?}?@t?tUz?k?X?꘣B? _ ?jas?f?D ?з ?Px ?KwS ?M ? " ?+Ц ?rǫ ?GH ?U ?`P-8 ?}? ?u ? ? ?G ? ? P?|U?i*?ެ{"??w<* ?a ?p;?I?FJ?67 ?v ?" )?M3 ?Sxy??]?2?zЦ-?dD'?݀8?EQ3?K? ) "?Qy?>,"?X+'?,Z-?eB8? c ?ŗ?Xm1?%XVk?dJ?q~J?A?]?S/>(?QE?(Y?mZo?v?5QW? i?p?/+?~@=?=??o?ì-?ߞ:?z?R?bY?u?7i?U?C??!l?6?vN?~w˲?9?]?P֘?4Ey?DM`?%~%?h?G.o?!?/?i+?6a?g?uRm?g\Z?b a?$jy?Fr?Mm?իys?Xy?0Vg?: ?}Ǭ ?(Y ?L~ ?1?]7`?3&!?SP?r2?_&u?:s?J?QP5@?yEw?!?dV ?e}hE ?\ ???F1[ ?2{ ?G ?+ ?!fj ?ίg? K?WJ%?C ?%Re ?Bm?%zS ?]H?D'? p$?-?,?z6P.?Y!?J -?Π(?rD48?̿=?7?U:B?1(?0?WJ)0?[F9?)H?slC?=?N?\QCI?/J-?ڜ8?\92??ˍ8?d7>?&C?Fwb?(,H?*Ó?SL_?Զ?h?eu0?E4?ƥxi?K;?wౌ?n zN?6_b?2oS[?]T?BZ7T?:M?^=Kj?lVs?hF[?db?aK"?@Ș?{~޲??ne?[ɝ?E̓?I~W?=??Oʭ?|u?۵? d|?z?l)lk?g]TE?ut?e7?!A?? ?&|? (S?WG?yhM? HT?@?h IG?źWf?Y?rPS?ӄKIZ?wՓO`?XgM?$Y&?%9?1m*?IJ?C&]vM?MJ?S?P?\h^?[./`?ę?u?hZN?.?V? ?@%?LKS?{0?D/t\>?_87?M@?uDB?dIgK?곯S?Zf7?L?6B?@?]^Y?bR?85KH?I?6T?qQ?v~Z?B`?LgZ?)T?Qf?=<`?C?M7O?~I?0O?0T?WDZ?&5P?h(2?/?iH)?Y?ed2?@Bd3?{l{q?yt-?[į??+?V?M?i`F?VD?%uə??&NT@?k:?4 89?6j)3?J;7?MZ?MI)c?ѓgK?+N?Mn?˙#o?9KG?<>S???3"l?1;y?5 p?.{?3mِW?]sT?X\`?X$ѹl? a?Y<?\0???凞0?:,?3?T:?zB'?Ϳ-?QUM?t@?}:?e@?RG?>4?jo?Ql?Is?4͑?SʓP??6kr?hBP'?=+?@:? ?7N??gFw? CN?b?>V?gz?Zj?r'~?GD4_?1 e?dzr?2 o?"z?$Iw?/`d?$y?ul}h?RRލ?2?ߓ7,?`+?e$?Hk&?y56 ?.6-?o7?-h%? %?.ψ?q?eB?8?9$K?S?p\DF?}3?{ ;5?.ƍ+?Y4?$&?`x$?F*?rd?fKh?50??&g?.!?WB?Z?r4?t (?C!?񿞪'?6 .?D?px?nkf?k?*n׮?gl?RN?h?!'?pq^?rT?ۉ;?1]?E8wJ?2{?fBh6?bcV?*8?&?ۂ?I`o?4?gӼW?f?k-2?lm w?WMŨ{?)FN9?~S?}'?F?KdV?s?Zh?Δ?n'?&>??x?j' ?p ??n{?n?&Uq?g|?}3w?h:}??Vap?J٥??lÍ?3???K7+?? ?%g?Ж?,6?<,?w?dX ?N?'p?k?$?X?6a ??O,?]???}Vv?8nL?aip?i4?<$?M?|a?@wxX?霭?qV?(?a??H?ZC??eN?D:n?cP~K?k޵"v?Z?E?IrG(??IY3?'7?%%? ?EiEf?f>?6M&?yj?H:??d?{!?Y?2?GM?k?o? ' ?/ x?/,?(?1Y ?fJ?W?I?eu?%?Dlܤ?=`/?ZK!?|?E<ӓ?F-y?Z7?x?Xb??*)UR?X#9a?. ?&?;?=?^;?BQ?%(?d? r?4A?޸?Aq?k@?YLt?CO?ܺ?vG?.`g?]6v?"?"g??t??қ W?f??][?plK?y!? )?CS?'?ZX'?t/4?3k?tL&?)??o.?o?Fj?m?J1sK??yZ?n3? *^?jJ? K?o |?0?VO ? (?,??EM?mz?;?GS™?ͣ?zߊ?} :?0Q߭? ӱ?cDA? @?z\?܈?J,?Nm?i?x? ?V?\P?0?)jٿ??_?ƹ?X|?GQn?L]?_r?ֹ`?d5P?&d?F%U?@?md2??E?&8?JI ?lw%?L<?vv?ƛ*?Ԟ?:ھ?zO?(+'?}?B&0?j ?E' ?5-?<?-?xUH?V?vIG?? ?Ѩ ?8"?Gf?P̴?$>?V*y?M2?2?k6?lN?XL3?=Lơ?l?|?ط?:Ϲ??0|?yů?+X??Vr?hh?ɱ Y? g?L\? XJ?~2=?F;M?(MB?;E./?,?eUͩ!?I ?A4? ?(?2@?s?}BY? ??*S?*}?1ԃ?|?8_?\??Ad>?`?"@?|?+B?yq?jw??R?Y}?4ă?k?O?DE?AW?Ԧ+?aqm?vf? [?l?? a?`Q?K:vE?@V?s{xJ?"9?#y ?2-?$?>?qt;&?12?Cx?m| ??^?~?mw?-?F?V ?Ia?/r?Ew?I1f?hIql?*?`}?ɜw?S}?WlS?6q?U.[?dYO?`?T?=7C?+?ο7?PM%?ARI?i1?f=?y,?s?8?F?w$?@,+?ؠq?`e?j#`?c,f?)"k?mZ?*?YAY? N?9B?fl6?w0?m7?A<?H?JvH?p8N?r#MT??j?&.U?&3S??h8?HGHǜ?|]]?ͷYh?e^N?Th:?X+?Ԟc ?,?p&m? ҂ ?`-?l@5?ܼ s?& ?\̌Y?"ܨ?&k$?-W?Z?EJZ? rQ?Ӓ?O60u6iDuq~9@)t????ȓ/? ^?2?$p?E ?n%_?i6?T?.H8T?__4?dxt?U ?.;?, _?a-{?-BC?SO?Jh?PJ?sƑ?T?f 5R? eM5?L-H?Z?q|?aq?&5b?xa?{?3j?=Of?,Z?s?hj?<?F@.{?WLPO?[ZC? ?ч?& ?W?^a7?p1\*?Pfە?Q<#?31s? ?o?k?yQ??"zn`?*[? c?л>??Pam?9/?f?o&$???{?k?Ίw?Ҕ ?R1?|"?RH?GW?ccf3?ȟ?|S?[,מ?ƸÏ?%ғ??SB?PH ?)m~?G[?.] ?l+ ?Jݧ?zm?62\?)?ތ0 ?"K艟 ?Е6?n`J?y7?rC?ң ?k ?DP?*}yJ%?( z?(|^? ?Mˋw ?2%l?? ?C({?>v> ?%y ? M?uwS???st?L?<ҩ?L@? ?E??v`?[?8?*q?R?̧v?70>??*?0??ʦ? g?T:?̣z?vQ?Ll^ ?T?*?[ ?N ?J?Z?]絍?:? ??Mt?9jA?q'dG?y,(?kG&?k'?[ʅ)?O*?\i(?"*?$Q>?6.F??q@???R?j !?S?Qb0?]%y?c??*;?|?U?)I~g?T?0N?QO?TQ;??.?t)?=F?"??%?*,?'~?؟|?J ~?V?U???_Ru?qI?.2?އI`?|#?JV??`?$l?+z?< ? /?^t?[@?i?yzݥ?/-??I ? g)?h??i,4Y?'o?f?ѧ?-??PH?J?Π?3YM?H??jV?@?L?12;?=@?G-=?Ь8?%5? G:?A`7?DR3?;<40?Yە4?ᣪ1?vތ]-?E*?4.?s,?f'?$?0)?`%_&?$"?xU_?ML#?t ?(.?6x??N?nQ?^F?]?e'P?:2#?[k?ү?˦?6?Q?)?Tp?ZX ?& ? ?Sh ?RO?]/c?a?(F? u?&?F?26;w?(ʌ?M)?2?A?b?X?ˑЬ??@f"E? ?a\??9??y:?[G?>`RC?B9?8 ;?0c@?@?Ca?RzS?'H?Y@?C?_m _?:H?5Q?*4?O7?!hw?ݵ?@/?W?V?V ?\{7?)"b?ى!O?)l?PL?{g?&v?ы?tGm?? ?bm?A?|@XD?j;@?`0#C?}KqG?4!cJ? F?-H?b?Eˏ_?Q\?ڠa?I2^?Y?csV?|ߘ.[?)JX?TfS?iXM?]P?,SK?܇U? }qN?w;cQ?v1h?Gk?Rv)$g?Tx6j?in?|r?,Um?2Bwp?j9u?3dx? as?U;Yv?DB?1{?,~?y?#^*}?¦?1/?lH?e?+AӢ?;rz?Mq?T5?p6%?X]Ә?Pޝ?N㑚?e?ݒ:?A??? ??L{sa?Uo?1le3?t\?m^?ˉ?C7?Ԇ?tmZ?icų?୮?2?3?,,?u}΂?9?x?V?t??_??\}x?Z?P;?Y,?s?^D?27?KW ?e?댐?qO?L?.?95?v:?w ?S?Hk??^i? ??.x?AT?wI?C ?>y8?G4?~n0?~g6?h 2?};b,?R{(?.?a*?t$?' !?&?H#?u/?X?X,?O-O?[z?e?3z?.Ӫ? ?y" ?ÑI?l ?B^?X$?Q?LJՈ?[?6I(?)r?+Ɩ?}&?,rK?B?%ܐX?x`?I\?foZ?f1r^?`d?Ih?b?t5f?[jm?WiXEq?6rk?@&o?npu?y??Os?mvw?\<}? ?s{?X?iD?8?QM?q?6Ǝ???yq ?R_Y?ب?[T?T?HZm?T?gO?'@?7诨?&?b?K?8Ms?ܵ?fQ??fH?BḾ?Hc%?fؓ?-?iA?gw?v?t?ر^?I?z??s?0]]?'&f???V-?^??\?!1?O ?2)?V?q!#?V$?_~?,n?4?׈?H?|X?ȼ?Y?:?wn?'?+/??{S?A?']?w)?ݬ;?w.???5?G?h?.?ԸZ?0 ?HЪ?>sU?|?ŗ̀? ?Ff?F-?cD?g?{?4+?NB?\N?/a??˭?T?WwS? ?99u?r5?dA?_p?4?9?~j?8?tNo?0O?n ?!Z?x:s?\?K`*?ں^?ދ?Š?ܜl?%0? M?y"?n}|?+(=?h)[?(ئ??L?>n?5'???$N?g4?O ?O ?: ?@G ?װt ?*Wh ?}q ?o ?[_ ?Z?J ?&Uu ? Y?Y?Mh?۟?1E]?‡c?G?x?Cl?dh9x?Km?Р?P?G?y$? ?ך?:?!?i5?K?~?iP?t?|+?zP?]Vk?r)?ey???Q ?Rv?x?u?~}w?̳z?|?Kgy?J_{?dwߩ~?i?j%?Ws?fF?4!?&?Z7%#?0Z??[5 ?}G?No ?euRL?A*0I?>hM?J?jF??t6B?WK~G?b:yD?&d-?M0?S,?h/?E3?݅6?E2?35?'9?E??0t?JB;?fl-?r*?&'? +?z(?V? ?sb"?mgY?O?:?P?|Ӥ?s?y0?&?~A1d??+L5?[?W?,̄?c?}]????5jC??ԓ?J?'q?0u?ލ̺?: {?J?)2??GPQ]?_?+?e? ?!?4 ?_\!?z'#?l]$?&"?n#?J%?&?+$?s $&? vMA???OxB?1^@?_&#(? p)?Lm/j'?(?9R*?,?,*? e+?x[O>??J ?w?"W?|Y?p{;?rV?DY?x? ;?˂g?T?#i?)F?Md? r`?fX5V?^p?V?+@??I?n4?g~+?(?y?kW9?& 0 ??;3n???ا ?w?/R?V?m8?Ej?=P?&?!?x?8??J?z?9M?^d4?I?&+??Uf?PP?$??z?+?-4?@ ?7'Y? q?mT?6?Q<?Ykg?cR?D?*?$I?Ծ?t??-z6?$?%4o? ?-?6a??q?)v77?l?"]?O^?m|?3_9?v_??rR??穳]?Ԅ?D_??Jy-?5?2? *?{ODN?䇒?ߤ?OD?SV`?wgK?.'?H/X??N?A ?ɭd? ?ߺu? i?Q:?H9??;%?[q?5]a?[Pp??K?L#N?WӧQ?ȳ5M?dO?QǓT?S'+Z?\?)j^W?:N|R?VaX?gU?6`_?AM`_?OZ?6@?\9$?3?A?6jF?n?m8e?c?f?݇bd? Ya?Ļ `?b߫b?|`?uk^?S~|\?M!H_?䅲]?*![?-tY?O[?h)TZ?W?4V?X?W?2T?ZS?KsU?X|S?n8?7?>O5?B7?@ {6?:v^4?7 3?x 1?MH1?rl"5?f̑t2?s3?U9?2;?>749?9:?R?4(;?CQ=?Qo??@?} >?|+@?TQB?DC?A?&$C? nQ?O?P?R?40P?̐yPN? L?O?zM?JO>K?oI?HL?F|J?"9H?o˺F?lm?E?A'"D?3H?^0F?́G?1 1?I'0?[E./?}A?1?e}/?E-?0ԗ,??~.?؇@;-?fS+?*?M+?U*??bx?Hu6?Ԓ ?ZqS?HJ1?z?W? ?Fw ?p?p* ?$ ? ?`ij ?TR ?l(?×'?f{)?g;(?I]&?BM&%? V&?x%?#?="?:G$?BeUU#?QR!?ey ?vD+"?b!?J?8??E?φw?;t?[2?f|?6s]?u{?s??A:w?Ȗ??zQ?/?j7? N?å"'??Gz?U'i??Qf?x?(?SØ?D3?o?K??Π?|a?'YcП?'? ?o-?!?,?T?i$?K@?O r?V??w?2*?*(?/B9\?$d%?IAX?-Z??=?dT?R#?gb?m???='?.?:Kr??uvZ?L?o ?.LF?K^s? u+X?m?ց?$ ?Mے?F͸?Pcs?9h*4?$m??;?e?|d?Gh?g?$5>?L2A?Sj=?^*@?ٌD?MB~G?*0C?0F?!&$UJ?wTM?'zH?ߧK?e?wb?V_?͏d?/ a?^[\?!cY?#^?;[?BʫV?*^WP?oS?2ÒN?5X?NQ? U?Mk?5n?d)j?g2m?ǘh?pr?yc.u?j*Tp?" ٓs?=x_x?qՏ{? ~v?6Ty?#?P?&?Ac?b~?ze?a/}?V?lH?;??PL??{MJ?IPS???[?@?4?+j?5n??q:?5?$Ћ?8?Z?꒑?йž?c?-?&OT?=sP?V?{}R?%ҳ?M??W?? ̺?T?7=?<1\?7?U a?hx=?D%??"R?M?8?6?r?Z?[`???E-B?^w?B?n?lg?9aq?V k?mSa?iCZ?]d?M 3^?F{T?GN?W?FAeQ?JG? ZA?xZK?$ߓD?X;?"4?d.?V6#+?:>?kz1?7??b< ?KmT?ʇQ?١?d; ?JP?;?*C?~M?d?*c ??$-? ?IPv?۞??,7?R?6.??[?[v?TE?ӳ? -[?ՠ?8.?5 ?}_?r?`Z?IV?昍? 0?r?N ?~F?.?R?j^;?j%?:׷??Y?~? ??V?ڽ.?*u ?k ?bsW?֡?@?ގ74?֍O?;h?B?@*?v??陫>?5??teV??UJ}??f?|=??^?ah?NA6?~?p5??NlJ??V?`?AA ?Bo*?h"?xJ?%Fj?vS;?׿(?=uV?Bw?C-?ld?i?#ir4?le? ?;?ӡ! ? ?8wk ? ?H ?:GZ ?K)U ?| ? ?WR?0U?S ?Ԋ?f[?]?H?čn? {h ?YJb?j??~?v?ۃ??[?}?pܔ??ݥW ??>8?Mm?220?:?m?}|1?E^?(X?(Ia?؞?|~?) ?=6t?SU/?d0?VKx?vz?8w?qy?xϣ|?fm~?-f{?Q}? ?-?UN?Y?ᶙ??>~;ʚ?%;?I`?߿[A?_?dB?6t͜?bv??Z?m?Qڊ??"Љ??6A&?AG ?B%???+?/R?[ ?w?DrL?\js?h?F,??Fe$G?]9?3m ?z?u??~< ?R?~? H?>W?&5j?R?(?\?ߎ?ퟘ?2ڗ?Wc(M?V1?uK?$??7?G? +? H?_?nZ?d?+D?V??L?X?@??E?t??u?D?c.)?H??!?@j{?As\j?? oI ?Q1)?a ?DM?Y$?!?&?ol#?Mp ?j?~?cs??Q??7, ?[?[7?~CJ?f?i9 ?477 ?Ũ? ?H?+bE?`RiLJ?NDiG?`.B?Cu??{ dD?p\A?3i0??v3?sP.?r61?(6??Z4?#%];?ԸC8??2bB*?a-?=a 0?-7+? 1 .?m'?8$?V(?a&?Pt?<7f?e=?>?Cpv$?T(?Ѭ|ޛ?^?1륚?y"?akT?q P?KR?fpc?K??)?bݢ?:U?#Ͻ??a\Ό@?XD-??‰`)?*?g'(?H*?l. ,?HT-?-$p+?,?vHE?wLD?ӎx?%v?t?bw?iu?sr?p?\s?R r?GMo?[)m?p?WDm?}Gk?vi?Vl?<'5Yj?Y?[>[?߅X?u&}Z?̧\?qR^? ;\?]?aBi`?2b?k'ۉ_?>&a?OoPc? g?e?Zh?~isb?[Bf?>Gd?ߟf?(H?!E?g?<`1? G?E?o*?Mx?%7?`?GuX?^??ϯn?uR?Ӧ?~-??xt?%A?.w?cq?V?C ???_?\t?4wlT?8?t+l?) H?Gea?Ak-?J?H}?;+?vd? ?P?Y$?? ԣ:?? ?x=?UQ?,t?q/?u?`ב?s??? ?'(??ej]D??6>?t\?? ?پ?exE?A?Ib9?ޡ?m$?@!.?Z7??]??KL?dܲ?B?4? ?;?U9?/?E?NI?HI?xp?32?l2? ?j?ph?"??^?Ir?.5?. ? ^? 5??֬?7?g?? 9?V4?Q7+%??~?wP??/?G7\?%?S?4zs?\R??s4?O?)?Uo?a@~?.???fg??LK׽?O ?=?_?K?cN~?ௐ?`?3.?O!?Wc: ? d?"l?8h?;?$&?f5K?k_fP?N?ƀ}S?F/H?ynN? L?Z?V?Q?:U?__? __?)Y?i?k v?c+? &?h?ojA?Wیc? a?pd?džb?z&`?N{^?KOa?S_?\?u0[?r ]?>\?)fY?2W?՚qZ?\GX?.UMV?zT?'2W?.U?YS?GD{Q?S?hHR?_9?8??7?fJ[9? t 8?y@5? 23?K4?@~2?#6?*3?eqV5?+J;??.x??[=?"1>?"5%@?jP^B?,@?A?~C?OE?[$C?,?& 2? oZ7?YnA?|;?J?H?2]?a]?]v?n?Q<2? ?m1ϴ?w?ۥ?6iۜ???pk+?UD6?cj?0X?? X? Q?D?y?-C%?z2 ?˾;?"??=?c?0!X ?wz?r?T8 ?d֪? G?]rA? ;?pD?͢>?FEM6?0? 7+?X~(?,>9?o-?с_3?oz?at?mN#}?Hιw?Yn?5h?vaq?&/%?R)?ư?t曫?d??O@u?;k@?[o?R)?g"?-ݖ?4h?0?^QƮ?G?x?Y8?Lc?fP?)+?R?YA}?;{Hx?T?o6>z?Rs?,h_n?pu?(R)q?;oi?`jd?C7l?kKg?d.i_?9 4NU?{ZYZ?8] R?SUHb?0? X?]?M7?g95?S^?X4??ˋ ?`I ?%?p ?P\?]]q?4D?qׅ?_?1?M( ??Q,v?K/? ?4a?S]?fh?:ߌw? %"?xg?O ?F?5 c?pNB?dA?4y?gZO?^?,X?o}?f?lV?}X?6~b?\?)??;^?r?`?`8?gQ?|8h?9?ǧ?Ή?ɋ9?XhD?O?Iޠ?K?ew? d?TC??ZO?q?0?C?֯??? ?nyҞ?P?0ٝ?>Z?`?T???-?MV^?u$?l#?oʼn?dfح?q5U?J̬?"?D&T?߿A?sl?ᔴ?ZL?`?6?*N?#?,{z?@??r?gb?3?8??? ?Ċ?x2?&ƿ?y8o?3?]?vи?.O?K÷??lrƹ?! ?XG)??$H;?(m8?rw=?,ԛB:?dh?%g?֞k?i?[\B?zG?{1D?S#J?A?@dD?W |G?$dL?0P?%J?,DN?;e?;$c?9Wh?e?;`?!]?{}=c?8٩_?!slZ?4S?٦V?SQ?)\?}U?o Y?8n?q?Il?p?oֳ?_?P?aܱ?@9? (u?ñ `x?u^s?5v?G{?#~?]K3z?*}?ũ?,h?&j?1]?Wh?p9?JJR?BU?)?'ݤ?׻r?黓@?g?s6?L?f?.-??a?5֔??Ոn?E݋?N ?( ?s`???ꨡ*?M??;?v ?F^?4m]?vÉ}?\B? ?b?F ?{B H?K??S D?=?UJ?|A?͕E?o;?88?SP??:?g4?֐c0?d [7?;o2?R',?)?.?|*?H<%?Q!?\2'?H#?2Kj? ?%?'@?XH??tO[??9? 9u ?U?>f ?dR?r???L?+?$6q?ZR6?,;P?Α T?X?HS?jbV?n\?`?Z?׷O^?>ikd?ah?ؽeb?AXg?2m?mq?ao4k?(_o?u?Fy?Xrs?fv?Ct}?@0%ف?t'z?Sj?m_B?'Q?wM? ?^M6?*%?Q???@7S? "+?N?䀐?(~D?P?%jS??`LRH?^뾦? ת??H/?m??b6?o>?Z'?(:?`?u?:?w?B?:?{9?f%? rK?@ 3?Ah.?5?0m0?v)?9Y$?`l+?ـ4&?Ho?$I?!?mcB?4?{:X?jO4?JHJ^?> ?v?B?L ?P"?.#3?s? L?^mkI?(? g?}?0?K6?q? ʀ??p"?,?-Ї?/?_??]?R{?&U?%^?,8.?.'?ή!?Hb3*?( Ɯ$?k~?T?j?mr?:%/?#_ ?E0K?Z0! ??$g?g4?X?#?du??ˢ_?Xbv ?"M?$7e?!U?x~? ?a/?EY ?v‶?CAv?mq??+?p?-(?Tbh?¤c?2e?K}? 9?\Q?i?s?bk?ݎ5?՛?Pr?B?c?? ?57???=,f?Ixz?t˃?A;}?ft?S,n?"wIw?q?=Mg?D?E???J`c?T?2??:W?DiX?ݕ?Z?Ϫ?]O/?Kg?aO?.?f?.T?b?.&??'??T^?c?I?(?!b?]bb?1!?q&?Q?ԙ?Pa?uL?,%?gU?:j?`'?qٲ?B?q?!G?梪???"?rؼ?B/??d?}4? ?m?V3? L?#]??[?|?b?cݡ?O?0,?"Ƌ?F?k^/??Ņ$+? w?̶?xW[?,?A_?M?]&?ؓn?CS??#/?ld?Ðu?{j?]J?dz?3'?ݯ?|??_?L?4x1??({?v?@AG1?%/?Bc?ș?&UD?2s?s??ސ?^?`d?,/? ??x`t?T q?lln?r?WWo?ol?Uki?s3#k?]~g?Nm? , k?,Qi?oy[?M^?]?F`?6Z?'7^? ]?ʊa? Re?,}Fc?VCmg?5oxA`?Tad?gb?ad\?_y;?>?Td?\Aw?'1e?\_??Hj9?&/?׋t?{ ??:k?u?^?c ?@O?S?v"?@]?J?A??Q??H!? ?ri}?ZXO?YJM?:g~o?2? S?'?k?? N?tv?M?紣? ? ?b8?~?{R????:[?YM)?9?./?2?\%?.?ˍm.?!0?Bȹ?joR?|-?4n^?B3s??9D.?ّ?k??l|? p?d??N9`?b~?vf?E4??JR?X?h#Lt?+?8m?1?U?Q/4?3fe?F'?j-[?^}?l??f?Q8?Ǧ?w[?}?dB?S5?} |?4?)?F?ܪ?C?lGH?le?%?8?#.?T0@?ze??r?4?SK???R ?+V#?r9?nъ??Z{?n?kR?Q/?-T?p??ʆ?]? ?xL?u)P?j(F?,v\I?ȐZY?Q{S?`L?\kQ?vI__?{__?`W?ZªI?˒7A?ʓKB?e #B?Ab̼ B?5B? 6?p6?L6?X6?s,6? n6?2K6?xR|6?T%M*[6?:q6?7?+ [6?^L~7?/ <7?}_7?2(7?TJK7? ̇M7?R 27?4 n7?,7? +7?x87?DYt7?D7?$=?Vڀ=?M,Z=?XcK=?AAk=?4=?}=?U3E=?-=?u|?p?Nm-@? ?rB?a+C?JA?T_YC?,lE?F?*D?/D0F?fN?'L?@/O?kM?SUK?WYTH?0U]I?: G?<'L?qD I?J?ba?x5?,E3?+2?Cr4?˛3?}0?Lj7/?Ub1?))0/?}-?oZ+? $,?*;*?s.?WY+?,?t)?'?Lo:*?9(?r? E?b?}? ?/ ?b ? ? ? ? ?P= ?^ ?% ?= ?X&?!$?('?%%?ˤ#?k!?fv"?cZ ?4,$?fϡ!?o"??#[? ?i?g?&?S?Z??P?+?+]?lB?< ?ڠ?A>&?{o?ZK?1?MnO?C?B?QC?O?磸?1<? ? Ìm??Sϵ? I<?7}?%?^E?/ ?KS?)^g?␯?d#?w=??i`?.I?9v?)R%?2H?™?? c?|WO?$??| ?Tt?cݟ? ? )?W޳?>9?:? ?@?5?'?1>;?D?~+?J b@?|~?'?=W'??F!?p M?Ff6?x?FYY?6T?? ?RI?(W)?gpx?.΃?B3|?aq?,j?Rt?t$Zm???C8?1?!4*?_J&?H;?[ -?Iw4?J2jc?GHG\?if?N_?{&(U?N?sF?(>C?#7`-X?]4 J?-K$Q?B{?Bu?E??Py?Ee?RJU?Ls?>"g?S_??3?#i?FJ?I?3?4W9?4#6ib?C`t? 'h?İn?gyw?v]d?Y}j?qdvp?H܈m?e%I?Cf`??Of?pz?oq?k,`?ȷ?9k?\pz#??u5@?$ޡ??Ө,?ro?84D??o"? ?FŒ?$ ?dC?А.?D"0d? hn}?u? ?{x?s?x̟z? WKv?$\o?-j?8xq?ҏNm?(e?[JuZ?s&_?ȄIX?bN?bh?C]?t c?S3?8?,>A?[C=?5/F?u6T6?%Fr=? ٛA?aJ?ώ=P?5?C_F?$7fM?U?. kR[?0(R?iTX?5? ?3r?^?O5!?IѸ?b%??+羝??^I?o9?۩?y虛 ?v?G<?b2| ?Qri?JQ?X?' ?O=y?vJ?]?ɲ??z?Z?î?};?@?`F?ɺ?ԑ7?`?)J??ߵ?\?y?i(3?)?>EDo?_ d?#h?"S?n2#?~R?n?8s ?`k?5]F?Fp?{?SR?c|Z?ߛΛ?-??!v?V?͙?.1>?P ?|j?.?OV?(?4 ??^\9?㋨?j?ґ3?hp??w?'o;? ?.**?3?倠?^GC?w5?3?U)?2?XM? ?ws?Ŭ?\?`|?{?)P˴?橸??(w?Ǿ˶?^G6???_w?::6?5Р?0?G\? F?-o?3"??0ӿ?-c?XNF?B θ?YJ?>ٻ?`c?VڠC???>x(?!8?<4?):?)6?Lj?ph?D Gn?ۣk?}x}G?K?U͗E?f9I?_A;O?2^S? WM?Q?0e?b?.{^i?bHEf?ΌH_?sW?aIZw[?cbU?gb?dZ?3^? #q?p.u?ʁ6o?N\s?"fZ?0??F3?bJ??q8?r,?>O?Yx?ɺ~?{?}e?Xv?n{?PC~?D?{2?L?3?F1?/CՄ?!??RZs?ro?0o?È?W?eᗙ?~?$?aRM??kYo?i??M_?nL?VG?*O?%~J?āM?c??}ӆ?d{A? ?r?u{z ?³M?P\wL?C?F?C{? ?4S?:1P?f?Cx?ѳ/??<U? ?Ռ??t?w?G? ?f?\;?t?x?r?{ ?f9L?? Y?? ?q C?d>?w$F?=A?w:?"E5?L=?:7?<z0?p!))?>,? %?2?,Sk])?^-?"?g?'%?k ???Qu?.?^e??Yn?/ ?(x? U?<%?"z?S?,l ?,?"?[)@? B?\m?KQ?`X?AU?<_\?,~aP?v+U?ɥX?`?d?WwI\?NV!b?LsWi?Gct!q?I:m?ޏt?-f?|im?}_q?͉jx?|?P_dt?oPlz?~?wK,?~?ͱ?Ҋ?V?pic?MM?>?kИ?Nj?Q;?"f? ?q?SD?nWDЛ?l=d?{?/ͬ?^?8D?O-? g(?0?9^*?2b#?|?T)q?2?DW'%?Ċ?I?1?wY??Wt?c ?vJ?i ?\??*Y??"6?C ?_?B??D?Dc??L ?m? ?:y`?"a?h]?\?(̿?췳?>?.0֓?3J? ?tw?/ ?5?(?&W?N뢌?n2?vz?ʫ?3+Jt?M .?x?P~? n? h?Lgs?6sGk?4a?DJ[?C(d?6c^?*t U?ϤN?P!X? ~R?/BH?i?G:?E A?-v7?jL?A%x>? ŢE?h:?$k?],K?EWv?i?1F?n??T^?> ?fƑ?di?n£??TmC?{?7i?H:?h??S?ƥ?Qqc@?8TD?w>?aB?lGH? =L?kSF?{GJ?gÈ?婄?!ߊ?8IIˆ?Mm?^}|?:?g ~?Rjx?rzZt??z?ߜdv?Lp?SN?.Z?45R?0V?7?Wf?i?y˼?v?im ?֮ ?`ϰQ??=q<?t?z-v ?"?{w?ħ? ?hI?3R?ib??Ɂ?( ?gն? A?x?ed?T?g56?@ZL?? |?_?~?Gh4?*=?Fj?B?M?)كj?8,?=V?O?6OD?he҃?8?F?"$?3b?̶z?&?z?"T??(}4?FɧL?We=?I'?/}ȃ?%_?+RC?bЮ?1l?f& ??j?6%u? ?:\~?L5?~6?ȓ?=?Q,?l ?&w?ʑ,?*'? FC?v??9??,p?hr?,?xrs?V)?` ?մ? n?/?\p?2??E??1??.0}?h)?S?22?_6??u}H?܄ ?m}??Gl?s ???gw0??_f?α?ė?-\K??R]q?$o?K?z?ξc?1(?Ĉ???M]s? ?j?>?uVQ ?~ͽ ?Df ? 5 ?|0?fK?gX ?=? ~I??U>Fo?ð? ?qc`?Fn!?D ?sp???6?ۓ?[Q?5?ـ?7 ?c?e%?A \?>W?x?z<?R}|?L„t?b%~?hZ"2?zu{?8L?Jh~?@s?ZD?4 ?;Ƅ?Δ?#??>@?赕??'0?U?}O`?-=?Q?NɅM?d?d?[+}?7h;z?˽Ww?4K{?\x??VJ?s?8?9|?NX?yS??Ŧ??`l?%?bh[?q(w?A+?f/???bE?o@??hK?`??k+]??(bP??vP?W?ҹ??!Ff"???:,?r? }OB??6??e??񿈚?W?2T?r61P?S. ??H?0V#?_)?IG??†? ?)? < ?cv?Tl_??@q ?㇣?? 5?˃:?*0?֯B? :?x/85?9*?M!?A,&?up?ק/? &?63"?ǵr??&?}o?B? qQ?R)?8(?M[y?hG?w:?=?J?J5?3T?-2?-[U?0y?6?F?w?"߲?j?z.W?P? `?' ? ?QI? 1?úB?d?W?9?h?J-A?p?Fq&#?$?v>O!?A A#?S&?)z'?D%?E&??)?M56C+?˙B(?2 V *??I;?iN-?S*/?5,?S.?p8?Hq6?nK9?NpU7? ; 1?Oy4?oe2?ꆞ20?DPZ5?|3?⓽1?=?%i??]nA?؆>?{@?B Y?[V?qDZ?/X?2 C?BE?`5C?E?-TT?1rӜQ?^3U?%eR?mJ??N?WЪL?I?o4G?}kG?O?n=M?J?!بI?{{t?A%q?Nnu?3r?`OQn?vk?o?om?Y?/';Z?~V7i?%{f?hj? 4g?h ^?DDc?'0a?tms]?␞G\? \?V.e?A~?b?_?y'~^?N?hG?ץ? m??az?y?Ĥ?Ed?f?"E?N0?h??˷?4?, M?v?zcZ?>F ?uZ?vв?7`?H#?;=?to? ?Xt?u4Z?_=?ţ???Qm??'?"??Ļ:?*X2?O^?U?Z{`?eO? ?H…?d?g?6h?11?o?!j??y?[?6P?4*?jh?oMU?b ?^?@?]?Ov?Ʃ$?x}?k? ??Hw?u]?w?_ ?e?o?wEZz?h?ʈ?Y?0m?$V )?|?y#Ƒ?.TG?̧ó?.?m? ??P5m?iBS?G??wY?{B2?Nj?0?Y?@?b6m%???0x[?9E?}?\g?oB?T2J?UE? J?F=?ɁkA?$DW?P?"F?дM?C K__?h __?FU?d)6?'6?W 96?ށy6?\85?P5?I(Ă5?85? j95?GX5?ai5?'"Qѐ5?qZ^5?Ob=5?+o5?*M5?025?˪4?Ao+5?B^ 5?C>4?JCq4?t4?4n=4?ԓ4?xțu4?&4?34?`T4? `34?46d4?=+C4?vEp4?g0O3?ݩM"4?e4?3?]3?"3?ܮ3?~3?cf2 p3?>3?3?'O3?|H]/3?QZ_3?+(>3?YA$3?2?s 3?Ē޻2?w2?D2?`2?2?T<2??-o2?ƞ2?~2?iO2?Y/2?z^2?~)„>2?j2?\'1?PH2? _61?1?ۚ1??1?_1?|oo1?*4s1?q1? Z1?,XJ?{pI?aI?4;I?4A1J?>^J??J?DJ?PJ?-vJ?AqJ?mJ?{I>$L?a/K?`K?HQ L?KǿK?fK?:mK?eK?QjuK?8c@K?Yz+K? fJ?yAJ?ޒSK?^J?^ҳ&K?%E?hfE?[;E?AKouxE?8`NE?DtB?B?z^B? ЇB?AiKB?}@B?BB?\WB?SE?qD?#E?D?>gD?6VD?,R4D?%#%D?Bt,hD?CzG>D?zD?ذ6;QD?~D?F1C?BϹ4'D?BiC?3_C?,C?wC?wC?b@#lC?!mCC?%C?C?j$C? F,C?`tVC?B~I? |QI?̤dI?vfI?V$I?@?;@?SQ@?>)@???z??m@?N???j??o(y??3Bc??#??wkQ??:Q*??(c??~l?C??'I}9>?gPA>?֠>?:k:>?=U>?V|g>??!A>?7oy>?X7R>?&>?=?Q=? j=?Q+>?I=?^r>?dA?3\utA?!V:B?A?0EėB?|HB?KbRqB?pf1B?7ݥZB?dL6?56?\p6?AC6?˻6?g&%6?B_i6?6?n0x6?OH6?xq&6?yW6?756?T =?[x';?ԓ;?8;?2|O;?ud^v7?u67?J`6?V 7?g:?CQ:?錁:?),:?`:?93o:?LRc}:?F:?}fPK:?=B/&:?Eu\:?T8:?1:?0gR9?@:?.[9?&9?9? 9?=9?A r9?kFN9?19?9.^9?!E*9?i9?Qj:9?rO9?ӭ|8?Ċ48?|L8?%3s8? 8?Z9x8?0(+8?1к8?T8?5o18?`Z8?-7? Se8?_:8?ҏ5B8?~Y7?r"}7?q[AC7?k]i7?)i7?|q7?gM7?@_7?>7?m` 8?v7?7?~=?Y}=?=?ӎ=?rh W=?V0=?L{h=?KA=?b =?Hf'9?+~6?7?\5?>Qf:?L6r7?G8?:Z=?V??9yѪ?I@?̆hB?-??A?07AD?XF?PpE?HM[H?.uC?E? G?iL?rI? ^K?N?f_'nH?_tJ?D}L?PlHd?M,b?Aޒ|_?44c?|aa?3?`^t5?a_6? '4?T,Z6?V}2?0?pGg3?2?H/? ,TM-?)TXv0?i.? *Y+?v )?q,?*?Rl'?OT&?E)?o&'? މ?A% ?FFi?y ?9j ?&f ?gՑ ? ? ??b ?#s?Mٴ$?#?э%?A #?>?nj|!?3?p! ?"?-?PN8?Ëg ?W/?Vg?6?Si?'?$?P?*!6f?m?YdU?m?p?I?m?p+?y??tb^?n?;\$?v-?;W?;?:?:?Hg[?^4?5{ ?( ?cd?I4?$?Ԫ?;:?1?&?&ߙ?Rx?,|? N ?6Ma?V?v?,?-??qj?ǀT?p?-E?Q?Y7?U ? SV?g?*??p?<)?,p?, L?,“=?:?U;?/?E?/?̜?pO?-Sdž?Oƃ??,7}?pe?3?W}if?ݎh?e?ӳg?ٟj?m?OAi?5l?[{?W-Px?##|?Ĉz?&u?)Tp?$gAr?~;n?q>*Iw?yKoq?w't? g6!?Ha?$d5?ˇ>?:Ɋ?ۼ??CV?U?V &?aՋ_ ?!;?n4N ?+u?;?mO??ej8?P9,?#?, ?U?pՃ?CeE?}?:?JG? `?X???xf;?i?lLb?>?x?ii?Op?V#|?|Fe?ll?s?F?T@?? 1??8?m-?I3B?ނ4?;?:3[?A!M?1'T?g+^?' i;I?!Z P?VjW?-ew?OS ?3?I|?r?9~??JG-?Ó?r;?G?&J?9? l?}?;s:?sϢ?䭂?)P?ۦ?>"?סd?9?0T/?x"%?(?h#?&?)p,?OM0?Ec*?:.?4?ͣ8?jP2?6?BHT<?*t@?x:?<>?; ?A?6?ixx?>ys ?QB;?o?y?-s?Ѧn?U78?!?@[w?K3 ?J?c\) ?8e" ?h磙?'?Qf?h5.i?M?Q??xB??PS]?a?z?Ԁ?τEԆ?Q|?XS?>?0 ???JE??5$n?VPT?Q/?lE ?X@?>W? ?D~M?r?q^~?5f?-?TB?B?8#?Fp?ش?$'+?ǔ?y-?"?1A?G?H?śڝ?<9(?`@.?3?'[t?Fj# ?G?+Nz?|ns?[~?@Fx?VKҷ0?Z!+?p=%?7.?+)?Y ??D8?j5s4?#?_?w?PSY\?[mQ?1WFW?N?e'_? S?xY?6fK?߯jF?-sP? <"J?qA?R6?l;? g3?SN'E? 8?>?FL{a?u &g?}[?w`?Ll?q?qf?k?]?]?p_>?x-=?`0 ?HVǻ?z~??@?%R}?,`!?_?Y _?ذ?Ϟ?v?s?hd?AQ?x8?rF?b뎏M?\?Ha?)Y?`G_?o0?,?+2?/#/?N3(?&<-%?JQ+?&?Nl!?H ?9?h)@?~'#?A-?OO?\2Q?&@LQ?٩?ߚ?q2׏?oaS?7?pB?^^ ?1,?L}D?q ??yte?*?*7?I?Λ?U&??fl? % ?j?$O?<,?K=+?ǐc? =?R?=.{?3`?"Ք?Ɨ?1?)Ֆ?S?2ǟ?߲z?l??]/˙?f+?*0Qd?v?m/?S?=??@o?Q??'P??]cY?-?>u"? ?>y?Y.? i`N?+e?E? ? u?5K?!pQ? JE???耵?}?)? `?H??d?@?.>?p???J=?|x?Ut?a?A?eڿ?o?+?s?Z?&C?*@?nRG?+C?NIxf?Y]?,a?j?[rc[??Fea?GȔ/f?{%u?y?P>Tr?`w?)G?>?=Y?:N?ǔS~??2L"|?b ?=?{?c?3?kI6?Yӌ?.'z?9?@?:^?,j?x?̏?:??cd ?S?=I?eL?ó)N?UD?,؋O?7!H?瓝J?kl?ߗ?|?RQb?0??|;F?/V?`{\?J?4/?צx?C??3[?.7?+$???t,`? 5?\$?$A?S5r?)W?HuO?ز?uړ?a?'3?>?[?,@?g):?"FC?IY>?IO5?Շ/?9?I2?4ɸ)?\#?,?$'?ж1?4d?H$W!?q2A?"?d?ٷ ??b(?< ?n|K?"m?.;?{?w=R?E?H?̀?6\j?X?h`V? ??( )? ,?x ???V)? JCO?YT?Q?u1 ??0??h ?0U1)?'!?>&0?ڕ(?dSU? z? [!? e?& ?M?m?p7?-+??]?G(?#??PM?4?b?@A ?3? J?5?ɭ?h*W?c?6}?K??[Ɓ??XY? S8?(O?p??,r??%?xP?eН??8?OV?-?f)?c|w?}?I`o?D;?t?{?٣Ih?_9[?*ca?D|U?!mm? 3\[?a?^O?ȥA?LH?ߟs>?sŶU? }E?ۓL?Nn3?jZ:?bB?[u7?X>??ň?Qkd?v?SC?TmB?m?^kb?4[U?7?V?2.?09?ǩ?v_?,~ ՟?9}?X1?T9?mN?~Z "??q ??5?&g_D?RH?iB?_F?ϹHL?>P?:TJ?=ON?]]ӄ?0?ȥD?'m?i:h|?~zx?v ~?iz?G_t?7Rp?:Knv?`Pr?rGl?Ah?|TDn?[ Sj?.Q?}ކM?F?.B? H?U#|D? =?0)9???x;?ix4?H".0?ם6?,t2?+?u<'?P"?* ?-?drY%?k>y)??⚘?M#? ?`{? ?{??+K?vQk ?8?*[u?MP}?FS?@?0S?l6?O?$w? !?M\߯?*F[?˼{?>_?aC?]F?&g4?0G?=e`?N,?k?D韤f?.m?Seqh?jh b?Cz?r{?T?}9?Sk?纺?hg?_?r?.?Urʿ?M?8?mo?M8?gt??9+?5?_C?-]%?7c`q?V7?9x~?8۳?]?Tș??,Rd?rH'?vBA?EԒ?H؆?s?y?D?Ns)?H~?1a??:?F?cG?!1?]?qe?.?S}.?1c?19?A????5T?qP?ty>?=?} ?ٌ?;v?I1 ?=w?G?>xi?.??5= ?Em?@?N??6T?R?:F?V?y?#?*?0?4#%? ?uh?ǧ?q֩? ?S7~?a?Ja!??K?t?AT??4?0>3? E?Ěz?Nl? U?H2m?bG?B5?9C?F[?ıE? ?,}?>?x?6&?u?1_L?2?)7?x?~?-Cr?#?#} ? ? m?[ ??h ? ? ?UK ?u6?y??sqG?6b?pS?̃2?7bbW?  ?N?D"?:D ?H.W?UM??;^B?Jۗ?TAd?}y?J!?KӼ?;?v?[#?Ip܂?M>~?Q?.?~?u?3?9=?}i?62O?M?j? gT?*i?\|?y?<~?䒧{?!+w?ht?%y?T#u?+q]?Ǔ?a?39?H?xJ?Ȥ[?T$?)0u?s_ ?D1?Б?J0?bF?1S?w?7̠?v(n?L?`?wq?ǒ ?%?)?U)M?0?b) ?jHv?O?i ?S?%c?; ? ?K<? |4?Q"? +?nV8?9?m-?~$?VB?vѝ?;jn?$? Ց?i?[̕?=?OA1?Hk;G?X?(Ml?9?uն?й?}X?扰?W^??XZ^@?;b?h0?1?Jh?˨W?ׇ<4?[F? W?I??a?C?[S?Y2?I-? C?-?c?kU?`?[ps?>?kM?2MW?N_?ϒϳ?i? ?4 ?4P?r]$?։?_X?%?˄z?n?G?^_?t^_?"=Q?K"-?*%-?JP;-?1-?Y-?p-?zƷy-?Uܣ-?f-?e]-?;C{@-?U<>j-?ĸM-?#-?-?E-1-?Ӑ-?ya!,?u,?Pi,?&֪,?',?],?Hoɿ,?G,?iO,?pբE3,?SU ,?E+?`\,?vnz+?:+?J+?6?+? ?+?2 T1?41?|Ab1?TD1?ER#1?0?s %1?L1?xj,0?(e0?ǥ0?P5_0?0?zTc|0? 0?|ʊ0?]0??0?64l0?bXSM0?ao 0?N0?>̝.0?~]0?Q/?p/?|G/?,H/?csɧ/?_‰/?`&/?v\40/?ErUk/?fC2M/?3z/?N2\/?@]0/?^/?@lsB>/?FD /?-27.?R.?[@P/?}.?Һq.?8%.?o.?_.?B~.?6za.?N.?G0o.?AD.?@'.?yE .?r-?jQ.?t}.?b4.?n06?0l5?dR6?bج5?s)5?5?-e5?-5?Ho5?'Z]5?u‐5?n%n5?zY;5?Sy5?t 1K5?9(5?4?ŗn4?%X5?o@24?C4?NMQ?6TQ?(\Q?b^Q?تN?D7 O?KkuN?ʨTN?79O?j#IhO? O?rLf NO?ysZO?DO?2:N}O?>Y䃬O?yBrQ?BQ?LMÆQ?FBWQ?Q?/9P?@S'Q?P?3P? ,P?عP?W2P?TP?OJb%P?2 O?%O?Z~iP?!Y P?R1:P?#'I?x<+J?I?r}J?ɓKL?XJ?AfJ?/R?J?LlJ?۲J?oMJ?1VcJ?J? L? %QK?:0L?YUL?8K?_#K?n K?`묨K?+gK?#@ K?|{C:K?3mJ?uy{K?X K?(`VMK?0'9I?E?"`E?~cE?sE?ۤ6E??5 E?8pJE?m52E?gB?B?l%HB?TqpB?+fB?oѡC?VgB?қ^C?D?D?LdD?K D?4{D?dVcD?yD?;vD?eeR:D?~D?ΈMD?X!$D?C?ּC?t?[C?C?P9C??C?ѮpiC?mJ*C?V;C?jERC?&Q|C?s}NI?U I?釄cI?6'6I? H?j,H? I?mADH?{H?XnH?>_֍H?`H?wBH?:sH?~/UH?{+H? +G?͂0G?;H?G?2.G?/_bgG?[G?C{G?#4[F? m0F?ME?;%F?Z E?yO?F? HE?ŵ[F?¢DE?2jȃE?ۜE?@E?s:G? G?9TOG?1K!/!G?VzDF?J\F?F?_jF?,jF?l6F?(nF?+I?I?UfI?Z}I?m¸yI?KI?玅I?SCdI?צBA?I|A?%A?aA?m*OTA?pb;,A?UfA?@U>A?=A?%_@@?ZOA?fhE@?Y@?:0@?T1@?y&Ii@?$ c@?yp;@?ɕUw@?NraM@?SV^I@?Ww6??x0%@?d??e>??mM??Cٕ??ݲz-??B>u??5`ON??l??"NM`??€'??\p>?G{8?? wTm??+>?@4 >??h>?f'>?$2>?nEd>?F>?ؔu>?'o=>?j=?PK>?DY=?BO>?^|>?H? '>?p7̡A?A?A?٘PA?GA?7B?9 DB?ަPB?p*B?mmB?ʗB?ݭPTB?IB?lK׷ 7?(=T6?ޗ6?n+6?YK6?qi6?e 6? e6?v6?e6?|D6?*qu6?gtQ6?}yw#6?*6?Q06?6?ӭ=?fj^Y=?~=?- p=?޴=?:?O?:?;?':?+ /.7?ᖉS7?y7?_<7?:?|N:?':? :?m:?FNxtI:?kp~:?GnaZ:?0`%:?A[E:? D6:?(bbF:?>9?\)¸9?79?9?4EZ9?Vo9?B쏦9?*DӀ9?>VYK9?'9?#Rk\9?79?V 9?Y\28? 9?}8? 8?2w48?"MT8?S8?\`u8?=/8?ZNpR8?VX8?28?Pe?8?1 b8?P0x7?E-7?^ta7?0[7?:m7?7?D#7?267?? 8?X&-8?<7?b8?vy=?!US=?d+=?]}fb=?eO,=?s-Ӑ=?#m;=? t=?pfV?]%W?eVW?0–W?A=-W?|\W?`W?c^W?'S8?WR5 ? ? ?̭ w?*V ?\?Z?'K^?5#\?YX?V?"E,Z?H*@X?T?R?`(FV? WT?Dk[P?30m+N?#WR?KQO?h;?4g8?9? 6=?-g7? :?ZEP;?:( >?a@?2wH=?+??8B?[D?#9A?lD? G?}L?GȉI?6M?2F? gI? wK?Je?`?8^?͵c? _?yP4?J5?2?#{4?B7?w9?6i6?b%8?~1?9s/? 23?d1?™ .?FX,?/?cqxo-?+&*?p9(?p|+?:S?O)?S&? j$?˂(e'?;G%?' ? ?D. ?~ ? ?"R?14?E`o?f ?k'u?CA?"??d?f?;2!?UcC?7b#?f0?Y,S?r ???d )?r?ʂ?H&?3n?C?!?!?@?B?)?<?l ?]v?L?B?EB?72f?\S?+?X(s?("~?"H? ???sOG?Xc?_?a`? L???Ly?q??r?]B?T?{M?hx?x%9?s%?A ?eg?ֶR ?s?l?P^( ?OF?VdU?&$? ?uFb?.bJ? ?J߈?Qم??}3̇?ۂ?UY~?Eu?k\{?oɄ?hf~?Zǀ?h? ƥ>k?m?2Fp?Eg? &j?L*m?y??r?Tu?p^{?l"o?EEt?;w??$?1!?'qg?`"?fNA??X?\?$#??$5F?LS? ?w ??': ?o?q,?v?sI?!?on?.@?61 ?2O?_w?x?k??Dά?Ǝz=?ȁ?rI?i?8f?L?v Q?HST?c$a?`g?`M Z?Xn;H`?Nn?T't?'g?m?;VE?`9>? $L?DBD?8 7?S,/?{3=?b6?R?n/Y?WK?W:6R?er?ۈy?0?Q[v?~?݈?bq?}…?? BP6B?:1\?B,?B?L/??ƥr?X`\?? e. ?\[b?-a?|}5?L?O*_? Y?ݛ?ǒ?t ?I?a9?Tj?[KO??ߥs?C..? ?=K ?֎?x?镽?&ľ??PdO|?^?'??? 3 ?+V^?jt?/?,:~?~Mr?Ld??M[?ݶ?0?*?xz?D??0ݩ?5??~R? ?G?ޠ[H???pe?}?e?\ "?|?Fے?}?պ&ٛ?  j?ͧ\v?`fp?z?o5Jt?MO1?"0K.,?o6?1?$'?懧?H !??rTaE?ZRQ`? (k?e?b%Oo?PJY?)`?f??"?)-3?ֹ?|N?'?۬x?Ȭ?%? R? ?i~??}-f?u.?f?N͙?n?ҏ?y ?$5?"^q{?kB?6iR?pHt?g?SNn?x5e?>y?k?)Xr?gW?dUH4Q?U~\?;X?D1k$?,Jh,?`3?Jn(?PG/?g,:?OB?H#6?c=?kK?OQ/R?tE?'ئL?C|b?:i?I^?sƻe?˟-?oW`F)?'@1?++?^~$?! ?('?ľt"?b"6?+V~?~?-3?R?g ?"c?:sf?`XE?^?u{?"?j|\?a} ?]r?ܗ ?݈"??]Ԭ?M>)?Օ?0&&z?ke?s?W?ǐ?qd?vEu?N8Í??Ee?;?V٘?[y?c+ ?8Yp?ލM???x=?]?B~r?!>r?u~?e?D/?p?hr?;ٹ?!5j?L @?s?c?`? k?ϴ?w.?Fn ?"`?=в?|"?[T?A?v˶?ӯ?a?Wy?aM?u?⃰?Z ?%?(ܑf?7?l)?KQ?$??0H?>I?4ndC?Eop.X?bu*m?R_?|e?.WZ?w? UK0?fr |?r[?j &t?D?u/|?`N ?Ǐ?_? w}?k?3?v=?[?tǡ?e2?:?S?Gf?Rsҋ?vs?)?>Ŭ?XC?8̴? y?]+?Wڷ?Ր?q^?,V?Ԍ?-q?"z]5?~?x?+)Kx?zv?O~!?DU?\zI ? ?wr&?)?q7??XN?=r??9X?[=? ^?0U?]%1f?m?y?t+?3?I 6?Ë;?N,jD?4J?<`A?olG?cP?6U?49M?жR? %¾??5q?(^t?9??B͑u?}??ai?E@?x|?j͵֨?'?%.?yЮ?a?[k?5m5>?j?EtT?Q"?V]?Z6ڒ??'??@*?t?'U`H?XZL?O+F?j䞤J?0WP?mLG=T?𻎠N?qDR?]?ϋ|?Ju?dN?lX}x?g3^t?&Rz?}ؘ$v?Ap?Ol?#ir?I\Fn?-^h?U'Od?Uj?U3f?뭦B`?Yl$X?h|2\?"t+V?ݛb?EY?]?RB?9A?aN?ه?UmX?m)i?>]"?{cS?S ?0T?rO?JV?yeGR?)?|EK?lF??~M? I?ѿCB?;=?.ۈD?ݒ@?G9?Sw4?:;?6|M!7?L>0?-?'?+?t%?ל2?-[x)?F{-?0?W^->?0I4?l*k??|^?, ?G?΢?ޝ[&?3#?~n ?]?tR??H. ?93?@??c?ho??/@??e?M?J3?p X? q?ё'{?Cp%?:d?G?!%f?N~?NW?f ??9?Va?$?[^A?2?Rj}?W}??0gbA?C,Kj?Dx?Wio?7s?_8b{?fl?skp?Gvu?oe?BaKL]?cȝa?2Z?+g?3^?wmc?|??ȉ?j-T?*?6G??>??OpE?1?ekk? y?ϖ?m?ٛ(ݿ??6S??y̏U?Ny?!*?jʘ?G_?lW?ӥ$`?0?8jt?d ?'&n??F?{ ?1I?9qH??(Dur?!?#۪?`?}?&o?Z/T?\??^;?-$?c?@8?Y`Q?PIRE?<?;?&D?:P?M$0?ZQ"?îKh?`u?~/?AJ!?w7K?t ?j*?II?|X??NW?=??-?җ?Z̫?=?0??BM?l?ܫz??B)?D`?ϯ?^K?X|?4|?̂?zg?*J?B o;?窍?M$?.]?U^?6?$p?1Εf?1??:?@S??$X?|"0?|?? ?rK ?YP ?CQ ??0 ? `?+S?!/?iz?_S?:GՄ?.~?eϰ?]a?#@l?肮?Qn[? ~?;?oĎ?{?-t?Kw?1ʋo?3~?Zƅu?Djx?4?'^?֘?EIH?eH1??t?f ?U?Lڠ? ?N?l&?A? N[,?J?-?V> ?BQW? |ݟ? o?Hɦ??ݼ?Sי?K ʶ?O ?#s??ޢ?1J??@\?-?E4?z?rP?|!Ӻ?똪Q?k^]?X&?t#)?#?Ї (?`p-?MP8?՜2? ถ5?p&0?fq=:?Nt+?^6?73?0??!/?C?"AD8?jxA?Q??zNF? #R?mO?1SL?vJI? ֚hT?I79*D?VP?>yL?I? :V?n5Y?Q?F|,W? k?BZg\?zg?Bs$ub?9i_? p?nVZ?H> h?#gc?Ƙ=X`? ?5@?? ?|׸?xQ?A?m?ȧA?xQ??VX?H?h[1?:?^#?V*?&ẖQ?-MD?3?n \?? !^_?Aa]_?g L?D-?"-?{0EK-?;/-?'-??NU,?61-?},?%,?dd,?3a,?,?H1ٔ,?qx,?,?$hb,? \,?@,? pj,?_N,?1k+?PJ+?+?\-QD+?rRd+?H+?Yp+?U+?o( x-+?@!+?5]g:+?1;+?Z*?**?v<+?lc*?(|*? Zd*?Y*?GX*?  \*?^co*?)I*?!c|*?yT*?^9*?!ra*?F*?cg$,?$g},? eq2,? 1?(u|1?̉n1?A1?? Q1?;o1?jB1? 1?-s]1?H{1? >N?w|ZHM?ꌦN?9wN?ZXWEN?!N?F([IN?N?g ^N?ܕ.N?niM?|M?ֽM?ә~vM?G5SN?ȪpM?br4M?Ō7vT?TET?T?t@ZT?\/U?GU?{ ^)V?B;U?zU?+ujU?L'U?|U?M9U? BU?T?rKT?іSKU?`T?;U?͕ mT?`T? Ź>T?PT?OT?S+T?TҋXS?*)T?LS?f#ֳS?%WbS?RS?[S?Z$RS?Ρz"S?,,(iS?-z7S?"]^R?T$R?HpR?ɴ vR?}YS?E R?:R?R?'ZR?{8r*R?tbmR?jnm?R?Q?%Q? ]R?bcQ?! CQ?r*kQ?#\ Q?6Q?D>O?c<3O?oN?-O?)QƈbO?O?XZGO?/wO?UO?cxO?'"O?0]vO?BJ~P? P?nNP?)P?P?wQ)4P?6YncP?&J?溬RJ?J?6J?cqL?ECL?G5=L?OfSL?H*L? J?/XJ?d+cJ?pA.J?[J?K?8ϘJ?N1J?&_K?5K?cK?>fK?˕K?(3K? `K?kZK?.OK?KCK?pK?m#I?d4I? @= J?PI?s^]E? 92E?ˈIwE? DE?WE?mD?x3E?*3ID?kL@B?hB?7B?}B?HCC?O=C?z'C?I0'C?GD?4]D?}#ID?tD?mR`_D?xhw6D?:3LpD?JD?qR D?ږC?!D?uC?jwC?iUeC?6b넏C?E\PC?PC?vC?C?7I?aH?P #7I?cI?xokH?nH?\JH?iSH?PNhH?ZrY>H? 0wH? |#QH?/zwH?6G?E:'H?X ~HH?ЏԽG?SȐG?60G?\2SG?`dcG?PΦ5G?&VyG?KG?Qr^E?/OF?p7"F?L7wF?@dAGF?j0~E?'@@E?SE?i#yE?EjWvF?EE?2qE?1G?gF?AG?!YŐF?H F?/MoF?νF?J_F?/UI?}I?]O#I?!9I?QPI?} eI?n rI?!37I?^f\xA?PA?M}xA?s`A?bd(A?rЎA?AL*8A?x~A??kZ@?Rx@?=a@?T/ @?/@?y`@?V@?6{t@?Q^7@?70@? J@??`@?7??*G??Z????_o$??r????1c??J??^#??c_??Yw\2??SS>?~q>?Ws ??ܞ>?W_>?7->?*>?-„>?[`>?!>?2@=9>?7 =?1u>?C0!>?ՁH>?9tA?A? ULA?@ؖA?ey?<B?GA?>A?EZA?/ ?;B?eiB?xB?_T-QB?B?aB?<^B? B?K"7?Ҧ6?6?Q[6?"6?*^ 7?nn6?Q6?v6? TGa6?\U6?o6?S.=6?Te6?Z6?Uc5?PqK6?dM6?O= 6?=?N؇=?JM >?sG*=?W&j=?j:v=?c֓=?i|=?Po:?H:?Ai:?:?L J7?Ks7?yA*7?/3^7?A:?Uk:?{:?l9Uz:?z,G:?m&$:?& %V:?4:?3:?z9?q:?õ9?ɸ9?.*g9?9?>Fץ9?(Sm9?ߺH9?A9?@>'W9?,7$9?O9?29?;`@9?zv8?a@8?hj%8?xnr8?8?:v P8??Hs8?*2>8?20]8?gX^8?cfg8?rAҝ7?_7?ba7?<7?-&7?ɦ],8?Zڏ 8?+?yL8?\O(7?b& 8? +8?iGJ=?Q%!=?.E{'=?6Bĭ?m^:?$o=?_@?VvB?-z??-A?ME?H?bD?wF?7J?)NM?]ۦFI?lL?֤)i?9e?|)b?g?P%5d?|^?>[?W]`?J]?|4?Eö6?f>2?a8 5?; 9? ;?"*7?af:?I9t#1?T.?N53?0?~,?nգ*? ۟.?R+?Ux(?qV&?+)?}'?=$?gz!?ּ_%?A #? ?P ?~j ?C ?U??|?h?-}??Ň?CCP ?֪C?K ?I4?,?40?Llz?+S?Xq?67 ?)M ?X]l?w] ?b ??^?3H? )?;Q1?:D?8?ps?bT7??Mg?XZ?;?!^?p?z0?®?0R? 3?%??Q#?Q?̉\B? ?Ugg?7?e? FZR?\d&L?К}?d? ?ͺ??>A?NA?S~?Syz?x*=?yѥ}?='l?qLv?ĩq?vk?Ϗly?+uo?ܰNt?(?&şN$?f?L ?_-?Y)&?r? ?Ϧ?P,F?l_?JV? ??ϥw ?K"?\6h?? ?-T?17?9zN?堙B??Ծ?c?1.?h#.?ѩ?L?7?t?/?̍??7? 78?FV?3 ?lk_?L=Fk?\PWe?fnX?OՃ~o?8^?a#d?KuD?_ǃj6?m=? vQ?M#J?./?3,? 13/?C ??Ѳ5?9'?.ş?~֧?l?$ٵ?T?6k?Pxs?cJ{*j?kZz?s?c2?v#?#u%+?({j2:?vb!?,?y4?MfJR?A?NJ?iY?R);??xO?EG??}L*?p`?̳i?W&V?߷_?h?>*?F)?|@?j(?90C?|?7_?!`ɦ? s? ?w??F6?^?`? $?E-?r/Y?Qko~?[o? 4w?2T}l?؅?t-t?Уc{?6ҖZ?kT?^9a?Z?&=(%? 2?]C6,?8v9? "?iXE2?İ+? @?Z&G?GN?%sZT?+6M8?CFC?ObJ?h?N>q?Cb?El?Ӑ:*?+%?U͗.?[='?# ?_j3?SJ?t?ir%"?Jkx?ؠm?W?L2 ?qZq?g ?#9y?W{?hj?)c?C?7:֎?{c?o*8?xm?#?NU?8?%? b?u<?<w??g {??aeJ?Kd???.@?In??iL[?5*?#A?KT?>~?#$-?o?\_o?H?0?P??Hy? ? U۸?3H??1?BE?2D߸?$6K?ř?ۑ~-?0?? k?/hz?I?:hD?K~N?@nI?GE??8?yD?s̹=?1?Ra+?G 7?KP/?| %s?M;o?@ y?u?pS?JY?=N? U?tB`?8f?l?%r?4\?'d?hj?b6??]Z!{?䬾?h??`e?)"???ݺH?H!?}=?N٘??bZԶ??cm?=nK?3H?/k?a?nQS?FX/F?L?o???BU?uH,E?R?L?*۵?18?̕,?C?Sx?w?!?kj۵?N?ʶ??i(?3h?Z(?SW?6^?~A?$Nj?|?`1O?¹ ?P3r?(?1J[8?Y+? 2?ƴ&?D>?LN 3?@|d,? y/ ?õ?i?:=F?)&?~[?j.?%8?6?i?5?y?8q?-a?!#,i?#[?ͺjrt?;4c?,6k?|㲚V?M?]??/??=4 ?Fڅ? Ԃ?DHs?ټ(?r ?a3ba!?516?Hl%#??<'? oq?Ĺ??V?xT>??1Tb ?s p?9C?G??s?B?[?¸? ?9?p?{I y?W?=Dn? k?Ox?S5?_ud?ǜP?J&Z?aTH?5en?`U?^?v??%"L5?7L?&C??WQ ?_ܑ?/^)? ??q?< ??3?_??/O@?I 8;?!'6?q=?*8?5Xl1? ,?+3?.?W&?Q(?U!?Ì? i)? u?/zw$?޳?'?>%N,?6p??' ?aף?$r?w?hW?w?ٕ??ycV\?ɋP?-?E?>,(?c$ƒ?xs~?T?g3?MIy?V t?J{?jܳv?|_n?i?Zюxq?؁7l?iwd?+^O_?܎& g?>Qb?FS)Z?>?\?2W?ZHjO?CT\jE?6J?VJB?kh'R?FG?%M?D:?T? n??[? D~?.kLp?^??{_?Z?I?O?}O?z-?4Q?tQZ{D?e,>?7?SVA?;? 1?eJ+?Ƀ4?ь.?LZ?l)?w]!?`?릅?jbΒ ???z? U?԰?')3?DA?ޅ?elү?M ?+)? %?>(s(??U7"?j?S?K?[e?g?8b?+?"ն?`?Nʃ:?2ؠ ?W?Yz?X ?h6? z?c??U?ZK?RH?[?QSa?AX?.:^?H0ng?Rm?Dd?tXzj?f};s?H*'y?*ap?[v?B?2 ?~| ??\I|? i?B6?y9,?9?q&73?us-?76?»B0?'??l?5"? ??*?M0)?$?s >?ڢD?B1 <?GA?qJ? n2P?G?kNK|M?PU?%[?0t@S?\%X?}}?%YN?ħ?? !?X?KS?1'?R??_ȫ?6<?W?zwF? /k?̳?o ?P?8???i$?Y?IAm?"[??jl??0y?OqM?' ,?+1? ?gjN?gh??v??bQЮ?ӫ?G] ?$.η? ?#R?ndD?V;˨?VS?:Iǣ?=&?5~`W?s< ?^Pى?w??,?T?+@?@1Җ?%?fAߐ?:q?I?i_:?R?ꃲL?2T?nP?eW?SxJ?ܑP?I7T? }?gx?q?׭z?Ps?Kl?/ p? ֟h?LA1v?hgl??&p?Gd?q5[?RQV`?wW?h?ݦ2^? !b??05n?x\?&0?ϱX?S?4'\?i:W?8"?u4;'?cy ?CO&$?RR!O?( ]K?9rS?M? F?[B?ݑ3H?D?U=?#q9?%@?8,<?4?~Q+?>n^U0? )?s7?΢ .?\2?w?ce?ד"?Qh2?OI?r?*?%c;?)5 ?,?? ?cS?/?pw@?Rx/?lSN ?? ?L?|f(i?/$3?TB#?wP?34j?P^x?ڈ?6A??ҧ???-4?F;?Ҷ?Ց?Kc?Ղ?Zw?oB1?&? ?0~?#[x?j&C/?q&|?xGi?rժ0n?_d?Ȍ i?췴r?|v?Cm?Dq?\L`?"Q@[?ZWd?gR^?/?t[r?E?x?}?sj?{Y?` ?)]x?F?te(?DX?#y]r?I?d?P ?A??+?s?b:ma?"aY??H=?X?- (?o~?)d|d?saM?M֣?*?-?P?''?{̜?Z??&?xތ?U?(9"?!?IH?$?NE?_?(O ??zA?H&? ?{G?J;?o.6?2?]h6!?f0?pT?#3?z֞?U`? $&?g?8%5?G'?oZ?3?bɦ?]$J??[j?GЁ?/?2OT??E+?&F?A=%? !?""?f5?YZ?õ8_"?J?yxX)?8ࡂ?J?-^Q?_J|?H(??'|?v?bm?p~?jt?6B?mLD?i?{?3@"?.QM?2A;?b?o&0?X ??%>S?ME\?Kᆧ?v?Qĝ? ?$R?W?hc?Q>?θ?>? )?b .?‡&? +?q4?uO B?ϳ;?rG?%0?x@:?x")A?}oxM?%JX?4R?| =^?F?DQ?3V?(Zd?f#k?ݳ\?g(e?|?qg?6??/d?q?~i?=A??c???P?B ?j3:?iU?X:??Dk?MhZ?>3????@k?RȆ?|{??!y6?s?v?}?m"?hkF?J?Ζ?05?.N$?@*B?pq?s({?.Nn?hl?<3?5?YR?ভf?+,?T?Yd"?Al.?d/l?]!?nL?p:?g#?n4?hD]_?ph\_?9pF?,d)?yJ)?w-0)?T~',+?^dQtT+?6\"9+?v+?n*?Y+?e=$+?*?}d*?+*?o|*?:*?)rL*?V0K*?Y*?on*?4/S*?0 {*?Z^`*?z\8*? j*?\x 4F*?5+*?)J,?-~+?~,?T+?33+?(ϫ+?L3z+?7!e+?j+?+?LN+?'O+?P1?bA0?6%1?`0) 1?-<0?$~0?#Z0? p]0?֮0?Qy0?<(c0?Y"0?2Y0?btU:0?1i0?nƵ8G0?!L0?nC/?~(0?  0?y1/?1J/?{/?-Z,/?D˥/?nƇ/?i/?'7ӗ/?%i/?mL"K/?,y/?})Z/?5A,/?5SN/?`;/?ȪP/?Tn.?P1.?ri.?..?_*.?.?S.?y#.?/xRR{.?+.@.?Ž].?UF1.?TL.?/L.?Ui.?:'f5?4:05?{˹5?FCm5?4K~5?Ż\5?6<5?-q5?!&75?ש5?3L5?rω!5?4?m4?$VM4?+X4?h4?g 4?i84?>%s4?5|eM4?X̏4?}_4?^'4? 6(3?L 4?;3?ݎK:4?03?˕4?,3?`-;3?V&>3?lˣ3?p>n3?J3?[L3?S[3?f'3?m2?;T 3?&]2?d~83?Z2?7Z] 3?2?j"'2?4*2?p2?]jm2?$GH2?mӦ2? _Y2?%31? GvN1?#p1?31?g$2?1?&2?-1?)42?墱1?2?!}ܭ1?pT-i1?AQy1?; \N1?Hjί1?[&v1?hz1?b3N?UN?ҶVN?N?N?;L?z L?&zL?7L?r5M?o$.M?L?M? ^]M?t3CM?KGM? >qM?(rN?CN?N?[N?6N?܌:M?@M?3\)M?`+N?9x4,M?M?YZ\R>T?іRT?T?t_""T?4댅6T?U?U?kLU?! U?+U^U?9T?̺-U?T?ckpU?jfU?(4?U?UgT?*T?#1QT?wT?nnT?O?͒VrO?1O?~O?InP?βO??P?OQ?pP?χpQ?wIP?P?$HP?*GxP?|&W/P?NP?ZP?:_P? WhL?|eGJ?i6yJ?( J? WJ?N cL?|L?a~:L?>K?8wvL?i L?C?z-6L?iJ?ZK?RzJ?B|y*K?-J?KJ?wM>J?X K?mSK?{K?dôK?P|$K?& jK?bDUK?/HI?IxI?ː)W0J?i1I?ɂ*E?#VD?y-E?j4D?(7FE?d'+D?X;@D?B?c:C?C?v'aC?3ںB?`C?RNw6C?؀D? IQ5D?*qP[D? D?!}OD?Jd9D?qƂ?_D?٢G2C?'C?! C?c_7]C?sD?mr5C?`OC?MZH?q;NH?/I?QH?]H?e9H?`H?H?Z(H?AL5H?ĜI[H?G?*qG?XH?‡G?Z%܎G?cgaG?#h.G?(l]sG? 4G?SG?@uEG?6G?"9E?o,E?%SaE?s;E?&ԔE?_uݞqE?ڊ{?F?E?hTF?hXdF?bE?p\ F?S=F?n[F?ӴCF?ݒ+cF?5F?bF?wF?xF?:I?ƵpYI?MI?|$I?}GI?}kH?`, FI?U`-H?B3GA?G|֟@? ??#A?=@?ȋG^A?FSL@?< A?plS@?/rۊ@?k@?jZף@?^@?y1@?nw@?u,D@?h[@?#??&??="Ƙ??*8@?_9ں??-2??Zzt??sG??:p??Ks]??T ??cT`>?é>?_Q>?i?0??9e>?]>?1ʰ>?KWV0>?;]>?x~ >?%>?i>D>? F-uq>?37A? tA?NA?ㆹTA?N!A?5pA?Y_*B?A?뀧B?gB?cdB?~MMB?B?B?*(C?AB?BL B?>7?)7?XXp1 7?=6?`6?IBe6?h(7?~v&6?E6?ւY6?cv6? /6?&F5?_x6?q6?Fg16?Er>?t =?|}蚬=? I;>?L\=?bt=?`"yL:=?*ID=?Pc\V=?wxr:?弌:?2-:?,C:?JZr7?BE7?Ghu]7? 7?b:e:?>":?*C:?L:?${:?F.ΰ :?G#A:?/9?~9?B}:?‹9?{9?n[i9? B9?PL|9?0A9?~hP8?2׶9?m]8?)hS9?7Z8?/9?w8?Wl8?h8? L8?48?]8?e8? 87?|ٙ7?R7?kø*7?(+8?0_8?j{8?g*E8?R0=?X?wDq7?rFA?0r:?'0?)?]64?=/-?mO#?[?Pj&?i2 ????"k?_`?2)?ht?a ?Uɲ?hp?!~?o?nZQ?8Gh?h?K$?ߤ?4.?jI_?L?Hxj?d/0~d?^?c`g?la?>W?J?&sQQ?9wG?!ҡP[?@n^N?T? ?^s?l??_-&?:?ZX?DS=?Y??#?y@FR?ɦػ?#?L(c?2I?$Im? Cפ?{yS?3G ?a2f?"җ?xT?73 ?h?ڊ?4`?! )?x"?P}?Q"q? *Cw? ]n?r&?Qt?dgz?W?5_Q?luaT?J)O?xoY?6xR?ߣSU?ED{>?w^B?~-N@? aCE?p]u?=]8?~'%e}?n%&?? ?|?m?A ?Շ_'?*/?t.? ?N ?JT?'??)R?{??ݖt?=?k??? ??l??RD?{?8?X9?(y?c ]?C?cTiEP? d?vq3,=?I?;V?P+4ol?t?UWB^??i?%$? j?P?|?sr¿?H՟?,P? ?Z?^{?d?t?/1$/2?YFm7?}_/?W}5?>V`=?8B?fa4:?S@?nH?x^RN? E?7lJ??WY?U$?R?+Ǖ?8Z?? ?{-?^ mD ? ?yx?!F?F~?o?Q^?i?U?oh??t|?pie?O7?4r?=?nA? $?^1?i?u?Z?WB?;|?$׻?1"y?N?} ?{,?mB(4??n^e?Wb?j6?̷c?g):)?S>ƻ?}?JQ?? ~p??Y?|?r?H`h?}?bes?XǑ!?}&G5?5L?>)#A?~*?IB0?͂U?u(?G?p_T?nϲ?>?kP?D?B6?A+?fI?k܉y?3!c?Xt?G%?S~?>e҈?ae?+A8[?{IP?C,_?V?S*1?vBF? *?@j/L? +)5?T@?!p?9z? j?r?H3D$?0?xP??,x(? I???Ծ# ?B?&J?< ]?VzP??+?lu1?h?5? ?i0 ?8Z7? ~l>?%Gf?yּR?ے?i?Z?cf?8?*ad?-V?I?>;?Q-d$?7E?"؋?-4?Z?0ٺ?:ڿ?1_?VI?B?IxP?q=I?=.g?g?>?H?\v!@?7?X1?:?%5?Z+?d{%?m/?H)?)g? ?G?(mU?53q? ( ?҆q?3m ?}P?$.?wXs?եE?ѷ?ZK??8?63b?.R#?V?C~?;h?D|?5?շ?~?/?< ??0f]??bR?IY? n?/ ?R ?F?w?\?)+?5?Ea?:g?\^?Rʙd?G1m?*pCs?j?´p?|y?kg?0vv?|?myJ?VK=?̂PV?/)H?O?aW?\`? T?'??99?A3?<?A;6?SO-?i!?'?,?[F0? L$?G*?9&E?h? M?ԻB?F? n:?Qi0?E4j5?٨W-?P6>?}]3?7y`8?ּ$?-?ĉ?oHH"?b??۲?o&?n ?A?i?a ?(ߒ?U#?" ?E ?X#"?DdO?=_?=ʱ??"f?A?V^q?ha?Q|?v04?R?̻N?P Y?цu?Wf?ϔB?_V ?E+?f0?ɧFz?7-u?}?zIx?7dh?b.Yp?-Ɩl?b?s?$Ph?8l?zJ]?߱V?!"wb?Z?X?d=? ^??{$?qN?^+??L̸?~Q?Ftf"?]IS??V+U?;K ?䝵Q?IWK?zCh9?ʳ?[<?@"ú?v?b&1?K?,:?C7v?nB?Ӎr?7o?Go?|?O]?Em?ͷo?\}?A4#A?1???"*m ?lro?Vp?2m? ?_m)?K͐V)?Se/)?R7)?~_ =)?D")?I(?`=(?De)?u(?m/B(?4P(?X(?8\ (?N+&?}1+&?S&?~ݺ&?T&?M(?u>(w(?μ(?qX(?uw\](?C(?h(?HyO(?m*(?0*(?O6(?ܓ(?'?= 24'?v=C(?~ '?Ė'?=.='?:'?8&:'?Z4ܑ'?bx'?z8ӝ'?)V؄'?P<~@_'?m^E'?k'? Q'?*ʬ,'?L&?('?'&?8'?8'?kH'?5H&?N;&?G@a&?5)$z&?&?dTR&?Qi&?P]&?%?: &%?oZH%?_0%?k$?ģV$?I$?Pɵ$?$?Z 3$?<$?($e$?M%#?C#?'#?cX#?T#?'޳#?H#?Ү#?xѧ#?9m$?BJV$?m v$?;d_$?{IZ>$?r'$?"Y$? '$?7H$? $?Qg^1$?sr{#?YYo#?(ސ#?,Üy#?jFX#?ӂA#?}b#?3NK#?ݩE*#?\#?U4#?B#? v"?"?—Z7#?!"?byS"?$tӹ"?"?!"?|^"?`&"?L4"?="?v"?G&G`"?}`"?=?ai"?7".?R,.?=.?t!.?Em-?7-?л.?5g-?^,?ZnF,?Wkw,?,?-?W/-?rI-?a#۝-?zn-?cs:-?)}T-??T -?}-?,9-?-5S-?eB-?,?-],?]S,?W-?H,?k~,? n\,?qdA,?xx,? T,?&,?\n,?ި9,?c,?ۙ*?t)?m*?HM)?G)? ()?>] )?{bqC)? Vx)?֖Z)?D߸)?{Za+?b9F+?s+?A2S+?i *+?w+? 88+?-+?_H*?x0*?+?S(*?Q_*?*?[**?II*?Q *?]'m*? *?rjy*?'|S*?WL8*?_*?|G*?58*?*?s>-*?PY*?) +?g+?^+? +?9ж+?nv+?i++?<f+?oP+??$R+?d8]+?6#0?6|0?շX1?70?*`ͼ0?z0?3&?0?HlF0?Nx0? DvV0?(/Љ0?J$e0?,i40?Q/?0?RN`/? [C0?LdC/?k0?m/?/?ibS/? U8/?,`߉/?L 'j/?3ϝ/?,'|/?fJ/?lj)/?Gqb\/?U}9/?g/?|.? &.?셗.?La/?nh.?L۪.?2 %L.?x4X.?óy.?&f<.? .?3[g.?pI.?5?\&f5?g5?؇5?Y`5?Dw/65?0{5? ,L5?'— 5?7:4?!5?eS4?s&4?|4?Cx4?r4?5L4?YA4?{g4?ꛚ54?Up3?;3?44? 3?=ń3?m o3?~(Gs3?~Ƃ3?>3I3?zq3?L/gW]3?s53?.e2?̌2?M3?2?w2?W8n2?QȮ2?Rc2?\E2?a2?O\]2?>22?@31? |O[1?])> 1?3 11?1?ؓ"1?:[A1?J2?3Y1?^1?w1?S?fF?;y?\?GN?De?t0R?%+o?^tV[?2L?D'?oQ?BV???A!??y ?f6v ?8. ?\m ?c ?b+і ? ?"x ?o9 ?h\Zl ?H^0W ?Qv ?,mS?F|S?|xS?zZ͙S?׆IS?R?%S? ƿR?%fS?XUR? w*S?-}R??OR?6LR?uR?_o(R?2 fR?tGR?oR?x0*Q?m*Q?*R?KPQ?ZQ?5"1Q?IJe\Q?@Q? Q?--Q?DXQ?4uvXO?+!>O?&4:O?rjuO?O? }P?m O?iAP?f醦O?3ZO?ڳP?nP? lP?)wP?m*Q?T @P?kރP?'P?btPXO?.L?mJfIL?L?3neL?egJ?w-BJ? 1J?_{J?(45f L?.K?GU8%L?qK?vJ?A\K?J:K?ޒJ?-3K?W\K?L3XK?dI?I?q EJ?{}I?sD?IRD?}hD?եD?z2C?x;_yC?RgC?ahpeC?Vk=D?&sC?J C?2!eD?4}lC?ṦC?OK'D?H?p;3lH?w0H?.!*}H?ij0H?F9G?0AH?ӭ( H?~LG?G? G?_G?wWWG?\djG?Z!0G?J}CF?Io=jG?"$ G?%0G?D?1E?HKE?6E?yx>E?V;E?hŐE?ˤE?%F?%]tE?["E?TE?iF??z ??/|zf??{[)??Pk>?)kQDY>?>?St<>?6>?ԇt>?9!/>?4[4A?' nA?fpA?--A?aV5A?{A?$gA?qJA?M4B?[(B?aFlB?Y B?4B?NqݢB?9kB?n8 C?ΚlPC?OB?)=1C?n^) 7?L5 H7?J]w7?{57?S I/b7?Gn{6?i{56?E 7?6?6?T/b6?68|P6? u6?}#q6?mkj8 6?J\5?'*6?_5?]DW>?N;>?"W=?ouP6>?{y >?a =?OBu=?S=?.~=??9=?䐕?} H? B?qbc7?Yܠ0?6@ .;?G4?r|)?"?f'-?y &?j ?!,Q?:4?!Zl??m=?ES?) ?=v<???1Wz?5@?P?^'?rA?N^?@[?=?Lg?;Kq?k?d?cTn?Sh?^?9Q?Q[X?N?=1֨b?U?hJB\?=Q??{w?,L?*?09?4?$?LcE4?z ?wi?5?Wa? P?垛?N?I?8j?〢֤?>S?ԧ?~ZF?3)ޗ?YSB??xx?O?}~ܲ??b?w?`}?hψt?S?R Cz?By?wuIr?i@S?yiO?_V?l70R?kRB?bV K??.?*? =s2?uC3-?'?*m #?U;A)?Zh%?Pp^?ɕǍ?JZ!?BŁ{?!?+?o?L5?(6?b?.?cu ?h? ?Y?G?yE?el ?&1???m?q p?yiz?#4?`n?C5?be[?V/?tH??? ??p?y?*Ѱ?x?itM?Tq?vov?% ?>R>?{a?*2?>"?2'?^?%K"?ٸ,,?8%0?'?Yf+?|?L?7#x?$?a?]?UB?; ?Tov?m?I?c?l?=g?` ?ekO?Ѣ1?Dm?6@? ?šX?P%?&s?N)?}?)r?E8?+y?V{)P?⨿[?QC?7x2P?8g?? J;C?,DH?JY@7?\T>?C|@C?&RM?ܲrS?{IH? O?;T?^?@?]??o?ǡq?a9?? $??F?h?|{?W?F:?cV?3??ч?4r?t ?l➈?5/i~? p?NC?3`&?^xC?]w??&?G.?<'???C?nR?@t?ŋ`j?<4{~?Ou?Ԏ&?"4?(?ö>+?]A4B?\Q?zً`?j=dk?u%69?L?{dJ?nQk?Bw?!?;]?V@? ?=!?%\?& ?_ι?H(G?G?׾ ?3 ?Ÿ?L)|y?娝?*?U?N???ĥb?2 x???}?xE?>?h?Lϴ?[? y? ?d- P?``?7G?U垌???S?I?B8?͆ A?w"0?g,N?v';?FD?(?k?r?g3?h'?x{?et?W?yv {?]?$e?m?BtX?/u?[MPb?JLj?E?#{ `?$ ?[+ڐ?a?^{?R,?Ln??_$?6?"@?S_?'r'?t ?*p`?bv ?)?B?S?o?PK?T"???a)?\Kp?lK?j4?{?G?me?5w?M?LT׶Y? cF?2?+i$j?L? |?2^?nq ??;?f ?lf\??Y?L!?yA;?Sa?XPx?4QJ?D?M-;?|??tt6?"gXG?:;?h ;??J1?^{&?@Q ,?("?*6?lE b)?7M/?/s? -?i?_?ɐ7?QΠF?  ?#:?|?X?M?\#:?3F틙?7y?$A?F?|Yl?E?$X?~?7?#dÃ?帧?v13z? Y6t?p?|&zw?=n? d?3fi?>_?) q?umd?Ai?3i[?tP?zտU?PMM?+|_?ޞvS?]n:Y?4?RH1?h]U?whZ?1V`?݆1?d{V?5z?ˉ????m?(+3??-R?K?_4xD?J\IO?+G?6h=?_|8%2?L7?OA%,?@?uX@2?17?xLC'? cm ?B,?.$?C?x ??˺?OK?Y8?OJ?rc?i?Sh?G4?M?L?j?hN??:7?d?xs?s?_/?y!?{C??H(??q{? ?fe?X̳?`\?0? ?y?x? ?W?ag?u;m?]&d?j?s?Yy?q?4w??d7?u }?J[(?^?}r?^Il?~m?rx? ޹?-?֚& ?& F???J'9?% C?H=?߾>3?>&? ,,?!!?yH6?q)?/M/?/EL? OV?HQ?߃[?] J?iITQ?I[V?;>$`?gag?hD[?~c?;A:??>Ȋ4?}q?l?u?:8?hg?>?mq)?6?d?O?T_.?D??X?=?1I?m^A?J?Y?^?j"? '?o ?kv??,Z2I?0HX?54u?C%2?a'l?-Ҫ? ?+ɏE?B?/;?^?ȼ?4_?ۧ?$ߜ?+?BV?"֍?'SЃ?+R?o9?ºg?~?By?풣`?%}?"3-OZ?ۊG`? qV?P%^?y8s?R5g?dc4m?G'NCw? d?}j?Yp?q?t?#\?d?دeP?ׂI?震vT?KˈL?T&<(+?\0?8q(?O;(.?RB?ٞS6?RSz<?DE?_ 3?Z'9?P??sg͗P?%?M!Y ?,p+?_.&?'z?.? ?~.N?M?Lt??peU?nlY ?,?,? ?Jk???VPy?}1?'K?h;?e?3?u?4Ⱦ?Γ?~?h_߆? {?=`h??M?} h?5R?w?\Qo?Uw|?AOu?aog?GX?`?@r/U?Pn?M\4^?6e?$,)?s?4?Pf ?J???pJ9? $? M1?"[?:U?)l? Z? V[?⭳?+D6{?Z"?fEξ?uJ?rjm?9Y?v?,?Ҩ?h ®?,Nĝ?k[?]n?U_?x>?HOg ?~`?([?XJ.?HT?Ը?¹W?:5Z?AA? 9?,1?d=?4h5?h4*? %? %?Qَ7%?nh$?dSz$?$?Du$?C$?0ʼq$?.$?V$?> $?h{#?<#?Z$?#?#?ț#?#?W+#?-#?T#?H{#?2Q$?#$?%p:$?QSZ$?^$?~H+$?0\A$?4P m#?U#?y#?GKa#?\"?=#?* #?Ej&#?KI#?{w+#?0>#?*.#?G"?5"?< "?05e"?ӷ"?Fާ"?{/"?+"?4J"?'3"?'S"?<"?ax"?@%{"?>&"?-"?f!?^!?R!?#r{!?| rc!?͞t!?1P{!?’!?|E"?k>"?M+-.\"?@Qr"?/"?hMO"?|d"?-z"?&!?!?!?`!?R:m!?!8X!?Nv!?bma!?+KmL.?V!.?-?-d&5.? h$.?eC-?x~-?1(-? -?lp,?%(,?d,?b&E,?}1%Ч,?w׌-?`NOKb-?w -?_x-?7-?U,?>HA-?Z,?hFn/?I/?!/?WNa/?@ /?JQ̡/?hx(/?h.?Q?/?B/?n.?&Ow.?.?b_.?2.?4S.?ua.?Cc5?%1g5?65?|5?ii4?mz75?L)h4?R 5?!! M5?D=4?%@0 5?h64?Ñ4?[Z{mP4?O4?΄Np4?yVw4?PBX3?S=>4?:4?+ f3?iq3?3?4H3?M_̄3?jJ&n3?3? 3?.2?ҺE3? 3?}2?Yeu2? H{2? ƐJ2?ka2?t2?z.2?0?q2?1? ֜JI2?x 2?01? GX1?p1?UE1?v'HV1?UU1?P1?梍>?+?(G?]+m4?yg?XA?u ? ?5E?xj?OK?P}?iV?p?? at?c?8̐?JA?` ?N}?j?C?lQs?KHEW?lD?g`?0M?NY?"{Z?'`?B%'?)WT ?|px?޺d?D?Tm?KQ?싪=?/&Z?YF?>y)d?|;?9E?ׯ??m??Г}?O:?B!?dN,!?iMK!?f.d5!?O!? !?J ?5JJ ?f_9!?1 ?bÚ !? ?&N ?:Rw ? ?<^ ?rR ?+5u ?g ?^ ?MJ ?80k ?ó. ?ku ?t"V ?QA ?p` ?vy?K ?PY , ?P ?56 ?HQ! ?? ?4-?ÙN ?~v?G?>U?p?yj?cO*n?@?~?os?gy?hp?۳s?0z?( [?(!@G?re?2mPQ?A2?̢=?<?o(?l ?m?/]9?̞E??WC?!,Y?CO?!v+?٣?K?H?Tp?_*D^{?o1O?V?5g?S?R)q?3#\?T??Zq?˞7+?Ǟt ?͵H?\ ?8]4?Nv O?cN?,dJ=O?LedN?`ДN?LN?uN?E?E?!@@F?D-F?;5*F?ZUE?N}-F?~F?/I?mlH?OfI?BcjI?m5H?Oz(H?AH?98PH?$h'@?Ŕ@?+|@? AKz@?n???EǏ]@?6???sX(@?}3x@?@Y??llaUA@?/s׃ @?Lņ??LI??!#v??3-por??B ??/ҏ>?a->?l=VXn>?ʯ 5??ŧ>??U>?@A?$Y%A?1@?iv^A?_A?C?iA? 3EFB?A?- B?1TB?5PYC?9B?)QC?xtB?v_9B?`,C?t&"7?Ws{7?SN7?IW7?g7?]Q7?}~7?TnG7?À5?6?P .*6?z7?1u6?ba"7?p6?<6?WOK6?h5?: 6?[I 5?z6?1x5?b(6?WL>?kH=? W >?i=?S@>?#/ >?p6>?=?LZk>=?c=?"dЃn=?ϖ<;?#P4?+-?)?YC??_]0?:8? |?Q?yx? z?c?,Oi?a3i?m?B%ޗ?x՞?,g?ol?ѥ?Bzͬ?>hf?F[I?_K?*? ?(h"?l?s???S?|?\ͳ?u"ں?czG?Q?$L?r \?-]??h=?Ԙ4?m]-?/?0&? ?l*?z "?$G?d=_?a?*H?Yx ?6.?Z?rx?}-q ?*?_?wy)?s[m|?I@u?%Rn?Z-x?K[Zr?Tfg?zL~`?+pmk?Dc?ٿ0Y?WR?-l#\?27V?bL?78E?S O?X%I?>?Ɋ60?EwƲ7?,?XB?]4?bey;?|^"?A?b%?aN4?J?B?*m?HAwq? ??T ?\]?jʘ<? M? ??E8?sN?46?!q?r*l?Iw?/Tvq?,tf?U-Y?h `?-V?&7Ll?+^?%d??ktq]?_W?.?d=???UO? K? 1?Q_?YyE?Nm?ZAծ?ZG?ܤW?m?d?̢ޯ?r>?Y?P? ȑ?B݇??V# 9?9?@}?5wS?5@zw?v4?W?jL?֔s?:hl?|?R3s?oKP?H F?OK?ݹS?'\V?cX? bC?߁J?PYO?lzR?Ɵe?=[?b)ll`?^l?m&T?z)b?]?8]?+6???t:?ne0?F?57?B?5D?3Z?U?Oj?B%?J??81?/?Fx?j)i??;I遬?m=??v?>;f?]?ʚ"Hw?DEy/?B?䝰#?w4?GXV?Ef?S9:H?ZUW?_?W?%?a?hVY5?d7?.?;aG?|C?@7?5? {?Ea?vF?S?Ƴl?q>?ƾtN?[?Cex?ֽ%?3Eg?ylx?X!1â?&[?ֲ??f=?3?Qw?-V?Cؤ?D#Q? ?%3 ??lE?mIEc??1S?\?c?^=?P$?41?*I?/>h?/ݳ?~?l?! ?Q 10?sx?xUk?WU?#*Cx? ں^?1p E?WR?j9?P)k?K?pOX?Eҏ??b?u_vi ?r?se?<0?:? ?Y n?Kt?ϝ#Aj?W*r?yn{?9?๧?DߊW?W!ix????L}?r>?Jrΐ?l!f??P?O0?Dʚ?հO?iG?,@?UK?ţ2PE?-:?p^e,?:E3?eI)?qP~>?s/?QѲ6?l`\n?fV?ͱvf?Cqj^?>;R?69j?@Y?w~a?m*?BWF?:"?nE1?%?w?f8sK?29?W&?Y{%??-a ?lt?g0F?<? a?vi`?qeV? ?)?^J?CZJ]?á+?` ?6z߮?oA?E??Dl?$Y?s͢?Ecc??L?8?]ʉ?H?ئ??鞔\?t?AM?*R+?䦸5?[?j;?=nA?Q?lX?OF?pO?ˡ&?!?#0?2 %%?? 7Nu?.A?d? U+?sL ?.~?X?68?5ͷ?)?G?M? f?a(_?>=?$(?M@#F?'Z?Uӑ??8? ? sd?n?O?lA{?S?V? J4?;t?qc?@8l?;sa?[|?eUj?TWs?cm?IAۥ?ʚ?SE?'ֵ??@?/?N?:? ??(?I(9?*G"?>>렧?)#t3?f4?0?KVh?cmό?깓 ???}? s ?}l???+`\?n8[?H ?`_?ذc?z^? Rd?wC?.?>?S6?/2?::? G?Q5O?*B?<7*K?vkW?_?^S?eY[?褿?!qx?(p?g? c?Ƞ|?ql?oct?)?# H?i;A?g9?$D?ɦ{=?S 1?y"?P0H*?C?#&5?*.!|&?X".?tǖ?%R?/8?KN?;?\J?Q|w?0q\s?!ˮx?%{?Y?v?-u=o?g?sr?e{k?<_?b0P?(?ayE(?fQL_(?*(?\@(?B'?9'?K]|(?n'?+[NϿ'?Y#r'?׽'?Lw'?2H'? >Y'?=]'?j09`'?r@&'?y2C'?~2'?ťݓw'?EM3'?XyTHP'?7<&?d&?P&?/{0#&?Wsr&?fP7&?;)L&?e߽x%?)9 &?!L%?&i%?I`&?_/%?gT%?{o'~%?[7i%? f”%?ǺM2e%? #%?ϴz%?y %:%?2pol#?Q#?#?,{#?﨔1#?!CHML%?D4%?Ea%?R2%?^2$?XHv$?($?M{"$?_$?%f8%?Ulj%?7%?]$?e-?$?ث`%?c$?^z$?жJ$?t8W`$?7$?r2$?٩ w$?+Hp$?O $?e#?$?{{$?驪#?y#?&y#?¥ˤ#?;J\#?\#?8#?u&F2$?ݫG$?!$?H+$?pU#?^9#?}c#?K#?qa"?#?g?T"?ʲ@"?enu#?/#?9_#?+ #?U6b"?"?}"?bȗ"?/T"?"?;Z"?#e"?%!?5s/"?"?W"?=9"?7!?f\ "?Y_""?X̕!?!?[Iƫ!?!?r!?!?6f!?hwK!?PqB"?9W"?eX}+"?vZ?"?("m"?"?P"U"?ei"? &>!?~v!?a*T!?ދ7i!?-&!?l?G!?8v\!?H'r!?0pv.?dH.?F.?9.M$.?D-?|[.?.?4'.?'2-?r]-?XS-?Q-?/ip,?X,?~,?%,?IAb,?,?,?je-?O-? `6-?-? K,?AԚq-?fJ-?lޅ,?t,?9R5,?T,?FZ+?DV\,?L$ ,?1*,?,F)?SNq)?r`7)?9㈕)?X)?ļv)?+ƨ)?:9d/)?-)?AE*?[k)?h)?H" +?:*?v*0+?I+?^$*?*?*?*?]ػg*?y *?m, D*?_#> *?*?ZVZ.*?AsQ*?vxS+?X#+?w+?8C+?QءS+?Z5$+?_ Fu+?ʛC+?뇾G0?P=0?>R0?6G4N0?]m0?/=&0?' CJ0?V0?h=\0?%: 0?LC0?/"/?5j,U/?֡1ّ/?l uys/?Yʵ/?m1./? n /?#f/?zH/?'//?r/?Da.?[.?_,.?\@/?'.?L j.?.?XRb5?J4?(5?%55?>xy4?'4?I0u5?:4?UG}4?dK)5?^4?Z%@$4?%@4?M4?.YI0?s3?Ϫ3?]14?S3?0=k3?Vs$=+3?jf3?vD3?32? 2?1?Dc32?8!d1?^]Û1?|1?6P*?Xp?+t\3?V ?`?FS?5 ?~k?e.G??h|x?C)?n?_p?¿?9?qU?H2}?̙?c?]bO?%Hl?YSԤW?j<?wVG)?8x!?0;!?DV~ ?T ? ?Uװp ?n1 ?op ?@ ?~j`= ?L ? ?D ?p ?Ki ?O7#U ?dqs ?g^i` ?`@ ?E$)+ ?.L ?Jn4 ?˴ ?杰b ?> ?M: ?J?Ĭ?4.?W?M?a?7?{;?ku|?GG?]1?R?p?P Nn[?8O|y?/kf?:UF?X$2?8R?gj ;?2? ?m&?h?-?S?qv???$m?̭?>:??t$?8?r?Ӿ?{?Nf?PADŽ?Yڷq?*FeR?0ځ[*?P,Z>?e| ?Ig]?b~2?F?NN?vN?ňO?A?,N?ь\CN?`6M?2uM?CɳM?+LM?x M?JOpN?Cs^M?Z M?S-M?bML?Gc3yL?u4L?ʢ+;L?D4M?KgK}L?HL?U3S?;T?cVdT?nFS?\T?r=HT?!US?T3)S?fw2R?\R? AR?xS?YR?WQR?y2Q?8fQ?NQ?k6Q?zBR?4 Q?O ^Q?>svP?:O?}P?,pKP?N{P?XO?.ecQ?=|P?O?$q8P?Vx]O?KN?O?|ZTO?|v7I?w)K?J?6&K?zrK?K??J?@L?#)K?B@uK?Nj,K?C$JI?syJ?^iJ?orI?DJ?39XJ??Ы??D 8o>?j??T>?E7??ڹA?`HA?@fA?kԠaA?άK@?5G@?,~NA?H%@?ZBߦC?>}HB?)`{B?E䀣B?dxRC?YC?uɏA?,B?RDB?U[C>C?އ7?$[7?7?7?<67?L6?L(4z7?j#'7?xDĈ5?w[ 5?M/5<5?`/5?6?踐6?ykW6? /o6?Cg5?C%06?f6?E>?zz>?`ѷ=?q=>?ϸ=?"'Q=?f?`]?wv?f<?K?/Z?wѩ?nd? ?R(&?i?(b?A?J?7a7?ք?6?7?<пy}?Rv?hD?C;y?Rn?ɕ eg?Dsr?uk?&`?vX?L9"c? &\?=Q?B'49J?^7U?'VM?I(B?-b4?CZ;?NF1?D%F?sD88?פl??8K?+?x9?<?b?u?"?T?G?>ݥ?z?d?v¬?7.GƳ?{G?t?ѳ?)?EH?PD?w w?gT??tH? fQ?O38??|DJ?$s5Z?E :d? > S? ɋ_?X>?C ?Q0)?Ua?]U?XP?߻V?o??5!?<(9?vbEf??W?? ;?a 9?)o?ĺ ?O7?՘?/ckL??l? q?pow?ܦgh?2?7_It?'5:?ϨI?:Y?(Z1-?e???oO?6? k?"?#|?L`?D? r?Y-?isV?}x?=W6g?:TC?|?(MrX?aq@i?hW?8n?hǏ?z?k?eP?%A?þ??ݹJ?͸?zR??d0?c ?(?Þx?Yy#? ?``?.j?PuT?}_t;?G?.?PWf?C YR?VE?m"?&?#m!8?d%?\ɡy?˰ՠ?Y?q?in\d?\ǻ? y?i???D?-?= ?@O ?@8?qWI?!3???̈́?j8ڹ+?E/? >w?FrQ?2ld?i|`d?[??CkN?U8?zs~?>#v?,?;{?_86n? ]?f?, W?s?ab?(rj?B?6?'$|?0 w? E]?KiU?PQg?%]?:? ]?@?{ge_?J ?S[S?ND??M?;?9|D?f!4?'U?4U;?P1D?e=O,?0=$?b!3?a)?/?泙?zP!?$4~?xQ??a. ?t?7R??A?L|/&?q=?c,?mN&?R?4U9?.@?$? ?y#C ??^rHv?n~?q@ir?q{?O,?E?oE?m@?`4 ?Z0~Z??йt??J3?!&?2?GddO?*I?ܸj;V?)O?{B?-93?;?Sq-?wpI?wL7?΅??Pgw?tn?\?ջe?*XV?W0s?%٣%i?ak[`?Ŝ??\.K?-L?b8M?ș?O?n?P~L?,n%?Gr?g?²?>`?V?̰?i?F<?A??t޼&?fbp?[<?#xF?_?{P?)dT??o?5}?;=j?Uۦ?8w?x\f?# s? 6?O?/?8/_?U? cf?Z [?C:?]L?C?x7/?,R?X~C?<]S:?V:#?D'?;`c?|Sl ?$ɴ.?{s{ ?;@H?頒?.t?p?? `?:7M ?Y!t?}/P?Y@?sϔ?N<?X?(u?6r?B{?x$p?z?z?ׄ?M ?{J?؇?g?<@?6?DnB??ZQ??{?֠?2Lb?~k?(7?R&x?ҡ/n?Xjc?ov?m*l?JR ? ?&?ZN?~?ή??u?W3Cf?"gB?ͮ?I3?xq(?̵?i?S ?3$U&?1~.?Y6?ݑ*?u%m2?>?rO G?+T:?cB??G7Rj?$%?')L?vǙ?)[(?9Z??<?9?l?;Ʈ?޻QO?/țW?z5|K?~S?rt_?vh?[?Ad?i~)?l+р?rOWp?Gx?-xl??x;ot?l|?tj?L?s4?u ?&Y?BRL?Ya/??ƽ, ?&?`?Z ?Є|F?_um?T-?Z??tG??2$? ?m ?(QE ?s  ?g@" ?@vF* ? ?k& ?Kq3 ??'< ?(/ ?|7 ?NJD ?M ?+9@ ?ڤCI ?/?cV ?+_ ?-R ?V7lZ ?(g ?p ?&c ?G"fl ?\7{?Z-?(|"?q?F̂ ?yBjP?'H?5A?"JL?f?vy.?A5?)׍?? ~?>E?+a0z?nS?{`?3z?;Xu?<^n?|?js? 2g?T%X? _? T?kl?[?{c?a3?H?_?Y??%?HG??u0?";?bj"?0$?fTZ ?D=?cX ?Z ??Y W?}?ϔ?o?PIhj?I?̱(?'?6?$? E?՛?‘b??`(??f??m?U?^?a??\?$`h?hl?x/?&W?,?.?"3D?ܵ3b?R?y0?_l?M?/?%u}?U8?{#?t1O?cu?t?9???w_?+?pt?$\|?s?1$)$? "?:Ʉ?BhB?T_?VQ_?B?'?=s ?8'?U?p]ƾ?$???oU?3z'?Q?|Z6k?I$լ?VZ?of2??gnϱ?2v?v?/L? c?5>ZQ?El?cZ?@??Ju,?QۣG?ǚ5?[<?B?俁#?#?ٵ?z? ?E?Jw ?lK?`1?on?%5? ? ?)l?M?ʚ?]FR??J?Ҟ?7? &?2Iz?)B?Z߯?d ؤ?ړ'?_Rx?!}?d?\f?OT?۴o?0]? AB?SEB0? ZK?!f9?4?Jry ?Zt1'?^`-?ZQ%?+{?]qn?H ֛?"W?o?Q o?uvx?t^?EfM?otg?U?'<?*?ƥJD?b3?H-?I??c1"?'>??,,q?H?o?eig?]f?N?H ?em?6}?2Uֻ?[o?bʴ???NO)(?c\o?E_?aNx?ܗg?i>SN?=C=?ҴV?&>`F?QfX)?LV;)?y&cn)?NR)?<)?T(?F^4)?+?)?(?(?f&(?(?:v,`(?3j(?Nd~(?^T\J(?Pg(? f(?Z(?*=`&?"6&?TQ>&?wS&?ۣ̀&?Z&?q&?=s&?!v3&?[8'?v&?â'?eH+(?_(?xF(?j e(?'?3Ͷ'?7cZ'?8'?QF'?_^@'?$g'?A)'?Fӣ'?.MR'?ؿy'?*pj3&?E &?lM&?Fm&?%?,%?gM%?7;0%?&w%?2H%?uw%?S_%?W'Y#?a0q#?XUә#?*#?yR߯#?^}h#?#?-#?>Q0%?"%?w7$?J$?a$?݅%?g$?+u3/%?`E$?s$j$?&RD$?^Y]$?$?]r$?2A$?L{$?hן\$?/Sq$?w̩#?U#?F"#?#$?9L7#?#?r"#?H^%$?@+@$?]$? $?@#?ߚ)#?ΦO#? ?]7#?MY"?] #?m"?_ "?w܌ #?4B"?s%"?۔"?'tȽ"?FM"? S}"?1I"?c"?7 Ӥ"?Q3r!?vK!?߹!?Y!? "?A)"??!?wU"?mvq!?j!?|!?K!?v4&!?W!?^k!?A!?qs1="?f"?]fQ"?16y"?Qwk&"?#Sӌ9"? 0N"?yn:!?P!?"!? 8!?~~e!?Hy!?'*M!?? d!?QH o.?=.?5};.?3-?cQ.? 2 .?K@.?A-?Qj-?OG-?+-??Ϸ,?@/-?g,?ۄ,?RrT-?~,?ƒ -?@ɦ,?He`e,?,?)$t3,?7,+?=Sv,?Rd+?c./,?#r)?as3)?D)?uY)?q~Oh)?C)?ҐR)?:B)?y_*?g)?ހ)?6*?:-*?1C+?*?¥&v*?&><*?"Dj*?v*?*?uN*?bI|*?@| ޖ+?L 2+?\d+?ڈJ+?q.+?*D+?uv+?ib0?JrY0?첂0?0?ddS0?SD/?ݥ@0?/?\޲x/?RMP.?5yM//?`.?w/?/?R.Z/?1.?(.?mDz_.?Rx.?Ϗ.?3 4?U椖4?N 55?zn4?N5?=4? 3?|4?"4?q1?zKG0?tʛ0?V/0?M0?Ęl3?!n`3?jTO53?nT_ky3??R3?_2?2?YWC6h2?D+}53?6Ӌ2? ㅾ2?(V+2?9nM1?n1?Y1?1?H171?3Z2?-1?=1?G&1?Ļ?Q? ?e_?v?٧l?cR?ql?E \? ?In?\ 0?:!G?*Pj?w[??T|?sIi?*5O?Fٱq?WcV?A3C?85s^?UM?ޑHo1?br!?F׉:?…)?٬x?LHu?mB?f(?K7?i?hT?x7?h)? /?v?xa??7\ kj?9 xL?/HQ)?󈃬:?Ӧ? sU?e*?Xl;?2ˇ?X9?IF?_Ȼ(??f@?{P?= J !?ιI ?F{ !?[`D!?n[} ?. ?mj ?W| ?q ?u ?Y ?# ? ?V4 ?( ?W ?> 9@ ?|i ?N ?S2( ?={ ?l [y ?(?ҙD6 ?:z ?ۤx ?5҆?]?m)?1a?XA?.a?Q3Ҡ?ꌔp?Qk?un?K$?BX]?NxF?6o?=|R?4S/?7K ?gDK?pz?Q;?ր: ?Šf?i ?#~? ?W?`V??`?Eq?4?|j{?sI?im1?. s?*mh?wA.:? !Q?L(??:+{?D?!c[?lLN?_N?N?r3<N?}XM?i:bL?꼏M?`2K?TM?}22M?BϔL?o S?4w(S?{coR?1vQ?T?]:S?ze_tR?+UQ?`P?+&P?WʨO?BiKO?rN?a(Q?_|vBP?'MP?O?ů9II?I? H?bI?ƬwK?J?D9FJ?oB+L?QSI?ejoK?J?rD?\y.W:E?<\D?AHD? PE?.E?GVD?D D?'pC?D?xXD?U!5G?F?*jԡF?G?T-E?ZqF?bt6G?謨>H?:H?"b[G?Ql)\H? @?/??@C`b@?K??<??ĵ>?H??I>?kA?@?,<8//A?GV?OHq=?1>?.X=?#6>?ř'?=?]>?cRm ?19?մ2?!%s+??N?$?^?/K?5n&?R;? Q?l??8=?({? ?0G?K5y~?.?gT?TQ?A?]?}?̈?:濁?݈-v?<n?~Nz?/'r?NWg?"`?vj?8rcc?qcX?Q?qs\?`35U?9RJ?;?NsC?8?@vN?i(??;_F?CR?/ ?l5%??$JϘ?Xͥ?a:L?'oꝬ?^/fk?uh?'&?FEq? ɚ?? ??#??u-e?LIkA? V?ec?1?i?@nI??cIi???a?O?h?ao?=?-%?Yx?d< 5?#G5?-.?;?\lx5?cs(?Z ?}0/?ꈽ%?F?/KP* ?2֢??-?bN?p?z?7 ??GCRn ?q(?6s?q$?sy0?6H8?( Lw,?m)r04?'~?ty|?s?:"K?W.z?#>i?яZ^?"3p?nQe? R?WֻA?0I?T6s<?<Z?)eF?4OO?̝ ?wޞ?zf?G&@w??(?"?q?Q~?Ubg?1|?w?k<\m?/:{p?6@?BN?,F?6i?x?Ʃ?n3&?L}-?uc6?g?5ٹ?ܝ?Z<?]ZԶ?R?c?22Ǘ?e?e#??*q?i?l?mfL?OW[?{:?YG~?P?+i`?m*?\0>??(- ?U4?[?:°>?3F"? ?,???vgq?6?d5?*?m@?0yl5?h?P9s ?ù?Q\?MM*?b?p!?ᣭ?3H?l?o?ֈ?jUb?o̩?b3?bB?.Cmh?6?tW/~?ʄN? ?vz=l?8?K?ZX?^:g@? P?^d?!Vr?["]?~L l?y!?iF?;3?Qi#? j?G??MH?Eq?ʅl?% ??޷?=?fX??פޜ?U]?7LĆ?ba?6Л?DAL?p?ϮE?-[?GW#5?I?lN?sJd?ORJ?U?J?)Nu?gQ?Z?KDw?Y:?w?[k!d?!持??O0]?8/d`L?,d?W?hX?v}?Ki#?*6>?Z:?fG0?)KbF?/8?'P~s&??1-?L ?"?f?2d ?E?+?M? ?5'?i?lK?rF1?j? M)??qRр?`)w?N}?l?n?Xq?5?Ufy?{?X?? b=?:U֣?+ʩ?wÜ?’ ?kP?KU<?o .F?Y?k4?' ]F?P?4y?c?kun?K`d?Z?10>j?lt?>?Ee2?I1X9?"OXF?vO?ޅA? LMK?冑?ɲ?lT?Ѐߕ?lK?{q>?BPA?8瑦??f??~?`X?T`?5NS?* ]?/(-h?˙yp?_Qde?æl?ϫ?z`$?\\x?n)fԀ?Zt?z?%|?r??~Q?,?L?4?U?p?,(? ?z2< ?B?,_ ? ? ?%?sWi?o2?'X?)?t?3w ?" ?H ?>ʻ ?^+ ? ?, ?P ?4 ? ?^ ?t(z ? ?-Z ?6u ?1z ? ?a ?l?O ?Ԍ ?0- ?8FC ?؀ ??V ?] ?r} ?,%סy ?9:u ?%)Ï ?D|1 ~ ?-% ?۝* ?fz3 ?Aa& ?V(/ ?/c6< ?>gD ?8Y7 ?:Ϯ@ ?%M ? _gV ?0C2gI ?zNQ ?],_ ?1]g ?־Z ?ȭc ?3p ?}y ?OMzl ?Yu ?h43 ??"?Fր? I*?]<?R\?rA#?IhP?=I? X?rQQ?WB?|i1?3%:?h*?[e/J?S7?h??N ?{? ,?с?qq?>=_?^h?3}X?>wx?c?G|l?r?u x?1,?K@?xt?Nk6?ϒ??5?uw ?(dB?Ȗ?1?JE? ?}?ZÓ?!?+K8? n?[2=?m ~3?Qz?n?|8ߔ?8E??ZVAn??Ҝ?6 ?IO2?Ғ۳?0ȇƻ?~b. ?7 ?qV) ? 3 ? h@ ?Ce (J ?{.VL< ?E ?sS ?? \ ?R$N ?EX ?f ?=so ? qa ?~j ?. ?k ?! ?+Y ?8 ?Hu ?p;o ? ?cc ?bu~ ?FM ?'5 ?M% ?`. ?C ?͕I* ?n,?w&<?J5?N$? ?Pu?i);X?Ip}?Cr?Y!?gl?uU ?K#/m???5!??SH'?+xl?z?jẋ?Nܜzw?2ҵ?}?@1g?V?0o?_?/ϋ? ????BPc?[ ?>?1 ?qmU?pG7?Z䝮 ?.Sg?6??? 5?e?P?P"f?\g ?ߊ?Iy?]¶z?$ʠ?|rIE?a a^?q>?i?M?V?tO_?{J_?0V ?=j ?X?<?+?,?%Qy?vm?2z?JA?Ď?F?F?XR?䤘?"IY?̳Ғ?u? c?{?Qsk?)GP?'b9>?PX?E?y6,?;?!3?N=#? e ?[k?-Z? 1lF?q{?[?#sP?Tv?n?k%?ew?\ /?Ϸ ??o? t??[ؿ?tC?haȎ?%_?{ݭ?`:?*?vЩ?ze??=A$?:y?ab(g?q́?7Fq?MSFU?B?j_?'L?Yt@40?Ȇ?R9?!%? ?PdF?)?V_?>D?hށ?l\?⿺?À\=p?^?˜Uy?\lDEg?G.M?ND;?jU?3D?熠*?uy?W?2?!?O`Z?@??Ǐ?/?y4?E?3һ?5A?hvT?Տ?1ڻ?' p?[葑?W?r??n+p??? _Ox?|6x_?EN?ҁ]g?>CW?\Ap>?$-?*G?06?9K)?n[()?Ox)?7EF)?_1)?Fʓ(?,")?{(?8&?mr(?a[(?qI(?8W(?Zxib(?'7(?:Xs(?n%oM(?r]&?wf&?&?3>&?%+X&?)&?cf &?[2A%?)&?%?d %?h`v%?9%?Kθ%?-G%?@%?M\%?qg*%?d^#?R|z#?*F#?!b#?6#?HT#?Ι~#?=&#?s$?*x$? O%?)3$?f5U$?k0 [$?$? R ;$?CE$?'@T$?qmJF}$?3B#?u$$?{S[#?|QP#?M4$?,@#?\`$?v.#?5̡#?eiqJ#?oj##?01"?7tH"?["?2"?Ѿ"?`"?T8Q"?bu"?~z@!?`"?<|ot!?k# !?3""?e!?\!?$!?@oC!?e !?iEx!?ٕ!?a@̌!?"!?5"?J"?7 "?_B-!"?}5!? Ssb!?G@!L!??!?D5v!?erk6!?L!?=a!?$.?5˵-?YiB.?}Uj-?ؒx-?UZD,?Ζl1-?l ,?.m-?mh`-?U-?3 ,,?\$K,?i+?-"g@,?B+?$2,? +?:(@D,?N4)??pG)?[ 25?a4?f4>5?x4?f4?0u4?`3?-ڻH4?xI3? I 1?H0?%A0?@j1?0?D1?e0?RN3?(2?3?B3?rֈ2?-1?̼22?_1?n⦰2?u1?&A2??z+C?f?0?!?q???O4!?:(?u*?}?ܼ1|?X+?Ʊ?„f?רC?_?U?nD"2?юp?|}yC?o+T?Oo!?/?%}pq2?L ?K)?3̦?BJ?7m?.?_???B?H<?t?"#?ϴ7?T%^?jD?IQ-i?=*T?*?b?(4s%:?15n ?h? $2?b?jg ?Ut ?J ?R !? ~ ?6?:x]{ ?$ ?#z*_ ?)Rv ?v ?Kct ?~ ?l ?N* D ?lu5" ?pZ ?.d7 ?Iz ?Ii? !2?O?B` ?$.4?/),q?nuz?[d?DT?su?RG?y}(?X?~8? ? ??'?sjw?KL'?Г?01?Y?}Q^N?n?j8^<?D?T$L]?}?y8aN?2&M?ƯL?-O?JK"L?w?,N?V kM? A_R?H+Q?#|O?6lR?Sx7N?aQ?.c0P?hA|I?JpJ?BH?/]I? ,gK? L?pJ?3K?_!E?ĠTD?GD? ~#E?mC?H*E? URD?F?\myH?+a¥G?o1I?ΈF?RG?.%H?,0??>? ,mm??2@?o6.Y>?Gq??sl;??+j>?hXQA?;ډ=B?$}k@?nˣA?),C?f_.D?.qB?ɋR?DHf\?8?I2?>} ?\?=/|?St???5k?i^?2?x?7 Ej??|?`?W̲?Qܿ?-? }?MWPv?mϳ?g<?ka~?|Ѝ?퀝?5$?)n?z? e??h1E?QyCU?{5?F:2?zm*p?8?j4? Q)T??֔? o?fW?RE?v4?_GV?"$? , ?'X;?JD~?/?)?hϺ?ck?Ӥ?A?#?~L?20?Xb?yp?V̎?T?I8?|?k ?N~hU?OTd?K?rt]?ܠbs?y?fl?")y{?fF$?a ?Z ?>?,^?'$?qx6 ?g? ,z?# ?V?rš?7%W?Wy?`.ǀ=?G?Pg?!=6?q?.yp? X?xE?T?[Pn?b3?g+"?_c?? *?˫V?֩Q?kz\? ԍ?!G;,H?(#{?gK??W{?DDB?1Q?P?@?v?7s?e?w)?? J?$?c]D?P\9?JA??)a?b9;??|Ab?Hг:?$¬;?UC?t? uǷ?]|? ?>_?\'V?%Ei?Z`?v&M?e84?+@?@ /?dW?ĵ=?,5WJ?k]?xn?&<?lW??m Z.?r?I7?}&@?@; ?I!???`+?;>?P$?@8?c9 ?M?щ?n`?#?E?~I?:??c#%{?Y~?K 1??:U#?.-x?߫?B9ݹ?Lc$j?-X?U-{?o$i?h)?"?v=8?'22?|?e ?J??}B`?c*?.._??{Po.?Cl'?95?h{-.?wl ???*'?-1Y?P=?wfF?i~5?7y-A?{|O?hX?b?J?Y.jU?Ue8??l-?րvܞ?ns٪?-v ?M-??=?ɐ??u?6>/b?p?=oi?ʾ9x?D^?Lqi?ݧp?;К?bM$?Bz?g0?eHcx?]sI?v?Dg? O?:?۷x?l,?"~?>z?x?Rå?< ?* ?{>jf ?C)U ?As ?W?#=I?o?tA ? L  ?oѓ*?J?u" ??|* ? ?% ?# ?N ? ?Ʊl ?Ғ ?K ?` ?)!H ? ?$ ?|L ?΁f ?p& ?0 ?2 ?P脡 ?b) ?u ?R?M ?)~ ?5 ?iņ ?{< ?ю3 ?ec7Y< ?PCj. ?|؇8 ?m(E ?8M ?^hA ?A$xI ?jRV ?.f(7_ ?/ R ?9IQZ ?0) h ?#ip ?8c ?`B ?ᶢ ?[qu ?c ?=dz ?X` ?nd ?4 ?S. ?7;$ ? o ?ߙ ?@덡 ?7 ?ux ?.jt ?pn ?}} ? ?7 ?@ ?(O3 ?~fM< ?-J ?GyS ?E ?pN ?=\ ?f ? +X ?˄a ?go ?x ?B.j ?ws ?) ?Pe ?I-* ?3Q ?9 ?+ū ?M ?%Y ?$/N ?L% ?#u ?e8! ?JD. ?rO7 ?*+ ??Ф2w?&4f?:?@Mn??x?muz?Ф?PG?zǭ?ej?G2V?j[z?}b?: C?/?N?+Xb7??9?Qa7p ?2c?n#?>?]8{ ?-Hp?1[p? ?%y?OO^?dOL?Iivg?m3DT?;;?!8@*?B?F2?)M??!?Π?ҫQ?t??Ռ? T? g'?C,?u?Sv?r?f Ի?Pb?vu?Ө?#ҝ??b)eo?Tz_?(Kw?wJg?GO?"4??8W?PI?΢[/?ɰL?ĿP9?0>R(?v&?\@)?E)?{i)?@0)?7%)(?t>#(?끌)?^@v(?YI&?&?ZA!2&?br&?{K(?J8(?7V^(? w(?(?Y8(?g/^(?&?Q-84'?m"&?ָ_'?y[[&?6s3'?cY&?n| '?-$'?['?ۈ0(?.^'?ti c'?4LW'?6 UL%? %?Xi%?[z;%?삪1r%??%?3-3%?`7R%?M %?Mm#$?=S %?$?ưD g#? /PZ#?vC9@#?%`&m#?=0Ʃ#?;#?D\y#?7#?ָǮ$? ~$?n$?qW$?Rl3wM$?R @#?$?Ll#?6tT$?Y{#?p&$?B u+F#?ڤ/C#?"?- s)#?"?3"?~܊"?i"?Qk"?00%_"?x:45"?o"?e-J"? !?t!?%?g!?h @!?u!?Չ !?c%!?v2~ "?v)!"?ɱV!?M"?57!?QK!? 8!?)!?Qwr`!?S!?o>!?Rb!?1-?@2-?-?PY,?Qh$.?j5(O-?q"ğ-?L*E&,?] _,?,-?݅,?nĖ,?cIqQ+?VG,?wõ+?nm)?Y)?cZ)?-)?)?r-}Q*? )?ֵ)?ȗ2*?@*?G+? PD+?0M*?^*?Zn*?,:D0?ےɅ/?/?=f,:/?;H0?ޓ/?$0?z% .?^t6.?b.?7-? l/?GT.?i.?LK5?E4?Z14? ED3?X\4?E3?Uz5?31.4?ֽ3?;(4?=^ 1?+2?D1?#1?mlh2?o{0?{%O3?kX1?Lxc1?t'?=2?уS4?R?L?*?3Ι? +r?V?m ~m?-ԧ?2{{?Q2X_?4X?;2j?dLC?S?{L,?N?$֦N?_,?92?f**? YzK?_ ?W=2?{c ?0ňi ?/|W!?^%A ?r t.?Pz?A:?N/?zUC?NIq ?Q ?%" ?{N ?0 ?^j ?p ?* ?Im?b'K ?sN`?OG ?$}*?Fj" ?wOj?J?Q~}?月`?-)?GS?Z| ?A? @?st?NCڟ??D ?l?H?]dR??+?эxd?:M?gP?~U.O?3l>L?P?O?M?OҁI?iK?^췣J?H?u~L?(;/K?i4J?]c3E?宀F?vӨxD?DtE?#~G?W˵&I?_ F?kNG?u??x>? - ">?9@??=?Ԭ??A>>?2A?EC?B?:g)D?7f@?ui[B?Wz^C?wu8?$^7?6?Bu'6?=E9?s: 8?kS7?5?Z#5??6? 5?O.QG?qS\T?GxIS?@;NQ?&nKR?{yO?&(R?v;J7Q?\uX,x?2\Rl?3?Ejt?Pn`?77K!K?KU? /F?4h?tP?H{[?䘝?{@?l?F,?a?u˷?"ڱ?Z?_o W??bq??00?A?86?i|K?A?$%7?>1?$?Rt?Z?P?A p?aa,?Ĩ?$(#?3q7?? ?)???oz ?% ??'Y3?R?̧ %?ª ?Ü`?OX?R?G?R? 8?bT?[x)?4?#?.?M@?tL?8s:?U0'F?yq?=M~?Ńܒ?:"?<tq?rX?{d?Q?pZ%?5`?Dm?> ?j?k]?t$ro?F5?tk?h?>v?gв?'Yd? &?T3Dy?,x?.R?i5?_|?HRRp?|JT?̾?#c?'?FQ??PF:S?ciz?5Ly?JC?^F?Y4u?V?m?y4T?aMB?5?,G0?xʢ ?yK?V"?w3?r?6?D?Grc?>;B ?A ?@?f?"?}t?nR?~lm'^?uRu?Ҿ?k#?c?CM?/Nw?=??3"?͜N?G?̸+y?[?:.?k*?" ??YL?E? $&?S1o?I&X?-׍?Wٛ?ŧ{K?5|4?X7?f?"x~?u'4? p?f?'M?\i? p?~?A(s?Ĥ~b?:3?!a>?'tq?Nʀ? I?J~.Jf?RS?K?'C?{ ? ??[s?4?RGù?r:?k? M?b??Bb?hG?*EU?nVr? @+ A?'V?,d?5T?]=?k0?o ?s?,n?w 7?,??f ? eo?m ?&#1?x8 ?H?ɖH?:]!8?WT?S/C?b?K^0?C|?|G(?''?O ? ?PR?ݗ2?iy^ ?\]?Q2D?IV?&<?oS?Wwr?'Mۧ?SV?C??LE?)]?\ʈ?73Bi?39Cy?e?O?oz?I??(?Y,S?|?ć?U?JF?s?^Z?y?&TW??E??$p?A/T?Y?Bx@?yG?8v?X 4]2?dW?b? /?>D?X??_?.?ͼ@? ?̅e? ?fq?}?b?58kX?$h?^+z?{.=U?Y. ?3s(x?%bP?݇:?/? P??x)K?R@[?*0 f?KV?Nb?? |?;?O̺?ɍX?}_??wa!?iS?:?7e?qq?)^}?Fm?iy?~4?Z0?.*?)?|?pǓ#?)v?cjz? ?Ihr?@`?ߕ?Qh?X4?ip?͑ ?p ?{! ?B ?-D ?1 ??H? ?!ku?U ?U) ?03 ?a ! ?OQ. ?Q ?)Z$ ? ?d ?zC ?(-۷ ?;5 ?g= ?  ? ?p ? ?] ?F7 ? ?6 ?̮ ?Q} ?&ޗ ?4@ĩ= ?WtM ? VE ?Y V ?}k8 ?rE ?"M ?P^ ?ch ?V ?m-c ?Еn{r ?h#h ?yoz ?ڑ ?qm ?C'z ?셧 ? ?g ?9 ? ?J$ ?ȋs ?#I ? 5I ?04?Xm D?-?:Q>?CS?Cw?~[ ?Q ?\ ? ?P ? ?h ?5> ?ґ/ ?X!@ ?hHc} ?[i ?f{s ?gke ?:b ?n ?Ąx ??F ?6d=?w?-X$?H=3?CE???u??q=p?V?qa?Y?`?Qp?=Ӟ?E?zv?}%?h7?6?8W>?'&?8H>d/?f?RqV?uİo?L]?!qF?;7?KbxM?L3>?^C ? ?DM|?xR??a?ҕ?)? 8?_?J?W?wG?Dz%8??O?3l??ǀ(?u?G/??hV ?t-?I??@?q?v??o?Hښ?v?a?υ?'Μ?(z?u?D*3f?S|?9Em?$XV?( #G?ut]?CN?zZ?F??S?=M?,.?7ZB?/?7<ٍ?v~?ǎ?6F?_Io? sa `?v?[©g?>P?*ѪA?!X? 9I?2?h#?gc:?*?iCS?-F?L?ao ?c?5?O?Q[?R0?b??K?V?/9?JN?h{?zK?ɐ;??4 ?i<_?=@;_? 7?rr?Q\%? ͫ?;uU?t :_?`VK_?Q?)*?{?G=X?CLr ?㙞?+?31n?KSH?8?;?h?̷?} t?eJ?`<_?HETc2??=#I?6H]? Rs? ?X7I"1?'?l +??NƱ?i,M?14y?!E2?Ǯ?у?j?|V?ST?%r$?Ur?\?|ŀ?Zt?j?皕? =?LĄ?8?{?Qbr?c?1?sZ?=C?sxi?_ ߨO?O,?3E?98?N ? ?-=?t?3x?p?h]?sz?L2g?z;J?>)? :?+Te?ʢT?!\*?;?O?8ݨ?s'_??Ff?3?[I?f?[r?3?Plԛ?ǣ? 9?K?ܜ?GӴ~?rS_?>.o?MEJQ?R?C@^?.cn?/HC?|&1?}P?R%<?t ??>=+??M[&?gF&?o"C%?@C<&?c)%?:,!)?GN(?ECM)?={)?ջL(?s(?(?(?^h&?9t&?ˣ}&?\&?NLq9(?}eh'?ƟW(?Y!(?ȱ 3'?璯'?Q"z'??'?Gu'?>*Y'?~({'?i˽A%?F&k%?C%?V(:%?[2%?>A$?tNQJ%?# %?gIs$?s #$?c$?bY$?oZBs#? #?0ti#?D)#?HjV#?^Rd#?5'/#?\$?Q#?sK-$?̞ Gd$??#?ENa#?v,$?z.9#?r~6 #?vMf#?t,#?GOV"?ay%"?)Y#?s"?^m+"? wɟ6"?U["?^"?U?Gy"?2F1"?hU"?yH`!?!?M/!?3!?H~"?:!?xP!?b!?d@!?h ?|U!? /g3d!?Ϗ!?ny`R4!?C!`!?-k-?bJ$,?s,?*;%,?I-?P,?M''-?1K٨-?$r6+?E16+?TO,?CmK+?4y)?d䂹)?31)?+*`)?Oť)?T*?*'ߟ)?&w)?|*?\&*?y0?*?ƚ*?9/?˂'r.?z{\-/?B}0?n7~N.?ikq/?P2 /?T-?<+.?|Az.?V=-?W/i3?V '1?ۨ;2?ҥ24? Yӣ0?(d 2?ҝH#3?nb4?*lu5?zEY3?˚i4?\|t?oǼ?ʊ??o;?ɠ{z?~3?VN?YZ?Bջ*"? [- >?`L?5g?dl&?B?iyZr?r32?~ܛ?`.}?k2Z ?w?m8?"?8r?{ G?f0?q5wc?r?oK?7?H ?S59?Jke?l?D? ?< ?u ? ?.f[?‚?c^g?͌?As?S?Y??w6d ?/T ?J!z4 ?| ?p?pN ?Ķo@ ?WlV?Wp&?.XF?w޴H?=Ֆ??v?7=q?R3o?H??4M?g@L?nS~J?ĐRI?HHFlN?mL?,=J|J?|qE?*H? F?YVD?T~6QI?!EHG?RAF?b??]SA? x~>?1@?'6R!B?edzD?B4sA?H1C?s8?8&7?h4O6?=9?exw5?!-8?(]R7?L;?=?Tf5G?eO?C9?잗?W=?B_?4 ?~/[?F.q?O?[?3?xt%?P]r?y("?#?"? A1;?W,U?žM?{1w?$|q?=?rn?-?CM$?N*?0W˦?/M?W?O?B?kɼ?e^;e?`?դ~?1W?8?W"u??H$ ?0M?g?v6???p?(^1U?.=?$?j5tR?4?ڮ3?]gJ? )?C? ??4䓡?KԳ?FeRa?Ǘv?FZ?v?e?c4|o?$ٜ? ]?M?B ??=Dh?w?O4?ǣx8?I?8[?D$?bQ?_1> ?sq?6B?(e?'?ōQ?qt*?љ&?㒼?Ń?I?$?Dz?7 I?TGt?wv?헓?6adNH?a0?0f?QS?b"??KFW;?@5K?$K\D?!?8?:?'ٶ*? ?S%>?"n"?/?=r Q?&D]?VcK?:QW?Ni?cv?d?%q?A? ??X+?׸?3(? ? J?w ?Pp=?so?Gŕ?Ӕ$;?Y[l?b~?'?K? ?hr?R?g?PL?*u?|& ? ? ?b< ?ka?! ? ?M ?䍝4 ?}@ ?3. ?U[: ?af ?!ѷ ? ', ?N:j ?ڷ ?݈, ? ? ?8" ? ?FLъ ?}E ?ty ?M条 ?PM ?$ s[ ?PG ?E+U ?Aii ?RW#v ?/!tc ?Aq ?V3 ?|Q ?} ?< ?t  ?m.Iq ?#k ?p0 ?#s5 ?No ?;]t ?V3 ?(rT ?$BxH?b4M\?HA?/P?8p?Lx?pըd?0N&y?a?Q?$??f?^Oʒ?:M5?ǁq ?ϊ?Rl?,(?׳?s?[+? 00?Ѷ|?,8?D?b ?s, ?˯ ?7 ?)/H ?l<| ?F ?N ? ?> ?' ?gLT ?ƣ ?wT} ?K ?u9C ?kӮ ?9m ?ig ?Pȁ ? ?{K ?[ѐ ? ?5$I ?lS ?@ ?YN ??^ ?{l)o ?f ?w ?9Y ?%f ?XQybo ?۽G ?EG ?x ?d ?*% ? < ?,5% ?K ? ?p+ ?ֺ; ?$Qr% ?b8 ?Q΁#F ?A`2 ?ŷ? ?$ ?VA ?"' ?QW/ ? ?b ?ط ?+Z ?C% ?[̮/ ?$^! ?4%9* ?p:9 ?RgSC ?v3 ?/> ? pM ?ִ 3W ?6ӹH ?ĊS ?wB` ?pEfj ?RCR] ?Qe ?$ ?W ?X ?-z ? s ?B ?h-P ?W3 ?O֖ ?!Bc ?Ps ?ͼ} ?1\o ?һe ?QQEx ? ?x- ?3X??|!?CE?T?,=?4?b2D?>?s_M?IJ? פ??2?4Q?娇?BaD?ޕ?k.w?xx?<{f?Rφ?K}@o?n'?hn/?%?\!?;`T?6?LE?N ]?<7#z)?V>Z7?D F?cd??AI5? ?%? W?j?Xh?Uu?;V?x?D#E?+)z7?+N'?R??6/?/R,?3З? {]?|?2e?y$ ? ?0%=?_?V?P? >'? 0t?:?[y?ld?CeU?^j?ϼ_]?,G?+c7?N?$@?9eIA?5C? ? ?EqN?&`?C?vgϥ?Y4?.7Ꜭ?;?LQ? IvE?i?o ,?`?̙~??!Hyo?|`?6+Ow?wD`?ۋP?Lh? w Y?UA?`Q2?I?,9?/%#??-*?5? ?k?G& ? ph?9{?C{?~?ȘS?äǜ??c ?^|A?T3?up?\w?'cw?8Ga?/S?%h?G>Z?~jD?5?T'K?<?rJ5'?nф?Q].?_? ?Ɵ?p9:? ?m})?8?LH?o?](?+:T?Y?iU{?dp*???m?߲s?ZP?j']-?w-?e?o?zӗd? : ?u&6?e9¥&?^3K^&?b&&?J'E&? 2d"9&?)%?͓ן%?%?;L`r%?/(?kRv(?D_H (??(?щP)?Nw(?Yp(?(;&?( 5'?{A&?e6Q'?aCS (?e'?%'?=A(?υ`'?Sŧ'?X'?PTSb%?a#%?%?-!9%?q5$?㊨$?ąvl$?$?b$?r,A$?̛Ju$?Tp1$? #?K #?Ƈkr#? Y#?A $?>mĉ#?9#?E#?"?nO#?ZJ@#?]1Φ"?.2i"?"?q27~"?Am+"?䟛!?E|!?4k!?@"?h&!?f﫚!?w!?<9H0!?, ?>pb ?R\!?в!?8!?/X!?/G,?UCyL,?E O-?#N,?Ѷ-\,?H+?5*?Xԏ+?}p*?&F)?JzX)?AVZ(?E)?ՔE)?}nbI*?Gx V*?c^uT*?Է _)?zeoR)?53)?|L/?YM5.?1-?f 1?g^7-? FT/?V.?}m2?^]5?bB3?M5?H/E0?> P3?`P2?-P.?R6?͸:?B???xhmu?2+?G;P?,@t ?n}\?<$4?P"Y?vۈ??+5~?*ϥ?-&?&Ʉ !?|*?v=2?T?u&?g^v?;B?%ye?n>?k?*?C?lņP?1Gl?3at?3: 9?!BZȕ ?R5WY ? ?8t ?ȚX'?Ob ?RET? vs?X8 ?@F(?[S?fb;?g?wW?g?u?X?\'w)?攑T?{z{J?έlH?Ё#iF?]rD?'uoK?&ZH?=XF??"V@?4 nGeC?O$A?m&>?%кD?k[puAB?%2I@?GёY8?U:?147?B8?fCT ?m~ ;?=?Sh]U?XT?HmR?֕WQ?KO?7Y'eL? $N?ZlJI?'N?BZUL?ayJ?nyK?- ?#tm[?oGㄵ?.??sh,?iC?}JF?RHas?H8?)|V? ? ?Ig/?O?Eܻ?}?`9?K)?N?0?͡?WΊ?h"|@?B?0z]/?O:/ ?gR ?I ?1Q ?z ?4  ?Sw ?ԝ ?[ޔo ?re ?4![ ?j ?Tu` ?P ?bŋF ?~'V ?n,K ?TKN< ? B2 ?DV' ?^" ?Y8{A ?9, ?&67 ?93 e ? ?j ?Ķl ?RT ?x ?ez ?4 ?7 ?Lj) ?vy ?f ? ? ?wZ ?U ?Ġ*?2???׿w?R?l#?SG?.?F(?.?G ?/? D}?U?Tye?rv?3\?+!?y#l? _}?z%6?0 N?Pb?Rl?c˅?5=?e?f)?v%wuS?-??oec?[TS?iH,?B(?8?7, ???#`>X,? (?Vj?Գ)?B,?2???˂:?43*?BI?vm?9?p)?%I?ŕ3gg?2cI?{?qa?0?s6?" X?yHG?i?9/?U 2V?DOE?\Mp?vz??f? g?p҄?dLc?(?D?G>?+#9*?o"?)?=l?B?~T?o?K?[6?&P???@?6Cw9?jѺ?{ U?O?)Y?/?q?M5 ;??\~??}y]?*Q? 2?8?_.?`rv?i?|A?;qQ?T'[?kJ??5Xsv?"ei?~[r&?r3U?@+?$?Dn ?]%3?Fg\R?h_?l?1Ij?5:6?.>?|?Qg ?m?ͮ?|?̹M\??|Kq?7>??09?~??y*?U ?:-?N ?F?7Ţ+?1> ?Ψ"C?85y? S? o?hB3H?h?뚡?Skl??+L ?G^?UY?z?D??Eɛh?2Ӯg?Yq?B3u?`?S~?wI?JW?\e_? dw#?)5A?э?2Jl?cmrqz?o?R0?t??b2*?a5B?u? ??ќ?<Nj?LN±?<?u b?F(&  ?w?T?"!4 ?Jb( ?v? ?L ?v ?$- ?~# ?Xv# ?&֔A ?t O ?3D: ?G ?D> ? 4 ?fש ?Sg ?,m _ ? `D ?c ?U[] ?I$k ?8_U ?^Ig ?x ? ?C ?Eu ?Hu ? ?nj ? ?Q ? 60L ?Tî ?n ?(e ?< ?\4 ?s ?(I( ?%\+ ? ?[c ?I!Y?[m?tX2I?NV!a?؂?{h=?BEv?;)?H%?@?/?!??Do?2?? =?.Y??.i ?g/N ?Ԃ ?ڌ ?wP ?"ٵ ? ?6B ?}Gxl ?Ƒ ? ?BK ? ?ec ?"# ? ? T* ?  ?/m ?DTM ?q ?>xj ?S& ?rS ?Cvֿa ?]M ?LG%[ ?@o ?_} ?rXh ?v ?ۓ ?ז ?2ρW ? ?wrJ ?AT_, ?v# ?J9 ?~9 ?d#S{ ?U{- ?2-'G ?T ?t; ?#wL ?QЊ ?{ ?\ ?a & ?T ?' ?o  ?5. ?4@9 ?& ?+C3 ?~D ?C(N ?%> ? ۵J ?.Y ?(Hj ?Eb ?ӣzs ?-U ?cfb ?13(k ?s ? ?P& ?{ ?ƛ ?*I ?h ?d ?o=.k ?\-| ?Ќ ?at ?ݑ= ?Y ?= ?a?A?ɜe?7s?RT&?#?T??d?`x?z? b?]Q?RfŬ?z??i?j}?}?r?Fce?ӏ N?To?hJ[?2?ٻ)?z ?K?7?;:D?G#?i N1?2?ϜX??,-?"|?&h.?}v?S?4??9 ?̪?'?4?ٗ1?1D!?OM?/ߒ?<$(?Z߿??p⡵?Ŝ?Yʆ?!o? U?b?uDH?u?T? a?jE:?I*?_M0G?a5??̳M?vZl?i &?/NZ&?&?c i&? ɞr&?!% E%?؊3%?h/pX%?7"&?rؘ%?)D%?/%y(?L&{A'?-mE'?z$'h$(?^Lj'? ޴(?5V'?R׈'?_/OL'?2b$(?@P%?A`"%?FE$?M$?WAtJ$?#\$?&@#?mk$?eX$?廥B$? *u$?Rl#?_,3#?FO#?9׆ ?hS ?:PT!?e'!?*!?Jװ?Q!?'N:-?g+?;ID,?! [,?)G++?Q),?18q+?S$ +?XIR*?(?{XI)?o)?@)?l_(?` E*?QGU(?ե5)?.)?F5z/? C2?5*1?bҋ{.?`]3?'NKR1?xP/?ڀ-??,? y.? ,?IU?>?!Cm?@N?Ω?&U?XZ??Ř? 4???ڏ@d?N?^b? 0?=V1? ӻ?I?^d@?ŋ_?nݭ?Z?Kz?_]?Bº?e"?D7!?4?92E?WQ-?evS ?Y ?fW ?DC/V/ ?Qb)? ?`c?>mL??)v%9?`?#?ʺS?ӶE?5'?SphGF?L-C?>"A?5 M4??h(cG?/:C?cA?FjO9?LS=?I;?X%7?F?z,??;? 9?77?¯T?A T?蚰P?.K\O? QrM?u H?+%K?c'D?vK?KH?2F?݅=?jo??)?I:T?1u ?! ?r ?\ԉ ?r%^~z ?h5u ?9( ?t ?» ?Y ?O' ?G ?0# ?U@p ?e ?|u ?p zk ?]z[ ?E[Q ?_6*a ?.+UV ?.F ?!2 ?3b< ?n2- ?S K ?V337 ?WwA ??t ?"e ?b8 ?A ?K; ?? ?<| ?dG ? ?j ?\^: ?u- ? ?ez ?'2 ?3]??7?y%$?Ħ?A m-t?Q?ec??DT}?B?o?R%?흂? (??JI?s ?,h3S?Jz,?Q??, m?iqQ?mCҘ<?utO?'?$3?a~?˺? fW?c#?&? w?oQ9?c|Q?+?WnB?f2?$?̒&u?]2?;pp?4Z?}zQI? 7"?|f?bm?? ?E?$?dbU?AҎ?'q?>iA?/)?ٜ]?3z?ng-?Q?BJ?/?8d?]k?@?A?ʂ e?l?V;4?0{A4?fxg?c?O-?N:I??t$?(~?l?8*?w>?W? ?&,iږ?0N[?ΙoD??hp?%g?Er ?x6m)?H@?S*?L`J8?zX?q=$?M?3nA?'z<?' ?M#?? d\?x0?/Iʯ?mI?E8?/kc ?M}? ??"8?!?8pX?"d?ǵ?HY0?`WMp?M)?%? 2? 4sc?š?]9?N1Zz?w ?K?p?IL?H";?A{c?]^ER?*?[8?A?-?]z?@)?وai?Ff?O<?Qm_?W9?o???Цk`??󖬭?mk?)%?[?njd ?F3 ?/ ?i;yr ?r) ?gӥ@ ?@ ?$ ?H. ?Y{ ?upM ?Ͽ_ ?/; ?>8V ?!bU ?08q ?߈> ?ZKS~ ?կ ?S ?Vh ? ?ҟ) ?&hڞ ?*Y ?Wpd ?ө ?  ?}{%[ ?3+ ?L7 ?:@ ?(k ? ? ?-( ?: ?5;L ? &  ?J j??A[? "`v?!?W|ɷ?)=轏?)?@?5?'?? C?*a??H ?c0 ?V3 ?k, ?Q ?P ?qi ?D*0Q ?|I ?ʠ ? ?J ?Vl ?t: ?(\$ ?( ?8 ?6 ?$b ?4L ?/b ?+!p ?0wvY ?pTi ?e~ ?m ?0Kw ?؍k ?ʹƘ ?% ?p5 ?gZ ?*J/ ?#d@ ?n8' ?{7 ?kQ ?a ?#I ?bͼY ?: ?)@+ ? ?m $ ?8 ?ϜGD ?g1 ?]dZ*? ?  ?FiQ ?%lXh^ ?CUK ?5a zZ ??"nk ?3 z ?z}g ?g4s ?Έ" ?>} ?mTY ?`E ? ?Aa ?z] ??j ?& ?<& ?㶐؞ ?]?Jn? k?QߍF?MQ?鱭? ?LϷ?Na??f ]?o?A8?"-??Lg?8y?櫶P?d? =?id?djQ?re?⋻?;H?6R]-?e?$9*?\lv>?Eo6??cA"? ˫?Qpg?+&??kJ-?2?bNZ?8y ?Sx?KK܎?8nͩ?H ?{S? ?>8%?[?}w?Ij?27?▞?lp5|?g?܄? o? S?&J0?m UB?˾"?^[?l4?r9'F?,Ϟ??Z? P/?&?R?6տ?_>?9?GL?@ϰ?-q?4+?4?d2?\Vb?d?/S?7\q?T7^?0kC?jC 1?sM? h:?: ?9<?\?UP?]I)?_l^r?H ϑ?J.j?\*B?ŷ?EK?_?Vp?Q4?n}?,@7?ew?{2I?jf?rۈ?mz?Џ??5l?9^?@Ds?MZae?YUO?,'vA?&VW?Y\wH??3?;d{%?V!:?͈+???t?n@?m#~?Reo?l"?A'v?!`?pR?W:g? ]jY?OD?2V5?ЊK?w=?.S&?^?R.?A?T[ ?60?a?)50?& ??f X ?]B?F?0?F?A۟?s?o w$?#Gl?'G ?X.O?]c@?L?iRl?5j ?!!?0?$ϑ?m*?/?Rz?Rc5? ?A?>Ŧ?/0u ?z?'?W[=Pr?7 ?T7??d?6WN?q?D!?[??X{ ?.?Mcc?Z?pq?k?XP?l?mQM?xu?m_M'?"?f>o?8?q:)?z??[?Yr?=V?V?s:?+ ?T?wYU?x??6lt?W? ?I"c?T^9?Rze?n??#;F?n?S9#?Q}5?nq[2?*5?y2$3?a&?_q&? tW'?z <&?z}1&?@o%?H"%?289%?̳2^&?N %?D%?LT'?L(?͓J,'?Cam'?w$?5t$?t70%?ԗ$?$?F7#?ߡ#?ͱ"?kH*$? $#?as#?Ā{2"?4_ !?>>"?ј!?y^"?a!?QLO'K"?)px ?D‘!?Fd ?% ?A0N!?]%!? a ?#D!?=|+?8[*?-+?b*?8*?D-(?,\)? (?CI)?k:)?ߛc(?|/?N-? p0?dC.?tf,?G@D*?yp,?x+??̀[? ?e ?#*\ ?]U ?"] ?r& ?F ?Jp ?U- ?@Nӭ ?7] ?N ?8Ԕ ?z_ ?hڣ ?w ?I ?mY ? ?QC ? ?~ ?-ԉ ? ?P, ?6<1{ ?!p ?;6 ?Ww ?L ?9 ?b" ?l ?ZE( ?~^C2 ?q$ ?3C- ?ef ?N[ ?t^m ?a ?]1Q ?F< ?HvLF ?̤DD7 ? W ?3K@ ?LK ?c} ? ?u ?b ?ƾ2 ?{)D ? ?^ ?iy\ ?ů" ?4`z ?hY ?/`??JK?q?FO?(H?ǡi?*L?PCk?ċ ?n* L?"*,?M 6?i!d?8SK"?G؜B?}i?N?l.??5?"3?swM?st?L?'?K?4!?T?'?m?r_v?Ղ? j ?Gy?? R?2o6?t'}"?LX?2 j0?ɅD?#s?a6ˈ?g9I?%t]?wOi;?(?KQx??T?'q1 ?ԫo?A?U  ?A=\??! ?{?Q4?Qw(?^?d2+* ?=D ?{o ?6 ?_ ?FL{ ?FTP ?4T5n ?ȁ9c ?G{ ? Z ? ?Q ?* ?4' ?f!Ï ?s ?E2^c ?gᘶ ?"r/ ? ?DZ N ?h ?O?@ʠ?4-m?`3?Tʿ?0?_?;|?Ws ?y97?f l?q#B)?<^ ?qu ?ϳ ?h ?R4 ?]^~ ? ?9t ?y+ ?~ ?? ?צ ? ?z_ ?R| ?' ?u ?҇ ?Q6 ?7{p ?g ?R,i ?Kx ?*K ? ?cS ?b1N ? ?_ ?! ?]m@ ?Gra ?Q ?0 ?"q ?:` ?-n!P ?s* ?o"8 ?<! ?ky0 ?PF ?F T ?#Zd> ?KzO ?| ?i ?bO ?Pk} ?{Íc ?>o ?r%%| ?Ko݉ ?W&X^ ?3?p ?| ?꺹 ? ?2 ?d ? ?:I1 ?G-Ʋ ? ?^O ? ?F'Wk ?GD ? F ?x#  ?\ ?)? [%?&PN??I*?O:]O?Um?+J?G?˒? A?>?_U?>ݍ?"~R?Xqo?5?>? LߔQ?L-do?Oʣ?4 ?b?2?ᒪ?N5?=,?S?hI#?v?G5?aOş?>? YƮ??s{Ϫ?YKx?ӟ?i^ۇ?&?T??D?z_%?Jo? ?ɓ ?:1qb?9~8?.M?1k??-[=? ^;FR?$?_i?+l?ZkX)?d'#?w?]?+~?shk?_7?!w?')W?]YD?B c?,O?/2?dT? h=?Y)?^?Ѓݧ?20?wb?N?xC?;:?~??\?i?~ ?B2K?7wǖ?W?eN?~ۏ?NHD{?]gvl?5h?u?^?zFIO?ڐPg?{xfW?<A?Zh2?8"H?)8?v#?D?[ *?]}?t?, ~?*O|??#Нm?,Q?G_?kD?Zv? ˲Q?x~_?6?Ջz\&?' D?#,.?bx?}@?'2r?=?5|?Lʛ? $ ?z?g?0>?W 6?!*?(r?2*t?Y?:S1?@E?g?vys?:?}3?h?&G?u&?Qac?㛾?0??6Y9 ??7W?[?[K?'?')?N1?i=[?4t8?{eD?]eP?+?U?TU?A{p?=K$?@?k.Q?,Z?g)I??y~[?+? ?cJ?2?.?ֆ8?s^E?P3?̔S?GY t?^|0?Ĥ?R}Q?ߙfr?% ?R"?!r.?*Sz?65J1?~e#.?RxC2?^`/?۱P0?jϊ&?%?}6]&?R'?a.7u&?b$?d~P'?p&?d)^ &?μ%?΄M$?+#?|$?#?z #?=!?ǧ"?7v!?E8;#?,Z s"?D!?8h ?Y ?F;!?TU ? ߒֈ!?$n@ ?[1 ?=_+"?)?Kμ(?ͧ2'?=)?O&?o7K(?5m'?$(,?o2)?Wb^+?.*-?f(?/I*?|+Q)?j?m~?gvz?8P?oވ@?#&"?Z?$kp?6!f?'$v???A&?ei -?#T ?FJ4?}Qi?v]?}:?Ψ6?7?3?wU8? }x?> ?14d( ?C`W ?6? ?> ?(v ?H m ?QT ? ?`w ?ΰw ?v"G ?T ?ۈ1} ?XU| ?UN ?xt ?|t ?Kf3 ?sC ? / ?x= ?9 ?\ ?`< ?0.[| ?a ?+v ??3s ?_Հ*h ?/H| ?X|o ? ?j(SC2 ?Ei) ?w; ?kwZ ?@a) ?2 ?\ ?qiE ?zQ ?+)d ??T5< ?;K ?SV ?dѡ ?P> ?O# ?яbR ?P{da ?L$ ?4 { ?u& ?3 ?vh ?  ?{ز?_<??*?a\{?Yɰ8?`]#Z?+Ġ,.?z "?6:Cv?VT??16?A?k. ?|??ߏY? 8?T{?Te??@? J?d#?, F?(tq=?sh\?)IK?#F?4?*n?rs?OR?D/?վ?&??GT}?+_J?^X?]?Ɉ Q?^%?k2?d&Z?g Lr?MI?,W?uD?L[Rf?W?m?1r ?g?#2G? _?@?b T?.3?y? .?? 4Cg?Z8?*?%z?cl96?`?dp?b$޺?1q.b?\e? + T?s ~?j?{(?刣?_Z?' ?Qб?Օ# ?E ?a?8?_w ?Z-?`B ?;_ ?'T1 ?ۥyP ?f9| ? ?CĔm ?Fa ?s ?N ? (c ? ?-|p ?G{= ?ϔbC ?6o ?v8! ?2Ļq@ ?Y ?7{. ?Bn?>??7?"3+?%?@d?gь ?,E?ho?!̀5? d\g?O$ ?jJ ??h' ?= ?PZ:h ?- ?^@Y ?B ?2 ?в ?C[ ?O] ?( ?mlh ?m ?r ?0 ?ܴ8p ?[Fi ?B%Ψ ?L ?% ?lbV ?y_ ?b*M ?3;w ?UIf ?} ?J z6 ? G ?6h* ?-;? ?^X ?pk ?qQP ?pc ?x ?j ?5 ?Qw7) ?ݖ} ?~"ԫ ?x ?1u ?Z, ?wVo ?:,ꎡ ?u" ?ixU- ?HcbY ?} ( ?l8 ?wB ?2 ?Z(= ?aY ?s ? ?^5 ?P ?" ?8ip ?Pc ?_L?,??]?+?&ᇡ?b{_?!y?;ݘ?MU??-L?Q[?F Q?E)?$nnn?e>?=i4?!)?+)?[?ف{?_P[?K??.Ӣ?ks?Uz?TvyZ?Y2?zok??.!?4P#?A?)κw?0R?a?&?ܑ?1R|?J ?m>?NLo?rnG?1Gߞ[?13?ϼ?N^>I?fu]?e?N)?ь25??!9]??P?dC?7J?l=?60?)[?7<?<??鯗f|??[e?bV?n.o?6_?%|?&81"?\-?yp"?Ӗi!?*#;?a(T7?o?7o?d(#?Iy?G?LeU3?Oʔ8?7j5?ӑ S4?.?!$C1?3/?@*?H#?9 ?$+kE?.=x$?4?^?w| dk?k0? ?_(?^f_,?ᄏ-?<ω?{[0(?0$? Ũ?0??j9@?Z?y?:8̓? j?6??CL?២?%`}?!?)?F+?{?UѨ?`C??}?͚$??!d?V?C7k?v]?>#FrI?};?8^P?B?n8pq?5H[x?EwMd?/k? ?Mo ?q8 ?Yg ?9 ?. ' ? ?ɮ ?d ?;m ? ?yv?t?|?*{܎?.K?hB+?Xb`?6];?$/ ?,Zz?ُ$?d,?*?U`?N_}?N?NT?ꁪ]?"?ى?׋1v?k ?U?$\Eb?T7P?n?CX?=?ާ,? TF?2?jw?S=?^s<??' ?f?C ??C!? !?Y[ ?n8C+i?Bς4?`EN? w?w?h;?AIV?zW??it?DC?׷?U?>P?E!?#?lb]?Hӝ?z7? Y!A?ڤȨ ?/L?bSc ?ۼy?Ĩ?8m ?+?8d?9?-G?E5?[s?T:+?P?VO?eʙ$1?o1?}!O`?r!?p?en? 7z?hm?1?{3?p,?)?VrL?]? »?)7C?#CE?,k?H?g5?/U}e?ɂ?gb?LA7?+]?>^?г?p7V?DH.I?ԯ]?t2O?1-;?K(.? dLB?ag4?Td?pj?$`V?eh^?$+ ?ޮ% ?q ?e ?>+] ? # ?d ? ?T ?;غ ?}_ ?4y ?%F ?2CR ?5< ?]Jf ?b$S ?{) ?rTH ?E]0 ?p  ?&& ?%"{ ?-! ?:n ?K7 ?9} ? ?b ?W¥B ?ӡR ?nT08 ?Cq ?|M ?D] ?U9/ ?A*" ?=C ?9 ?C ?l ?$H- ??X ???tEP<??̪a?:Ϳ?}θ?C?Wle?pL?? 'J? K7?pj[?Q@?lK{? FN?0<?&F?Ŏ ?c?L?'P\?iT?:h ?پ@d?:t?͑?8@??NwTt?ZzB?~_?.B?b@4 ?DƼ ?k?|Z ?H^D?? ?LB ? ҁ ?4fn ?%Vf ?a ?YOy ?Dӕ ?_X7 ?D ?f@*2 ?M(6W ?& ?Q! B ?{T+?h/?w?ҳ?k1hu?e@Cڦ?s?$C ?g]?(?V=?kgOM ?Sw( ?joBE ?ru ?<'|} ?2e< ?\vF- ?*yu ?٨e ?\ ?{H ?M7r ?) Z ?c` ?d ?ی| ?'~g ?3] ?wڊ ? ?Ǵ@? ? ?}$T ?ybq ?9ˉ ?&! ?ΐta ?HC ?6& ?} ?+ ?4- ?py΃ ?xx ?nnMs ?\ ?Di} ?6Ȉ ?*ϭX ?^,c ?N~S ?^tT^ ?H*m ?,Dx ?r: i ?Gr ?Q™ ?A ?odM ?,z< ?z@8 ?r(EC ?2 ?SS&== ?0vON ?DYY ?bDH ?T ?J4| ?X- ?B6LR# ?[ ?7 ?# ?K5*- ?v ?n+ ?Za8 ?6Ѩ ?5vY ?k ?g ?J/* ?f ?w+2 ?j ?B0 ?` ?G??}?aZV?#Seu?ݓP?x)]?)g?~I`?'k%? a?Hc;?B?ɂP?yU?8?z4#?"!ɓ?,?"m??0hqy?zd?䁏?"n?N?:?BY?A?+8[&?p1(?8-??G?>b?)?^?xy ?_2&?\3R&?r?B?ph\?>CP?d9??J5?;V?i&?<˴?9|??v?g?w:;?W1'?.%?f ?#" ? ?SF%c?&?7 ?JHvc ?sN?$}?V-Q ?݀"?Nv@?- o?o?qlK+?# [?QTtճ?qfCL?f'҅?(Ͷ? ?^#?N?(S?̛H?QX?Xk?D?ލ5?Hu?) ?S?=m?d#?Y"?b]!?4T_Ŀ ?+l?ד{?ӵ>?$ZW?{F?=X!?>Lr ?Nna?{?Z1Q?!Q"?Nu2?+?Z?STU?:К?թ4!?~91? ?'?5Y?4L?mm?h?ohO?R ? 5?S?&?@?1?l?(?}S?!˯?@E׷ ?͒R?*'?B?Sf?v?V' ?!'?eO3?t?;?lS?<?? ?X[m?h?S;q? }?:ʑ?md?1q?V&~?V#?Lȏ?|+]?iC?ѿ-?+??Yʢ?|b?\$?e?7_H?H;?D3P?_A?-?^t ?Po3?&?k~X?{1e?wH?)_RQ?m3;>?õ? ;?O ?ey ?Gg ? ?zHg ? ?\P ?PAb ?J ? ?U} ?[ ?) ?r ?^ ? ??a ?M?# ?}t ?3 ?Ԑ ?O p ?E16 ?ܭӀ ?,TYX ?$l ?2nN ?[( ?%6Xh ?>2| ?~{D ?.3 ?z^ ?@决S ?0c># ?Ui ?] bB ?t'- ?UkC?ǽM?UǨC?9Έ?ڗ9?}v4??BR1?,?Ye?H?G[?xA?82?e$v K ?4JT ?| ?ESVo ?+F. ?M  ? 1 ?w@ ?0 S ?, ?5v ?7*A ?mA, ?Q9R ?D?`?}?Ռ?+[ ?M! m ?, ?'e ?P ?]>n- ?:}~w ?xP ? ?47 ?F ? ? x ?b ?}j0b ?p%x| ?[ ?~% ?kA ?# ?~ ?L ?+ ?{o&?wR?z ?xJ??n$?hu$?jX?+?x?koc>?2>v??]P6?MN?hЇ?t?3LL?x.E?(d?(9"?0+B?; w?KR?)گS?8*d?&?bJ?, ??u~~?'?Aˠ0?rKc?a\L?^ p?5 U? 5?J ?t}#!?jj?z=?_'L ?U^"?<?~>w?]W>o?]8uv?\?w@wm0?u:?rB&?e@?8B?o?d?h}?U ?b?WHM?D}?[T?m?))??]5?2\?sp) ?Lb ?|xK ?P` ?w4% ?"^ ?M>Y ?Q ? { ?)?I#?J? t?%!?rKIV?kp?;,g?ՠ?zuB?\k? k?ZB?H?z?}Ǒ?sB?wD?1??X2?HK ?~6ot1?8\?{S~?XHx|?$|?I(z?Bg ?84 ?D?y?3W?jF)?Dn?O|?W4F?=?3r?[~??8Z?U<?y??Ǝ? W&?o? 0?즕?P?R?=?uZ ?Q[?uf ?)?Ho?t?_Փu?[:?GvI?0}?S2L?l?hDh?oq?0}~?]?eh?#\?zWm?n7?b?^t?Q<6g?\?:?B9?T1 ?99&,?M(hA?g? C?P7,?ېI?륓T?@bY4?-@??]?=?fXJ ? ?Ġ. ?&r" ?vI] ?R ?O+ ??ƍ ?2 ?Q ?bc ?öŰ ? ?2d ? R , ?" ?Pbx ? ?R~m ?kU̻ ?S ?qG ?b ?h9pM ? `d ? w ?^u8 ?tu ?#ya ?|tyK ?C^?ަf?"8s+?~q?AʗP ?ư9w ? ?/ ?R ?- ?{G ?M ?ZBzi ?Ũc% ?\% ?ۣ ?p ?N/ r ?Է~ ?' ?yY ?BP ?^ ?" ?Y ? ?Bz ?~pGѝ ?9ģ$ ?D)R ?l ?u@ ?{ ?g ?Ճ) ?5+{ ?l ?{e ?N?K?Dt?[ ?@ ?,& ?KT֫ ?5/ ?i9 ?>s ?9 ?p0p ?  ?{E ?\} ? W ?q ?XmŪ ?l ?' ?yO ?!wX1^ ?1H ?[ ?Tfl ?Py ?Mj ?4w ?O@ ?S> 4 ?jAT ?~XM ?m$E ?$n ?\M2 ?u ?n9Ŝ ?ҽs ? ?Ҁ ?O ?CF ?_ ?j?ve?TwQ"?aJQ?u??{?9#?E(?e?3^?hg?{іx?_hv$?Pn?N>?u/?Ć?4$bT?Z]?HMq??Y'B?l"`?uCR?GQ?y}?r?l:?Cw?ZDk?&g?]ɠ?1!F?Q&&?Sb?4? cN?MU?B?=vO?f?WNSt?c?(?PZp2?M*??[:~?,*fP?t ͩ?)d?i>}?Of?9K̕ ?(t ??dU͎? ?uehH ?j$ ?Ӿ ?]û ? ?Q~t ?n< ?!M ?G?HǼ<.?'[? "'?03ݲ?`?%?꺗3?MY?c;l?#ʑ?§?%?9]l?T?{?1vO?9;?,??_?j?9>{?@ds?u `?zbx?~p ?zh:?@X"?"?@N:?$hӡ?Ҷה?l|{?ggA??B)?6?|?R?~f?eZ/? ]J?l ?FY?+?#_?a?:?t/?9?dnT???nm?Dl?Fh:_?]Cm?)WK?YT?d?@z?^?L[7đ?$a?Wm?>~? 5?M6*?_ ?$?6???k}N"? ,?Xt? pg?F(a?3n? T ) ?![ ?InA ?}'x1 ?V ?6( ? ?/ ?f6 ?u ?Z8f ?s}K ?Nԛ ?$6 ? ?ql ?ct ?xm ?; ?* ?Cn^ ?Kv ?Uchc ?.jY ?sB ??jP ?2/c ?x ?<} ?R=M ?cX!g ?  ?>g ?Y` ?׎_ ?b?$S ? ??\ ?ZPк/ ?(l(Y ?g9C ?m ??o ?!?[? d ?Z ?Ȫ~* ?A! ?F ?N1d ??0r ?$p ?D; ?8f ?( ?e ?T9 ?%ɹ ?4O0 ?3Dg ?" ?f1t ?l` ?Ss ?Ӈ ?3z ?D7Y ?GI ? s ?Dk ?nܦZ ?0L ?H ?!*@m ?P0+ ?|S ?XD?}T ?,?T ?ƓJ ?q/? `-?*'?2ZM!?i)3?x,?YU9?D)?a4?I.?!#4?):?B"v{??'#d9?~a?rgr?pq?-9?(d@?>v?~#?K~)L?ݽm6?Co?wt?ޫ?NPt#?[I?'b"??-Y?_J 37?6"??uJ?;)?9K?F3z?dz?B׀?NpXK?^*z?ϛ?9D?R?j8?hy) ?|w ?jh ?=y ?d?\ ?!Gq ?ڴ?&G??ʖ? i3?nM?֐?gF7?t1IK?8o?tZ?i?Qꥡ?Va?i1???벯?^M?&?{0ނ?5|?Y?fGyw?ph?Uo?=g_~ ?t ?J0bX ?! ?4s ? ^ ?mvh ?E ?gU ?B$ ?4i ?) ?j{ ?i] ? ?,vU ??nn?JA&?vhD ? ?4 ?gK ?o ?@ ?0 ?}{I ?ya ?e6 ?!,z ? ?JF9 ?  ?) ?@ ?ljO0| ?n ?5yu ?Ԣv ?A ?ö ? D^ ?-> ?= ?r*d ?[o ?$g?zM0?Pv?L ?mJD?:Q>?Q!8?J?C? 1?VÃ*?]=?K!36?ڦDP?X1@?\vK?iE?IJ?vP?1LV?Ƥ#?\?(<?s?n<?^]>?p|?iM?^?`{-??:Ȁ?ƣn?#ep?>?&K? <|?d9?_O?+4d?@ ?uY?"DH?JF ?(5?KA ?b ?׋$?W ?X3? ?!\JJy?Yb?s׿??=?h?'??ɑ?ghv?lD.?[i ? ?Z?w?ն}?qQr?e$xl?w\?vd?;| O?EͮMg?Ag:V?;><7^?øA?A4?HH?)^:?W -?·?Mc?*g?ES?m\?9?+w ?{rl ? ?RZ ?NS%N?<? ?܊ ?<,{? ? [?رU?FZO?x Cma?}&E[?I?;?wB?@?nT?@N? \G?Gxg?߹V?Jb?aB\?Za?%g?zCm?=?xM?LWM?2LW? ?J ?Pt"?8j?p@?xj?y[?Z?@c?/Q?+ ?Sۋ? ?Hn ?[yL?KM ?G;ݍ ?L1 ? ?XC,?=9?#J@yE?+sc ?EfQ?z5?4?.B?H ?ҹ3 ?`% ?(? l ?r ?![)?Nq ?Q$DA?kP7?ir? .m?wg?}x?tSFs?p`?ˇ|S?wx$*Z?VjX?gm?:f? _?4 d?Q-~?k(?,??0?ko?ZF?[ ?+W ?ikH ?tf<?*ZH0?] ?98?$$?&+O?~hp?3?i?r?V?!?j8r?[- ?Ə=M>?(?6s2?VX]? hN?$j?ya?cU??F,/?N?FX?%-?^PR?jl؁5?勄[G?^6?\-o?ϜX?I?yb?JN?Y_y?vol?Xr?+OVkr?kv䥅?BU?qy?m?<lhx?{NT~?8)?5]?kP?,m_D?t?F?Ǡ??}?߉??m6E??ή?N5?_K?wCW?վ?I? ?r`;?XWq?3?~wK? =;?ri<?K-?(? F??a?oT?nк?r q??k?05?hV?[Z8<?URc?dR?bj?NF?EsB?aQ)-?'7?%N[?.+l6?y=?"}'?{?P ?& ??r~?K| ?^?w4?6Jr?QZ?6>N?F?E<?A%?8!?o[?!>?et?9?S S?o?q? 9?ƑW?,WH?[&U?X6{c?|gt?W{?>[?kU¬?D?)k?(?4?i?@1,|?#2*?4.K?N L?Ƣo?IHs?e? :CN?KP?Z?C!O?=%zu?f u?Ks?/EHh?Ahg?*;?M?ʍ?)?E? ]?fOL?1\?X?S.ӎ?ś?_F?7J?v6"?4VE?c? k?\???ldѝ?r ?{W?Υ_N?̫??}6?V?R?Oਘ?6TL??}ʳ?~??)?dKT?}p}?y?=b)?x?1dM?[!?"]?m#??q? ^i??9?? '?>Ͱ?P4?.S??uB?V7 ?'?P"S.?X6?Y֣?g`?fm*??`!5"?l?I^ ?N?Kb?q? ?II?h ?A$0?OO#? ?Gؽ?S??y?v?ۊ?lu&%?銾? y?9̫?NZ?j q?U8{?6U? ? ?ȸ?Ȅ?@s?$-? lh?̴m?L-?*F3?3n?gM?nt)?I?K~De?ේȒ?k!?W>0h?h4?[?j\?o?e?޺?R]KI?8|'?Z? ?(c?H?!>?d<ŷ?oB?gπ?41?do???'? w?ű?W\x<? :q?5) ??μ?Mu?9g~G?tc?4ݜ?w?n"?Ig?jo? 5-?"6?ui?? ?Li?Ǡj?xb??(kɭ?p;?ͦ?/:??]? $S?J?r=>?y?pK3?x%z? ?u?@?-΂o?vx? ?t}?7?!'??A?@U}?bM?|5?}?Rv?0 ?`?:P?-A?Ǫ^?\?;?PS??Ò? ?U?f%/?/e?紀9?pъh??"ּ.?4׫?s[T?ʳ?l?@Q?3K?1$E?L9?XQ?ˮd?Q*u?3tP?.?:}9?ݛ#?\?D5D?|>?o7@?|??Kr?8Z9l?̒?F?Aݶ?Ϛ?.?I?w䢲?F/?jw8?g+? YC?;?}~?f_?gj??=|w?;n?b*?b{?nI?3?,?se?W&GEV?aH.?ff? oM?4$?=fOS?]?E?3?~C?bX?y??Y#?2n̋?6?h? T?g潣?M%?g?xS.?YW=?"ç?H`[?{X?jJ?>v4?~˵?v*z?k6z?0Jō?w?) }?x>?|?qoV??6,?Q?N??/#?*wI?b#y ?mV;?a3Ͽ?Xno?߷j×?q?sņa?D?Ƅ?Lm?DY~?+15?'ӓ!?3?`,n?T?=wB??**?*T*D?W?٢?k*u9?v ??7a?tK?Z?^? ?w ? f?͛?0N?X ?v?r?9i?^?&c7?@N?䤼P??H?VD?Aa&?ƭb?a? ;?Su?&?*G?(? ?G1?Y0?hg݄?Mt?$^;t?{z?bѹ~?Jiy?-t?jm??ܮT"u?qc~?4Y?9i?j a?Bj?*i?Lni?p:To?H^?ңsc?-a{?tPXi?_o?J ?k ?|? ?/?u?S?>?=?V?L?[PUR?S?'x?Dv?4T?{\nR?Ln? U%;?y|'2?C-+?V =?i%}7?rU%?69?z1?>3+?|?ܽڿ?C1;?J?tN?sf%?:?l>f&?:?Ǖt?GF?<?)3?C>?5p1?63?q|)?)s+?6?f1=?xx{E+?^1?g3D?J?K1\F8?>?3?B ,?r ?{??6?N?e9?`?;?v?N? -??RIy?x' ? Zই?m?@?Љ?ޠ~?b?CFa?xTs?c=}l?l_?bY?!k? e?u T?]BN?0_? шY?ĩ<?H?dۣB?@:zH?GaN?B5T?u?X@?r>?ݚg?櫆?(?|lo?4@?Sl??Mj? _?Y ?[Q,?bH?.s?2g?n%?Nt?7? ?̰?g2?>X?? ?։?.7?Lqt?1)?2?H7}??5z??vv?gq??K%}?Ck?Age?"w?Kq?y\JT?ּ`?;SZ?\ʚ_?oope? k?;X]?&ڲ?4R? ?_|?ҁ?%~}?|n?(?y?un?V3? ?DJKq?`XM?Qy.?ݥ?KUM?*R?=F2i?2?^y?ª?g?wUܝ?#h?Я?i6і???EՃ?g}?':?S#͉?k?PϮw?uq?w?=yW}??΁N?Tr?m?Ƨ?6T? 9?)QB?na?dG)Z?Ll?ZهO?Z?hU?G?Wߴ?;?|?c~5?O?=nA?:ъ^?B?z d?K?@eƏ?L?֋ϛ?U*%??žH?~?Q?{?cG??!#?ڨ ?0?f?!m ߧ?v?4p?q?;,1j?B̳?9h??f$7?#0a94?a ?5:p? H?-kk?9s?_u 5T?aX?н??6+i?&p|O?#Ny;?_~,? O!?- f]?n~,?e4) ?/u9 ?rob7?FC?$/?m5|?35?|V?t"?jSʢ?GN? ?:@Y ?Ow&3̯Euq~9@)t?H;???]UOr0?,A?8u?t ?<` ?@a?n?:a3?y??.>)?^_.L?B=z?ѡz ?@q?0 ?('?Y>AT?WUX?roBc/?[??ug6?7?x+?p>?#? R ?F?DSY?/?N??.}}?S'V?$?혪)?^?r?&f? Vg?3p?AK?XSo?:iFZ?M?=w8x?i?G)PO?҇o?v,A?z4?^c?uʛ?2??P(?V??%{9?5#?p?N ?jS?~v?u}|?$962?=}?T+?j?nc ?@~?%gV?m f?z???cφ9?^? {?]a?p7?2?ws?[S??gs?fh?;??Z ?6 ?dv?Oe?1?i, ?U); ?Id)?'إS?:?TZA?(5?* W ?m ?-B?.3 /?P?f+P? >Q8 ?D6 ?4]?Z??k?i E& ?GP ?ﶗiz?6 G]?(_?,T0'?l Re" ?( ??ȳ??B?Tv.??(?hwN?G`?a~B?uΔ??e0?7?1md?A?j?&d?$k(?,k?e۷?ј?ݎ?n?,?lM?kN?U?J??%׵V?DQ?/T?`F?m?_l?@ h?IL?lf4?r???E?PB?\A?[D?&]^?Aj[?aKX?PX]?_JY?)$/U?D.R?9sV?HƮS?mO?{K?A% H?YNdG?X&P? lJ?|M?zO??ҚC?G ?Ԟ? ?0cC?֋?37?1P?Z?Ci?hfj[?Uv?y?,wN??+?0?e?O?T?G? M?cN?kw?`? C?d?[?p?b?~r%-?Z߾??__r?Lej??]CI?e&#?@s?{ǢU?/Q?g?:?p"?7?-?Dm ?7??f1?菷??UEr?`)le?Wq?N?][?S?0?@?Yr6P?%N?b}? ?K؞Q? X??c?"a?Io?Í??l@?c? ?I?Q4?&nN?ý?-?z?r|?~?޴{?xe}?^=?0L?m?}.??}?1?0]?&?{??)?\ψ?2?vi??rhM??e{?9A?ƵБ?U:? X? YX?i`??Q:?oz?|?b?3?ɆDO??Oj?En?,;?h?5 ?Vҵ?+?!?a:?`e!? ?[": ?d?] ?m ?>\= ? ?S ??OOl ?, !??kx? 9?N?eb?G. ??a8 ?*Ru?[?vw?]?sj1??Im1?Ŷ;???y?p{`? }'?N&?Ւ~?n??h]W@?aB?sD? B?0C?dF?,%H?kqI?GJ?NPE?I?d ?G?Dy?K2??C?=?o_?e?#:"?&?*?J?? !4?`T?D">?? ?8??S*ob?vc?K\a ?:H?p?"v* ?/^Ӫ?3?I?r?^Vݒ?>9?矜&?U)?&,?IN'?ۣ*? ^/?k2?2-?Vw0?H6?6?e3?i؀nS?!8??L;c?xמ"?]?b$?="?]!?w#?U"?  ?i%?˒ ?CzZ?&N ??( ?ͅM?ps??6E1?MRe?qZ?ro?H4?\z?ڏ?OX?Q06?eb?"??j'I?hK?4? n?N?X? ??9L8b?Go??%?I}?*?GŻ?wvv?]H??/tE? ?2{T? ?,W[ ?. ?6'ހ ? 1W ?:U ?Z|?~0 ?( ?z]?ke0A??m?4'?Vg?{?bi?&?,?f?'!?n:? d??U?CDt??F??_͹?̦z ?d!/??m ?3T?֯{?,s 8?g?b?/y!?К?F?l?!7?رN ? D?o?m?MPy?^m??t?G ?P?Y?fӟ?Ⲛ??; ?Kp>?w)?XO|?]]?إKz?&/Kx?/R{?ڴRy?&Nv?Z"Tt?LSw?2rWu?sld]r?G|ip?_s?dgq?Xuyn?\Dl?uo?dm?Bj?oh?;šk?i? f?VYd?\~g?,3e?c? @a?>>i_?翄^? d?!W`?s{/0b?S|J?y6^tO?`4pT?[M?Q?>? }Y;?6?'3?g^8?b5?0?.?cWn2??/?tC+?@.(?~,?V4)?ZI%?$[h"?&?Z#??㶥?7DO!?"%??0? L?gR?U~?_?WW}?((_? 4?'h?p]?Q?۞?W ?:?3O ? ?)oW?Ί ?i?I?.GV?n?B?"<.?]|???@?0"?TGK'?hx?ʆy?m?Qz?g)?W2?P?J??;l?v}?(j?`3{?\?/&?L1?y?pu!?=)?݌??VҺ?Yf?ȀӋ?u|?8?v^?XfE?e?n?"j7?]_?@3Y?-ħ?x!?/.?!Q?F? ?e4@?$P?(S?A ?7P?N?xH?|q?Pb9?d??NΙ?P(^?]B?l?68?`?#?Ǎ&r? ?[??_?-2?eգ?V?3x?q«?](a?\̭??g? `?c?_k?ܘ,?)?dž??sP?^?k^?M"??GuDA?gѿ?9??}~yA?:fE?pH?$xD?n'bG?qa?L^?$[?1'`?gE]?tvX?%),QU?~&J-Z? W?@/R?K?mkZO?vjJ?& S?; M?RP? h?|=k?tf?:qi?*ern?q?Bl?p? t?W'x?[?s?v?MH?㱛j{?2q~?-,y?? }?ȋ?!]?9O?ӹݨ?N?7?ԕj? ?͜?=9g??lڙ0?Տ1??i˗?|n?%H?=,?̘?dy?3?I?w?zU?:U?>?k(?i?5 1?Aɯ?F?A? p ?WDAȶ?9eZ?q?*$?@7?w?~]#?D&K?4?q?]?,#?b?N?mB?/ ?t?甶r?2^ p?<*?7h?#`??Y?=[?Az?[67?jp?Tz(v?Ā ?n?gt/t?y?p??69?X1?),?dUO4?r7j/?Z (?DC#?`*?iT%?Em?Eh$?S ?D8?S??8h?JG?>+< ?ny?` ?o ?EJ?/?a+?j\?B 9?b3?t?7[\?F^?=b[?6G]?Yqx?ļov?y?_mrw?2Xt?8Dr?.hYu?7Bs?+ 6`?(b?v4_?a#a?Gd?DAkf?ґc??7e? >Ch?Fj?*g?ʕFi?>l?:3p?l'n?품0q?2k?(o?Cm?W~??ý?7Z/? |l?<#?fx?a??uvT?8?hgK?ǀ?O#?D=? =? bO? ?h\U?ū?Xtu?i?B?Dc?18?`$??,y?3k?Uw?_;?&? ?z?.P?Q?Y?z?X??Kε?Bi?3` ?@g?ZN?O?"D?#m?x???z)@?3~!?U?"?^?Kޘ?AC[?L$? L?t? ?e1?}AV?Ʃ!?*y?+?;w?;?Dӈ?>#C?/1?1+]?Z?K"5?su?-ٮ?~?F?q?u#?A} ?Hl$?!? s? ?3w? ]?JS?xe???|X?>2?ܬ?m?|? !?6S?kP]?1?8??%E?Cә?P.?$ ?\F?d?s?8X?02A?E?ʱ]?{?)(?x?%?q?Q?%`?B?ȸ+?+C?!?i ?oم"?K(!!?S" ?Y ?POt ? ? ?B~ ?T ?-. ?s?2??/?P,?Un.? @0?3?*c2?v4?J/?b(-3?Gח1?w֞7#?+"?Պ$?C#?NT?[ R?Q?S?WR?=QFO?{tM?=0P?65^VN?}?O*+A?%F!B?H@?c %A?YD? H?_ےYF?I \H?׷C?6G?-xE? 9??KU?Ԏ?&7??lE?.0?p˭b?4?kx?tI?mye#?e?+R,?4?%?k*?`D??+ ?h`?s?Z?y| ?G?IX9???$?'T?_H?-b ?Bޢ?٨$ ?un?R?pnt?W?ZC ?ZFE?mR?o?W_ ?V*2?*~?9?~ >?i\?i쁅?"?5:?l?\R?v?1?GI??+d?wE?/?Bۍ?Ʈ? 5?y?L I?s#?S%?DIн(?$h$?F&?Ʒ+?1s 1?*Œ3?:O.?q2ی)?K/?{,? g6?)@6?LM1?~?fCq? Y?T?z?D#i{'?jW[?'!AY?U\?SWZ?l.X?`gV?ARY?[QW?T?R?YaU?S?F'Q?-vnO?YR?YP?j WM?%L?\ޡN?&ӂL? VJ?=BީH?4@:K?ȳXI?|>f,?++?#T)?C+?ѳݍ*?cO(? '&?m%?g/$?c)?G&?f'?.?[Y/?1o-?ba.?U1?.2?gnV0?_:1?$M4?Z5?qJ3?[/4?;97??8?=*T6?7?%G?5LY[E?G?P*<3F?"C?@B?&D?XB?=t}@?Q>?QA?4??Q)N=?;?Q*:?絓l9?}>?':?u?K[N?$V? ?)ͮ???GdQ?*0y?3HwF?B?g@?!  ?u ?h ?O| ? ? ?ӝS ? b3 ?b9?%a?K ?=?CF?tH?C1?`??g?O?D?-b?W?C?=?P??x!?|N?}Z?QkC?b?e?ZzC?K_?-?r?1l?]Y?V?ˣ?z\?F?#u?t3??(L7?t$R?n?젦?ō?Gc_~?3Y|?QXz?Am"]}?\`{?!o[?]?nr_?N\?͍^?<|Zx?n\v?nMay?xgw?]at?|gr?Fku?hs?͏qp????@8?z?a?Hz?K7?b\?HJ?(??3D C?`E?A?J}D?ټH?R!K?E( gG?P$J?2d?a?(^?SUQc?b)`?Ej[?SX?m!]?|Z?.xU? O?ߚMIR?M/:M?$]xW?rP?3S?++k?Whg`n?%Vi?^Il? ܎?f4q?$t?Hn1o?|6s?C"x?Tg{?{v?`y??vF?\˯?ak?~?c?Q|}?frM?0??s?@? W?ƚ?Apr?/L?5?mQ5?GR??ْ?j2s?BP?O?A?TO?ei?%~?g?EO?Bsd?g=Y?U?U[?b0W? ?C?4 I?r׶?Ō2?cο?FTj?3%? o? 8??y?h?G0??K?o4?J?`?}[?6z,?W?mu?9?R?;/c?\?f7V?z?֋^?6(?'?l ?ĺ?rU??o`n?YJ6?Z?W^;?JFP?GtL?ϻS?PN?S;H?zD?!U@?d>?J?;+y{B?ZF? [@?";r?I0 :?á4?F0?&6?pW2?&<,?d (?%ʋ.?7.*?w$?\ ?c&?"?@?% ?~?/?q+?jO?6?SU?w ? ?&k{?z ?n???%??PU?U?MGY?$8n]?(Ԑa?Z~z[?6w_?xZe?ׁ@i?c?Jg?n?"|Ir?k?31p?в~v?ejz?(+[et?^x?˦~?F?xN|?$N?Rԛ?0? GM?qjʉ? k?zؔ?߿2?’?AZI?׭?1?ޭ?!w? r?]v?ZVo?Ѫ?3^9?^F̨?h ??շ!?#Os?_?%) ?]c#?k1o?n~??*8+?A* ?u?a?TA?j?9?@?>0;?)DC?RF>?p6?2En1?eAP9?.94?~,?ƛ5(?U/?*?H(mt#?޵?a%?{Y!?TM?:?Vi?&?hwt?VK[ ?\8?M?FQ?kA?rw ?DH u?MmV*?(n???:`b?l ?I?Gs?A}e??F?$x/?Kq?Q\?*]u?F?K?2?~?Bɖ]8?2?Į+?QO\5?.?d%?%Ip?eEE|(?YR@"?`(?;?՚?n@?7?$?X/ ???̆??ST?$n ?{?T@`n?y?.u?f>//?zu?I?[P?HU??07?]\?B^U?*m?A??̥#?'E?O,?!?sB?Gu?)Cí?]4W?`Ϫ?$?'m?h>?qU?`ș?A3M)?e?y!I?e_V?9 ?1?2&?=Rf?_Nx?'?=L(|?Pr?V`Uk?\K$u?%o?boNe?P^?sh?a.b?y^X?}Q?[?=2U?9K?K0E?@l>?Gn;?\N?mA?i>H?8i?Bi?)"?[r?m>?v#?H?،_?N{Y?|$??9?؍;?tu??r?%?0?JW?1A?CS??#[??o?ģ*b?^G?v?NUW?U;O?DE??tJ?EF?T??`F? [v?[?B?3ݦ?ޏP?O?]?ҧl?6|w?+?'?sC7?л?N4R?1w?6?mc??&o?L ?G9?ɗ?JWC>?b5??j?czB???|P?[v[gM?IK?kAdN?dZL?~I?B H?VUJ?vH?h8?(z:?ʫ 7?9?O%?BS@?;B?sTF?\eD?+G?:A?0E?\C?(?y?q? `?s?l_?(L?u?ݲ1?&?mF?b ?Kd?>?p? ?kt?#$?"?o?D??; ?"?< ?Uȷ?HJ?A?S?v3w?C?kĒ?;?M?E7?<1? ???V ?˜$,?1[?ZB?g??M?m5?K?%?c??C? O?? ?@?-E?|?3R?KQ? .+? ?Jl?R?'~/?h?C\?1??|?;*?;?5?,??Fٽ?)@?$:?zP?!?Zi?eE?YD??n@z?}?ĴE?ez?5;??r\ ?ԓyk?C?-?7,?d)?@'?Z .(?Iwm&?Mp*?V"'?V)?/?@1?B/?`0?2?/4?sn1?E?L3?|5?" 7?4?He6?y8?,<<:?,7?aj9?. >fE?mPC?t?)^;?+0]=?-0;?(4??]?rwB'?R%?FO$?&?xpB%?j"?'q!? #?mj "?} ??7p ?@c?0m???W?*?%??8;?EP?^}?XTj?(?s?ٶ? &?,?i?bޭ?8?~?]Rr?v$?pC?sq ?i?Vו ?ܗy ?m ?Sf ?, S ?#2 ? ?{&2 ? ?c?15?V#J?o#?>?Oӯ??Qu?0?a?j^$?B?^?ɑH?(]?p?7#?|a|?V?n!@?M?\??I??p?Su %?A?(?Y(?`V+?5x?W?7C?^?~C?b?g??9?E>?s6U?8q??[?}[?<?9?pJ?b'?N?#?|?@z?J?F?ւq?]a~?Ekc|?+Q?d}?`hz?mx?&g{?Ey?:YZ?[?]?[?\?4m{_?YMa?Dr^?1h`?uv?qt?w?u?_pr? wp?fas?Zq?n?Yl?ebo?Fôm?mc[j?ih?6k?nei?_f?Hp"c?oe?Z:?2H?M?Uy?~?s.?Ȥ `?/S?n?u"X? 9?qky?Ӆ?޵?;D??Ij;?sw?/?C@X?s?46?8YJ?S>?9?֚?a??( ?5!?@?WJ ?xPӫ?!m:?M???^:c? ?ߔV??mmμ?G$?] ?>'?~?J ?A-?Mo? f??c?T?63?ʘ? a?|H?I-lx?`?} 4? 6Q$?-I?qr>?KP?d?R/ 1?og0?Ҳ{??M,?TN=?K?*m)?JbC?\?\N;?Q?%k? 聨?EWl?QB?G??1? Ս?hJٖ?K=t? \2?l,?25'?g7B/?e*?٧!?W?:?2q?M?^$?ۨ?a ?01T?s4N?yH?ls5Q?`K?4C?$=?Gf7?"15?F?1:?tb@? ?.?2???"Oa|?;v?jT$?Щy?Ƌ9?3?!?hyڴ?f?f3?*}>f?n?o?*?y?r1?ծ?b?4 ?2s?Ó ?˺K ?~u?BӔ ?o?l.?/҂?[M]?0E?3C?5?k?>?@~?W ?IV?E?t?k?n?>Y/?αU?Շ?b?{J?9?9?5? ? ? ƈ?َͅ?Pʇ?hI؊?:j?ډ?p~?9?s`?l ?LO`3?77???|f2?? x?y?ی?;In?dnp??%$?cLc?A1o?+?֞h?&K?q?9?3]?I?"?P?e?rҗ?`K?>ϖ?9ݠ?,?T?ߘ??C?n?KŢ?_Dl?4?3?{j?ƣ?LU?ʩ?{??<7?q\Z?Jꐰ?_=Y?{???TR?a f?ޤ|?*?bH? !?R?r?Ap-? Q?+v?C?4?f~G?⎀?`ʲ?#?#?Ƹ?Wɳ?2$? ^c=?t:?>6?0,n?bi q?Hl?AmNo?B?f??m"?% ?RWLӯ?議t?,"x?Cr?yv?^s{?LG^~?O5z?b^* }?Yê?KQ?Yr?$R??Z\?OQP?JlI?1C`?!?9x?;?.X ?`?Xk̙?w]E?k{?b?&?_H?ɔP?Ə?m?n=?ņ? ?5>?+?|{/$U?P?TW?4!S?a ?qA\?:F^? ?ވ?﫜?QK?JA??Y ?L ?q?? ?R?q_?m? ?|?F!?3X?g??s?o~Z?P?=#?Ne?K?"?z>?R$ o?7?V?{b?v#?)7 ?-?hI??:f ?^n?Y?A?NQU?AWY?ց]?=9X?.}g[?l`a?ũe?6-_?փ?c?i? jn?&jg?*l?”Lr?dv?v)ep?{)^t?tz?P~?wx?%.|??Ȭz{?tnn?&?T7?_q?KԒ?ArM?'?@韙?ݒ?N?#]H)?k1w?2?o۠?Ȧ?ᛓ?.,?߁oب?B? ??y:@?o]Y=?ϼ?!?ӫ̺?f?|?^"Pa?e?H S?? L??wA?S^?`L?:qR\?0q;?6?k>?q 59?_i1?-(,?9|4?vF.?-(? Ĵ#?g6*?/(&?F???"!??O?o???'( ?(:#?&)?۝ ??_"? `I?? w?Jt?g?uI9?T%?!0?E?A缂?E?]??9JC?V??70$8?;1? ?";?S4?+?HV%?i.?~(?cD??B"? o?.%?k ???ɩG47?H'0?y()?"??C3?e %?F,?sQ!?}J?"??/?7T ?7z?T?2+ ?[?o?@(? ?D?#Xz?;??Fq?p?+n?\?]?A?OV?mxI?/b?`?dg@?W0\??W:?#r9?O?Z{? F?Ld*??ia?K`?z.?ߘ??)ʒ?ջB?4!8?3'?J?[S?!{?2q??)+?ij?*z??H?y?<??*.?ZI=?CG?NK?s?A?o\E?S?gg???b4?nxX?j?'?ij?J?/6?x`?H?$??Ǖ4??Jpy?~?^R_??XR?6? .? ȸ? qpP?۞?PL?s"|'?W.M??yKC?/?=cj?gP6A?˗??f??)i?Q?uX?&_'?t?ϼ?-a)??L?1?{ֆX?HHcZ?۳W?F~Y?-C\?^?AO\[?f*]?bY_?C"a?RF_?A;z`?n(t? r?}Qu? r?p?n?@p?<o?0dc? ?aaױ?XL???? Ho?7h?ۆ?s?Gw? 硣?<"?cd?0 ?g?=ܻ?4v??&??X?F?Ɣ?rb?5$??s+?l>?IO? j2?V?tw؟?}d?l??B-?E"?E(J?Vb?zT?P?g{ ?k?E?R? ?m ?ej>U?DE ?zq? ?R = ?>M??C?)W?g0 ? ?9 ????@y?ޟs?[v?~mx?mt?-w?2 ?cPϧ?N~Ȏ?>ΐ?D?k ?Ҧ?+?z?"~?aI|??Ty?~?(T|?:? YJ?A7?W߃?{܇?u܌?_??@*}?ppM?K!??? Tj!?i?h;?23F?{?S]?ںƼ?@[ ?ÂC ?N ? ?h6?u ?( ?p?\" ??b_ ?_+?=* ?w?jd ?T?/Dv?Q?@?x>?պ?Vnu?2H??W^?^m?'A?z?<?͓?]??2v/M?~|b?5?h?758?!?\#?F ?e #?G6?k3?<|q5?.#i2?}7?i5?Z3?'?2ʎ*? w))?+?jW&?τ*?)?\3N-? 0?/?Ib2?D +?./?pܬ.?LB&?l(%?P{<(?[&?qV?6R? T?&Q? aW?XT?R?9bO?'VM?nP?U{*N?sNK?(H?`I?[F?[!L?ZbI?rG?{:?*=?}6St?-?gyP?!oU%?! ?(??_KH??9?U*? ?I? B?m?!1?Щ@M?yK?ڤ?p#?H'?޹dr?_^ ?I{0?W*?n#? )?6??o6?y.?pLvI?4D1B?WpB?'m3yZB?i#DB?mmB?q 7?:6? \6?yK6?G6?Z^U6?ި.6?δ16?m6?+7?*N7?ld7?~^97?OGq7?Ql 7?ka\7?a7?T7?A7?4à7?z$7?U7?8?RĖ7? e 8?Jm=?N7=?ې=?xǏ=?~0(=?Ȳj=?1 D=?Pi{=?U=?q=?[mL?EO?.K;M?~J?=H?yK?I?ާG?qE?gG?LwEF?/?APg.?|@%-?/?-?׈+?N(?ڧK/*?x$(?Z$Ȏ,?޵)?;+?:1?2?mx0?\Pֱ1?LQ 4?5?e(3?9X4?67?Q$8?&f6?P'*8?ɡZ:?{;?_ v9?(;?C?1B?JD?C?a@?9(k=?w0>?8S?F??C,IX?l )?ś'?%?,(?Y &?mn$?"?s`%?$֫#?tD!?(?|? s ?"? ??N}Y?ûO?3?\ͽ?[?V?S?c6?d?M;?e?O?" ?$Y;?VI?d?xt?j.?Gb? d?~?{?ON,C?n,?́?2N?rk*g?ޚ:??4`CA?eY?r(?7j?+-?z?>?_ ;?&Ⱥ?W?q`?ꦲ5?5J?-/?8|?̨M?uf9?x?9?N ?Et ?, ? ??o +?L@a?82?| ??],?_(3?g&??ݜ?m8?w?1?*?BL?|?.(?Z2?ϊ\?S?S ?w?m8?x,?k1[?Kyt?Ӫ?n?Yp3?[?px???=b?/?9@M?<?3 s?yFӜ?yB?]?u5 _?-c?8m_]?._?7큉a??kt?Vvr?2-v?'s?Ep?]l?ڲGqn?6ij?\7tq?Ƽl?n?{ki?>d?_f?4FMc?xj?W f?kh?ɓ(?`ͱ$?ka ?ᗔ&?⬏"?/g?)?V?+?">?+h?Qs:?$?)k?Ķ ?HB ?T峕? ??8(&?_`5?)?])?z'?/_=^?vu???<]??+?e?^??IV?H?]1D?/"?p?t~?I?_qɁ?yS?_9xL?M\E?0F>?sR:?BO?ڌreA?\4~H?/w?Ip?'z?(~Ys?F%-i?Rkoa?-aZ?UXV?p#l?]?1e?VhA?F?7?n?fG.?)?9g?DCg?:Tɹ?Wd?V{?h( ?[I?dzj?dy,?ga0?<*?ok.?'K4?88?QT2?H6?+ɠ'<?{#@?H6:?:_/>? D?itH?{N"B?y6F?Zr?6?dL)?&?PVH?%Y?nTq?Q?|`?,{??R[?5?؞܅?/  ?)~?pY?]`??G?E ?8 ?H}?H|?]?0??tH?/&!?J?9?d( ?ʬQ ?9e8?wP=?h?X ?a?5_? >u?$U?%q?8_?9lR?u h?=_l?I?<G?ha?%L[?S H?wW?ԦZ?,!j?yik?3~?#{?j(?X??7gմ??ƒxɥ?o؋?m4f?t?DQ/?*3?K6?#?0~?s?͂p?  7?n2?h{,?e7Q&5?/?6g'?(3o?R!?C?GB*?jI?i$?Gip?%k?OLs? k{m?(Se?n2s_?Y?]aV?7g?42\?9@b?sަY?)S?5ZN?BV?9#5Q?0H?%=?.C?\:?K?(Ce@?UF?G%o?Ut?>u?.m{?,{R?nLer?@&x?B6~?SL?qߵf?Kj?Z??bp?~S???089?۱?슺?P?aÁ??ʨ?ü ?(1̻?8c?R?-?Kڀ?~ɑ?xNי?Hq?@C?{?Ned,?';]?%t?T}?k}泄?h;?tx? s?`Rj{?')w?Bn?jbUFd?wԉi?Ya?Fr?$=]g?l?(??/??c?t?? '?{|?݈?7J?! ??j?WK%?ٸ(6? ?ϊy͕?Y+?j^g?.:? &N?L?, ?J&?aJ??H?eV?q?-?=y?}?#?|mZ?H̕?>?o8? n?i?y){?y?r?ڂ?ax?%з?[ ?ހ?б?O>?B{?h 5?*?!?-?1?ۇx?ߔ?PA?DH?*x^ ?ȴ?%i?Dz?O?[M:? @? k?ru?KdJx?[~? Ț{??Guv? ~i{?c~?؏?ߋ?P??n?HԄ?UⰈ?R? Ɇ?:0?CL?V?;?!?µ0?n6D??9? R?N"?C7?p?a9ʒ?h Q?{EL?I}oS?RlpO?AR?̧(?@r?`Ds?#?pW+k?;?bm?B?+?)?>+?YEt?&Q?g'?x6?T?A"? ?9>?=֒?:f?NAL??m;?=?X ?m?S0]?=?{8?d5? `?h?k?Q?9β?_T?5Z?#4?(oG?>=B?J?E?,I>?`Z_9?cA?+I;?Tz4?-?x 0?`)? 7?Z'8-?$0?8}s%?˒+!?$Õ)?6#?5.ƚ?^1?DY?P?a?C*?KL?5e?J?VA4 ?3?̿'?Dži?G˜ ?8]?h?릨?ᆶ?.?myV?Pَ]?Z?"Ea?ؾ U?Y?ƚx]?Ud?ռi?3;/a?m^$g?Cn?_|pv?1vr?U%z?qk?tYr?QSv?.}?m?[- z?b?k,??ʐ?׮dk?8?nl?u%?"(?o;?Cd?!?=F? tُ?f?K:??p? gR?m?Q4@?#L?V*?!3?W]?? Ca?[ ?uF?V???Yj?OL??M7?g$>A?U-G:?~<1?Us+?l3?7v.?_N?-yi%? TE)?ʕj(?Ço"? ?7?h:p=?$a6? Z(?/?k$?'Si~9?upUe+?2? ??GrY'?嗼u?zs? ?&F:?H?qެ? z ?A ?[Tz?ej? ??v"??nAh?| ?NW|?m>[??[of?^?I?f???M?7w??ݻ? T?=yu?#?B_?#-?2튲?sQ?\nh?ԉ?\+?K?\?\??? ?u0?F?y?ͨP7?d|?Qr?ҁ4l?u?Vo?Ŀe?e_?5$i?*lKc?ҽOX?OyK?l1R?23G?\?9LRO?}@U?N$rK?#JG?_u?c̺?I7,?? I?Z?ø??E[%? ?\?ܗ?c¥?03?g?۳?5ih? g??0?_a?AK?g{O?F9 J?ʮ$? X?,+????:?͚? ?sڪ?4(? -?[TJ?q?HTD???֡??!b?so?6?/?$? !?4!?B=uk?_cG?g?,?Op?ʽV?F?T\0?.?d?R|? Z?J5^?t)?C? ?1x? ??&?R?wVg?;?(pD? =?f?s?1?_1?:?6?7#?6?_?\? ?j 6?Lא?i%?V?M\?vz?e?.\?a_?3`?{'?*?&?*a?!"?G?<Dm?? Ǖ?K?W ?hv?H??j?nV?|?$SK?B#"?4e?}uJ?5???=?u?-+?8մ? R?QϿ?XX?A?\.?e\?$?3D?Zo?Z=? :vZ?ۥ^?FC\?,_?3\HY?V]?|\?!ma?Eħc?ŗ_? 8b?dq?r(n?.o?1KJl?= r?o?3&n?]0e?|j?/h?7ud?2{Vl?ti?6(?g?_sZ?(.X?*UU?Y?V?*[?;KԱ?kt?'Փ?F4Է?Ό?+ݱ?Ӿ? wV?#1?`??Q?I?u'?ߎ?mM?-?V8;?صa?;Y?0x ?yڔ?ڹ?ő~??F#|?W?5u?_!a4??+?4?6f?Y:~K?4כ?-j? ^q?"8˜??3h?`??Zew?\c?F?&X?c3? ܬ ?yY3???;Lu+ ?v ?7p> ?8n ???^?#?W?uɸ?D ?c?՘t?gnӒ?Ft'?cAi?q}?Jӷ?W-?T?(4?c*?7N?"?= ?("?3?!?e8?||b6?l/:?7?TM$?`&?1#?|I%?3?${,N1?Cpi5?Vf<2?éz*?tD.?։,?4?7)?~'?'?أȬ/?!q&-?6Ј+?g)?baAR?  O?ݸS?9P?SL?^J?޵N? @K?\19?+U9?›MG?v3E?IH?x[|F?k\)=?B?"%@??Gz?=?wX?k?S>?E'?:6?,?,?H.?L?S?ɾ?R?X?kU???q(p?B?+w?9aJ?ɥ?:?!? ???V?F#?6?o?X9?I&]L?t/M?ɽ?8I?dS?|ݨ?uif?K?D?N\?BB??c?Om?Suo?/Ɔ?j:??Lr ???GW??m?և?ay ??>e? *s?E J5?|?(?V?:W?0=4?+mD"?8f?NLv?Rv?=J?nR?"v?Y-?C?3>?ZZ 3?0?RS}?]?O'?F?薫N?xH?M[?MO??7?g?і?QbY?\?]!?.z?h ?U?.?dq?!p?k>e?0rg?0G?S?<<ޗ?ꀟ?J)H?fO?q?62??X "?r߱?P?^O.?x9'? ,?$$?~-6?6?^k,?]6?;6?;Dm6?5K6?ϸ6?[5?K)6?foS6?fE5?0=5?q>{5?q$5?'5?Pq5??N(5?5?O5? e.5?"S_5? =5? / 5?84?@DI5?4?`I4?j#4?F4?ioϸ4?x4?¼Mg4?!4?v4?CF4?%4?U4?Z54?/4?F z3?ٙ4?HH3?yJy3?~j3?ꌑ3?b)3?K3?EK\b3? y3? Er3?/8fB3?t6"3?MEcQ3?*13?3?r2?܏3?!2?52?<2?2?;n2?g#o2?:b2?‘2?q2? C2?3|#2?bQ2?t"22?T 2? 1?2?wAz71?S71?^1?X1?O1?=J?RJ?II?߉v$J?ⰊjJ?+[J?<[QJ?JA~J?J? J?4OJ?ZwJ?Q8^L?g0L?`L?WDL? gL?6̟K?ޱiK?6UYK?m K?FHyK?M{LK?춚"K?K?K?2K?64`K?_PE?כE?6XsE?4E?e=]E?zh~B?.^B?4g|B?cTB?.`B?2(C?fB?C?wrIE?E?$!\E?N1E?}D?JOTWD?DE?QU+D?#D?,tvD?D?-D?MF)KD?] "D?_D?vG5D?t.C?$=hC?$ c D?pwC?pC?dK{C?b>QC?\Q[L;C?"C?10dC?[,+C?:7I?񒃔I?!I?:>3I?^I?/P1I?QrI?JyEI?|I?;H? I?NAH?akH?_e_H?IH?+H?_'JTH?\J(H?hH?wj5A?& yA?PA?]A?/@?Jݰ(A?A?p@?Н@? @?ո7@?u@? f%N@?ոL@?@ `@?st&@?P.??oQ8@?)޿@? V??V??3??v??`ݒ??ÿQa??#??<s??Eg&:??@??K??$??>?AK6&>?>?9<>?vxQ>?pw>?w>? >?c,P>?_DU*>?(>?6=?Hcb>?N>?;>?'B?g?-B?/SVB?6B??B? @B?2ҨB?qLhB?u;B?0%7?|7?M6? 3g7?_,6?h6?E6?Zfi6?] 6?׿ݍ|6?|Z6?5J6?ZVj6?E]>?Ѭ];?t(8;?Pn;?M(NI;?nG7?nNk7?>27?CdPU7?M;?k3:?hOk$;?:?!:?::?:?'hl:?.Ȳ:?M?\:?:ܑ:?){m:?7:?\;:?)KI:?}/%:?`9?wy?9? :?φr9?O39?hE;9?i]9?ee9?'W_9?9Lj;9?’o9?IcaL9?L9?6J(8?uO(9?j9?8?(8?]8?zJ8?ݬ8?\f8?cC8?!օ08?C9.8?ǽS8?~w8?Qw=?YB R=?,=?So?l@?D?!=?v@?xGA?Z?n*X?dZU?SZ?W?u'?Ũw)?33+?k"(?hk*? T&?j$?z(J'?+'%?U"?bg ?Y*$?`W@"? ?{ݥ?' ?(3? ="?Ea?&NVJ?Dz@?j$?8?q?eiI?:?v_x?묿z?o}??qL?9*?3 ?1¤?2u?f?z?D-U?3?=?t?C_?@?9?sU?'?/&??knS?i=?v?֧??@?޺ ?>$?Ψ ?" ?!r?;S ?"ɢ?ꪥ ?XlC?m ?#pc>?*-?lI?\C?!???A?I?[?T2? ը?\)?ҥ????ݨ??? Ƽ?Fwd?%O?qc|?MV?+r?Ϸ?_;?71?o ?`? 5??%??^ ?T?oQ?C:??!Y?9׈?L?{9?_ιt?BW?"XԂ?;,D?,e??|?We(z?ߛ~?@˯{?гw?4i(u?b4y?_v?]?X]_?=\?>^^?L a?(?O?{?r % ?Ь?Y0?L`v?Vh?}?7?^X? ocy? I?ɇ?sY?$ίR?D?G̞K?%v@?xU?8UG?ʁN?hk2o?u`?Xh?3r?*]?Cc?V#k?1?x)t?WB?*?a?R ??!Գ?"Lg?pXw?J?3L?oWB2?3U.?O'd?k?_?????`?G־?4X.?!88?;]0?P4?7b_.?{L2?2F8?±><?A6?)\:?q8@?x (D?ߗU>? qLB?TRH?4 L?T ;=F?J?g?'s*?ir?T?r|?yz?w?B|??N??\?-t?Lw??mo@?d*^?l ??GO?{ ?k?#?;?>?f6a?M?eOӝ?a? 8O?yY=?i0?g?%ڌ?Ww?q=?7?MC|2?;?ӭ5?S-?$"?'?l ?m0?.$?R*?%j?^ /_?3d?[?Ul?F=va?iUf?qX?x븎S?V]?;&TW? VN?Űg:C? H?QP@?2yFR?PE?PfK?" o?rJt?%h?&+ln?Qfz?Z?+t?h6y?(?X?2[?+Ê6?܋_F?;?Sd?䍯ݽ?BvU?ۀw?K?Ѳ?&/?{?К??g=?I??֤?t?ć7?D]?&<@?дkӑ?֊a?еӧ??Rz?AŠ~?VX6z?y? 'Τ?:k*P~?۽ǂ?^p`u?ąuj?lo?ifh?8^y?u n?dGs? |_?`V6?$>?Nƹ?>| ??? ??# ??Z?RH?d0?dXȲ?(e?C ??l??G?Y:?37?8?p|C?K?gA? %?q??1R?~#?>/4?Zј?sG?0?Wr?CVnC?L?`?.ӆ?kq?Jl,?? q?j0/?N?&?E?4x'??q=??Iq?0F??pá?J"?`@U???dq?WOҦ?^_˪?,iǭ??l)}?CȰ??{B|?VZ?j?ɣ???# 5?t){ ?uD?@]?Ӊ?h?L?*?/???&I袻?TB?̰k>?JE?- %A?<:?H2?6?/?MC>?U2?!6?0XQl?{ Ah?rp?(ίm?I?$h'N?E?K?c=R?zW?JPP? 2U?\Vie?i4+\?``?8j?E, dZ?`?ye?-t?y?rq?ww?1_[[?h2?*?? ~?K?={?8i?Ջf?p2?'ۦ??Qh?'k?v=?zNj?4!Z?u}?։? ?M'?5 ?/x?ϣ"?U{X?4!M?}P?,S?I?$;T?- L?c(O?1Ǐ?:2?(?dS6?{?E?M=}?̙?ΣC?ؤ?5y?w?Q?$?W?)+u?{?H'+?dt?k_?eY?+3? ?R?<{+?|?zY?#i@?n%?m=?&6u?31L?zD?  ?? RG??B?9?[E3?53=?k(u7?mm-?f#?s ?.?'J0?UP?Pm ?ǘ?y滦?dd?%ʚ?~?o?ʷ?U?(go?!]b]?lJi?tRc?QyY?c +l?_?e?HW7v?!d|?kr?=i?\y??Ά?%<?jb?Uw? ?b?*-?7A?v?G?f?[9)????u!?LG(m?=y?"l?+/r?ːkf?1~?zFl?r?`?O@R?Y?"bN?*Gf?ۋV?R]?!C? qK?R?0G?xO?*˅?IP?M"?^?I??(oö?;?>?,t?U?Ҵ? ?<?+ޥ?Zd?uG?L3?J?dBȣ?h?ڭZ?V;?k?\ l?P?VT?N?NR?ܴX?ra\?.nV?dD Z?.F??뢸M?W.?GΈ?)7?6?2?+?nh|?^?yk~?/NSx?t}xBt?v2]Uz?##Yv?D3p?U!l?}Ir? F1n?<h?#`?h~u d?[6^?9K j?a?zf?p;?}??M?D'?+,?߉Dq%?)?>b?UM]?VhY??)7`?+&[?+T?PDP?"W?㖗R?uK?*G?N?cI?QnB?bu>?2dD?1;e@?9?W5?BM0?X_.?y;?ښ2?ԿjV7??'?0bF#?8^?'%?o$!?^}I??HХ?=?cU? ?z?Q??9-? ?^l?(w?)qwq?]{??? n?Q?ݱ?ae?ѷ?>V?5X??^?6 ??Vq?_N?bM?q?>I? q?e?k ?%[?WQ?F?n3։?3?rX~?չ)?FUN??s?Yq?r 3?J?h?݀?FT?3a?] ?XK?j-? G??%?GDKn?#n?*T?\-?kP:?@??3?1?r?4)?"=e?iѪ?m?⤨??+??T#? ?l^?a/???Gj?Z?V?4?I???n?U9_?:c?0H?yƯ?|X?(n?%3??>?[?(J? ?Sծ??@?~d?!?"&L?׷9?æ??*?*?u? ?bۮ?Qz?B?F?&?#?-??b'?)f?,i?ͯB=?[Y?dy?_M!?CE?ZL ? #?au?)\?B=E?O?m??Pq?]>????ER?H?;?Ml}?R+C?6=?! ?P ?#T??n,)?wQ?I?/?B}p??}Z?3A?ż?d?!??)H\E?:아??5?/~;?%#V?H?^(? 6? /?l?d?V_?H?M?Tݾ?fs<?cS>?6&?LP??f??=zQ?V?1cd? i??Ď]?b`?0"[?w=W^?M3c?9Ze?)`?SYd?03n?Ԙh?pubk?Y)Po?!#g?.Sm?j?%Z?@W?$ؼ\?=Y??*U?d(R?0W?SS?s? ժ?MHjZ??{UA?C?b?.#v?c v?,&L? z߿?^?,|?tV?J]?FǾ?׻?}`?A4?v.?I??=A?!mh?58-?BX? ۔?+C=?q?o}~?~͙?t7??v#"?)n ?^??q?њ?8O?s?u&?pMq?Lu? 2s?w?Z0n?))t?Tٿr?y?C6}?yuv?y${?j%?꥗?؝J?fMv?X[6?&Q\?wį?J%?ג?Đ?0ni?p?z?~?Pb??;K|???x?Nڝ?hE? ?Nf_?kQ?5?'lfS ?? ??K ?8%q?} ?=?Eç ?R> ?(G?z?5???_??ep:??s?uY?,/?6?!?c\?n^?IF ?Qq?|;?_"?208@%?&4"?V$?_h6?b3?}7?7+?4?'ؑ'?ޘ0?󌮎+?#).?n>)?އ'?Wc1?m.?].+?)?25?|A/O?NmJ?FL?G?lųP?0J?4L?:?݇ 8?C6?@9?E?*Q?L?e??]+v?tO??kAxZ?J??R.?'Ȫ?0M?O(?ߘU? ?Pb?81?2M?w??Af?,?/)?>s??RL?`Z?? ?2?9?c?@Jh?\?HGd??i5?W?߹^?7 x? q?B?+y??o?Jq?h $?-)?F?84?q ?|?6?{܉?߄ ?JV=?1??KK+u?*?c?V?p?F?^?E?ݬ4??mw?1L??9U;?m?Jɲ-?X?u?r?l#-z?}?B?V$?Zt?Z6?+~?iom?8*T?*?|C?b?]ە?Ծ{?Wٳ ?S7? ,?_'9"?lJ?z?RU~6?M 6?)(?M I.?.$.? %-?aH.?G _.-?(>-?qI-?Q-?l$fW-?Xl-?zsq-?*䴞-?-?5>U-?8-?Wpyb-?0F-?RT-?#X,?Ј1)-?`? -?,?Bq,?i,?Z,?mF,?*,?7Θ,?X,?2)s,?6y"W,?s,?+T6d,?836;,?0?T(0?|0?bw0?7=0?x)0?B`q0?cΜ0?0?XyR0?n40?f8a0??iB0?(J0?r/?L5$0?}0?U\/?d޻/?4R/?_Q/?{ s/?P*/?GK/?s'/?0b/?厤RD/?)Ep/?x 5?NQ:5?%5?4?24? 4?@\4?, 4?_!4?n4?DOAN4?_|*e4?hD4?~_t4?@ pS4?H$4?4?c24?DO4?9.^x3?S3?`73?) 3?[p3?W3?3?P1_m3??Ea3?A3?9p3?fP3?6!3?!3?=SJ03?~M3?PC2?"[2?:2?o2? 2?Ӏ2?Uר2?_2?`2?~$T@2?).3o2?8JPO2?DN?ĆN?N?k2N?ZN?UC,N?1oN?gہ@N?XM?YIM?_dM?,M?N?JM?3M?.rT?R?FElR?A}L?pK?F=mK?'sL?:JKK?4-K?FFK?HsK?`-K?:~K?˹YK?K?Y6hy2J? FE?'{E?d@yE?Ŀ%E?;nE?D"TDE?1Ԝ0E?FVE?3D.B?'vB?uQB?~B?%C? INC?7}hC?8C?E?eD?Mn~,E?E?ɾD?8D?պD?D?2?rD?dbHD?q+D?*=J \D?LD?㨦C?P:2D?^D?C?|wC?n,C?)aC?3BC?]??O+6??so??E)'H??'f??l>?R,e!??َ̼>?ŷ>?!4U>?>?q>?]s>?:F{&>?+IM>?(7>?oe>?7>?R_k^>?j|A? B?u*B?PA?cZB?^}**RB?%${B?'wh?^l=?J=?u>? >e.=?5;?:;?PmiF;?_";?Jb7?n7? I7?op7?ad:?:?]:?:?= :?v~:?:?wYɏ:?mZ:?lf6:?h k:?JH:?:?9?,$:?ޛA:? 9?a 9?.Z9?")9?9?89?09?mT I9?|&%9?<IJ8?w`8?M9?WW8?\賯8?# @cd8?s8?vR8?BI8?t8?Q8Ɨ8?$D7?.~B7?N]7?a7?O7?\d8?J7?C1 8?.ѐ@8?5°b8?"x18?P8?Jp0=?̊=?ؖp=?Cɠ=?*b=?Z}==?W. r=?FN=?Ж~=?vRC?YӢG?*p6E?3n/?,?&qA.?zh1?nt+?;U.?0?Gp3?BX}5?;1? _4?ݜ7?i){9?an6?W8?s?)B?Dn,;?N!>?@?sLw[?m/Y?d]?y[?LV?n5T?ZkY?U?fڮA(?J)?P&?hG~(?a+?-?> *?ORR,?m%? #?f'??Gj(%?}!?[?A;#?/ ?aEt?if?/??!`?" V?YI?vA?Zg?f %??c? ?=?3 V?8? y?mǽ?7}?ħS?~ ?2Uy? @?φ? ?<?pG?]N?(L?h?,x?)? iy??? s?ŷ?Nq?bj?K}?<σ? /?Z9˺z?늍u?V.;x?s?i|?uv?-x?\__?^&b?rd?,-g?pT]?Z8a?d?-.Nzp?^i?0m?%ns?#f?9k? o?mM0?*a,?} (?6'-?Z*?@$?m !?b&?<8O#?FPB3?AW?GFv?m ?%d?#?HF??nI?fY ??un ?e?)?2v?io?W?]x?C?N?.???n ?j#?s)o?__Q?{?5u?j#|?n?ݻVt?j?I{o?;"9{?!:?Y?qiQ?LS_?"X?޵J?^#C?qQ?MYJ?Ff?u(m?I_?cf?%p?0?'??ԛ}? cb?2 ?2O>?͡?k8?63b?Gmy?Tm+?O?\h?j?"f?5]U?*?:nָ?$~T?tC?C?y<4?,V8?1?R6?䭛s<?i@??qnn:?{':>?gaD?`W6H?2B?uQF? u L?9 P?qh(J?M?u?v'(?L?`%q?Th?앛??7O ?$&?O' H"?a?L:??U?uj?uE?'v ??#?VMC?E?=B?/D? zG ?Sh ?1h ??e?jQ8?^?͵*??? ?"O?تC'?SO?)fظ?́?]?y?#^?-=?`?t??q5?ĕ ް?1?vh~?Ю??9$>?g8?WC?/>?Z3?'?+-?P[2"?j9?+?X2?sKb?ins\?Yh?]=a?T V?H?*JO?QC?Z?K?/r߁R?aQm?v x?B) Ss?zIz }?tf?.!n?&17s?O?巷?PQ?p?(?dɈ?aZc?D?A⭭?i?JZ?-?1{*?v?>)B}?Nfʜ?ЀO?Z{]?R,?{??W?.v?ʏ?-l?͜~?PKq?x?hn??*w»u?8|?i`?%&Z?uf?tb?-1,?&l5?g?>vg?/?n?U?Y?%. ?pvx~?M$E ?.Hb5?9f?0U?4,?Jyߊ?쎬?"?Oļ?+K?RD?w/H?61ė?1 ??׷C?RG?Ű?W/?%B?D?껷3?YRz?谷??=F?+?3?O?\?? b?x B?B'?U??m??!ou?<? ??͗?fd?U|??=KB?Ez`?ɝ?,?D?I?M?:? ї.?}x?~?؆c?Bϻ?%R}&?:0G?nŽA?46:?XpD?bў??*2?rK-?a78?"VH1?1o?wHj?j7t?C3p??M?io2S?HJ?ͮP?X?Z( _?uXjU?4[?e?*l?뀕ub?x5|h?iy? ~?N_v?{}F|??d@J? !?$Ŵ?b6t? B?+T́?LV?j?Ҏ?/S??xÚ?9/\?[?g?j?PE?e?h?Y?~7?X?d?W ?u??P?y˦??4 ?$?|<?@?n:?8E?>?Ck4?J#o.?w8?2?vIz(?F">"?y,c,?3\)&? ?W?os ? w ??? ? ?P_??F&?օu?+xTo? a?&bh?S\?yor?` c?AGכj?3_?M:|?Koφ?뮦?_P?Ky?G*{?6颌?FXՏ?_쮕?6N6?T?S?Lơ?:0?G1?? ZG?yMm??.?#?ƭ;?d?7?8?YB?DODf?j]????Lj?c ?>|?10r?W?K?Ԉw?І?B-a|?-Boil?WSZ?uc?}V?p? ^? g?dD?I5uR?K?}k@?Am)Z?'aJ?-dQ?q ??_WT?+oI ?8i?h?D?b7J??"?sKK?xT ?{qK?z~#QF?T4A?H? C?X<?G7?ͫ>?gk9?[1?JZ,?LC'?d\%?|4?#a*?qo/?d?W??ͼ?sm?28?Yک?M ?wf?M? !)?@?4I֡?ԧK֙?#?Sq"?}/?e9?;6??q^?N~?(Je?40R?kSs ?L%z?).t?{|?tw?Bo?wj?ՇWr?r|%m?XCe?Ek`?Fg?Rb?;Z?OU?}P?N?.h]?ȫY$S?LX?J? =?p'7?Ǧ?=?$?* ?;1K?s??ir?%s?'???m?yQ?&I&dK?y;E?pUN?!ew\H?HN>?oYY8?B?D;?2,?/?g3?D"{?i.?YO?y?'?R#?^Z??2V5 ?/"?aH?| ??M,?>*=?" ?ƱX?>E? U~??>9?:dB? <? 4?qY.?r(?a%?gs6?5+?Q11?t@K?sP?'H?60N??䗞V?$]s\?n1S?ͦY?Mb?Yũ+h? (,~_?5xLe?Gb?)I4m?gV?;K?L]?B?h)?G?`c?Q5?߲?4BK?WE|?P.?K?KWJ?ؤ??ڲ?֤B??;}?qi|?H?#넛?}?~]?(%5?6x?5gT?sX?D0Q?XV?[\?wS `?z#_Z? ^?+Ō???Ǐ?# >?Q?O~?^?AI?ںW|?d[x?Q!!~?kvWz?g`t?uFp? [v?r?Ǒ`/l? c?h? a?n?e?Idbi?:?dV3?-M~?8?ȕrg?G+,?ם0?SM*?`.? pb?Rm]?`M^d?J`?ހpY?(T?K[?/W?ZP?s-K?o{R?d'N?<=HG?YJB?`e,I?E?*>?|z5?0!9?2?u@?$?U7?奼;?]D,?t7'?H{{#?6)*?Y6&??UZ?!?h?<?#>?kE?Wz? ?uЋ?Դ?6( ?3MN?e ? h?{???Y*?AO?.?;??J?bf?#L?mU?$cs?vLj?@?/1X?'?/?z*?"?#M?u? &?֮:?Q:?>?x? 4Q?i}?OBu??z?k?JheE?ӑYt?k?{o?y,h?Of_?Ƞ?-W?ݦ?9k,?͋U?f?0??q?Y? +?j?| ?l[[???};?q?TƵ?n?m?/?dh?Rtl?r^6-?rf?q0?&%?ȼ?/p?"&ܨ?=2]ϡ?Ji5?O?2PU?ǫ ?|c?ҽq?K?=3?@?ႎ?Nj?N?s? ?~l |?ׄO?n?-f?z+P}?ڃ?r??f?#s&? Ԑ< ?py?<?<Y?֠G?`"r!?h3?f#?/I?-!? +?,&?]g2?P/?kG,?Ӈf)?3?R $?2p/?ԫ,?Q)?k5?hՈ8?g1?Z6?뙹GJ?cA;?RE?[A?)wr>?"(O?j9?F?iKBB?~V??Mg?(o??9?etc?q?u7?t1?Z?s?>??|`?~?@?xG?^i?ż?%?FP?*@?%r?5l?OS4??@fm? ?!' *?C_?EUt????m9q??'?SA??q'?&{n,?H??iq?R??mmTg?Q>T?qf?~/?v?J.?`zy?-J?w?۸I?*02?0?)T?F&8o-?WLS-?m|-?eZ`-?*6-?4-?:StD-?mw'-?A/,?,?+ -?#,?\ ,?mnU,?\),?r,?i@),?xpq,?au,?I,?S[#+?1+?OXV*?ji*?YĶ*?hv*? SU,?z_8,?+!cc,?:zX0?d0?0?KU0?Dʄo0?JQ0?p}0?{) _0?KѢ20?@߶0?!Ī@0?"0?v/?qEy/?[+0?lګR/?/?pō/?L}T/?M/?vct~/?)rc`/?O,/?Vn/?eB/?vah$/?PP/?T[2/?"/+/?Xʬ.?H/?.5.?@@.?®.?԰d.?RXC.?$W.?DV.?jGt.?l^G.?3.?Wid.?3h>.?yP6?q5?io&6?+6?~5?Q5?1I5?X5?En5?˛Qm5?5?/~5?+J5?TaCI(5?H'5Z5?nrJ45?5?S;4?(+5?M4?4?2<4?N4?G^4?_՗4?Jb4?P,4?`~o4?>rA4?2>R"4?c$N4?H04?4?E3?nT4?ǣ3?3?E3?f03??O("3?3p3?zF`3?W53?m3?Z/@3?}7!3?VLpM3?ٙ03?+)Q3?'z2? G3? 92? 2?Z$Q2?t2?-X22?5'|f1?U~2?\^2?2?*k2?\>2?'S2?OӲJ2?̅n-2?1?F?m1?^2?`G1?B1 1?-ƒ1?EX]1?fu1?D x1?y"֏1?v1?UO?9L?bfL?_IL?sfqL?<@M?ݲ0>M?_L?8%M?:JmM?Q5sM?VSM?JNcRM?N?3"N?N?r#N?yQN?TN?)@N?miN?=0&N?}ۭM?DM?.`M?`r:N?P|M?Ns N?/7T?CT?aYT?-T?39jp9V?EV?/KV?eV?騈)U?k~sU?U?-/U?*uU?_L*DU?_FU?ҡ"T?^U?L%U?qngVU?;[T?*:T?EU?4)ɽT?aT?p JPT?T? eT?u5T?z"S?oS?EIT?\S?j 6S?|]S?fS?DrS?|-S?@R?] R?*)R?uj BS?y$#R?kEZS?tU6-R?o{/R?oeR?P^oR?8; zR?߉ȿ5R?R?DVJR?SR?8#Q?utQ?KAQ?ɺQ?SU>O?AݛmO?lK#O?:BwuRO?98O?"wZO?3VO?n.O? O?/*P?rqȚO?lP?!wQ?\GQ?)HQ?4\Q?rQ?;,wP?<¹N-Q?]P?TPP?@=ZP?ɱP?rF*@P?1P? nP?}sP?TP_J?LJoGJ?HJ?}pJ?ߚL?}L?PL?+L?dL?4RJ?rJ?J?J?RAK?@Qn@K?CJ?.'K?10w$L?s)HK?2u8L? L?r.K?5lK?1?dK?SK?؍K?z |K?&=]K?Emd2J?dsl J?,5YJ?@x^R2J?+7E?urGjE?%bE?u"<|E?y?E?E?EQE?c'E?B?lz#C?IB?C?BPLC?tC?9C?Q1_C?SD?bD? Q|D?D?MD?wf{nD?L$HD?*D?1*ED?YD?YD?:ң0D?QGC? eC?KC?I幇C? D?ړC?)C?#^GWI?f(I?8pI?1=I?KٛH?v^H?~JI?Ty>HH?"5H?Ss6wH? H?:=H?E?KMH?!H?`H?.9H? G?_~G? H?şG?G?2"GnG?r.G?WˑG?秖E?C2tF?eZF?qF?yF?8Y-F? E?IE?=-E?RF?k!F? OE?f(@G?lJ G?%khVG?D#*G?ьF?hS~)F?>k*UF?vx$F?I?FζI?y?] J?I?M{-I?&0VI?S1I?15qI?utBA?sCA??yA?ٱA?_A?7q8A?fK'_oA?nJA?,*ZA?7@?,\#A?+'A?w@?* @?@?$@?8n@?h#E@?hŁ@?4ľT@?Sb@? U??pϗ,@?@??? !D??5[]??o+??j9?? Z??M??1i??D;2??- ??B??im??Q>?#I>?ms>?t>?=T3>?1XH>?`p>?}o4>?>? X>?! >?4*A?BVFA?@&B?A?DLB?kA?J.A?M&U&B?A_rB?ZB?Q=LLB?xըB?d3B?3B? qB? UJB?.[FlW7?/!Z07?#D6?it7?`~6?Ct]77?q6?% 7?#fɹ6?Ll(6?6?e=Sޣ6?}kq6?.66?C' S6? 6?^6?76?+xU6? >?eE=?vC>?}>?mϵ=?yڬ=?=?iR=?K;?"Q:?"Mv;?&F:?~7?x7?4^7?17?% :?>Sà:?}:?Pǯ:?Q|:?e?Y:?E:?z]j:?2;6:?O::?7XG:? 7*':?X9?.49?O,:?Z9?T$z9?*$}9?)J9?-H9?IY9?Pu69?Нg9?MF9?<9?I58?[h)#9?=l9?,8?zo8?(8? s8?T48?Gg38?r8?w7? `r`7?/y7?7?Dcd"8?(5 *a8?>ѾA8?ݿO8? 8?ڻUA8?}`8?rq =?`C:=?I]=?K=?%=?5K8=?7[=?Z\?э?ɲ?]4;?,C?\?zv?F(??3Qs?W?"?nD?"k?ʤ?)?~?(a&{?^?Ƃ?2}?!ZQ?}`{M?T~O?RoK?,PIS?/wM?ݑO?+iI?qD?F?IWB?K?E?H?Fe0?ў2? .?'1?|O5?"97?u\*4?06?&::?~b+=?28?;u;?$l(@?1a3_C?jck>?|bA?~68_?C;k \?ШX? V^?G fZ?U?(QQ?z,W?֚wS?N(??*?3&?)?abD-?a0?!~G+?IO.?#$?= "?ST8'?҃$?MpO ?$Q? ?7"?SiP?,?c?o?C?=z%?:1?k)\?]C}?h ?@*?Y ?e%??K?҄-?r*?M?YF?Z1<??s?IVQ ?nay?&dӊ?R ?h0? t2 ?NF?1?$M$?Y?{\?md?)?gd? ?&:2?х?) ??$KT? W{?d?M??Gr?j?cU??O?Ui?J?~?П:?@$?z?&I?4T?4Ω?&?E?E?ߣ?)ӈ??~?5z?:?Q;}?RHiv?hq? y?2Lu?c?m?آh?Mb?p?pCf?Tk?4?Tb/?2筡(?\,?,%?|1?a5(?Κ),?;!?VIb?dmr8%?S?A?WG?N~?Ȫ????? ?N)?0?B ?#_?݀?~? xZJ?㭘r??;?Q#?Ro?it?I?籹|?85;?j?NU?E=?9?dws?7t?؛ty?bfl?#a?-UAr?e=x?c2X?~I?m&Q?uzYe?4^?"C?0k?P? #W?ԡQ^?Tg|?f*?k"??xʧ?o P?+K ?.v?r9?uc?X??!)?zh?Rh{?,/?,%&?S^?c.?mi8?I<? R>5?;?#ȿEA?esCH?=D?yK?`s??oD?DkH?fKO?iT?NhL?+Q?#:%&?$A?&?v"?!s)?C^^?;?qs1$?7?mC??B? ?!M??i ?<?[??vP:?^?ͽ?|?}?ƾ?#?W?f2x?Kk ?F??X,?);-?Jzp?g?hW ʀ?{3`??/nm0?؀47? (G?-?d{9?Ʃd@?Lƚ_?_>N?EW?Vng?HH? \?lT?L)7?9;mn?Zw?X1"d?8:m?53?fѻ?>?u 9?Ԯȣ?fB ?&í?w<9?XⰀ?ͽ?_!>?-Oܜ?. ??_\ލ?=?gk?p:?a ?ǁ?>ty?(?(Dv?o ?4~?Q]?Fd?[]?`k?Flfed?D'.?;?P4?`eB? EC+?;?LJ4?^I?`~cPP?vkW??3 ^? A?5`L?!.ؚS?Wr?:{? uek?LUVv?5'?)H"?^+?$?^?n%KF????\C? ;/?0 ?X?;h?"/ ?b&?!?qI?^$?,t?4?4q?W?l?"Y?!?aV?XQ?vA??IW?r?7Z?#?qSy?q?p?x?M~?!D?5fN?qk?!?Z?a֡?/?1"R?-???hQ?ݑ???tuղ?[Cж?f?N?Զ?{ڲ?7?0r?-?vx?RX"?uٿ?\?mH?UB?&M?3-H?*=?M6?B?ח;?/?{(?D 5?-?r?3o?_.x?EwXu?U:R?=X?VV8M?T?Βd_?$ ee?Prk?Taðq?_;[?yQ!d?7,j?]&??u㒏{? ł?r-?>3ģ?'>?c^X?%+?ز?4Dj?<R?R?m? w?B"?Q?7O?봼?t?Z[P?HV1?`6DX?/ߢJ?7nQ?X?C?Y?SJ?lKP?Ilu?ot?(?V? ?AG? ;?}?_Z?SS ?1? P?3?Q1%?~?>Y? PM?goH?{???'?I@~?SN ?X9)*?cu7?{.???C!?} ?a ?^z?<?Qj%?+@?!k ?C+a?C$?Fsy%?w~6P?'ImK?QF?fM?dH?N9A?E <?HC?џN>?+ 7?,?l 1?ؐo~*?a09?p/?}4?gϪ? П?'/=?`?#?+nݴ?>m?o·? Y?h?4e?鉴?StH?,?pٙ?(+ޡ?]r?D˂?y lA?ɑ ?P?~G?1?F:?/Qa?q?M7z?ʑ?dl|?u?Go?XCw?l6Sr?rvj? _e?Um?3!h?%`?bU?RZ?mS?wb?_GX?d]?Oj??<?:?MV?o=?8?*5?FJI?"p+?6P˯?DNu?B?"F?h?,??jeX?_ NQ?XK?~? ??YEH?}[yB?2 ^2?3[+?(d5?/?Ki%?`)?%B(?F4V"?u?Pl?r ? GҾ?sQ ??{? 5C ?8?txv0<?&mNe2?;~5?eR?]??k;.?Ht?9f?~?ȍT?9?TW.?<4?a+?e<?$1?6?6Q?V?.N?)T?]\?Z|b?Ŗ"Z?'_?Mh?uoK)n?e?fV3k??20?d?;\?e?h0?[ٜ? bf?Vb??KV@3?_e?T?c{??y?StU?TKJ3??6>?&i?Up?b?giF?e2?N6ү?)sWĩ?Cަ?zU.?ߢ??x?k)?eF:?r?յ? M?=,?Bjh?δ?:?݄л?v ?k?UG??F?bA?}8?m֥?=?/x?1?'? P??e??~K?_?&H?yO?qč?%hV?CE?ʣX?b_?iP\?.c?_V?jlU\?Ś`?p =? ??Aކ?2 ?@Wx? |?Wt?h(t6?asx?<|?1p?]-g?L3Cl?c?Zt?Sj?Sn? ?[i?DG?E?KqLf?qF7b?Cyj?side?l0?Vz5?w.?L}2?ѭ$^?Y?w0Oa?Q[?svT?,qP? W?K³R?9RK?wsG?17N?4J?B?SK9?:,B>?36?_E?,[;?@?[,?eh(?7͈`0?Uz,?v4v$?or?Bb (?u"?r?Co?tns? 8?0p?XF?wSx ?T=?"<?ԇ?ǟG} ?{K3?+ع?`M͙?Z{?W?Kw?]v?$_??R?g?O? ??Pf<?p%?Ѽ?{?n~?2[?T)??kǘ?'b?Qn?Տ?#?x?l|?ebs?Oxw?9?Z ?k|?C?n?6Ґi?ir?&)K#m?Ć?W F?*c]?峡?bq?Q??}O?f8<??U?~w?3 h?c2?x?%?t;|#??QD1?TQ?7.a?f|r?ŏu?$D???hҘ/?D{?6p?RP?ԭɲ?L.?1bm?,xt?S?毫?eȐ??gt?es?t{?%E?9;7? ?%?U ?N? `R?]- ?Fk?&?Ruշ?C҄?A?.ˣ?>?5?-h?˔?P?#"??ʿ?~7q?S(?}?jE ?n|T?%?0?i]?_?UAL?f䢺?GA?ePv?Yu?ǎ??4?6?{"? ?)Z~?x?yS?lK?r2? ??UA^?6?c?Re?ߧ3?Hz??¶?*>W?ؕ?Fo?k{ ?C ??7?60?K?V?7ǹ?|j?Ǻ?7;?C?ߔP?^?RA?XhH?)`?nB1k?e?[KZ?Aq?vg?kb?"T?;~K?vH\?R?cיK?@G??,۶?Gd9?z'?,Q'?/Ψ'?,@?}'?c'?'?~:v'?p]'?G'?h'?iC'?*'?B'?fwd'?]O'?2D'?0%ƫ6'?B&?g&?Ov&?,q&?֨G&?<7&? &?Ȟ&?|&?};Ed&?g&?9m&?HķK&?A;93&?;tCU&?)V<&?R&?Dh&?w$&?< &?5%?4R%?/mF%?Őƴ%?f%?8w%?oz%?~R%?|`%?2Vq%?[s5%?{%?:Y;U.? }8.?|@.?&F.?Ŏ*.?-{,?(3-?!d-?Y .?Ɖ-?HuE-?([-?4-?5>-?R~%-?dm-?s/-?~ z-? 4Q-?Bhbm5-?IF^-?ϻD-?ߊ-?] ,?|v,?,?7(-?,?cO-?,? `1,?A,?h,?2vq,?HT,?+ե,?d,?PGN*?,74*?J\*?x@*??*?n)?z7!&*?> *?m 8)?i)?C))?Yؠ)?8Y)?1I")?ۡ)?Rѭ+?ߎے+? 糸+?+?w+?\+? +?!bηi+?,ƊA+?XE&+?>N+?۝3+? +?0:*?sdi+?0*?6&*?#*?*?I*? *?.**?C[*?ut%8*?!y6#i*?M*?mnv*? m[*?OQ,7,?DQT,?G,?vnv),?+?l+?6+?|a+?3+?,?4 +?e+?kFI1?$*1?[qW1?W=1?Р 1?˷Aq0?߀1?<z0?C7v0?D0?B0?nS0?'0?)IWm0?#hp0?^y0?"N0?ɠ00?Z0?Ҙ?0?ԕ0?Q6|/?`XU!0?5b0?O6/?5U/?!/?%/?|/? }/?1/?^8/? ?^/?&sB@/?TBdm/?BaeIL/?2X"/?6$i/?`X./?J!"/?e0.?S.?2..?U:~.?.?"q.?lm.?TXb.?Y.?xn}.?@{.?n5?5?y6?5?ͧ5?J5?J5? *5?ruk5?M6E5?Ċ*5?RsU5?h65?/u4?LE5?=24?Ax/5?ld4?5?HƦ4?^ 4?.eڈ4?4?46n[4?mu4? =4?[34?KDm4?MU4?br(:4?ל3?3?3?:?3?-Q{3?sI ~3?/3? 93?Q)Z3?% !3?j=3?P<3?Kk3?[:9 3?Ge=3?s<%2?]D2?\3?=|2?0d|2?y{2?&E2?;k2?o$yf1?L+1?L1?|`f1?$YQbW2?Aq2?i:2?7P1?g2?Mq2? m82?C̰1?]R1?xB1?1?~ 1?1?\gH1?yzg7O?TIO?N? =O?N?L?! M?YLHL?+L?KJ:M?ahM?pVM?RM?V:[M?JM?`EM?ZAM?BN?lQ}N?ѾG&N?o/ HN?QrNN? | KM?f:N?ߘ5M?6)fN?3>AN?0N?ݼyT?{3)(T?+JT?]T?N9qT?Џ_U? T?- T?@5fT?ZT?}1T?U#,U?ZT?o U?cT?^S?%.T? T?sS?S?W3S?oˠڟS?UWS?> :R?6W&S?oR?VnS?]S?P:S?^_0R?ݮR?/GR?ebR?rR?tu^R?Dd.R?/xsR?ٺFR?eQ?Wl,Q?i_R?ԻQ?KFxQ? hTpQ?EQ?4/Q??UfO?+O?y-]HO?/|O?RjO?@DO?,!O?wNO?O&P?*_{TP?y6W P?}`;P?xBQ?᧍Q?88WQ?sU R*Q?qҨP?OOBP?$>P? iP?hP?e[P?n P?b"I?fH?=I?qgI?㛫H?qrH?H? UKH?q[H?F?HF?P*G?(F?У*:F?(kG?ds?g??z??X}T+??8>?T&g>?A>?YOA>?bs>?j{>?<ѕ>?PijnA?Z*A?A?A?fN6A?$%B?76bB?y8B?ÜXHB?B?]B?TNB?)B?g{VhC?k7C?B?¸!#C?nr7?6 ^7?*۬>7?6? 7?P񹺽6?]N57?D6?Wh7?|6?86?Zc6?34h6?B6?/;6?T#f6?&"]U>?&j)>?=?.u8>?cU>?ڪ=?S~p=?~=?d=?C/:?4:?3b);?g:?!݉7?r7? 7?E7?':?1X:?9Vy:?jܒ7:?e:?h V:?:.w:?:?19?p5:?{:?9?79?*!9?99?av9?5Y39?IT9?H9?d9?YA29?ўT9?X8?[8?§8?+t8?R9?Jh8?W?wtW?a\V?W|W?f W?6JdW?^8SW?uX?y{?mS??t$'?6V{?,?}?҈8v?h?-y? 3o?V7Oh?зr?k?+na?~Z?Td?H^?l'S?;kL?ڏ>W?&Ë?L?w)s?_ꆊ?٫?䑡M?ߢF?,|J?@ÞD?8ѾO?#H?fK?x3?8ŵ7?#ƤZ5?+0:?:/1?;]7?475?O0?jtA?NLM?`?]?B'e?[wa?:YNY?U$Q?uxU?=^P?7]?T?CEX?ϻS?nP)?'P,?sԵ&?J)?6_\/?KK[3?+,?-@{0?M$$?铀5!?S&?x{P#?S?)?%<?u?,d ?@?:3??N?^U?yE?0(i?Ye?b?Df?yv?y%?]??i?Ay ?*p?Ii1?4 ?W`?n܆?t{?Ϫ?$X?լ?f_ ?T?V?1h?*?"?&{?v?D?d;?;?a?wԏ?Ɯ?[46?嵣??!?|y`?7$K/?$??3n?u{?7?w??g|?앯?]0t?*|i?en?Ee? y?Ûr?n 9?}U ? N!?x?}o,?YH ?6 ?5??@c??uIn?1d ? ?vX?Xz?J6??+?s8?>_?p?D^?>F?hԙ"? P?֏VW?b q?HNW?%d?q4ox?9mP??g]?]j?ŧ?Ě&?[yKr?,a}??GEoT?r?) ?q?P󜜴?-ۿ?<-&?P?_l?P8?2|?M=? C?y.:?@?&pH?>oUN?NrF?nK?]T?j!<Z?;{Q?~uV?>+?L*"?/1? *(?]C?5&C ?S?v?w[??ʼnl' ? ?h?X+?NF?.?#?B,?X?Ei?yT? =? ?? ?T?3y?F!9?d@?G?I??hK? O?oj2Ň?T?S?s Q?}?s?߿?s՛??WaI?+y?~ي:?Xs?lJ|?J!?0{M?̃X?l?W &???{B?{? }??֧$?Xo?%aÎ?9ۘ?"뭕?a@d?93?3"?3?;s?~?3Kv??_)i??Gr?B8?8Ul??"ϣ?ͤ?R ??? &?!L?+3?rT ?K?D?w?}ض?fD?cV?a+S? )?ry?B̿?!?H?ټ@A?i`O?PcH?%@T:?UaR2?dA?XiO8?rh*?id` ??hS0?av(?漭w?rgp?m*?hy?cW??_?G4O?'Z?9h?Hdq?^b?xlk?{i?22?/?1NN?o?^[M? TD?{Y?;u?0?3D?K?ؤY?A?ҟ?DZ?ګnI?i(=?AO?JܢD?i;?LY? ?P>K?9 ?Ŏ ?q?b???5j?!?ϻ ?S4??F5E?z?k ?L61? ?4|&?8??x5,?k*!?MI?tk`f?%&?g?+?a}?s?I?wUyy?Oj?w<`?A]p?/h?H@V?K?$Ku^?5l{;S?i?y2 ?`o?ѪJ?h?B"A?,?|C?&?2?urʦ?mP?4?6'3?3?M1? Bq ?Rϼ ?P7 4?ԣT'?kXO??ť90?"5?ۉ(??n?t᷀?W'$?Sx?g!;?Γ?m?Sx??fu?.2?"&x?Jߕ??^"ob?`j?{i?9lQ!?/?F?v?fN?Q?j?Jz?\`?"?p?^f?h#W?{&J?f?3Z?6?Y?H?׿?G ?i #?G?m ? (?5/,?f%?qt*?KU?YWkP?U}gK?5R?(jM?fF?aTEA?v#H?̈́Q#D?˦'<?1?LE 7?-/?,??׹<4?mlYV9? {Ȕ?b>"????ND?&<?憝\?G?/Oԯ?0??-?YG)?ڪa?閠"?憧?7k?C?|?ϱT?'?ӽb?9~0?*>?9N$?<Ƅ?C!z?և?Ё?b0z?+u?-|?bw?p?̣Kj?}r?{m? e?Z?:?`?o>W?^\h?B]?c? ??B?t*??S?x?B?2 ?f?e>US?f?SP?,-v?B?S?-_?="?p?r?{q5?Al ?=;?y?4WR ?Pъ?b3?D7?}s,?j'0?KT.?ς ? ބ?u)?ւ?5?Mh ?{U?  ?L(?X)#?<+? J&?g?>?Zl?B?: ?d?6Ō? t?cz?ѫq??c|??:?{'?w `?[OLNf?<>\?Uc?ߡ?m~?ۇ?m6?Ix?Pl?\r?bi? 7{?o?'Fu?Km?0(v?mU?Z ?|d?BM^?N h?Ua? =g4?]P]9?E0?ٷ6?OMY?pxP?\T??BcC?0EM;?B<L?бQA?g`F?[;(2?Q,?R&?\-e0?p*?B?0Tu ?qٲ?/U?q$?*J?u Q?M2?dd?P~j?K% ?Y-?}rM?=m?GW ?M a?0?4%Q3?_Ҋ?rk?3?:O??aZ? ?4??? F?oS?ȱk?܈?]*T?U0?U6?< v?AL?${?T6q?Ŭm?][sv?ECz?'k?jte? bp?`K8i??02S?7?`?h?j2?6TV?Gq?Ξ)??fq?ߓT?K0?a X?*o?9?ss?j?̯.?U?Zz?#ϲ?]L?'R?g?JT=? ?[q?&:X?c?$?e?]?qj?/U?n?=-x?dF ?D?צ?A-? '?o߹?= ?l/?2i@?z?"A?p?]?39?z?^ L?J?:?hq?4??? )? ?~?#? Hl.?{?G?Lq?[?`?Nt?kc?ð?[?{$?V?CR??,il?x??\?0u? ?X{? v?p??}R??" ?fݶ??I?li?Vu?Ii?lK\d?{Q? [?Io?)Y'K?dOIa?jW? Fk?tor??oo?{p? >NV?v ?)]{?w?x?^bl?-`/?(? ?Ωx?%nX??t?h ?9*?‡v25?p?rA?h!?u?@?j?0}%?Ρ?r?nȔ?6W? F?+??!??ק?Ur???SI?8F??W?5I?H ?H>?e ?L?){? '`?[ ?_?6? ̾6?á?Zϫ)?{)?c)&&?gT&?0ر&?&? ^&?&.&?ttF&?Jph&?q&?d(7&?zO&?L~+%?õ%?QX%?g%?ȫ&?W%?L%?%?6[Y%?oA%? Wc%?#K%?82)%?%?>+3%?!Th%? %?A %?N͕3%?Sn%?d%/l%?$?/1$? u$?%)G$?F1A_$?pk#?ճ#?ɔW#?H7#?%#?Bn#?tX!U#?}mx#?X#? xXA#?ya#?AbM"J#?+*#?ft #?&q3#?W#?6=$u"?Xa"?7Ÿ4#?T"?|,l"?P"?s%F"?"?‘"?N6"?}"?0T"?/S.?_8.?sԾn.?oW}S.?> -.?G-?˩;8.?{{.?H#,?نe,?mv,?1,?ua-?G"-?v-?P-?n-?ak-?5؅-?GCMQ-?l-?g~j-?{"D-?4ҁ7-?Ǵ,?̐-?s,?3VP-?-?r &-?o]؍,?:-r,?6,?ι,?W3uW,?D*89,?pj,?eK,?k2*?j*?l@*?J3 i$*?ݙg)?*)? )?14)?s݈*?ke)?D~)?%6+?v+?*f+?Jm+?[+?h@+?~ 7i+?40M+?:%+?,D> +?Z%T2+?s+?zj*?ʇ]\*?um*?b7*?71*?&ם*?A@K*? %*?Z*?Ki*?l*?x*?j!dN*?822*?d-p]*?8A*?¢,?lw+?q-,?Q ,?,b+?j:+?T+?03+?@b+?:3? 3?Fr 2?@2?F#2?t2?bx2?lXI2?,j2?*Be2?Gf1?; 1?2@?1?aƒd1?ۣy2?1?#:1?ǭ~62?{B1?0.1? r1?~u,?r?P£?c 3?$BR3??ٲm|?艙?Ia΅?Ӷ??g??,2?P?d?¾?) !?s ?zA? ? ?5 ? ?> ?u+ ?> ?] ?z( ?{KY ?!: ?Fm ?X ?Hn x ?Ueb ?OKC ?k. ?"tM ?n;8 ?d; ?ˊ ?P# ?a: ?Q?S@?nmv?>;?He/?e? ?J@`?ǻͦ?>???*2Is?G^?LO}?] h?J?ڶ5? CT???Q!?4 ?U+??|+3?#x#?A??ec?};?2l?|5?bp?9̒? BҰ?L?|ۤ~?Wj?u rm?XKt?CvV?koB?c t.?$?Dc5`?yA^8?-_L?s~^O?-/*O?>UN?-kN?0qN?@O?Q4N?XZN?HM?Iol7M?uKL?+M?5kM?(M?W&M?le(M??QM?{ǤM?IM?ǺƟ}N?v+7N?kg_HN?UN?8M?)N?J^N? TwL?o[AT?gҏ\T?z)AT?"[5T?CvT?F7hT?%/OT?YG{T?oFOP? )Q?AHuP?8?P?(:Q?uwzP?ov戾P?*P?mO?L?1YL?珈L?T;L?;(J?U~J?tjJ?a'J?3CL?<K?/:^L?L?䶿c.K?'EK?3=tK?oMJ?;;K?mKK?eoőK?ŧ'4J?uI?-'i~J?T_1J?1 E?SD?@=+E?]pD?>jC? ,#C?GdŒUC?20C?uD? IHC?-?6D?%d`D?b>C?(D D?I:_D? xH?zH?˜H?H?_viH?w/H?lzH?VbEH?7GG?},`G?M| H?uG?|FG?`AG?.KhG?PG?G?!IfAG?a}iG?楝 E?kME?!ՃE?[;E?_vE?gF?rѹE?ME?ўc:F?-oE?M:F?٫E?tF?F? F?7`G? @NF?tF?׈F?k gI?]I?JI?^0I?hII?H?w?I?ugH?e"1A?4@?aNA?Z.A?5>p@?0@?4@V@?:@?v`@?Y(@?۱z@?߿E@?f=??2+ n??@I, @?j??Zbv}??Dd%A??~??`??jժ??B>?@J>?a@r>?0#??v >?Ω9>?cplA?(;A?<:7A?TdA?|pA?_'&B?-"jA?IB?ڳlB?B?`'ˣB?>C?Kt`GB?՘pB?!TB?ѯ@C?nC?bW C?:hC?A̬T7?F}7?j嬫7?4hj7?ȮƖ7?q+7?0Ğ6?LA7?$97?|g(7?f;q6?%„6?6?t6?ji>6?\O6?:^6? 6?x+>?$V>?">?#3l>?E?>?FjM=?Cū=?zG>?AA=?so=?1"-=?BϘ=?]K=?qD:?UM:?J :?}d:?7?% 8?&7?ҰX7?)wS:?ֽ$:? 0z:?3=:?wE*9?B-9?:?_(9? s9?/g9? c 9?E?ol9?zlK*29?Z8? 8?c8?szN9?68?:9?qw:8?Z~q?rR?^??5???IN?ؒ?Q?fc?[d?d$?l?{}?29?!??P?O<?~=`5?D .?/9?h1?f&?&櫩?Ѷ*?H#? z+s??? ? ??X ? +?p?4 ?2E}??>?%v?MWIo?y?r?¾ph?1a?}vk?٧@/e?OZ?S?':[^?هW?L?F?wP?5lSxI?l??+8?ISуB?X[;?L1?6o7*?-`z4?D@-?%3i#?̇ ?&?FQ ?T?Ś????'??rr;:?G?| ?? e??yB?|y?a?ߛ|?r?ae?YRfl?b? v?'i?oSp?ݥp??Y[Q?xY5?uӧ ?R/?V?ƪM`?} ?ݒ N?Av?}P?Jo?[tZF?(?ԥ?8tQA?5?6]?ₕ?f_?t²?O?>õ?I ?k?UhI?|ˮ?N? ?Wl?s28?pr?/\?-X?s,?hpi?@'I?M@D?6X4L?yG?n7?D K@?Xa+;?ڜ4?m'C?:9?>?N?D@ Q? jJ?@M?Ž b?Ŕ>W?Ē;\?5&&:U?yf?eY?(:_?m9S?rO?*MW?4R?J})?I%-?sTg&?2)?L1?56?u-?'3?(}"??s=?H6H&? ?}G??)?f?# ?#& ?sN?!l?J? ?1/?ɼ?|6 ?&1?N\L?)?ֹ ?JË?\:?&i?3W?g1??FȤ?.?zaR???'?H?wė?뻲?'&?]?j?v!J?k}? q?nw?"qN?E??W%m?k#w?>,WC~?˙?G2 >?+P2-? 2?^O)?)X-?;Y7?2j<?VAV2?SN>7?ԕ$?E?"(?"pE#?As?Bω?p`S?, ?x ?K??j}A?++?OB?c9?x`o ??k? 6?fv?OH?v?hd?W??0e?[Z?!6J?kaJ?<d? 'o?q W?uR5d?t[{?$n?`o?/Y+6{?+4?+?ս?v?̊?h7D?7ۣ?Ҕr?ŋx? 2v?QD?k I?2N?aS?߬B?#I?(:N?/x Y?CGЙ_?S?[?B $?Z4?h ?Zd?n?ؙ?ߴR,?$O ?{?7od?.?pK?\?(u?^[?EA?Xy?)y?G??םj?c?y?o\?l5?UsMȖ?9?Se?9 s? +?Uzu?R?UEO?Xo?d0Q/?V+??l?3 x?On?XLb? iB3?uA?o%?#7?IP?d_?cocn?\y??TN?rH/?5uT;G?&F-?ռh?:?_Ԣ-(?)j3 ?/|?E?sB&_?~C?q?|r?M?*i ?yݰ/?l?;,?ZHs?+Ƃ?%?v?Ruވ?Ah4^?hj?{C W?+u?_ ?{?a?(ko?L7P?f?$Wr?q?ʹ#?q-? xF(?$1?o-g!?d(?p-?M?.Z?!G T?HbK?KP?F?0W?u+pK?w3(P?@A?6?@1<?Fu*2?[ۭF?+r9?$ ??#G/?nx?8?iYM?-J?d|?P '?Щ(?hˆ??K`???Pm~?ڋ`?6 :?Ԕ2?zF?k)}z?I[_?Fɯ?C8??:o?~?ބ?<? X"*?W_~?4;6u?_y?BUH}p?GI#??t?/y?{k?l`y`?h4+f?Ekx]?GWp?hc?U~wi?(4$L?:%?.?-xI?o?5?FKp,?'[???[?I?7?®?1{%?f?4k_?{cX?甴c?# #[?EjGQ?E? oK?Gv@?c̙T?RI4 F?bζK?:?Ժ4?"@?t8?h%?oob?/*)?3L"?4B?;X?_?7?M ?o ?k܀?R?N ?7S?̚??-?1?~%?TL*?{t_.?Ɲ)?3?]q.?m)?P ?A~?k3??7 ?ub ?O#?ڒ?m?Q\)?̭`?5Ke?K!?B z?VB?v?7H}?k_G?6H?򝮆?}C?.?:P?7mE??}Ё?:??y\*?r(U?l톭?8QԠ??HBX?yR?~!K?FV?=^e(O?`JTE?e'8?j+<??/K3?q/H?*;?A?/P^?nh?Ḕc?m?+H\?U5c?/h?}"s?ey?oium?Gv?u?d?sX?b̫?q0?eL?MX?ހ?p?_X?*?8!j?;^?|? ?S??i+?4D?[:F?6M?fG(?JdK?ζ? ъ ?\ѳ??̘Y?.?Ĵ0?\1?i??m6?}?l`׽?鯺?)?h?5'A?L?ޥ?o-K?P\Hg?mw?0B?8?4h?b?:?wL˚?sR7?hD??!]?Ǥ,f?|l?Db? j?ͯV?>n4s?kBy?8k?պep?v?|?,%?†?L?1V?Gɜ^?ؑW?% b?XZ? 9?>?HAL6?s&<?yP?-ND?^}J?1S?_A?z)G?`M?q^?*5W3?A .?X+PR9?G4?7ȴ(?hO!?-j.?M'?u?`W1?N ?; ?g?Đ??Ӕ7j?F??F}?W?yu?*m?ʆn?&2?.*?7???q?T??Ԝ?NP? ?h?z?fMٛ?,A?<}?? 8X? Ʊv?[<f? [pn?rc? G|?C؊l? A-t?P)?xC?g???D?f?_?ִr?T-?Vm? {?eԥ(?69?C?_?t=?eם?+ld?0F?έ[?<d?O]?ۼf?]"?Lѷ?|>ͽ?Z*A?nkt ? ?W|{B ? ?07??D;?1 ?.]?R?c?Y??2*J? y?x? c&?||?n p?3i?uYa?Y^v]?nt?'P+e?y.l?ƹO?Gb?vx?0<?~D?^)?k-?HVp5?@?^;?Y?ӳ?l߿?W?n.?,\%??è?Ο?_}??6?dx#6? ?VN)?o̐)?@)?n伡)?ňTz)?_)?Ѻ=)?ңo)?hE)??/*)?hFDU)?*(|8)?')?T](?R)?%(?ѫ?(? (?kTE(?Iy(?o &?๊c&?&?E&? *?,)?oxr)? m )?"~6)?|*?գv+?>+?mJYZ+? &+?+?j>+?SvLZ+?Ku? +?<*?*=%+?*?o2w*?}?M*?k*?`*?ƚvM*?k&*?8B*?2l*?tkP4*?IP*?|(*?[96;*?n$sB*?"<^*?a+?6+?\0{#,?HcP+?r+?/-s+?+?wr+?z1?k0?>1?9 1?>0?B0?j0?8ɶ0?\g0?Z0?B 0?FRn0?}10?J 0?aE0?3>0?}/?O|/?"]/?*/? /?++xʓ/?i)o*/?L*/?$7Z/?`*./?$8q/?^ȻJ/?Et/?J].?A.?.?WS/?5.?ë|.?G5?ԕ15?>VO5?D5?ܸ24?Lv,lk5?F1?5?>5?o?5?O5?bGT5?Dm'5?L4?UU4?e_4?K4?(-R4?B4?s{q4?B84?H'3?eu3?x 3?1|3?. 4?P3?N33?XxCS3? O&3?9y3?JoN93?2?>,|2?":2?-}2?ɞ 3?32?R2?K//1?[@>R2?6&2?BuT|2?tn=2? b1?{1?yt1?˳bN1?8 g:2?a#1?n1?h?. qU?U:r?^?GA??.?FRK?7?-&?d4?j$?P,?j?s=??;?N?]׺?=\?x1?>'{?ļȝ? ?T;?^ᐁ?׿n?iЊ?|w?A?hZO?~?%?s??}7?q?`W? {?lh?pt?m(q??j?C4?#?š?+.?7(}?“%?Hn!?DY!?Pw!?:Qya!?=bC!?.!?`P!? !?dC"L!?@3^!!?^6!?-V!?v !? * ?Svp !?>b ?1 ? ?۳ ? { ?+W ?23 ?:ѡ@ ?c# ? ?҉m ? ?:L3w ?K^W ?]B ?b ?AL ?- ?I5 ?f7 ?ׁA# ?T) ??}QL ?4 ?~%?b4O?[*?$?*+t?v?~U?J?W?&mr?3T}?h,|?^? I?*h?vzS?>*5?K ? ??C +?J߯P ?^R???K?f ۶K? JK?tI?.J?:NJ?% J?ՍhJ?PwD??Xp??#ݤ>?ok??70Z>?z??lA?b\A?$ A?żA?eGA?SC?E<"B?R/}B?gA?a^QB?z&B?m`C?w4C?)q޷C?فB?/C?-cC? :V7?mF7?mM7?0sL7?q!W7?Z7?l7?5|7?đ5?^F6?x7? C7?`μ6?W=V7?a6?p7?Ж6?Z6?QznA6?0l!5?Z6?bU6?\6?n>?"R)>?#V>?=?ͼ>?ٗ?>?yl>?==?9Ԣt=?.I >?;aɤ=?y_'=?qO?HC?M ?B?=?)?v}?u)v?¶>(?D?Jy? 9o?/h?@Yr?Ok?a?m[?i/,e?iM7_? GT?ldE?&M?I&B?FcX?vI?UOP?sT7?`0?( :?ķ?y3?\*?;8o#?򪤧,?̬&?p?4L?a2 ??3I?<^?<ޖ?KM?`\l?SDی?= ?ą?5j,?A3(?J.C?Tz?Lm?H$t?8j?Ax?lr?  y?In?1>B?oO?O;??;η?? ?ЭdT?P??(U؍?7?d3`?n?<?6?J ?v?6۩ĸ?_?̐?h=0?f:?,?cN?}*?oK?S? ܋ҋ??T?7+H?مw? j? Jc?烞t?oj?eF]F? T;?Q@?&D^I?*L?MN?$D58?;i?? D?YdH?w%q\?/0Q?ԎV?*n{c?&TIJ?Y?}-dS?**?54?G&J/?_lu$?q;?M$U+?}0?>??fw?gJ??V%?.D?/?` ?8??V?0?,?2 ?°?d?˗?1eR??D!?`j ?ȇ&?c? C?unw?U~?}3?zt?x?<~G?ɤ'@?QU;?(D?2>?73,?5\6?X1?bIJ'?*z9?#벺-?(!"2?4!?\ߨ1?@4H(?FM?dO?:?)9 ?u?y/?jj ?@?2N?0*d&?" ??lA? vg?xR?)?̲?VNgԊ???0L?[W?fZu΍?+#B`??,?(??qZ?  ?í?} ږ?wF?B|V?=|Í?e?r?Y ?:䫖?%6L?QSO?z?}7?G?aq? (t?+?s R!?E@Hs?{?Gh?j?4 ?(?Օk?x1? Oj?[`6O?\?Dv?"G?tW?2e?m?{%X?S=q?) ?ǻ#t?5-?TO?ؼI?]  ?VF'?f?mf5 ?7?T>e?]c ?rr?,38?&꒭?9 Ȓ? ??4?K)?X?.?afs?p-?o? ?]?Q?Qp?y.?߆?rc ?R?3WG?[?SR?KE?:?l^XN?fj?h?iI?3'4?gA?D?BUM ?5?*&??-}?$L?t?` p?չ?.A}?厈p?f?r@}?ޭc?J?5V?N=?C[p?9fQP?Lf\?l r?r ?U\W?=?b??ND\?{^?UW?b ??}y?ڛJ_?Iv?U[?YQ?=?X?}?O+[/???ݟO? ?19,?j;?zH?KO@5?X?YH? ?8?ƹ>7?] ?gWZ5?z?V?\?M?-;5?Lƺ?@#??ws?"?iw[?:ݪ?s?~`?tr ?u"'??ՁM$?p-?Ș5?nh*? g1?XyZ?R?,S^?=7nW?QH~K?VI`<?үC?K8?^O?: @?&G?+q?~O?Z{?q?)v<?d?v?2?~m?e?S?lAϮ?KHZ?Ŗ>?Ƨ?뢠?n?e???>nm?k}?l0 ?N?t?Bg?wUn?q~vd?y?3j?_q?- ?< ?&R ?h@?Vo?%Q?? F?q??f?v+Ib?]{? g?9_?6Ul?b3d?W?!O?yU\?S?I(F?V>?J?.)C?q6?t.?g ;?2?\۾?@,??+k ?+2?"?h'?U ?b?/?`&?Vï^+??&$?06?9.?-'?|}3?ݕ,? ?Tb9?d?՟ ?mL$??Q?[ ?\F?m|?,B?`?xP?f)bG?D3 ?3Bsm?<7?R?6[?) հ?ʼ?w-?qg?Jʆ?쟕?×? q^a?_ Z?}8)S?]?4W?qOL?[n>?k[E?ZM;?1P?{GA?ܽH?>ۀ?$h?4;nx?RM-p?+Ee?*|?2l?t?[G="?L? ?И}?`??3{?yo?%??[*j? yS?4ט?6W??m ?E1?&h??=??jlQ??|X?OVd?Z<?]2?PI? P?io?fd?1?4q?8Om?I?U?"?KN? ώ?"s?B?\!?s?Q4m?(wPz?t?G?ki? Eb?HLz??lt?Kz)?S Q?VS?|T\?h'i?&V?8I??KcJ?D? iP?q[?l9?wC?O*pI?O?r`?Ff?`oT?N]?U>x4?,?g)>?/s2?de4V%?f?ve+?#?|. ?A?m?Ԅ?Y?9ͷ4?&J ?*?Zn?rm?ǔ?yъ?h?D?/?!?̩?K ? _?R?y?_ډ?S}?d1??& ?8DFr?hz?>Oo?Wq?ny?^ށ? k?aҴ?{ ?l3?E-? ?<?YG ?e͎??0 w?ѫbj?&g?V???%?q ?s g?a?|/?av?#F?Ѣ\f?yS? ?l!?3G?O4?oh??mll?)3??c  ?g/ޗ?ߙ ?΀?}UH?~|X?=:IP?m+L?xnYT?~1"`?h?o\? d?ٽ/q?uVty?!>m?ztu?1ʷ?~_?- ?nYν?E}?0(ܓ?+?L?.#3?fFa?PY?;Q?-pS]???U?3J?1:?eB?l7?6iN?ߔ>?c,aF?H? ¯?q9?G?՞П??&? w?bC3?w=?l?S?rӇ?2(?_ ?* ?7x?oh?Wp?e?$ sc|?l?&t?^=?&2? X,?"'(?ZL?xޜ?v?\Q¹???p 7?gFC?4D;?\/? '? (3?A=4+?_r?J3]?H~K?/&ب ?U"#?Z Ʈ?0??:?!=[?f?[gw}?AUp?v< ?SW?r/?.?17?c:S?UsC?qn??`K?*?*v?Aɟ?X*?D1?N ?bh?M?? 2?ڲ'?V}?r?c?ps?sy?N?v.?Ky?Zb??75R(?2u?U;+?-%?c?*j?AlC?YХ??c\???$_?>Ȳ?%o?J\Ļ?'?)MP&?8'?BoW&'?T%M(?`)X(?I66n(?2hA(?<(?pnY(?{o(?J,*(?| (?B[B(?_ (?t'?vn'? '?;'?Dr'?)'?_'?)2R'?hAU'?@r'?N*='?ྲྀ'?ډUb'?OMd['?}+j&?_&?$<&?KQ&?O8&?V"pf&?z&?b( &?p~z8&?,HV"&?p4%?nbM&?&?% &?'x%?_U%?lT%?+y%?6͑%?i-%?͛,%?`;d#??#? p}#?˛#?fz몼#?᝟z%?c&c%?%?Sa%?$$?:%?k$?g@!$? %?A V5%?DK%?ObI%?HP %?]R%?ro1%? Yi$?e[W?$?6x$?,$?yh"$?&$?gr$?Y$?%6$? "$?~K$?`U(0$?g_$ $?b7#?@ #?Q"(#?- 9$?3D#?ΩT$?1`$?$"?./"?T;_"?Jq\"?&0"?gNF"?S#e"?l#"?%9"?*މ2O"?.h]!?D"?OIb!?)ZwSo"?KZ"?]X"?]l"?E"?º"?0s "?Szɖ"?=ɍj!?9e!?Mu!?eo!?)X!?ks!?[R!?@!?c.?Sz.?2 1.?9U.?5v.?].??SbE5.?焊Y.? Iқ-?9yv-?燭.?8-?Gu,?&B,?qq,?,0Z-?H,?p-*,?-,?g{-?@b.:-?ZDt>h-?Μi-?´-?fM-?{-?,?+?8+?Sa+?s2+?#N*?0jz*?AG +?h*?*?e ܧP*?Et*?6d9*?9d*?^*?S]5*?A+?m+?4 ,?""X+?Ed+? ģeU+?+?,yrs+?IJ0?Nl0?51??D0?:˟0?3rLY0?'i|0?7220?W@ҵ0?nR0?3%v0?B 0? d;/?//?+/?=/?++`/? T,0?Fl/?60i/?[/?k:/?)4.?D/?4.?pr/?Ɍ.? Z)/??<^.?WH͖5?uMo4?%4<5?)Ti5?R5?/4?Iͩ5?D 5? `05?au<]5?<đ4?1nW4?:4?ל4?%w1?JK94?[J3?1G4?e3?§N3?^3?F3?uw3? 3?q 62?8C73?!2?N_2?OiLf2?F942?f*2? 2:1? Ut1?'$1?]1? (2?Cq1?h1?,C2?.G1?1?Rd 2?JZۭT?@ OA?X]?AJ?s-?嗒?47?z$?-5?|u?F?&??a?bA?e?`?4? ??66? ?~j1c?Y/?)Cn?(#OZ?k1w?pZd??YiW?jx?|>?I?LS?S?UK?gfTk?W[纍?Az??t?f?ŮAS?٨n?R#@]?e>+?)"? ?5?L*/?^0B?,<'?RQ8?~T!? 3*!?_Yd?!?5!?5q]!?. 1!?ؤ%AF!?+% ?!?cp ?{߷$!?y]l !?[O ?<>, ?^ ?UWz ?T ?V` ?Ef ?" ?( ? ?_ ?'lOl ?-R W ?9"x ?W` ?x͎A ?z2- ?!K ?V;)7 ?i ?c!h ?Ap" ?fV ??B?"(?p!?1 ??^? ٯ?p0?q݄?vM?vSA?K?cf?>r?^]?}?e`>{f?0>H?4?gQ?3>?6 ?}0D ?*?*e?=H??&w?iB?&0~0?p)?i-?~o2?,?1E?rzٯ?>T͜?ؑ]}?oD?U?=]Ii?[K? +f?q(f]?tq?tO?_1N?ޚ&ZO?(3}N?նC$~N?YkpM?&#M?N/M?'95N?@xFM?f[N?xM?eoM?kN?Sb8M?L?7L?[JuL?BnM?䁕!L?@G*L? ;T?vU?e"/T?ZS?Lr6U??T?f T?o4mdS?KR?rS?Mn|R?jS?S?_kR?;{3.6R?X͡Q?KIzQ?'XQ?_}R? (Q?Q?x4cQ?[R P?#IP?sP?b,P?@ O?ha1OQ?;rP?46P?{isP?ιO?7O? (8O? O?~hpI?W8L?~<K?W `K?K?jEK?IFJ?XUVyL?F͘bK?'K?K?]I?EJ;J?BJ?I?n)K?G{J?*J?:LiiD?'0D?O#D?P"oD?4E?doE?1SD?㨤FE?a׏MD?rH?jjNG?%G?.?0'sE??R>?tcE??zM???ZU>?+=?Zs>? >?f=?,+=?6V =?fya]=?ԩb ?ME?݌:?7B?1??q״?Ķ\?M6?U}?G?q?תzu?}kh?^Qn?ˀtb?^M7z?0jh?n?,\?콏M?=HQU?ߴI?8Htb?BR?Q}Y?5D\J/?,@#?>`D)?y.?N2?7! #?m )?{?3????^ ?c?e[?]w?@~?͎?lt?~?](?~4 ?>?S?y?%?fWH?JSSz?ѣ?W^*?G?uD?>? ?=$?ȅ? x)?Xr??8?oQD?Ћ?劎?i?oɛ?ܣz?k/ j?Ei_?aDx?g?TC?_U?,jlL?~I7?Iw\?lB?D|*sK?$A,?mH"?x?L?6?v4%?7 j?!?? ?<'َ?i?cb?1.??|e?}a?㑇]?DD?i<m?i?nyt??=ȸ?G?ܡo<?cfA?Ð5?iM?->?pKD?c\.?͜8.&?-S8?z,?űܮ?4 ?L?Ð@ ?avL$?A?Y?{?*k? ?6;?QJ?u?K ?w7c?Rɐ? i?aR}?(b?X. Y?Es?)D??q?J? .?RQT?>T,]?pWJ?) U??f?t`p?^?"I.wk?So$?1:?[25? J@)?YR?"T?t\?c?(}7 ?'Ñ?>/K?_}?ou?J:R?t??}?\?RRg?gg?tc?!l?Z3N?2?6??dU v?)&Q?T?z,G?$V?f?:?)蟝r?L?c\?z?jN?o ?.1,?@h?C0?.?/n?$R`?\a?\]r?D?jN ??J?b?ڙ?y ʢ?ݠR?$by?>?>8?[?@*?`?T @?5?FF!?!+l?I<? ?wG?bGS?҃9?OF?,?f-f?bP?TC?0 8 ?  ?z d6?U"?ny?5뜡?b=F??PYޛc???t&?2\?c ?%?:p?=*1?X3h ?/.?O6?ez? C?JL?,| ?>/?w?P,}?PE!V?Q}i?W ?u?;?P? wf?Ͱ?w,?kޕK?@a?1L?p?}j0?Z?~K\?LvM?"h?ai'?s?tBB{?ݹx?Zk+?`?1?bbq?Gpi?n{?Y1q?d?C$1?L6v?`Z?L??K ?pW?D9a?5w8O?۪gX?*G?li?Q1O?W?u@?b7?jG?/=?p/?w4(?P(5?-w+?|?0?zg!?{"1 ?P#?=;? o?O-8?3.1?i*>?Փ8?Z6*???r!?}+}?{؊1?[?P:'?`mAֈ? ?ޜ?s"?wYF?͡?hgu[?6P7?ZO?(:?[?K/H?ç?$ʻ?jݮ?@͵?W=a?Jxg[?ADEh?rzb?L˸U?}0OE?gy%M?% "}??v[?aI?Q?$:?Z ?fwUo?>J,x?h?9h?X9{?zgr??LD?U8 ?C?XF~??ZP?YX? ,(?ZS?>?Zy?&?7 `?Ԋ?Ϫ?f?FoeF?[D?.???yP?*?{h ?;?V?nq?,p?|bʓ?D3?b.?(~?:Q\ۛ? ?A?qr/?kN??gj^?9?ZS?j׶?AK??Jt~?/?1P4?}?''?k? ?H%"|?:rq?i6?ViT{?[)??WW(?rD4$?L?Cia@?K?_?D?G1 ?|D#?ߚ?Zm/?Ȋ ??VJO?K??WH?( :P?wNID?HL?~iX?i`?f)0T?5f{\?J ?Kh=w?R?S?~]޳?WhJ?ם?K%?P?1?ē?TN?6 i?\d`q?yTd?O=rm?Ǎy?~?nu?LO~?rM,?sɚ?_;?:?(W?6\?'X?Xܟ?״?2*?`p?\!? ?(UM7?ҩe? ?. " ?3' ? ?0 ?GL ? ?pEV ?~?\{?)8 ?G: ?v< ?&s+ ? 9 4 ?& &' ?/ ?< ?E ?~8 ?۞.A ?%DN ?W ?eHI ?R ?G_ ?1sh ?$m[ ?p/d ?Rb_q ?Vw2z ?ml ?su ?a ?1 ?"~ ?zb| ?+?uR3?V/:?[X/?47?YD?h?\a?+Y?iL1e?^?ե R?`=B?RKJ?dB>?z?V?h@F?iz|M?I? c?f ?Ւ?? ?2,?fH?ڟF?{?{o?tF?p?f?Y`_? ?e?L ?)*?CT?? #??d?:D?`YU?Q?8gu-?S`?ѷ&?@¨?x $?Čz?>?Nb?dTh?~+V?5ep?L^?jp D?8G1?L?R;??ׇb ?TK;)?~<?+v6?=SZj$?I>?7_-?6?v$'?-2?HRi ??fb ?R(?iY^?j9`?Tr#?u?PH6?O?)z?95?M?=?q3?9?3?w]? jY}??ʷ?^k?ߣxY?yt?j$b?֧:G?Wr6?CP?%2>???B?6?P]?JD?Ų?K?_?[Yu?p_?`$~?dBjOd? hDS?_dl?|#[?A?>40? #JJ?j9??e?e'?4i?h`Q?lE?-?Ѧ ?uB? H?c??vW?1zo?ɾ?? r?[yø?H?S?'u?%~%e?-~?Cm?ă)?qj)?)?&.)?yM)?J-)?4d)?A)?0 )?S(? )?ʞ(?i(?̾-(?r+ (?fz(?(?p (? :(?Z5&?*V&?WL '?Km&?ݥA&?&? &?Qp&?A"%'?׻6J'?Z '?3'?:%Z(?˂R4(?$?<ɿ#?@(#?Lt$?S$?Xm$?m/$? AN$? $n#?GV#?|:}#?{e#?#??#?,#?v0#?[M#?%#?'#??="?Rh"?_"?xR"?akm"?tj"?k"?<+"?ur,"?Zd"?"?ɨA"?U"?3Y)"?t!?"?#x!?M|P!?!?΍gڼ!?8I!?,!?'!?e'!?uj"?)({"?M~"?43"?jEAS"?kf"? ~{"?R!f!?wt|!?*VO!?md!?7 !?ǥd!?U8 z!?`) !?!͠.?$8.?ױl.? .?K.?VQJ>.?Kr.?!k-?⃯-?Sk` .?e-?Y,?VPa-?NAd$-?a,?lܼ҅-?f5-?,OY>-?pU,?k,? @i2,?)kd,?b >+?Eȫe,?.,?Wwz`,?>)?vO)?8}B)?*?t7)?q)?w5)?-"*?HSEG*?aE)?T$*??œ&+?,A*?c D+?W+?*?~Lwxl*?m*?5I*?:~p*?f~*?e)ެ*?X:+?}c+?2{C+?d+?O6+?luu+?`+?es0?30? % 0?00? CL0?K|/?"1cr0?Bz3 *0?`٪/?,</?~cRa/?C.?!/?dB/?ȻB/?p%/?`.?M9.?M`/?!M4.?C#5?5xRj4?Cϸi5? 5?^ʛO5?o|q4?mR$4?;C4?dU4?mG1?yK1?Np0?01?A)0?^p3?+ԓ3?4?Ddqڬ3?hP3?F2?X3?L2?P+LUi3?@e>2?&;3?<_Y^2?3*1?p]1? 1?jDv&2?AEi1?;;2?C+q1?*1?pyL"2?}A?-?^J?;8?s2?ز??%?M(??ؚ7?! '?EU?]? ?R7 w??su?}?\V?շ?VP?*m?d?Hv?8H[?G?$gd?> ZS?B>6 ?v(?s?&F?_?Է?xH?t?m:?-?}??)7?#~Iv?=FS?Ցe?A?`?Z?^$4?mFG?!? f?%4?G?l>M?%?5-"?z}?^v+??Jq?KOx?0?&kI?b/?Tq?4e?ry|?,W0S?pG9?6>qo?a? gN?ϼ,KN?57.O?^s ON?hM?k:L?=M?|5L?h.N?lM?RyL?pT?܊6cS?WR?6Rs*R???T?zMS?R? Q?'P?T`P?,0O?FO?:AO?[ R? rP?OJP?ᰁO?ʐaI?J?WH?UI?4.MK?>LK?RJ?` eL?JʵJ?q1 K?CK?t~D?arE?9GpE? D?&CE????5??dA?\\4@?mfA?uB>tB?%׋@?P!=A?gA?7GC?-C?cKB?\n9C?]R8?+7?w7?7Н08?#7?̘L7?z}6?Љ.7?'VE>7?|ݪ5?#6?Pr6?NJ5? c`6? O5?"D`6?:癑>? =?d{>>?=?d>?\ =?.F>?ׂ3=?b|Xp?- vy?W?3d?yL?p-j\?Τp?r~?b i?_G,x?; .?{>r: ?G^@?*>/?fn;u?z?JXe? d?9%!?>? ??#l?M[P ?uu?G ?@?g?m.֔?y?.?b{?~%~?QiR?g0h?uB?GsǓ?,+[?r(q?jK z?D~O?;?^?il??|c?s:?stC?/2|?m?ˆ??Ҙ?rx?i*˹?ю?x?|?=?ci??"mN?09?%?[Mr?D>?,T?c@?y?ݏ?y?(?P@P?G?wre?k?zv-?22{?^ S?m?W ?QyV T?aQ{?zE?$?GK? M?) ??N7?H?blM,?Kgf?J?$ ~?Kl? ="b?jҾW?iwh?_? 3?Ԙ"M?\ʉ @?6(/?9GU?lw;?=AH?{cr?l?:S??=ϲ?^?ȜXԤ?ð$ϫ?ޫ?ˆt??~?Dѥ? Ϟ?Ig?:w??dhs?]=h?I}?,2?G]???@p?;?r?!X`?x?hk? 0 ?C@? i?G&?JtN?uD?.PZ?- K?E:-:?G0?'ӎA?b64?xk7h&?gy?q#?`w ? *?H?ws?29?CU%?O~/? D?(! ?;?)1?"=q?K?'e曏?):?# -?0':]?a?>D? z]? 6?????l [@?6^b?j|N?^?fX?WAl?GR/F?* Y?xDc?Nj?)00v?W?VK?l?3%|?"? ?rN?hen?X?T-[?\f(?JD?:={?h?vS?>?'?L?r?`p>??+'?k-?? U?hf?? ?Kz?IG΅??h^? ?1?5㺀?f?m~`?Hf?:`W?p?ya?ZG?&6?KDR?(&A?'$?eQ?88j?f""?/?wa?W?_T?A#/?XP?6CU?i?P uA?I? Y?ZT?s8IH?':?`x?O??#W?fd?X?? ?UY?@-?r?,6?y?1k?>܇?VUJy?X)$E+?b\/%?7?Z2?%ǠA?1: ?1?2?7$?Ӡ ???w?n,?l?ħ%?TH?4-@?57?<D?\b =?oO?j@X?Vt7K?DWS?;c`?]1i?x[?e??TdR?]?D?rm??k^?K?sv6?Χ??Y?Dq?$z?9m?v?x`t?js?꽑:??}a?T'?*Ew?̚?ټ?nI?r?p?n ?>Ʀ?R?Da?Z]4? l?Ay?"?Y+ ?M" ?*- ?[O' ?r ?ẅ́ ?Q ?q ?rw?9 ?G ?Q& ?j~*4 ?< ?/ ?W[Kt8 ?# ?]~z ?B ?-0 ?h! ?F ?F ?  ? ~ ?VIv ?r ?Y ?Ur[s ?Au ?Z ?QI? ?{ ?gW ? ?!_ ?藦 ? ?Hǔ ?.>[ ?nj ?m5 ? ?XE ?MN ?$A ?I ?<W ?o̝_ ?=ŹR ?K[ ?Ph ?`Pcq ?;Sd ?H+l ?t۬2z ?w ?u ? ~ ?Q ?TȔ ?c ? z ? ?z8,?u1;?%ܐ3?yB?FR(?ݔ4?oq;?xsOi?ֹE$b?+qp?VDi?>Z?CI?!uR?B?fb?+fO?$X?O?[צ?%h?vl?? Zw?o#(?p?&m?걋{?T?c7G ?KG?5Էz?c ?\?3[???F͋/?V%?Ƣ4?i,?m3?S^?Țn"?[?Ԋ?Դ?Dž(f?)[?J?LC?T??2?#?{?ct?,{{?\iY?' ? ?^P?Yn?ҭWJ ?DS ?gE ?xCO ?hY\ ?!?W?AB?l??Y=o_?$;?_hL?;TQ?x?:?_HT?B[?*z?„? ?Yy?pg?"9?3o?.~U?D?q+"]?sL?V2?$ ?#'8;?ow+?< ?t?U9ww?a?} $?X?_-?Xt?L?B,?k) ?.?w+?~e?]?UD?׮?{?P ?r?hX;?zR?$?w?0{?y?-ص?Ś?a~?kB{k?_faӈ?,t?X?H5G?ק\b?Í2ON? 5?޶$?9<??o ,?*?5W0?tX?a-S?|[?kr??~~?Aau?pZ d?2}?=al?FR?\A?4[?W]J?c0?|_??CR8?H'?F$?g?JAs?Lv?j=!?9*?!N!u?/ ?_F;?S???g2 s?Ҕ—?&=Z԰?o?R?&.v?+U?`L?e?CU?Sn?xo^?~{)?&+X)?kt)?N"v)?d^4)?F )?:yR)?7#)?yf&?K9(?b(?(?&(?(?f(? '(?\|(?`&?-([&?/3g&?'?9ۆ&?Ea&?Ԓ55&?`:B'?S7Τj'?Y'?4R'?'Y;(?ے(?كQ(?M=*(?'?|^'?"!'?GI{'?N$(?j4`զ'?OI'?\#P8&?Z33&?MX&?(!&?Lc%?^yCJ%?%?\%?RBju%?8 L%?Q h%?\X%?cE#?)#?s#?].#? #?*#?$}I5#?q#?h6#%?$?i^Cn/%?0$?|O$?U߈$?$?kyi$?H4 $?$?v+$?0 $?eGJ$?+$?h%#?Ab$?{$?5$?[#?g%5#?+"x#?34Q#?xP#?ɡ9b"?-<+#?Zl"?g5"?˘uƍ"?a"?6:~"?ٖQ"?b~<"?Ph5'"?!G!?pO"?d"?Sx}X%"?֗!?ߣ!?l"!?`ʤ!?^m!?|V[!?}L!?Fqb"?}b+kw"?>mm8"?;N"?ixb!?2!?Vsx!?,;E!?s!?iWb!?>y!?V!?[T$D.?!F$/?dѵ.?2U.?(.?(0.?/1gr5?=4?+*5? f5? PRɔ4?~r5?p4?yʩH5?"h:4?ǩ3?cn|4?E4?lS1?!/0?Oc 1?$1?l0?ȳ8I1?}1?orI3?o3?Z3?hF3?!k2? 1?"kQ2?H<Ͼ1?Q2?V 2?^*t2?xP0?K2?ԗB?{"X&?_""?ih?P]?Wk?ܭ?? gU?Yk?3?1B?p׹?m2{?Sm? ~?7x\??]m?}V~?SoK?T+M8?cK\?\E?d?~f ? ʡ'?FE?)?3Mc??y:?б?wδ?to ?R#?ϊ{ĩ?oU?|:o?V?7٠~?e!1U?)!?&/!?lbF!?m!?8IS?mJi ?(5 ?a ?/] ?|: ? ? $ ?C ?oo ?N ?硆 ?}mc ?K, ??] ?mI?A ?\E?#; ?' ?Nߏ?w Y?Hȉ?pdr?=S?Vf?0*c?jz75?[X?lE? @Q(?7P?NjO?R# ?d? ? $Uy?R"?gEQg?b?K?#?esN?C@M?M?xhO?R@\L?\&gN?M?fY\R?XxfQ?25P? %R?ei}z2O?ߜQ? mkP?kyI?n; J?]3I?wԤI?РK?%L?yJ?-K?銡ZE?okD?@wMD?34*2F? lC? cE?#yoD?)H G? YH?^怑G?)jI?l@:F?7ȲG?0^H?k %@?P$??,Xe=??eM3@?͹>?܃??3r??@ >?A?+uB?Ŭ @?jA?cC?R^bfD?MB?,C?Dn8?+=$7?o 8?R7?Q 8?@D]8?W 8?6/7?&16?}Z=6?OvW5?W7?Ɗ7?Z[6?3_n,6? q=?iu?NF;=?c?VO?N?>A?T7kX?)%?e? $ݾ???%?zr?ZIќ?Ns?H^g?^|?ȝ?:0H?W~}?O?W?gPhgw?F^~?Ͷ3p?k?{w?Fr~?\ci?a1cY?ҥa?FR?O p?Bh]?&e?]? 2?m?Dͭ?2?<?)?E~?ڷ?4/?՚?m]M? ??`z?r?^:?RE>c?iVW?5? i?s鿩!?E?_?j?N]|u?W?ǝFn?>e ?D ?bݩL?E C?4`R?c9G?9?e(?\1?Jخ"?G x>?,?P5?ý?m$?n 0? w?ݽ*?~'J!?-?4=?3 5?E?J`@+?et>?o6?TM?RW?E?BfQ?#?8<?x??o?=?O?cm?ww?wWa?az0l? ?[?g~?1g?j+Ðr?O:?m?4?n?];&?(?hc?_L4?i?lr?=V?~??;,??UM?崒c?h?=?o+?%{e?Nd9a?5Lp?.oW?0i? ?~flD?(x?a ?/.a1?F]?v?v.K?U?0?D ?T?(E?vԷ?D?w?L0+e?'@?iJ?i1:?]u?Q?m=? h?@Z{?>V~? 8N?C@k!x?5qf'?@+? ??VU)?V?%<?bU?꺎?C8o?Xb?7?ߚ9?õo?f?![y?{ jhq?z|s]?%c`D?zP?*??/?$?[?p9?`?e?odW?G_q?N9Ka?Uj&?b,?s ?g%?OWH? <?=R?!B?`=1/?^?_/#?տg?8@5?϶F?y&?W=?P?cJK6?&&J?Ġ?@\?MÁ?M?%?*?RD"?\P?R@?#?:? ܙ?Kc?MgB?x_js?zk]?U?o?HA?I?zZ~?d+XD?lY? ?h+?XO?@?>?]6?a?t?ic?5-7?FB\z?X?å &?Z?[倖?mV?!? @V?9?r?<%?æa?W]?,K?Gjj?cyY?~~:?h?ʳ(?O ?GH?[q2?!?mE?!aإ?URn?"w?Ӽ2?HН?V5~ݺ??7 ?Xf?f0C?K?ڙ@?^Q?Jl?Е?S-'?r٦?Fs?k+x?źg?ɩ.lj?\*w?J9?I''"2?5H?܃VB?) ??s?Y{ȏ?>S*?Uw:?9U?=/?rG?J@?$ZO?'G?eJ$9?;I1?`? O?Z?E~xi?R,r?6d?$-o?d/P?;?v=A?ȭ|?[?_??TU?$?:~?Z?"QV?I5?z|?q?ubK?1'?6rx?E+u?GŠ??L2??M<?9'Q?x?pps?x?m Х?E?j? ?'?%vV ?f)???4 ?+ ?W# ?R0 ?( ?\J ? ?Q ?7 ?[ ?3 ? o ?S+< ?tE ?yȁ8 ?@ ?q ?| ?: ? ?Ki ?G46a ?H ?滏 ?Q] ?#^ ?k ?*\ ?md ?f ?ߡ ?@ټ ?n ?~ ?b ?T ?ݳ ?!W ?:ު ?aN ?g6W ?gWoI ?[tS ?m` ?h ?ܓK\ ?Ded ?'Nq ?*=z ?:m ?!d"Ru ?1 ?R ?1A]C~ ?yd ? ?{'Z ? vN ? N ? ?M ?? ?p ?- ?n!;?WH?5?-3m D?/j?ͰLU?E`_?G.t?<}P?`?KjKk?G?{?Zz&?6?=u?K?N?r> ?ͅ?t{u?EM?PC,=?AU?mtϒE?N-?X?@ap5?G%?. ?63?Y6?tc? N?'n??L ?Fq?Z|??[?QUn?~<?`i?ә?Z<?(9?K}?)?KBR??L~?)l*?C\8I?l?iLm6? i?r#? i?rk? e?$2?UNu?҈Z?gdm?&?ߞN?kow? S ?ާD?hS?`-?s?Mg?-5?H}5?`t?e7%??u2?A$ ? +? ?^?V?4Rx ?? ?$Y?M?{ҳ?PJ?K?=3f?Aϊ?:w?s0?E?ed?m؅C? "T?mC!3?_Bl?K`C?[C8T?eV$?"}?+v4?.ɗ?/M ?ݵ?j?5LG?W/B?ZeC?dm]?H ?L?xt?ޔ?f؍?#?`ü? ?Peb?a?bw?]? :??W4? ? ?%???3?k?3W?3Sw?C`?yKvC?y$? 4?R?L?xͅ#?&3?nê?Tc? +]?a-ԡ?{?t?C?{|?Pcc?G5^R?j?M Z?\`A?Y(0?oI?/9? ~?]'S ?M'?ߦ]?8??6=?|,2n??IM?=??W'p? Ś7?%7)`?sc?e?Cϯ?vv?$Z??B?٦rw?,g?_H:?Cr,q? V?oE?>`?vO?M=MpA&?}kp)?B!A)? ۙ)?0`)?)?}0(?-O1)?ށ(?ޚQbx&?_&?mzr`&?<&?e8ܳ(?}ug(?7?ٍ(?+fA(?Iw(? 9mh(?" Q(?5&?(oBc'?&.-'? +('?&?(8b'?1O-'?vy/a(?)+S'?o?'?է(A(?D'?,'?i7(?? &?H%?))&?Y %?3%?Tn%?WpI%?ڕ{%?>R;%?)z4 %?4N%?5vA%?t#?Lҵ#?lm#?Nx#?.M#?7#?h#? pI#?Hn`$?a.$?@ڝ$?#B$?G{$?v$?a}M$? {$?dkF$?`T'&$?S$?x=s#?bF#?o#?)V#?o2*#?"?X"?b"?T&y"?Q4"?VVb"?Ї"?pw"?JA"?z_Y!?|x !?q4#"?෸q!?y~!?˷!?_?J9"?|`N"? "?Ep/"?ιPc!?ʽ?x!?RKs;!?SV!?g!?sE!?j!? ώ!?Dž.? c-?'y-?J(-?6.?-?VD-?oWU,?ّ,?-u{E-?9|,??¬@?"h=?x|????cA?rC?52B?@iUD?O)@?#B?UC?3NL8?:7?<6?ӥ[6?eC9? NA8?4b7?395?s3=]W5?dh 7?@:06?%W}:?_[;?i=?3^A89?Vq:?t[;?'Ц=?O;ſ>?gO? ,?%?\A?S'^?)k?a?*|?㄃?1&ހ?a?w?$b?]l?W+]?j8k?7yg?k@r?~j]?E[?1מ?=?#??1?<?pl??`?K?j4X?wNM?ɈPb? X?k?_a\ ?h?!#'?@yF?Q?ʞ?hhC?Swv1?ql:?XXN?a)? 7?y@?8?^k?D ޷$?Օ?羭5?X/? qH>?$r,$?G!7?Ol?jθ(?r3?hZ?9d-?1l>?,]OJ?a8?`WD?:;V?|ş!b?!?P?՝![?%V_?˖?? ?nۆ?⧋n?Fqz?D=g?4: ?m?7?߽`?j]M?V> )?ߌ;?Ԩ?W?-?Qv??TG]c?0?U? w?acR?j??r??R#?w| ?j?kw?k6?=80?ׄ?Z?m?lE?G? ??o[?vҨ?( ?D?l>??<?G?B;[?7bk2?N?F-a?h?pg?XT?n2?EI5?Ice?a?h1#?F-#o?jz2?K"??5&u?t ??nHg?!|?S٥?~fv0?Gi?*- ?tx? ꕍ?T?&]? ?:d1?`g?p`?w( ?'F'?0D̓?:p^?&vL?/D-?19?3? F??&?#3k?)uC ?U?GP ?-+M ?n ?8X ?Ɗ ) ?&1 ( ?d&X ?h ?"ן` ?|q ?S ?d@` ?zih ?!Vy ?ވt ?q ?т~ ?Dܘ ?h2 ?N ?e}˥ ? ?qO֕ ?jם ?=Z ?D%M  ? ?; ?b ?b ?u ? ?LxL?zh\?}E?UV?FXfl?jQ?YR~?m?f?>Ր?Vz?4?9"?pc?8?_t,?2S?Y&?ި/?癕??"-`?6A??u?,Ŷ?[fK?S@s?=5?4= ?[P?Im? E?HM??^?3k?m ?{ ?N+ ?\ ?p ?vR ?Scu ?jm ?bS ? ?RZ ?&~ ?(r ? ?`; ?# ?+[ ?b죱 ?Q{ ?. ?ͣҟ ?c| ?Ca9 ?2tͬ ?f\ ?QIJf ?HqvX ?r5a ?<2o ?Ϋ y ?Uqj ?O u ?鄈s ? ?n~ ?) ?wŔ ?!U\ ?o( ? И ?͜w ?yn$ ? Ti ?+ ?@t. ?8 ?q( ?o4 ?ݒ[C ?:T ?$K ?9\ ?i> ? ČK ? 2T ?"-F ?w@ ?@ ?_ ? % ?OI/ ?+! ?}++ ?hLE8 ? B ?)r4 ?i/= ?V|(L ?4NU ?w\G ?69=Q ?8T_ ?S߲i ?Pب[ ?j8e ?iBs ?E^} ?7o ?x ?y ?# } ? ׅ ?z} ?n̞ ?bO| ?_0 ?; ?T" ?sÚ ?]) ? ?P ?Cȟ ?D+ ? ??F4?wQ#?Wy,m>?,?H??4V/?<?>?u?m洠?O3?h1 ?Z<?t? q?ca??塘?: ?]?e?QӶM?HHV?oʍ?wۂ}?Z?n?Pm?wu1%^?dpt?!(e?5=?*-?ǏVF?[z@6?<?Wځ5 ?_&?ǥP? ?'?C^?lFL?X9n?@-i^?u?T$e?YN?K$??HAp$5?V5?ݾȎ?~a?c< ?j@?^w74?7?r?H'?r!?㛵?`]_?c'?sJ?Qz?vs??Rk[?K?e}r?)I^?LC?$Q>,?eoZ?/HJ9?)C~?(?7g!?;l ??d_/?1?g?mBe?$7?M?%?{?8?kY_??;PU?4r?_5Tk?v?]rK?.^?FB?.NZ?hŕ? *?1Oyl?T r?:ux?[i]U?;?_Qa?B5}I?"?}S( ?0?"JH??E"1?x¢?xPu?6Qmr?}Q?"0b?yA?8|?kR?+c?#W0?DW?JtB?J-)?c-[ ??> 3?+q?@?~g? W?W8?;7?##?J?Ⱦvk?.ze?G&?q@~x?} ?~Z?3Ԟ?2j?늮{Y?&~.Jx?sd?S%H?:C6?i+%S?@@? ]%&?ޯ5I&? &?2hk&?y@6*&?6P)?3)?FP&})?A5)?(?=(?/(?©(?D7&?a'?#fg&?\5&?0,Bh(?*,(?\(?'?U(?$QG'?v'?ak%?Iu%?/j%?W%?4`%?+W`)%?x%?9%?CTxz$?B$??%?tTN$?oٷ#?SG#? o#? $?΃#?Zy#?Z#?Խ$?iof,$?H[$?$$?%\#?g,$?fZ$?6g#?f-;#?!߹#?Y#?8,#?j>"?·.#?"?K-"?Dcc"?G"?pD"?#j"?ݎ$^"?QZ"?!?d"?`t%"?]ĸ!? O?"?!?SZ"?lI!?^l!?0p!?#==!?TDZ!?F*c!?Ww`!?yq!?J9-?nD,?n--?oW/V,?s .?:ڄ,?3сX-?b-?+?dg+?Q,?)$ +?)? C)?E|a)?=`)?)*?{&J*?k()?(*?Ii*?ƒNU-+?WYo*?h*?;0?bs.?lj_/?x,0?L.?}/?69>/?6ӷ-?Fr].?|w/?:&.?X3?k 1?c2?:f4?>+d0? l<2?݇L3?|_4?驩5?+&޶3?dY5?pܬ?q?lB'??GEP?'D?1S?o&cY??BK?@g?baK-?G?mP?wl??h?w3?L#?B?TDg=?t?g?g?[bq?DA?Me?E?Bێ?S+6b?8pJ4?X[$d??~I@?F$o?k ?W ?a !?qmxC ?Bw?7=?o$?ۉi ?+p ?#?o?Vx9 ?r)1 ?ݕ` ?7 ?mFd ?7< ?bl ??B^R?nj۬?Θot?_^"?c?bQ?r?d{D?IP?]= ?^eM?LL?iwlJ?U&ЋI?*8N?߲LIL?J?UE?4cH?r d&G?ҎD?'v|I?G?$sGF?U?? $A?=8??$o?;@?k\5C?D?)A?PiC?gr 68?)[7?[6?69?5?ۙb8?O7?L۠;?Ot>?X{?Pk(?En ?w- ?z ?2 ?س ? ?3 ?K ?E| ?X ?:) ?;n ?Ԅ1 ?E7 ?mO ?: ?*'B?T?l)s?"?&?nJ?lU.?J:t9?NЦ?x?JK7d?N+!V?7?*W?_^?D?hM?L?2?R6?<@?g?^?4?$,/Ї?m?-%z?Xsc?z<? 2u?&K?~?L?o?p?ó?MP?ZB?_2?rV7?1?MH?Ek? `}OY?fP!?wa=? Nۖ/?LK?M?,a?E`@?|'N? 2?aj8K?ET'?0?ᵝ"?t?h?ažb?w?xY2?KEJ?[J>?ūU?+?zd>?ǿ=J?Oa?cp?G NV? 4g?qn?`?=c*??wv?j?L?ӆF?gP8?$8z/%?]w?qF1??Pd{?QjR?;%5W ?͘O?y=?]L?͓9.? oٌ?95?q~?oc??i?' ?0gR?ĕ_?g$?_(?8a?{RI?+u2x?rc?V#?DFmX1???^K?g~?"c6 ?,?1F?߁B?7 {?? |im?20??DR9?ʉjW?64?/^?ï=?9F?{J?8|~?`_h?Dl{??,?8XkY?m)?/gYr?Zl+?ޔJ,?nٕ?SWH?s1/i?cA !?)1?/?P?fد?q?t4?u0>???hN??fԻ??Z?']Xv?a?vՎ?Bog?e[?t…?@k? -?EGq?(M?ZX? PY?""?,O ?ch7?\JQ?~,J8?*wf? pH?PE?!]?5Z;?KV?6@?3ZW?LM0J/?o8x*?Yt?߈&?IRm?R?{U?h?#?e??1"c?$)Y?x۠?(:?o?lʻ?s(?Gf?H?2?v?Jpa?<?vP?NÅs?gi5?0_?VG?R?w ??D?L??a?sL? ?h?̟X? Lq@?v?;d?f)?`?.L?kF.?iN^?yQ?$|6?kCD?x]'?mX?t;? =I?͏j?0A}w?㼦e? -q?dc?,?,Z}??u qy?H?[?a0i?ߑ~?1r?7?T?β?="$A?6$د?B?XS?6)Y?2?b?8E?mʩ?Op ? ?^E?^m ?"ѰA ?P|W4 ?[v ?' ?U ?#Ӹ; ?-# ?;[}/ ?jBMN ?([ ?(I ?BU ? ?YS? ? ?f] ?Әڄ ?V ?l~ ?'yc ?T ?"0 ?)3X ?  ?k² ?L ?ph ?u1v ?%Db ?fp ?:?| ?/D ??~ ?Gr8 ?  ?[JȪ ?& ?? ?by ?MX ?=U ?4= ?mY ?p ? ?>+ ? ?D`?ODt???Y? 9i?Qj@ш?8(?L2}?+?Rߙ? ?`,?&ήI?׾?Ʀ?ѐ ??!?o ?ĔCBG ? SV ?yv` ?P ?%[ ?ŋj ?#^kt ?e ?:!p ?;~ ?yղ ?U)z ?tC5 ?I ?% ? ?VW  ?3 ?v ?yŮ ?ӡ ? {[Q ?X Τ ?^- ?~ ? ?LW ?` ?&dp ?9C?m?O2O?|+?^|? k$?)}2?kb.?R@!?${?/v?9 ?T?+j+?WJ߽?3H?Ů????H?3cT]{?ۦ]?ژl?bU#?93g[P?NqD^?5m?%0/? ?RV9?e'?A ?wՑ?EX'?|7?X2?Zx?w3c?!tW?lu]?M?>e?SU?Y=?FͰ?Bt-?7?rE?V =#?)E53?? hre?ʍ;?5f? ?v򣛚?B?k$.?l3?QS|?JÐ? ?"zm?pqԦ]?+'t?&:/g? B?> ? #?]?"t?bꑬ?'?d<?&k?EӃ?f?'s?:"?,̳?e(?>?}?t7?)a.?H?&?둕v??6~?lLI;g?mFW?_\o?s_? H?`ez9?3NI"P?Щ6@?d*?W=Z?1?:"?V???22 ?^?1? <?Ui?ҎK?H?^F?Qܑ?†? x?,T?<?IYi?jZ?z.p?Ƙa?ooL?vWv=?:Q?C?ύa?Dn?X+ U?J (z?+=6?]i? X^?Ơ ?s-? ?Ĩ?dG?q?EK??~?\~?3&P?]$?ʗ!m?S "?}?+??|?f`?{?oNG? ? c?UP ?T= ?^̦ ?ʳm ??a߮H ?Q ?*? d ??+K> ?$f?Z?(/?Bk?.?5>?3T??jJ?u>ĥH?ϋáF?E?1 ĩK?P 6H?ctF?L&K@?s5C?r_B?tM>?A[ E?| !yB?JV@?̒8?:?|}h7?_ez; 9?N =?!K*??<@;?oX?J=?ϙU?t8U?4R?/Q?jd"P?[L?A_N?졋I?N?oxL?,J?0??i冘 ?e`?$? fu?DzU?*Q?Kp?ͺD?^-j?=,?j9??}ό2 ?1?Ih?؀?U@??T?G^*)?)$?ye?Ϫ?1˼@?IhB? TU/?} ?FC' ?<+ ?$=" ?Mv1 ?4í; ?ӯm, ?ꉞ6 ?FR8! ?v ?ey ?T}, ?M9~ ?2o ?wֺd ?ft ?i ?!rZ ?!,P ?mE ?@ ?!c_ ?΄K ?s VU ?A ?$ ?\Q ?-#)N ?' ?~4w ?'7S ? = ?0 ?.{ ?F ?92+ ? ?rPR ?Gr* ?@ ?س?^?lk?n?*?P1?ȥ?ZK?'J?;?? |?jQK?T?@ ?\|?Y}곍?ؤs? }?{?D ?yBey?ٱ?򆐒??o# ?1:?.? ?Jj?'ʣV?z?sqdj?"~{B?[(?6a5?Y#?Ȁ^V?[0C?gnU5?C~@? w ?MQ ?#j? ?g[Q2?96hR?-RQB?g4b?Ŋ,?c3=R?jbB??oo{?@\W]?*Kŏ?2u??e>K? &n?-9\?^?[dvD?mml?[?,?«?7?<?yH}?A?Z?lg=?|*?#S?bL@?&r??$G"?^뱩-?g~Y?)?`?Fn?x?C?W??_H7?H8Z?ʴ?` ?e?Nx?j'?} F?p?)7C܊?ӧ%?7g'?-rW]?L8L>?~&?S#K?qE7?=?j?? l?-Q[?&ڰ?{?t?E3?Y?pO4?"Y?Bh?0C?_?йR??ß? cI?A_??A.?^?Ё?l% ?78G?:[?Gl?yρ?۲?F(?yvK?x1?Ȭ?4b?%r?Jk??Aߺ ?H+&'?yf??Sm#!? r W?!/?XPf?⿎?pZ?WJ{? #?]Y?BO?FS;?ʱ.8?'?uƖ???oNR?,W8?p]?ҳD?Oo?2^?iB?# L?K1b w?M?6?;%? ?]4?,q ?p>?*@o?\}3?cgyQ?O?2T;?/U.^?$q}?l&j_? DP?k?>e׵b?9,A?5.? S?B?1vx?}?D',5?X˺l?Qr9o?D-?c?x]?a$?? |? Sc? ?U? ??(P'ϥ?|?hc?Zsn ?S ?pt ?Q7 ?)O ?(C ?%* ?]7 ?v' ?IнH ?ه2 ??y> ?x\ ?Qyj ? eU ?b ?+a ?xQ?HFE?XS5?Ц?$??a;?y\?MM?S M;?q7V_W?C"zG?zF(?;t?i\>4?#??s?)?-!?~pC?xT?' G|?SK?n?c@hk?&D1{?4/5?Q{`?H~P?m??K \?VʖW ?xM? 3?!5?`LK?G-e?'Z?l2Ɉ?H0#?Wj?y?7-y?1?;??DYz?W?Ɔ?z? š&?Mw?n;)g?Zۀ?BD'p?rbqW?BH?g 0`?N?7N8? *?蜮t??;6~G1?]"N?  ?"?ौ??P%?0c"?[H?:##?4?]oN??Sv?eF,?Toؔ?r\?Mߵ?(?o0)?/?"+|?1Qt?{My? jS{?}x.f?WTX?,m?^?&m?ϯ?A?V!?ຍ?a#?SN?BU?O-?Lo?u|?M@4?ϸw?gri?*~?Z[p?1)lZ?:cK?e̵a? R?U&=?.?ΪKQD?ڢ5?~Ċ% ? Y?҄"'??}_W?E?B ? :??Ir6o?q?~9??=#?՛q?jI?H'?-Ǘy?b01G?&5 ?C,CG??;5x?p@v?>?/? b??!?U?tKl?c?#5.x?mG?V1 ?1ER?[ )??䭾???{?^?!Ǐ?t?)[?CJ?j *? Ú?D-?bnj ?z-?t׿?h}?٤l?3 `?zE?K ??i?2!?Ɗ?l$c?h񱑥?kp?L ;?+ ?X?>2?"?$-k?pN ?b?6Ot?0A?Tq"Z?a(?ۂŏ?&D?!]??"?8?B)P?*+?$?HT9?&?ӓ?_Bq?~?x?1b?tn?P l?bK?y2(?`9?E#?AA&V?=zU6*?;?(MLKI6?SC4?X7?5?E^ '?#L}&?I&?LƝ&?EoG&? c B&?^X%?]&?滆%?z"!9Q&?G5@%? 7&?۱(?Q(Fp'?L!'?fS(?,?'?B(?d`?'?+'?:'?iiS(?`~%?[>O>%?RC$?$Z$?lwIx$?hi$?zk#?B'%?(4<$??yp$?MNi$?+#?1`#?##?KDm#?(#?!g"?%Z*<#?5M"?=۾"?6!? `C>"?IN!?W"?ʀ"?5&I"?va!?oH!?gRU ?O ?~ˀ!?ʹ!?#ز4!?Һ}!? J-?,?8]u,?㆛,?ԛC+?7KaZ,?nRE+?Ssl>6+?D*?c )?e߮By)?U}})?k0I**?~->?(? isu*?|f2 )?wxe)?Hs)?t /?b3? ]1?0.?w.4? /1??}/?nal-?:N,?0vt.?^,?Qm?7h?ۗ?12&?i˛WC?)~?4f?Nvc?e?ҙ8O?9Hj?Sp/?q?` ?C[? ?8,? ?t?P5 ?d49??0ad?T5F?:?Y L?̿H?_,p?;.?59u ? V- ?o(q ? ^D[ ?S9?T"B??zc5%%?=or ?+Xd?oU?5yj?C|}?AhF?AH?qF?׸C?rZA?+2:?렑8?yT?%XT?:Q?㙗O?ʬM?| !I?nE_K?̑E?씳L?T I?TF?ҕ ?X?A/?]WԿ?c?[?a!}c?@H?bbm\ ?1s:?k^k?䓩?2T?{R ? ?[_C E?̃F?NȠW0?. ?g5?W#?V@#?S\I?7;?dP?+B?SR-?=?4?' ? ! ?# ?soz ?- ?v ?ob ?y ?  ? ?f ?` ?(| ?Eq0?S=?^?/P?1hp?Fk?Fߠ?7z?F{?~?c?v? ?wX?R0?nq?~> ?} ?Cj?tzQC?9V?P@?j3?eS?!iUf?﹏?{N\-?A?{?֗l&?A;?#{?!.?o Q?T:{kj?FL[.D?*jS[?O%F?y?NFb?0?V7 ?2/|n?`bF]??K{?~Ј?q?n,? Y??Euj?Ĥ?B?OV?"1?7s?i࣐?o/2C?1 )?R_?gEE?+u?8?)آ?鉡?Ե,+?;p ?gB8?s9?,8| ?1?a?T? yr?i 0?Ne?U\?%t7?iA?ub+?9 !?omd?To?Y4X?(?잁???t?D4t.?c??50) ?pd?@?UY?N{?'N?.~? `5?qW?NQMo?߀? 3Y ?@<1?o#2J?*?ss?:`?kc?>̲?GJ5?}j?+1??1? ~?BX?/H?;B?ybq???i?"4s?cbF\??\f? V&U? P}? Al?a ]D?^0?\Ҧ_[?y.G?ʁRŔ?@;?Rk?E? ?=? z?B#?90} ?/9 ?e?-Ş ?A?X~?:s?iP?$ ?ZTN ?74C: ?W / ?ID ?#[ ?f ?M? ?WI ?oɿt4 ?|wh ? z ?=V ?g!q ? ?iی ?A- ?+n ?B ?Ҍ= ?!o؃ ?ᶹ ?k ? , ?n ?; ?q2 ?>> ?# ? ?x ?W ?M ?A ?[v`v ?ɾV, ?¨; ?ag! ?+He3 ?eW?[/Ɯ? *t?O?n-[? ?J?h?x?P?/1j?+3?ܫ ??ѽM!?[ 0 ?$ ?(` ?<5+ ?-)2" ?D  ?s( ?GHH' ?z ?u ?pH ?(V ?"x ? ?;& ?N0 ?*ʃf ? ?3@ ? ?_~ ?` ?ks!v ?l{ ?Ƭrl ?ʧ ? ?MXâ ?2 ? ?|(( ?咀ϼ ?ncK ?^c,o\ ?&C ?BS ?m ?J} ?-e ?Q=u ?J~; ?^`JH ?u6 ?^A ?Y.U ?:a ? -xN ? I\ ?Y ?;n ?Ĕ{ ?(#Z i ?~w ?v< ?VHih ??DŽ ?A ?N ?:ǧ ?Ck ?_׎ ?葠 ?[D ?Xڴ ?П ?A{ ?- ?7\ ?l??H'?c%M?-F?a?&$?|?l,?{??.?३n?ݤR?!}>?ZJ?NM?# w??E6d?i?fx?Ǩ?m6?|"D?O"?Lz-?&Q?fe? ;?'@I?6d?4= ?m?KI??6#?D?ʥ?f=?̋ZZ?·]?1?8A?0?#L?i2=?l^?-5z ?$ ,?(T ? ?>I?[pT??Az?/W?RLɠh?x@9H?P?[?~ul?#?`?v _?Z0?⌡???}G?],7\?5=?Vs??NE? ?j?3tU?VD9?qy?v?_z?h?bZW?&s?Q,`?n F?G)?֢7?i?xN?Y')?X8?> ??~Z?٧?{?ZP?Z@?C/?C@ȴ?x??Gv?GsD?>?,>?a s??<??v60 ?q?`?2?5?Ō-?p?Hfw?Wj? n2K?<h?Tm?w9?]Gь?C?YcQ?#|Y?x?͵g?Mv?ʓ*?P?壧?N>?5,?yR?r?t3^?Ǻm!?9w?,F?i S?9b?91?)?~w?d?.`?'2w?Y~?$?M?bB`?iH+?0> UF?E?&Vm? 50?ѺJ?D5?2?ts5?W3?'?J4@&?6'?Ο&?h`&?IԾ%?p=O&?fxg%?l=&?i%?&?f'?|(?ؐ^['?'?8%?7$?B*_%? $?W4$?Qe#?>-#?#?W$?b- 4R#?V#?oG"?"?k"?Fo!?Z.#?X)"?\x"? z ?*C1!?5 ?O ? 8z!?6!?0\!?$Ԋmq!?+?J4a+? ,?*?$Wh*?m(? ү)?'@^<(?|-*?dG)?$(?/? V.?P60?ʐu.?.|G,?(+?4,?ΐRJ6+?Ft?mb?T[?%Ɣ???Q5WXg?_?%3?l@?PÑ?@8?#?>ʛQ?,`?? ?:J.?ip?y97 ?XS?磛f? lE?Wy ?c?6]æ?̭&?*4?Z)e?( ?GA?v}>?'7:?f8? B?.!>?G:? F6?D 3?B 8?$x4?oS?\83S?k'O?n5P M?Gz#J?HXD?\G?Y.??H?ޔD?kA?jn?o?6?VLͦ?K?mPf?Uq?f\W?\"(H?^(J?Q%y6?,;?̐-'?x.?aU?趵 ?P?*??DD?[R?q/ǷQ?AN~L?51BI?62P?$O?>0GI?yE?aN?z(0&L?cqM?-?ė ?r!?(ZC?ty ?J: ?< ?Z% ?W=) ?aH ?[} ?>s ?> ?Z ?p ?PD ?1< ?g` ?f ?8䏊 ?pђ ?3ܷ ?_Ŕ/ ?\ ?xb ?䣨 ?%G ? ?͓@y ?Õ ?[}K ?_៞ ? ?{21 ?i < ?%{, ?IUT7 ?*VF ?y^P ?޻B ?YK ?l ?+5z ?ʢo ?E ?tdko ?kZ ?d ?ZdU ?=OFu ?_ ?`Xi ?pn& ?]& ?̞K2 ?v, ?q ?\D ?^J ?Kk ?"4: ?8bO# ? ? j ?X*?b???8K`?:?bǵ?|$?"?c?.ZC?5}#?J{?@9?fƕY? m+?a7?6??d M?Nv`?]u3?Y?wj e? ?*iJ?k?^z{,?4 K?ii?`6D?+&U?wd?N?}n?;?U~s?i?qJ㣬? ?n}?R !?^??p!|?N9?pa?;#?O{"?Dq?jF?;x?DT#?G_?#m? {#?dG?踑b.?@F?UJ?$w?f}?{d??5\?U?2?ec}? n?(7q#?*Pz?^]Ѫ?"L?B?xa`&?z;?v%v?Ɩ?QE?}s?$u.?Dh,3?/ $?R?Tt?g?.?Ծ ?c?Ѓf? ħ6e?#?y4?Z^2r?I?64^?Kʍ?/8?lb?9KbBw?G?)Ї?ђ? 35?J'M-? ? ?Yp?Q/ ?h ?aq ??s?7yX ? MM?q D ?2 _ ?P2 ?1P ?^|z ? ?k ?KXO ? ?< ?8 ?[T ?}QB ?~ ?c=X ?' ? ?1I; ?tS( ?Px6K ?)kqw ?x/5< ?rr) ?ZƦ?k??R?ZA?:;N?*^?i?7$&?~P?`?sB?yʹ1 ?v[( ?Ky< ?#H3 ?N ?)P ?h* ?XƆ ? ?0 ? ?g ?c ?F ?> ?枪 ?C{& ?& ?k: ?軌 ? ?NXN ?`Ԕ ?S ?;o ?J· ?ul ?4 ?s ?C1 ?zx\ ?l} ?&m ? L ?,d ?!| ?aK>l ?6:G ?ѢU ?> ?LM ?"xc ?!r ?s[ ?Gl ? ?FHx ?P ?.: ?5Ӏ ?tW) ?$ ?M.K ?L;Y{ ? ?> ?.J[ ?l ?A]4 ?ue ?p ?8> ?m_ ?ټ ?! ? ?P ?k8, ?zV6 ?& ?VQ1 ?7 ?(?Zy[ ?I ,?:?^ o???;?:;?y?=J?-?%]?y??\?'D?ip(x?lt?#Xj$?t2?B??҃@?0c:\??$?4?2???`N?[W?uX Z?j E?)(?">?=+?Es?fJ9?Pn?p'? L?6Mz?\ ?nG2?iiX\?\\^?*t?d?ǾE?3^c?x?3o?m?B?Ny?@FQ?48?]G?X?$?0 ?<?8M}?Gj?R9R?u?Z3W?&k@?{b?ݔN?#}!? Q*?{??7?4-B?0c?)?#?3?{[?Ͱ?5;? k?oiwy?*ڕJ?Rɣ?T?x?9?f ?-t?š?V{?9e?cV?el?\?JG?Ί :?S-N?E???T?ҫ?dMC?Y?/ê?T7v? ΄?Q![i?B?Gv??[?*7K?[i?v S?Tw:?J?7-??U@B?:X ?M/-?qn"?J?l?U/Lx?S?=?.z?!?#??Rœ?++"?k ?@G?s)?ܖ?(E?Ra$!?v\=?=lpZ?K? *<?4A? i?v)<?τ)t?C?%?-paZ?[?]? ?iy?HT??,\?L}?_f$?9QjL? dOh?Muz?.??e?8?:s&?eSL?3?T??q K7??ݼ?lz?ޓ?FW?nÖ? -y?i?X4??fU?!*&?}1?N0/?v2?֒/?U>Pb0?()F&?^}%?r2&? !'?Ir'?⪂%?ʫ'?z&?E+P<&?%tY%?4)c{$?Y #?'a %?V$?\?#?G)"?"?Xa!?mi#?O"?9.VY"?f ?>!?L4h!?rlA ?q!? e2_ ?@}z!?uI"?]X))?3/)?CK-(?W0*?<&?bz(?o#Ü'?Mt4,?΅=+*?:+?)@\-? r(?y*?)? ?#B?O<?;"-z?k?M?n5g?:.??RW?-ں?+a9H?=? X?n7 ?N_?Sl?}&? `:?og7?^os3?8?b =?1? )^7?O L~3?ZǛF?m:??ܲcB??E%=?A7x8?C;?E5?+ܽ8?")?I1(6?Q'1?^։.?)}?Sd?IVm?/C??,?aw+?d1ٷ?B&,?֪?@1?dM %?j#E?W??+ ?ZU_?f}?}|p?.?In?M:%3?dF?fR#?kw?ȕ?ҳ?#v?)u ? ?yK7 ? ?Pa ?(B ?ٶ ?)l ?Ƹ& ?0 ?eN$ ??s ?mS ?{ ?"% ?"PJ ?̵# ?&H0 ?sha ?%8NƷ ? ? ?e ?axO ?# ? ?٬ ? ?Kܑ ?X@| ?_& ?Ս ?`Fi= ?á^P ?pmG ?$}Y ?]8 ?sG ?NP ?Qg"{ ?e7c ?CZo ?xw ?ePZZ ?~pi ?_5u ?טx2 ?Z+ ?a0kB ? V9 ?K" 6 ?m ?$ ?p  ?pD12 ?bAJ ?a`# ?2^N?m?\`???MΛO?>q?E?V?k75?Hk?~??x[?[t?[(о?k#%0?ϗ{r?73Q??DR}?+I 8?*I%Y?-xa?|:?01??dT?:0?1_?b?^e *?T.]?Ϟ]?vs ?3 ?x6˧?=?Q?6d?]1m?z?6R?kU0???;^?m c??=;u?_N|? ?9n?sCU?֗o?ZNc? 7"?GC?8 ??fP9?ry?ҖƍL?^ >?)?։ZH?E%?N}?%?j#|?h??Ym?T?[b1?]j?k?fl?X ?S"= ?o> ?O. ?=' ?6`?E` ? " ?_\ ?}JDz ?J\L ? Z,qk ?SЗ ?vԳ ?8ۺ ? ? ?qo| ?!Y ?jT ?mԭ ?Z! ?d ?) ?fG!= ?gK}\ ?1 ?>HsJ ?̵8G?ImU,?$:?|?2l?`3O3?zO?.Ǹ"?Y[_?D?=O?xK9? 6 ?) ? D ?u89 ? hE ?}W ?IG, ?p" ?f ?(K ?6G ?DG ?m ?D6 ?ʮ ?vby ?1 ?Usy ?~ll ?%L ?%- ?d ?4 ?{!V| ?ri ? ?^ ?u ?oS ?d ?quG ?2FS\\ ?J4zu ?*f ?lKm ? ?o ?\l ?ȳ ?u ?!Y ?֑f ?ͻ" ?C ? % ? ߧ ?! ?cA ?NEhL ?R-]< ?퍢G ? b.W ?aºa ?"Q ?nޭ\ ?! ?2h, ?K ?$' ?l7 ?A ?D1 ??< ?M?eT?fо?De?8[i?a0?P|? 6I?G?t갤?ҙX?[?a x?P?q?5e?ZA~ ?V^?dD?\f?EF)?]4>?91<?v?K4?iOؙ?W?'nrր?_Q?g&??ƘF+?=I?R fg???Bx? .?e{QL??1Uw?'?#:p?" ?ު;m?4Q?JXY?퇥? zo?0?)??E?OW*?[wd[?;?1y?Nk?1Q?c?~B?$ s ?`L?? Z?,[?:?<GǠ?? ϭ?6?g8?.=?@;?H?@&Mt?`AUd?~}?m0k?hT?)E?ܤM?[?5I?|<7?\•*?4>g;?B$.?^5?L ?Hk?ɩQɰ?P֞]?i`v?2VJ?.UR`?&K??JH?MQ?K=g?v ? ?j*?ΰ??N?P??n-~?CX?c6?P^Qy?Uh" ?U] ?JX? )?&?(w' ? ʀ?C>Jz?y?a"5? 3?~??3aP?Dp"?` %?]A?? ?FJO?#r?w R?x;?U(? -Nc?(!S?n? ?j1?8?=?y?5?>]?^p?Kb?U?yV|w?Ҿé?J8H?79?Lj+r?f?H;?U)?L1B?r}?ƕ?Rӵt 1?-?\E.?ޯ(.?0U_<+?/,?Ҽ+?4M',?K۲%?eܥ$?AHђ#?>"?Pf&?(k$?Z#?)h;"? ?JXT!? ~0"?^"?H ?Wѿ"?3G !?"i!? ?J'?Wg}'?]ñ %?w!ݓ%?u(?()?/p&?'?=[`?7?x?AI?N{=?Zb?%汚?3 ?~/?{? ?*I33?]8?on6?o4?E.?1?9qe/?W}(+?` &?? ?3q?!oN$?:!A?S?y-?dz20?>$(?樎,?q*.?&°?A۞k`(?K%?qe? vץ??H_?ޤ ʰ?l?%?㢩?k'?Ķ ?N? ?!?h? c!?fm?P??y ?"? ?"Ha??~"?  z?m̎?5?SAl?̌<^_?s?ZOe?Vx?wKs?>݇??ht ?  ?ڳQ" ?PM ?I ? ?Z ?Sن ?) ?' ?{Z4k ?E6+ ?w ? ?hw ?6 ?y1 ?3 ?& ?Pfx ?Ri ?dR ?+Ő ? ? ? ?*_ ?}Ӟ ?ω ?| ?6g ?Bu ?PR!Q ?g}-Jo ?asW0` ?BmH ?W1x ?X ?Ӥ h ?%? ?! 1 ?q ?AP ?@F ?{d" ?AJq ?7 ?W7,+ ?>??t?l4?B? Ө#?q+{?9?0?8?RW?0M???#"=|d?FP?c?'AJJ?n?Mon?^|%?JPI?J.?? h?;C?CCD?Q\U?IzF?ؐ7G?Bހ?04H?h+$3?z$?-ku?:F1? =?aa?f’P?DծK?*s+?;k?? 瑚?366?U+H?v?"\?[?[2?$?^&_Y?_ ???3o4?Q?by?z2 ?xR?^}??|R< ?lw ?6<+ ?>?$[ ?5 ?ZE ?HA4 ?iz ?U/ ?}d ?+z ?; ?b[ ?pk ? ?> ?'[4 ?- ?ǿN& ?}uW ?xm? ?p ? ?xJ: ?%kR ?4?/ ?L?ď ? [>?x߄p?-Dj!?Ff?i.?|K? 0??g< ?Ȧ* ?`ۿP ?#A ?]u ?77& ?s ?BV ?^^/ ? ?mz ?K ?}{# ?k ?wa ?+w ? 0 ?? ?Ej ? ?9k ?W ?k ?*@ ?A ?J4 ?ߧ ?)e ? ?Vx ?# Y% ?0 U ?k6z ?\ўr ?; ?̴ ? ?" ?qO ?b ? ?^l ?XHw ?/{g ?MZr ?Љ} ?z_ ?~3} ?O ? ^7L ?+YW ?kEG ?Q ??a.b ?< m ?~\ ?j3g ?r, ?AC7 ?\VR& ?\>2 ?V?B ?u'L ?m9< ?+-eG ?{??LN??N ?I?Wb?ݨ?Ú?ǰ{? iY?{?/S?+X,?*'m?pT2?c^?Â?(?ו? W ?i??v"z?$0?'.M]?s:3 ?ԃa?ԓX5? a?, ?+G8?(??V8FRq?]mQ?Gc}?cC~a?(1?c\?;A?[֧j?%2m?i5?40?&P(?? ?P?!C?W;?oY???xt? Z?~|?b?+P?|ӎj?5HV?\??F%?UL2?c?ͫE?4"?@/?0~3?%#F?..s!?jB%1? DA6?FcY?Os?J&?:dC?Guɮ`?*+9{? y?4?_F?z?? ڥS?N9? ^v??$<?)QN?c?S؀a?Kgu ?~?1B: ?"J?qbh?Hy ? ~?Π+?R?]?qLN? I ?rdT?A?zP?_Y?¸Z?.?2?OR ?{m׿?O,:?q!??=OB?6s??.2 u?0?S?H:bB?1l?Ķ?񔽌-?QI2?+?ڼ?21*?X+`?KE"?A??+5*?7d^)?u*?T'?up'?#'?&?Ý#;f?$!#?q ۘ!? ?g4I#?A9 y?`!?'Sh ?-X($?_%?+v$?)$?R&"?6A#?YGݫ"?2?ߴd?G<ɇG?27? 0?B\?BߝG?U͟+?'(?-&?kj&?Ge$?܄*a$?G`ٽ#?q "?)E??"R?{[?Kg!?VR!?@ix-?nYT?_Q?ȎWD?BsX?9 aJ?.6?Wp)?Dy=?>( 0???Us"?k06?O?.?+?HN?i7?s W?w?%%?g~?W-?AtI??3T?xX?F+?M2?M!?BF?[??}m?[R7?)$?fΝ?^Iz?gl?M]?k^s?٤_?hCQ?·le?k X??[\?N)z?͏?'! ?,{ ?H, ?L3V' ?b=D ?cn ?óض ?{B  ?3") ?sy ?+<4 ?* ?er ? ? ?}] ?s׸ ?VH0 ?F ?V ?/ ? ?#ۇ ?l ?"N ? ?Sc ?'jo ?' ?j` ?0|p ?R;W ?TV( ?ճk ?`{ ?RM ?;`@ ?ua ?&X ? 3 ?nX ?& `K ?髡: ?G?Ž?Q鮦T?5?A- z?3^!?cN?RR?Z!}?BE89X? a?ǻ,M??EF?l?55c? Qi?@֟]?yX?_K?G?޵r?&k?^w#?DK[z??)˧?̚?Ջ?-rY|Y?y*? ?qXO ?X}d' ?_u ?[ߵ?·Z ?(2 ? ?v ?(i ?udB ?c ?D_ ?F͟ ?ć~ ?-'N ?U]s ?0 8 ?٭^ ?:kj?bICI?7H?%;^;1?޿W?8?"\?FH, ?jv?S?n ?]j ?q&E ?5 ?^' ?%z6 ?7Y ?*.| ?'Qn6 ?MYܼ ?:ik ?C ?ժ ?Ƀ# ?` ?Ò5 ?| ? ?/CoҺ ?T: ?O~I ? ?)i& ?\G- ?VS ?,P ?gi2 ?a~ ?Pk^ ? ?qۗ ?yI ?X' ?|4 ?rG ?@D룒 ?ԇѲ ?C ?[M3 ?w ?9s ?ONr ?;@&} ?8W ?m_ ?_Y ?l{ ?Ů ?v" ?٥̽ ? ?gv^W ?D=mb ?R ?u9B`\ ?] m ?x ?"rg ?vt ?@7 ?_L ?z\B ?M2 ?=W ?B ?i M ?B, ?̓R; ?3T ?CC( ?ŏO ?Ci ?9 ?l״ ?Ro?~j?xn?D ?|{+?2E?OŴ?H M?O?jv?/:? ??~L??d7MWb?pL?Jy??7'?nÄ??.?9?>q? b: ?o?t8?kp??>]?@V?S,?ݢ-Q?`/?|g?/fj;?`IK5 ?p?Nu??L1?g ?l{M?:ѝ?Oc?)?*?ذs?^?J}?ax/f?N~J?H;5?Q?ٟ=? ?} ?B(?5l?x?B`.?} K?e)?)m&??g??x'C?q^?hr?;v?@ݠ ?;D?H)?!?Ξ?d ?P-¾?1?h!`L?ɟH?.m ?J嚰 ?Po6 ?}?(S? .0?V ?i( ? kv?zL? ?瓵? 4;Ei?(_?桪?5,uS? ?wR?St?%??*Z$ ?bJ?/v0?E@{???= ?gY?࡟?w.?v-^?8y?}?r ?.(?QF3#?&"?'(d!?X0 ?O?+?@??? ?A>!?δ} ?=ްI#?TC?Ϊ?ĴM?`i\?a1?H?~?.l/?̯)>!?;]?7>K ?4>?؜??,Zv?tyO?*$?d y?' 86??ۖϿ? N?{mC?.?u?F@?uy ??cD?f`6?xƋJ?aZ=?h<)?L?{c/?i"?zf??<^?3?-??T4?.?j)?֔?!r?h}?Ƕj?P.?{ˡ?] ?]]d?G?|@k??XY?m)?є.? ?зX?2aȾ?jul?/|^?q ?YcV?ؘ8D?Y-?A?.I?Ɣ?Leo?ui֙?VKs?O ??je ?uw ?Re ?v ?#JnI ?BS ?K ?" " ?hLCo ?Ιx}H ?]A,N ? ?Vt9H ?^.n ?{^?r?/>x4?T?7@i, ?S ?FXsX6 ?0 ?/n ?}J ?Y60ܔ ?[n ?% ' ? ] ?a ?@E ?D.aJ ?Bw ?Pxe ?(0; ?8|> ?/n ?, ?2 ? ?$1 ?[1 ?_ͻ ?R ?i~Y# ?" ?o ?r ?kH| ?NA ?Zܬ ?< ?Nu  ?jJ ?~`u ?a ?29 ?& ?g ?( ?s{??Ư ? ?©i?u?_ ?!??2(?J/"?a-?7?yX?,6 ?a.?Y~?6uQ?W[̡?jd?v<?nD?jdvB]?S?"P?ei7?Ir?M?d=?,ۨM.?Ci?ae6?nҶ?zx?uP!?=22%?W?Pb>?ꚾ7?*??=#K?CK? ԛp?t ?gy?,:Y?`O[1?WCE?k?a?[.?I@B?s'?œU?n?Ja??dGRU?zR19?k?>e? 3?<3?f??? W?l+?C<T?oξ?6Bb?J?uSA?-?p ?%U{ ? @0 ?P؉~ ?ST @ ? X ?\4v ?]E6 ? ??Q?-O?fTr?M?2CI?}?F?7'?')F?H[qi?A?9?9#?q?ү?1?[m?֖?A?-8?V2[?3?HY? 牭?W?,?/?tBO?ek?q~???[?ȅ6?Fe,? F ?=R? zl??CiR?X?z?F|d?+<?`?J?k~?V?a??}?t6?d)?i:=?Z0?f?f1?e##? E?|1?Ĺߓ?zg?`?~?l V?Q?0w?r?.?OiA??l3?ܸ8?[bͭ?.|?F?a+?ߗL?|୸?ᄆ\? /cC?P?gId?j+7?[B?zO?|t m?Cx?CW?Dc?ta?Q¤?@?Xu; ?!. ?LM ?< A ?.gI" ?۲ ?-)5 ?]z" ?#P ?' ?v ?a ?( ?QqB ?OL ?[Uj ?/Ɩ ?kM%e ?k ?ɩr ?`·~ ?m{Ű ?mA ?a*?k ?(Wץ ?ɦo ?0uzV ?}R4 ? ?>i ?X8 ?'l?HE?LV2}?ck ?:,* ?uw<?, ?/n ?§* ?4 ? ?$ ?nmTA ?*M@ ?g ?;{P& ?3 ?t9 ?T ?4 Y' ?m ?z ?&7? ?zD ?TbX ?g ?nH ?̦(%A ?ؾyao ?{e# ? ?x : ? .^ ?9CG ?W ? ?eH ?Sb'?Tܖ!? xƜ2?(,?mk ?{ ?rb ?F ?mCT ?X} ?ά( ?æ- ?xx ?)nt ?N ?l2I ?= ?NQ ? ?`( ?n ?Èt} ?9`g ?̓z ?} ? QV ?/ ?=䏖 ?zm_ ?rh/T ? z{s ?8x+l ?Kx ?jM' ? ?[.| ?b^`?8r>A? S?`D ?#O'?&?YCm?!? 7?B?N=3?+tx>?Fz8?g[=?yC?{H?50F?ll?Y?/Ȟ?*2J?< ?[!1d?Ϭ+?u?Fz?!?"m?M$?pQ1? 8B?ݵT? )v?B`? C?7Z_?sc%?1?5?H˴?^j?J?*ۣ?@+X?I[+?Щ8?Q:?G ?]-9?rrZ?^?IS?Y'ҿ?,?%j?T?3t?:?h+?V*?;?a ?g ?Ew?-8?y?d ?]IA ?hß ?. ?!4' ?l ? ?V ?5C?l,U?lD?Z!O? v}??ڃ?$U4[?p?ܓ?Eİ?6?vR?,2Ĕ?gb?Irך?r|w??tl~?̋H?[y?,<8?OFU?e?Ճ?Fl?Wq?֬6G_?0!?k?w??^?bǷ?3d?T!?Qk??NV?j+?0?ڐ?%Я*?l?;6?\fQ#?L4 ?h>J?Ѓʻ?*T?>ϗ?SM?xZ?p_??O?s?*@?t?cVܐ?.n?QA x?"?&,@?13?[z?f`?#?Χ_?vB?q=dN?g/<;/?09?T=Z?m jc?mE?~;WO?'?◊? گd?r?:H ?UZ5 ?x` ?/tP ?ۏe" ?r` ? ?H ?= ?=j˳ ?1 ?Hss ?\ ?NY ?t ? ?e'[ ?r' ? ?ʩI ?Ư| ?^g ?$ ?D֬ ?J9q ?iH$" ? ?껩 ?dԜ ?j ?<_^ ??C?z?[@?ۆ?$õ?(z{?r??>3ٱ?W?^fi??>M?i<?D'?>6?&~?'-?:?4#?A(x?X???&&?6>W?>P?TN?y?E:?U?[?o?A?zD>?*ة?x:?ZI?"W?il?؅Qx?t?h$Y?~H#r?qW?=c?=01??Pu;?ƿE?l?z(JD?Td'?1?Cj?o.]?0}?Wp?ݧTj? q?-MRw? d?b Y ?2+ ?E8 ?^: ?ԁs ?9 ?G;Z ? ?3b ? ?&G ?(, ?`UD ?S@v ?R ?Hĭ ?*1f ? ス ?M+ ?NzXZ ?, ?N ?$ ?K | ?`OM ?"' ?s ?3O ??DC?krc?W áV?W`P??( W?HN]?;CBJ?}vm[ ?NH ?O?4-EJ?|\?$U3?q ??4~J?"?(?Ļo(?z`?Kv?}(?q;?`yu?<4YB?pX1?Fy,?GV ?<c ?`??ek@?' ??wW?^}Os-?sF 2?7?Ir%?L.+?I?31<?T6?=?2DOC?:0? ?< ?< ?XY ?K ? 瘞 ? ?w ?G)r ?4W ?Nش ?8-Kr?X ? 1?? ?R' ?U/ ?ͪj? ?l?`W: ?AH ?0w ?Z?L?%-Y?ke?S@?Sq?nU?nm2b?o?|X ?2?e5?xFG?LJ?ݲI?dM?c` "?V8?o??km?qWb=?z5??e}?s?}Yz?gx?ϳY?cVކ?r'?V:? ?O ?V?}?NZ?e??(? "?~ic?P?HJ?+eO?H?K3?'?sVFy?&.?MZ??>Q?6?P?RK<?&_?t&?dz?`ꏏ?w? ?{C??(*?.9?+R57 ?u??1?.[+P?>y:?[f=?VRU?>્?.#}?vw?[>c?q`Xm??":Q?Kn?ƚY?6Dc?}(?\f 4?4@4?24#?!!E??IG?e`/?Z7?!N?i?o??GN|(?-?_)?L\9+?-g?? :?LH?f"?uج ?Js? ./?'*#?>B?qJ&$?R*?7Q?K[ ?c.)??F.2?(P?K ?c/X?z"D?ƪp?א?B4?d?&z?RN9?8:u%?`/?܈,?!f^?H?H+R? I}?A(n??ށ?72?f7?3G7O??P? El^?}f<?ZM?}yr? U?Zmzg?RCnV?p?Y?,s9??B#?`?E9?ŷW?,<߯?pW z??S??m6A]?Sد?ǔ?dm?o?, ?O ?hB?!,£?*?? Y?a>?̬?|?bG?UX?*y?}^?(9? [u?qȞ?i?Z#e?O?3t"sZ?5??&ޫY?g??(sJ?F?K'?;0?-?Y0?α?8!?&"?4/}?Ȓp?Q@Ei?hu??р?w߁?T3?T7n? `? ?:?OԄ ?!q?d}?jCw?:{h?{v?\c)?h?>?\տ??5? ?ɿI?ds??1?K?4k?m?? ?%?1?>pin?"'p?){?:Ho? ݕ?8$d?f? ?hK?P?G>")?F?1z?юXS??|\?n/[?n2?keV?I?gf?B?Vo?TC?k}¶?1^?\>? ???E?u?=m?$N?2?:?\E%?|?(%1?Ϭ#?q?L)?-ȕ?jW/?1K?pDZ?]o?}w??D>3 ?d} ?_Q? ?|S?M??h?Qy?; ?t?N^?I(e?@!0?jJ?lQ??m?v#L05?4?B> M?r>?eE?34?2/?F?)ܐ!?w*? o&?Ӓl< ?\?Zb=?ÃY!?z^Z-?9"? L?1A"?o#?K??ze?`J?Ya0?3? a>?*?ߜ?KR? 6+?l.t?Q?eg??$P,N??RxE??>T?f?^{?ܧ?}?Ʈ? Z,???׾?5M?l?`?<?S?WG?tƼ?m?iؒ?&?i׷?k?h?`J?a?M ?\V?+I?i#?*? p? pk?T ?e2Y<?kY>?sm6x?YP?Z!?<??6}?d?OE⫻?,Vŵ?b?oGr? ?Qź?q??G ?D?ZV??h?|?T?eh?5?҃?z}?}ڟ?(PS?\̨?^?jA?`?R?퍣?qV?n٪G?-?E<?sR? ?R,h?X, ?݇D?_j?>?R\?@?"'?x?#5??9?ϰ?Z J9? K'? 7V?xB?o*Z?*s$?ʧ"?? )? ;s0?q%?pq #?븅?X2Q? ?) ?D?*q?¨?x?J %?;N?[`+?q #?ˠ#?O?t].?B)?p?ϔk?ڰ#?GW+?3|Mj? ? [`?8X ?2(?ꖙ?m_?:w5?\?h]?6-F?F\ i?%XA??PA?..??5?AS? ˖??!ɠ?if?8?e<ɏ?W-?ђ*?䩠?]ܯ{?om? ~?F1?*8?2k?bV?<<?+k?~B?GE?s[U?99a?W](?G1?O+?1?"?W՗?'C'?ޣ_? H8?5?W= ?2?T)t?_?Pt?ǣu??\va?Ϯ?3tRK?Mh0?c5>?M6?`?^F?xhT?jRU#?6V0?/o.??5?<?3M?tM&B?gK?;>@?9?h4?ӓ^F???s.?c+)?'0:?ݿ4?x?]B#?ko?7r#?8.)?4/?VIM?]J^?1ًZ/?GD?Z?,??y8z?V~?w]w? =o?[U?*|s?Tj?lb?sn?u?@z? f?qm?DZn?v?vs?c K&y?a$'?MDz?4b?Ρ4?|`ӑ?+,?)&?TF?5 ?W?l(r? v?rR?Ni?W?s??s?1? ?5?)7?C(]?E[?^B6t?ށi?`G?wP?bZ??H?Z?/b?v?'e?IiIm?xg?3 I?Zyzt?fK}?*mv?CH i?|kc?^'t?FFo?3]?W?{jqi?KO˥c?INF?R?V(L?nR? W?]? ^-?m7?0oC?K%?C A?$A?n/?*C5??ChA? G?5?,q;?8M?5TS?ʆA?.iG?Lf?G,Z?KS?!#Z?IQ`?yM?P4?$?FxC?3՟?E%׃?va?U?k`?S<?M5{?->E?\0Ն?u?dKo??%y{?ȗ]?i?c?vE~i?Wjo?}Cu?m?$@%$?S ?@V?$X7*?> /??#?}5?;?H)?)W/?oM?OXA?0t;? SA?%G?7&^5?<\?=?sU?޵??Zd?cl?GO?8?G^?3_3?x?*j? o?鹫?cl?5pᣗ?i1?ӹ?JX?3??I&?"wӒ?J{Xu?3)?(3{??z?3!3??ӫX??:mr ?}?f&#?U?b?z6Y5?&")?%f#?C3)?0E/?3 ?U?ݼO?Jo??? ?{@?1f?O-?7?[E`B?,?}?i/?O?=5?F?r=?&?~? ??I;[ܘ?]*??]:Ҟ?Fv?d?aa ?f i?St?T?h(?3a ?)??-?[r)?vI?:b?ۭy?iIC?=??["~?d?ح?#*?.]l? JD?c ?F ?ºͶ??֯?~p?7?<??m g???BSł?'?LJ??6?挠?̗?{.?to?m)#/?wL??rcZ7?LW4?m^{! ?TUgp?;8H?Y4Dk?P!?l'WiT?<?t?kq%?ki?^F׭O?r֨;?,?++z!?P?ӘP?BJ ?+%V ?ipP?mu??׸?˂?^?|g#?Ȇ?VG?ו?@S|K ?3K4P̓"Fuq~9@)t?ދ ???{0?t?WE?#n?S ?a??D|??2^q?v ?Y?)? ?Yk?Yp?/[x(?]g@V?T^w?x!0?epŲ?oƧ?U7?u?C',I?e??=ǜ?m?S3ʯG?[p]?8{?xO?-"?Yz?vU X?`f?M.?ls`?c+2n?fRf{b?¨h?Cu?xV?vȟq?WV?9;I?]Fcz?Y" ?9U?(`d?3=?ڞ+0?aw?\?6&(?̕?NI #??Z3?@?)7??sC ?H?sb?ƀJ?*_):?oƶ?4T?w4?? Z?Ύ?QfV?ˉ?^8?'zw?\yC?Fz??O?#R?t*?#?P^?L??q? Y/?,?FL$?,& ?8?}Sn?L]ʸ\?jb ?=Ӻ ?o ?ybE-?s(K?(8?~9?^ Vc ?G) ?hAG?&?-v?bT?E\BE ?C@Ȼ ?Z@b? ?et.?pHp?x,4 ?nW ?fC~?ӔHt?e x?(TDʍ?k0 ?Ü ?"W?"t?;?b?#=?sl?J?r?`"%?Id?\?B?'9-?w?x)~?Um??t?/E?>8?w[?\?(?!?M?id?g?nH?HJ?SxB?6?)V,?>?Bz?sa?ƶo?PW\?9?n!?Q??ֱiE?so[B?y@?eDC?U^?+[?qX?p0\?$OY?p?K{N?6S?bn?V]??=t.?Mdy)?P? i?^|?G2?bd?_ o?7?q?N?e ?8?=?k?t$? aۻ?G??{?2?%h?H?2?Oq[?% ?F?3?gr? X/?p0?b?b?\m??.K?@?HU? `?i?]?L9 ?h?;#7?s?7/n?Y$?X#?Ϭ~H??:}? ?{?W?ɏ? v?6?r? ?^o?$XU?T?ek?C??P? S}?3?xay?w?_%?c8?m[?m ?NLU? q? ?8?`?%?ϸ+?W?⭡?v??s???و1?$j?[?? ?% ]?C?%?N?e?a_?f?/j???G ?%W5?!z ??g ?s ?$4 ?)b ?w??R?eE?ً1Q?LX ?@@J?F?rá?tLZ? 6?]]?W?>a??x?O?o޶?mH1 ??65n?Ѭ1!?T2#? ?i"?UO$?9@&?8#?&v%?G'?f$[)?'?k(?0?"G?7D?!}F?mLF?XE?M{oB?[@?bEOC?xmA?)-*?n,?'!*?+?! .?/?8 O-?B.?UG_1?*3?2ҋ0?I}M-2?f4?aAX6?W3?>0|5?98?t 9?f)7?FW8?cq;?+=?M)t>???$:? %K>?;_kHI?8e#z? ?\G?xF?u?}^?b,?Ӷ??B?޼?W0?R]?T>?-"?ۻ?3"?d- ??ҩ`?Ro?MJ?2x?n?CJt??#>? %S?M74?0a?A??!?%0?ӗ?Zmո?\O?n?[?_$?Ҩ?f?^ ?W?%?wj?` ? ?\?4'?Hp?_'x?{`?=⓬?V¬??c?4`8?rp?B?f.\?=E?${$?Mlj?}'?J?n?,>? p??"a??.c%?p3D?Ĕ?b4?N?>?1X?{1\?y?JQ?D?,$?@*X??S?x?VF?F| ?hō??$E ??m?Jt?+]?}H?6Z? %&??f?!pS?>*?h H?Q?UPw?`}? 9?Jy?${?T??Zh?M?o@L?0,?;к?m??!?T?Du? `?k?p1>?e9~?g?ʏ0?G?m ?~?ž3?S7?9?*2??f??X_?{*|?B\A?yս?~?E?+J~??$~:?/,?:(:?CwK?PX?Jz*?i`"?t%?n3< ?hʡ"?v(?(?&?RH?S-?()}?Q ?.3?;?) ?L?Q?$|v?Z ? ?!M?6?|xwD?%a?>?]c?!v?>vl?gu?>K?Ye?b`?j? ?^?}ٹ_?G5?|?L M?Z?\?4?o5?,*?1N?n;??eQ:?wN??U~?٩?,k?%?Qd?$Im?b?oe?w?;??Y.?TOޘ?r?? ?d?%?@E ?[! ?: ?߰ި ?P( ?5(?cdo ?6 ? Hk?n<? ???[?׽q?V|?2??߬T?{1?1H}?v`?%E?~?~?3?%q?/ ?9? #?5Ԗ?K/?F?ک??4a?X~??Û?ў??oqK?ՖS6?$?-(?Z? ?=?Dl?dg?|?˰ם?M?1?"0?=l< ?9D?6g? ˘?D?!M?%4???L?qV?@)?(?ry? Z?|Kw?7ϥu?8Ax?¯Ѱv?ɡs?Uq?4C%t?էr?Po?Bۨm?jp?-8n?Mꔱk?z4}i?cl?ZR$j?ޔg?7'e?6h?;f?kRc?m b?6d?#c?(`?G^?g+j\?wT[?a?߈,\]?$;_?[ZM?,PR?KW?fP?GQU?J ?gY?y?@\'?Dy?:L?Ӆ{?$}?9Oz?|?&LP?J+|?n?` ? w ?> ?.?\pY ?rN?)RP?C ?ouغ?>?g?ޱ?}1D1?dAe?ԝY?Vs?pS? ?a?"?SK?]^B???|??k@?e_G?Q)D?eA?~?gs?v~?M?Oo?>8?pl!?1?kΎ??z}?|Y?7P?3x?Q p?? ?Y ??3:?%h?I4?vڪ?Or? 9?1 ?\?~^?]2??N?.?I?y?E?"?^i?5 -?*\?<?`?՗?Hw0O?s?@bҙ?j]?k?R?O?⢓?!P6?:w?tڢ?<$?vT?} ?q?e©?[W?Yת?e?hWv?Q%???ZN ?àN?;??]+?Di?z$?)ƶ?l]?ư?l?6 ? ?6?M?O?a?&~d?_?[xc?vaf? P{?e?:b?yh?0|?]-;? "?(v?b^?[G?4 ?m5&?Y:?p?z*+?T?nK?冭?^yWM?RLj?P?!5?A??.?Gx?VŦ)?8?Z ?mx?p,?_ޡ? x\?y?p]??_?V?9??M֏l?ʇ?vZ?j}>?', :?lNJ6?;?{ 8?$1?<|-?kU4?G0?8)?&?4,? (?= "?{$?N_$?, ? C+?@?.?B?yX?ht?VY?!x? ?ȣ?` ??y?" ?9?O?? ?j?2_?ssg?p?c?"},a?We?k?!io?Ai?P&m?'t?ђjx?or?W=v?ձ|??z?F~?DnK?!CT?/?Jk??kO??+v/?=~??O?4?x?1>? ug?ԡ?ۣS?w$Ǭ?NB?h?>?i?W?m?H]:?^?k$ ?q?YF??6#?Ni?Ac?ǒ?.?N ?H(H?سC?JK?HZ%F?,T>?9?୻/A?2@-? T?D? ?=eF?2T?ى ?hm?- 8?w?9'iT?]?,?ܺ ?gC.n?MC$?ZNU?G?q?"?AȾ?ni?2? ?>5?蒖?71?X?d??ep???xT?9P?D??Qb?4 ?N?6?r?m?-8q?.Ĩ?A"?oe?]cF??b?=jU?? -t?p?0Σ?8? ? 4? ??B,Л?_?;?ش;?He&??v?XE?o?Vڑ?+n=T?C&?hf?Li>?oj?3?A}?V?>p?^E?>?? ef?CJVN?%?S?qY?ƫ?NV?ob?<l??$2"?C-y?bx?ߋ?x?'I?7R|K?[H?DJ?k?*S??\[??SK?P\?SQ?y??CƎ?]?h?ab'?kl ?Qc ?Zl ?Ժ ?tı ?FL+P?@ ?6N?ze ?|M&?[ ?{?r0*?wS?~?ږ?`?e-j7?.?cx??'^& ?~!?g?p ? $#?/$?0X"? #?H5&?'FS)?!'?w*?~g%?(?{&??ye*?zI?ʽv?dI?i%G?2DE?NH??F?S0D? eB?.E?;hDC?@?>?N{A?_C??p~,?I.?˦>+?J-?B/?X1?R>.?ɉ0?/2?b4?D+2? 3?L6?*7?+m5?qF7?a9?t =?rf;?a=?E8?D@?l ?p?dzۦ?"?? ?3R?aD? ?T!?z?ۭ??.?Ԯ?gB?.?g̵??]L?3?-$?NK?^_?콬?2?#?rW?ì?'?(E?[ꤩ?V+?4 R?z?4?4s??H?ةd?. ?輳O?u??0g?b29?i?I _?N? :|??OT?m z??dD?է?Ez?U`?K??M"J?-?OA?p{?f,W?(?[p?C]?D?G?"#?~S?y0?ħ??21P?J?M~D?V?F5?:ku?ɜ?+U?t?%?os??&H?Mt?9?v?d?d͂?@8?x_[?"I?o\4?5?&?Àt?u?/-?fw??ܢ P?*N?=h1?t;?7?k??0???^3U?v%m?Z$?8??/o?_?O??OXo? IK?V:? ?O-G?d-?UX?L?[ y?H?^?ZlE?Ԣ;? #?!W&? ??N!?*+?.2)?p[+?fΑG-?v.?,?J.?:-$U0?b1?|/?S1?zJn3?Q|4?s2?+?4?TC?A?zD?v>B?tK@?=G>?KnC%A?Y~??5=?ٜ,b;?==i=? 8?/u?0B?K?c(G?9?H?2?["܅?46?20?SW?0?}? Y?/y{?W"Ry? )Aw?28z?8sGx?X? AZ?Tшs\?Y?"9[?[u?ds?tv?_;lt?q?o?fr?}p?Ȼm?ik?n?G`l?wi?Jg?+j?rh?\wJe?=c?;Ef?d d?Dab?^O^?T/`?sze]? c??_?M"a?3xY?^= ?/Q? i?Lp?r?,? b?F?)+`? ]?Эٱ?Y?*o?&!7?=M?d??|є?ӛʜ?򜺈?@?5y?H(Y?{j,?AľR?2/? <?g~!?Z({?^u?#+}?9x?%p?_qk?uߦs?rn?$bf?na?%\?˯"Z?Qsi?` =_?P9Jd?}EH?5fM?tR?/GK?x%P?PW?I"#\? 'U?VH @Z?(Z9?V6?:?_7?U3?ſ`0?<4?Ҝ1?&o-?‚*?i.?;",?;d '?$?^$)?8&?!?<(h?+K#?#LJ ??d?d?(ό?=K?2X|?9?R?G3}??|?~??  ? P;?ao?J* ?U1? ?ʋ; ?60`? :?] ?Q? ??*k5?-~?^ _?pB?_N? ?af?CF?ױL?җ?uݛ?Pa?U?7'U?u} H?L?p?l(??)??(?%yG??Ss?h)?i?IG?',?u?;Ԙ?;z?_]?p ?d=?|fޠ?8?S?͡?<>?# ?h? }?S?)3? Ԩ?5#?,?F-??3"?V?Q???+?\8j?IFV?/\?O?+~?a?.Ի? ?k?^?_wֶ?:c6?*ᅮ?ܰ?{s?2l?ûf?; ?y5q9?d?hQc? g?>?f?.>?B?1IE?"FjdA? D?3EvH?PK?‹F?= I?ຠd?bva?h^?E$c?8~`?_H[?DqX?u]?]F"eZ??U?MݰN?yWQ?eL?o0W?|7_P?_ S?k?Kn?mi?WA?x=?9?Gʙ??i?"NF?oKIA?'Tu9?:%4?ؒ>Lf+?AB2?-z-?/ObQ&?m !?VJݰ(?oq3$?? .?Lߜt?T?K46?V?_?t ?" { ?Z֣?إ!/ ?'G%?I?l ?{Q0O?A q?L O?fw.?:?*?@Y?ӆ@?W??,?C?d??' ?H?ʍM?=?/t7?9D1?D::?74?C*?+u$?4yW-?b'?)?M9?O!?b ?~!? ~?v?\?a?M ?U͙?T,?ia: ?w?m?J?)MDj?F?2Q4?AA?])?1(?x)R??2t?F?c`?١? ?J.?'S,? ??n??F@@S??B?Q!nQ?w?fJ=?f@?̸??h'"?]?ґ?͹~?~?}'?Y~? 'W??V/x?J0zq?@qU{?cVt?]j?KPsd?zmNn?g?]? W?+@Ra?>IZ? Q?r;{J?q6D?o@?6 RT?d4ZG?ĿMM?Wv{?ڊI?s0?(??M3J?e?ca?.?9/? Ph)?L?{?p?.'?/0?o]0? e;?[???` :??ݣ?I?2UT?^9??,\???@?AY?C?)6?&j?~ކ?r?%.?T?Էs?>ȣJ?P.?c?g^;?2"?Di?l:?=NY? v?+?аt?a?Ҩ?ë? z0?(?O+c?C/?bG?)?1~?B ?B ??x?A2?@n?$_?p,?uEv?b?8?LQ?Fq?!|/d?2?#?Û? ??۹?;Z:?)U?G¦j?6U!?v?D?{?? ? O? [S??t?r?Jw??)-?e_U?o??J?X??:bo?ҬX?q?5U^?i7*?C?<:2? o??|? ? ?Rl?e*o?WV?8?DW?]3?D??f~?:w?>B?n?`??VM?vV?9N?R?j?I?O?Wce?L??lX?Ͽg?B?:/?Bz?`?,}?L?׃o?'?mL?xK?mKPM?vTJ?DZcL?&+O?Q?q=?/ ?T??۲? Hj?,ܢ2?}?r&?H ?N?|-?\c?a ?/ ?>y?eY9 ?2?<,?"?_X?2?~AO?]D3?5?|L>?}?!?+Z ??[ ?0?Jf ?i ?CR?&C ?1?c ?Et?= ?SM?ɐ\?rgH!?D&#? H ?-5("?2$? '?u+&?maI(?|#?Zy'?e`q%?PY?*?Av?#q?x?6r=?Y=??}=? .?ZL޶/?sz)-?r/?76[1?&2?y<0?#2?y#4?=6?M3?KB5??H7?O`a;?$@9?z4?ɢ)?xH?s޸? ?!'?*?n?=?? Fs?Go?O?b?C?[??0^=??j?w,7?pP?|?F?M?[s1??nD?Y`??UYc?&??t?]n?? ?%'?lX?ً.?M?vg?W?[?#~3?t?{:?_\??~?;??"ٲl?`(2J?"D`?U%w??D?h? IY?;m? ߧ?L???}sjj?I:C?s?$ +??ۄ?Hhk?C#?h#?^(?zC?o?l49?f?' ?F?qv???qo?ϩ?ZE?Q??x,?8?I]O?'_= ?_|?@"?,V?cO?m;??pa~?9-? ?L? P?\?m+?z?.H$?̚ ?Qǯ%?Җ?((?K(?m7~"?^)?5?A?nA?m?*X?!TV?u!U?KW?(D V?SS? Q?)>T?ڹsR?̻O?ۚ N?k1P?JN?_OL?wJ?6?M?2K?SH?;G?%I?cH??`E?HˮC?+FF?BD?4j*?}(?'?)?`(?/&?Vqi!#?$?Jz"?W&?y#?#hr%?+W"+? Y-?><+?{z,?.?ȏ^0?C.?/?X%M1?E!||3?* 1?$ 2??5?86?a}Q4?#X5?GA?iW@?c,B?1A?\o>?=?7??=?o;?<8?9?3q7?Dz?w?u?En@x?*'v?]KrV?bX?2 Z?>#X?tY?߳|\?sU^?n[?m]?]4s?q?zt?KRr?o?YUm?p?DDn?eϸk?eki?Dl?Kj?Gg?Q7e?h? T g?Zyd?h]1`?BUb?2G_?IVe?)a?b?¢?c?w?xx? ? .??6?xq?%?<_?rمQ?}?nh?,k?p+Լ?$A??Ȟn?Y5?Ws?oH]??U?=?{?KE?|?ul?T3?®?x. ?(?$ ?d)?\p9?5?] '?$?- &U?Q(?Ę>?J?o? a? ?0Ce ?7:?k?e-E-??kR??T?5??94?bmL?K*Kf?g}?Wh??&u?9?ŵ6?NU1?el+?&3?6Z8Q.?!%?~G ?3D?--?xں(?Ht^?M7#?j,X?)R?:M?RU?@mu P?Q9G?:ϧA?8(&A?C T?fATE?A?sH{?2?׎Z~?6uv?VTq?t6My?>Ft?k7l?a?V g?[_? q&o? pd?_)mi?0C?cH?[M?F?zYp]K?ѣR?TW?O;P?tT?`\?O'b?jv Y?zn_?gU6?0X3?< a7?k:4? ]0?U-?e1?[nk.?**?z'?!,?rǍ)?ޮ$?u!?s'&?`#?*?X ?Δ_ ?U2?4'?u?Z????0? ?Z?}d!?/~?5?\0?f'9< ?)?֢^ ?L?n?[ ?޳?ȧL?;z?^?H@4?~'?(e?2}?jr?l?}y? :1?? =?bx?È?c?ɭ??z`?Ox^??o$³? Ϩ?^S?X l?*C?nX?NV?XfY?8q?Y?Mp?o?,S?MO?.?Z?"m?wg$O? ?&]?aʬ?k?nOm?Z"0?TDt?ü?? ?(?kp=0??+? ?XM?w?j^?D>D?w???Е?ȗ?Ců?Px?f?IGrC?WK8?JB?3E?!K?WN?DH?`SRL?Kd? *b?{>g??d?SW_?WR\?:#Db?xt^? #Y?)rR?n˖U?@P?f[?+T?%W?A$dn?}_pq?+/l? @o?^?oW?p?ۃ?? E?)t?>h"x?Xqr?[v?gXz{?e~?4Bz?4}?V+???(,aݬ??VE?Ŏk?%Z?ww?{?7? ?K?1Y?^?X?t1?6?gw?"u??;* ??vV?7X? N?|??6??z ?n?-N? ZE?mI?{ҋC?40?PS*?L&?@-W,?-(?CI"?.E?$?h@ ?E?7v?v?lS?2?+?g?k?P ??!?},?: ?|?v ? ?OV?,[?gM._?TZY?E3]?U{3c?}cg?7a?ʇd?k?Zo?p'i?LIm?Vt?k :x?JK1r? U0v? %\|?$,?'FPz?B ~?X?ߜl?7T?Fr??5?Y?{I?$U!?b? ?|?^>?1^?X%.D?O?`?h,?\L? y?Br?7Q?¥A?s?J{?so?4:??&? v-?tyC?a%?}ʬ?(?`?x? ?ćU?ޭe??, >?zQ9?{qA?]04?c?,=?Ó?bYH?@˖??M.??g?b?(?A.?.??g~?P8 ?@si?O3 ?>,?r6??ue?d? ?9?F ?Dëe?:?w ?@P?{?H&?(?N8r?BD??>?tZ?yL?wuX?%?U@?qyB?qO?A?jvI?X?˩?{\??>ԥ?]mB? ?_???W?n_?\Ca?YXy?yvm}?:l?:$? ?5_?zJ?9yS?38?yƲ?ϱ C?L?*?;V?'S1?c?ʆ?3? ??W ?o?xU?`qOM?ݺ$O?+LbL?BN?wKP?2R?;<P?2-Q?ѧT?V?zS?]a^U?h?\f?}i?Kg?d?cb?mHe?fc? [LX?]Z?JMW?-] Y?'7\?c`?ɤ^?Ra?:[?(3_?5b]?UM?c6׬?9GL]?(#?`j?pZ?%Q?\?洦?BKr?jܛ?aoCD?S}?wJ?u)?oF?U>V??H?7ɭ?7?p?Q?+?ꎌ?Ę 9??a?֮?3?D?Y?=3?5!?V9z?pb???B?&,?`?F?Ĺ?J9xg?7?oŻ?,?elk??eug?/(?~0?ZC?AT?^}?CY?F?5? ? ?1TQ9?e??+} ?y0 ?z ?ևa??D%r?=*?kK?r?Qk0?9?g~?ڊ? ?}?w?eёCh?pwj?7l?\ i?I&uk?$ń?oѰ?R(,݂?cyL݄?q?^.?]Ȇ?<p?p o?. s?tdq?Xu?m?dr?BNfp? v?$0|y?dt?Kx? X|?ء$?el|~?;cs?z?H%?|)}?@v? ?? Ɲ? ?j:%?kޔ?O?7G6?Ds?ۍ3”?jD? p_?5Z?~?I}??,9?f7:?PW ?c?m6?++?? Z?b9?+?cA?ɔ? ?a/!?. ~?'?XJd??J?>?. ???,Y0?6I?W>?ả?Z ??`T^ ?W6! ?{ ??@ ?s F ?Ur ?k%lu?Z:.?$ ?[e?5?n"?>,?lK)??x*?0'?F5-?ػ*?dC)?mV?  ??yh!?x?H ?lP?m"?qI&?d$?.}j'? ^!?(<%?֯y#? Ǜ???G?xqvK? )G?lI?PKv F?^-L?mg7tI?rG?BLD?GB?aE?LC?a0H@?"=?O>?h;?4+|A?i >?!".?-ˆ?~ns?}?@3?sz???k??Z4?.$cn?#8?驧.?0?r? ?w?X"N?dv?p9c?U?C?!ڬ??YX?6!y?n?~?{?j-8?BW?qI?Aw?Yjsh?1/?:,?N??uϭ??ٔ?ǟV?;!?s"?Rk?݇?@?g.(? k̉(?ͳ!?I?Z`CB?;•B?lB?DupVB?wrQB?7?LL6?(p6?7?6?6?c6?o@^{6?$6?kN=7?o_7?;)7?-JK7?Wܢ7?jk7?inm7?(x217?I7?:7?Du7?3:<7?7XA8?K(\18?'7?a8?]=?=?]Ģ=?}=?`=?Ԩ|=?V=? (ߍ=?%g=?(0=?v =? A=?c"=?=?3:A? ??E=?P9?J};?j%9?[=?g:?bD ?/N?:Ӈw?J*?>4?UO?pO??0?j;?򠈗?8?&?N! ?5 ?P ?[w ?m?dA:?BHR?9?F?3 ?bC?\????ۈ?w$i(?x .?Cm???=g?\?"[?P_?Ո3i?R?*???iz=?&?`S? W?Sy? V?\E? ?ځ?3w?CDU?tVs?yb?fw4??-?G~y?ʾn?m)?s?&r?'}??B?MG?c$K?BE?ާ6I?:?J?P5?s~?B Y?A6?KC?0{?7?WB??|B?g?Ê?9a?jn?|i5?3 ?3 ?ܤ ?f?W }?m:n???ǂ?Y(>?5Jx?Gs͘?-w ?c_B?ɩ?\s?]P??6@?ϫ?0ɲ??6F?uh?J t?`?G?>}?BP?mF?#>l?z{^? A?I?;7W?Q`?V?e?ϰj?^a?~y?H?:Ķ?eHdz?? 3?֭??&?|ג?:?;?t\!?Ir|?n6?&n?e?\B?g'F? ? F?Ȕ?+4?t?!?f>?aW?x'?H??u?K'?EՅ?YV?]?{Fٙ?%|?w?a~?jz?-|r?f~g?>l?O2d?bFbu?EGj?Qo?G(??0D?t#M?PI?&pR?3:B?TI?sN?oW? Ly\?|ƠR?Y??cb?zG4 h?TOy_?pe?$2?ޑƑ-??WO=0? *?dw4?Rl-?RpU0?#j(?qj'%?+?}L'?7d!?r?̙#?O?mѦ?:?-?D6?;?`?s:?@?`i?]?En?{ j?k?7 "^?h3?0T ?S\? ?E ??1?ʉ1w?{e'G?vu?P0?K*?.f?"?W?lc ?7?\۬?a4&?ԇO?#?Ө?8?թ?[U?)K?myB??{?-?gQ?W{p?h?n?ɻv?Vk ?u{?1 ׊?,\ҕ?4?@_?8?wp?}?*?Pi?疖?q?7?̓?x ?_Nx?R ?`_??r?҈?j*?U}?'?Q6? ?{^?A a?&N?&?<1?&?wH?[ezZ?K@?6"L?S&c?a?;c?_? u?ZW?^@=?B,?Aҧ?U?6}?|ư??\ž??W ???]:?8?c?yn?3?#S??nဿ?G?8?0*?12%?Gݰ?e?" ?r?dA?#4=?I9?ͬΎ??(x;?>@6?%1?D/k$8?4?) Ij?vg?zm?k+@k?PuE?I?RC?|PG? \N? ,)R?+K?NzFP?Pde?%ca?Fh?؀#e?_+^?6IV?y?7Z?#dT?a?Y?# ]?8Qq?8zt?R{n?rr?4?|?Iͱ?*h?G?7j?m? x?"~?{?]VЁ?&v?:{?53~?/m~C?N0a?J?khW??1ӈ?<Ɓ?NJ ?`?-BM?f?x"N?)zw?w?GƐ?g߶Q?s?ͩ?݋Ί?ʹw?L5?Tj?QuR?VYM?AhU?8UQ?S?} ?TQ?|B?}4E?KO??3C?*?Q?u}g??V/?k?]Z?Ft$?lp?⦾?_)? V?B*:?Uz?*#?'?; ?Y?KQK?노??p[?| ?'H?YD?#L?? m|G?P??S:?5B?Ti=? 5?\.?x2?*?+Cy8?W/z.?{S2?'?{p"?f*?1$?؃?b?6L? u?#X ? Z??-ĉ?P!?#?Q ?d|?}u?K΂ ?XKo ?Sֳ?I?\3?,?~l?lX?k;_?>[?)Kb?rV?KC[?j %_?Bf?}k?_b??Mh?lGp? Fx?~5DEt?cr|?lm?C(t?UO)x?1Ҷ?F#l?2{?Z΁?e?R(܍?7%I}?q_?"Qi?s?!?7},?jǧJ??j@?4Z?Ӛ?1?9~^?g;B? ?=v?3)?Ctv?.3?CZ?B??Q6??X?ƊF"?XA?;>M#??%m?A??VM?ZC?Gp?u_?9?D9?A-4?99?d{?^;f? ~?c%S ?A?J\ ?]?q?};n?B%?z,?u]??'?|a?ܿZ?X3s? ?:?OL?}??68?C?? V? ?rO? *? ?U?"??G z$?b ?Vp?_uC?L]?(}$A?v?ϕ?͌9?x?)r?mY)=?5R?F?c ?8?Md? _?Q?&Gm?[^?RI? ?,jb?C?[ ?x?V+?v??T?4L?Sx?ۏ?`I?Mq?x~??#?=.,@x?sq?X'{?9`u?O9k?1e?n?Fh?G ^?rQ?W?npM?6nb?spfT?~S[?bP?SV?K?\n ?Fkp?3??.ͺ?\?Ͼ?z-̸?9Y?BY#? 2?#R?By?#??:ߧ?R?c^b?|E? ?thO?pHS?;4IM?O%Q?6W? [?jdU?)Y?R+8?a?Z?i 9?ZG?qȌ?ni?=O?|w?{P?H+Ŋ?/ؚ?m?>T|?v}?`c~?JU=x?X(t?~[Kz?gq8v?ʉp?\ l?>(%r?pn?h:g?c?%l_?b]?[{j?[a?LQse?\?C???~$'?'<#?T?0s%?xVg!?,L.R? y? ?ԊH?fq?= ??Hm<??2? ?,p??2k?-?o ?;?F ?Y?F??V&R?"o?<?[7?Ќ7?3;O?<#?Y^?oJ?9?rbc?@=6?`-?ra??a?J? g?XӉ??j?O#?n?( ?cW?/0??}?ƪMA?d&?I$W??*`ܯ??c?/kv?>[?J{?:?쬎?D?ڇ?^6?_??U[?Z~?nz?w@??U?1s?!F??A?:t#?2zN?wY?P2> ? ;(?5?f?Ή?B$?0?U?O/?~0?F?@?^=?]?с?P?ÌOu?)ɹ?G[?o9n?k%u?O]?An?:)Y?N8??x?!}jr?M64?6R?Ҙx?Ec?1#G?2A?[ ?QVI?bs]?/&?n8Y?Iv??#?ɸ? ?c2?F?eWm?v?~?vo?*0?i?Zq?9.?ɿ?Y?ER5?Xr? I?®?yn?h??Z3?G]?=;?[?z?7"?S.Eh?6w%?W?!F?ù??Lp?`7O? ER?6/P?mT?k N?BrR?pP?sV?JHX?FT?iB_V?ef?ۆb?Sd?t`?f?o9`d?VIb?`Z?GQ_?v\?OY?33`?^?9[?}O?L?)J?4M?*pK?"?Ћ??aI?Gss?Oȧ??]?A?iK?asE2?.jR?;ԟ?e?j;?r?;?ج?Eί?;?;PW?bʱ?B*?r|g?T4?r ?)Ug?{?l !?_Z3?$d?A?W0sX?}ao?n?A?/Uռ?90?t?V5?'K?om?l0+?[@?=3?s i?x {M?-`?:?hݖ? L?7@?Bx?Z? ??R?1e??;j?q?IK?`$$? >d?@$? /Wj?wLU?˒?n?{r?i?OO?Vq?W?XU@?I?]y???0]?=J֦?e?;0?1g??; ?|??cz?p?H? |?M?&?Vw??0d\?N?iA?d'?b"?4?YT4?,.|?鷚d? V?V?S?+ ?oY?h?.?vcx?b㕄?|???4>? ?q&t?o??~?[?, ?q??}}??G{?9Q?o9??@չ?fi? f ?S[!?gI?b쌖?ΐK?(?o%(??mT?o6?Œ2/M6?X~6?u\6?M3+6?KiL 6?:6?OČ6?3y5?":5?2G5?L` 5?)z5?iz5?K^X5?H=5? 3`5?DS?5?.D$p5?t'N5?.5?Þ4?/ok-5?& 5?-4?;T4?4?h>E4?}d4?Kx4?Xը4?K߇4?UW4?FK64?f4?eF4?E%4?|3?fڨ%4?70M4?+3?cͪf3?ϯ3?S'3? 3?qs3?2 3?)a<3?8{XS3?%33?7hb3?xYB3?<k3?2?"3?`E3?>2?k`2?}2?5.|2?M2?yZs2?)բ2?wa2?7S2?zP42?Qo b2?!B2?2?G^1?'zm#2? 2?1?ܹ1?+1?v1?8{PJ?ԋ#J?0+ J?f$\7J?Eu}J?{\J?gDEdJ?).J?ۢrJ?K?8s?J?"jJ?~GqL?ksCL?0~%L?.vWL?8q)L?K?okK?K? K?ˏK?Ȍv_K?Å2K?qK?ˁK?>EK?0sK?FE?O+E?E?>E?u@E?a,ӾB?&'B?hUB?B?&p;C?:C? B?/3hM$C?MQ>[E?1E?@3&nE?Y2DE?U#E?%JD?A?eEKA?RE³A? 7xA?/ wPA?|IA??-)>?m??JM>?!Q>?]eB>?>?W>?b>?YĈK<>?q>?r;>?"^t>?B'>?3M>?oB?oڷ!@B?hB?K5*B?-KRB?:AߑB? }'B?'{B?P?XB?;077?̯7?J6?V"7?.|7?\6?/6?f6?S6?8Cҍ6?+l6?v&66?Jw\{6?P>?n;?I;?T%? ;?ȑ[;?>HY7?c z|7?d+D7?ef7?jW$;?F6;?a6;?qob;?:?":?z:?9:?V:?qm:?9:?f+U:?r~I:? 0%:?Z:?k)6:?j:?/9?`g:?39?Kø9?=yȔ9?v9?EOv9?*p9?4hM9?JD29?]9?Q)9?V9?}99?&o+69??n{8?8?j8?M8? &8?Aw8?cT8?nA8?c8?@/e8?<{8?x3Ÿ7?Ss7?a 7?Q7?k7?nk; 8?O7?2!7?cXc/8?R8?8?N/@8?xif=?EЅ=?=?a=?=A(=?_s y=?w@=?Nn=? vS=?2-=?!c=?l>=?L=?r9W\F?hFB?8C?#,?$*?y&M-?ʁ,?u)?h &?6,(?p}"&?.l*?ֹ'?6)?73.?R ;0? Z-?&8$/?Bt1?Č3?T0?,FF2?zm5?_i8?"1*6?t^9?m#4?|: 7?ۡ}8?,<">?vm;?ׇ`$=?@?Ѹ9?Ȟ?.W?AP9{U?1wR?V?BãT?~X#?Z%?y)'?Ty$?Iv&?`"?E- ?KH[#?p͟!?&?\?, ?T 9?W??T!?G?ں?k+?=Lp$?O??#"?-?T$?EV?q?ٸ?tg?z?6?lI?Y?{F^ ?Xf?3Y?FG?,6?D'= ?,?8 ?5G?At?RE) ?O #g ?{?Ƶ?M.?=`X???d.?t?nd?ðb ?1Y ?߶ ?LA ?8M?\?f?6?3?y?RY6h????5?^9?«#?! ?w?BUN?c0,?x:?eS?;SC?M?]e1K? R?Jw9O?b}?f^>?*j?7F?s?x?l???9?]#?dB?li?00?ű?56?nx?{N?x)?-wA??籕?Ş?7?p?(? O? B?S?Nx-}? ?`-e?Bz?9w?A|?Ly?+ժ u?/Pxr?cv?D t?^Y?s^\?"3Y?=[[? ^?# a?y]?#%`?)o?<{l?__~q?,~n?je j?* Id?4'g?b?swk?;9e?ΐh?+%A0?iK],?mR(?Y4B.?*?$?^! ?K&?;"??W?>{ ?ޜ ?MuE?wv?1j:?S>?ނ ? ?Ӳ? ?]?U&?? 1?x? *K?LP?en?FSX?1?{?S?|G}? 9b?7.S?ʡ؋?AV?AP ? ?J?,9v`?GTY?UsK?Ax/R?3[G?y\?4*N?6LU?-Uu?g?۾n?@֋x?G勧c?LBj?mq?Q^?$J?`m ?I-?(Qş?þ?"7??fP?j U?B&?zl?i-PJ?`"?s^?w?ڕ?M?c?9ȟ?ui?s?B??ChD?`H?)+B?6(%F?K?pmO?X1dJ?m)M? 0?~|?$?!㈝?GY?m?. ?? ??P'~?`C?g b?_z?\0?Yg?ι~?\M?2ъ) ?}B?p_?,0??X?#?0?c4*?Iz?Du?VS`? x?f2d?ٛ?`Ԝ?&p?#/??~?g=??4b?kd?Q/;?@Ɉ?Ksc?0ˌ?)?% y?c$?F?am?t??0Z@??=?WʼnI?!4?b\??Xa?\̰?&?R+?9?Ù?/?U?Z5?]l?jD?y?x;"?.A?Uw(*?>R?KK? )v?]]^?Eh~?|@?K?k̤???E;?O?E?N?WO[?P)?4{?`?2?x+??O.?G|?-?J?I?ԹK?M? ??{_?$l??֜]??׺2?~?P?3T?7f?p?u8??M{l?}g?f?Ms?'?Ȓ3??;Iץ?Fu? Ĥ?DȨ?.ͫ?۳?7?Gخ?H? ⇭?&n? > ?t{,?' ?W?1P?`K?p?O5?7L?Ro8?2{??X?%X2?|<ȶ?[MOҹ?A?Q=?pXE? n8nA?E:?X02?&86?6v.?m8V=?z:-2?56?7l?{h?_~p?nOm?ȷZI?.7LM? /E? IK?؊`R?$v3W?^WO?}_ kU?`@e?[? `? $j?_B#Z?D`?9"Qe?pVt?y? q?Aw?3=ʮ?M,???j?D~?̽?&l|?@1Z?{Ml?ʥ%?\!;?*0ء?Q8?Z>F?ăC?ѭ?zʠ?L?˺2&?jf?Y?WQB?3N??YZ?7RO?ZCR?4"6U?!jJ?fG?4V?3V=/N?0 Q?ZL?X?Dܸ?Vz??"4?{? T?^i?c??٩4?i?N`?1?F?~?r ?Qo?c&p6?^? ?0=?v| ?^?r?H?J8?|A?.S?-/~?=ߵ?,#OF?6ކ@?OŬI?'"D?5Ou;?ʶ4?ϩ>?q8?qmP.?(? L2?I,?|"?❒?nR&?? ?53S? ?*<?⏞I ?,?S6?;?!"?B?d??3?$FE?K}ڹ? q? _?vwz k?3re?L[?m?Z?a?V?0?06?@( ?3r?P/?`* ?b%?y*^?U]?D%*?B>?j ?sp "?C?g;?/J?8B?cA4?P,?]o*;?|2?if$?N?F}ٍ*? ?Cx\?*#? ?6??o?Uf ? ? ;?z'?ļ\??q?*?L?vK2?=?Ї?Yc? ?f?n_A?G%?FT?8 ?qxx??T,?58?!?^?o^?W~?yS?p|?:Yp?lrw?:?A?6~?4y΋?ߜc?6VI?QP?ݵ;X?ʀpM?M}T?,?bb?-Td??H?;4?Gz?7\?~A?h˶??$ ?"8j״?&5K?˓t ?p)9?ˇ1??,Х?Х?w?ᥩ?}?eZ?^??S?W?rxQ?ʽU?m[?&_?TY?q]?'{x:?_w ?%k?9I?R?4﷈??6Ί?Ԏ? s?4Z?HRx?ۋZ|?NFx?^^~?~_z?f'4t?>p?ٻLv?/r?V l?՚c?vmg?ba?Xn?4`e?i? ?r)T?-ԩ?#y?w1,?:y0?*?|z.??Xg?'b?4*$^?+d?eJt`?卙Y?rT?r[?KMW?ngP?|cK?n޺R?up.N?KG?mB?{0I?*2E?Ɓ9>?/9?05?W2?'@? xs7?*;?=,sM,?͑'?'I*?٨?qW?ס?Вp?? ` S?_V?=$A?r?A?70?Q!? ?4N?K#?_0 ?ء?з?d?U?H]?v?'?}?z֦j?:8?OJ?4?V?؋?ӡ: ?0?;_?t?Ԥ?5?ܖ_?}?(7?tIU? 0?u?µ?fU"?$0?JiU?j?Zfx?y?u?Zp?ʡ'e? ? ?yN?/T?El?6cj?W{?? =~?? ii?.?f?* ?¬|?g?X ?zF?I-?=?KzR?U?X ݯP?n S?+6W?;jdZ?,U?[`X?şb?E?(]?Ga_?d?mj[?]a?=Oz _? N?pL?rj>Q?=oKN? NI?G?K?S݊H?R Ǖ?i?1W?}S?bVxU? ?W ?  ?Zw??93?;% ?ц?VT ? ?4[?QV?2k?ߙ?̦?e??<)^?=,?)?5,?2m)?M?!?#%?^ !?:3#?u?=6??&?|g#?Uf!?Km?҅*?D?=??A?2f?O?⁧n?BZ.?RX?Hئ?C;R?8<??_W?1L?w3?s]4-?=?tH?SHw?D8^?^?™{?Ԑ?EJ?]sV?_2,?5?]{v?Ԓ\?%??؛"?Ԝk? ?AI?LK?2?/р?kB?S|??hCm?W?Is?E?s?M ?*i?*?λ? gT?F?--?| ~#?ci?'2?6?oZ?I}?`}{?Lj(?II(?wK7?1*..?K.? d-?.?1yO.?,:-?s-?R-?-?^-? sk-?-?sv`-?NŠe-?0 I-?ur-?G_V-?4T,-?s0;-?X9-?nƒ-?p,?{׭,? .-?}g,?D',?0`,?"=,?Ь,?aP,?ZQg,?yԺ,?ft,?bK,?[/,?ҒpX,?;,?侲,?b+?=9,?),?pt1?mYbx1?bS91?M戇1?`SY1?pW:1?ǃqh1?#I1?V|o1?80?Ȧ*1?i 1?x50?/z)0? (0?@0?#dt0? 0? H0?TY0?OWc0?U.3E0?l%`q0?MzS0?8>&0?J`0?Ȅz%50?0?w/?Aq/?_l/?3/?oo/?9/?Vܼ/?ٴ/?鮌r/?T/?(٤π/?9b/?y7/?z/?@yE/?[a'/?0.?"h.?]`7 /?,M.?5.?΢.?hZ.?ߢs_.?IF\.?b((i.?L.?3o<.?^.?[Y.?v.?/5?np6?~_5?5?n5?x75?r55?q5? s^5?kG5?4m5?džv<5?%{^5? K5?gT)*5?sg%4?ߝ(4?45?\4? :"4?e$4?zϚ4?Tc4?E:v4?ɣgU4?]Eq4?!~d4?iB!54? 4?JC4?K2 $4?_{3?`3?#<4?="3?l3?3?]3?Q6h3? r3?FozR3?53?b6a3?F1?1?)2?1?1?091?Iɪa1?L?²L?_I}0L?鴫L)M?nL?J'M?OzWM?SM?I=M?l kM?PXPN?y!}N?YjN?TN?E܂N?F5nN?r?N?N fN?AЯSN?qDN? nrM? M?9M?=<$%N?qM?M?T? cR?NKR?xBPR?y{R?4WjdR?RQBI R?0_Q?J Կ4R?.R?~5)O?Cf,XO?˛O?qtf=O?}B3O?xJO?,=alO??O?ܰqO?LP?KO?JO?禅Q?sCQ?5l| Q?q(~Q?=tvaQ?U1Q?^uQ?f(;FQ?4]Q??$-P?CQ?}bP?𠲢P?7l IsP?GצCP?}~)P?nyP?XP?P?K'KJ?wJ?1J?X]^J?vfL?)vJ?yZJ?8zJ?vJ?S7J?j S,K? .J?7K?OajL?B =L?}L?cGQL?xL?[SvK?nY}#L?@RQK?FhgK?HQ=YK?F;džK?Z@K?K?olK?K?AaEJ?%0QTE?UNE?8E? +E?k^E?ʬVE?E?2LyiE?p؆B?sP C?PB?BvZB?#|1c7C?5B `C?f!C? KC?r,E??fME?w+3?E? E?wo>D?1qD? D?Õ5D?H&D?BVZD?vD?nD?2Y 1D?<D?jDD?^D?]5C?} C?SC?[tC?%ܦtC?0C?wS}C?DI?6DlI?4{I?MI?{?I?I?=TI?A&I?t9H?daH?RH?;H?;H?# cH?vMH?mRwH? 7H?u H?KH?8j H?וuG?IJG?!lbG?QG?LDF?̤p{F?)F?[RF?RVF?ÊF?7'475F?L]F?eE?OsE?m}F?2E?C*G?xGXG?(G?|lG?LJ%}*G?1-F?YF?XF?Ozϩ>G?m1F? G?/'J?*C"I?8i.J? EJ?h%I?I?,5I?pްI?>A? BA??6B?PA?ǝA?MuA?Ԁ$A?WLJA?֛MA?U%A?İ\_A? <8A?p@?b/@?A?MϦ@?ج@?q܋@?ڔyF@?ò@?^ TW\@?l4@? En@?5F@?{1 @?C~??@?9??A2??,??G?? ??o??U\yH???? -%Z??`3!??j>?>3??iG ??kkA>?j>?{&>?,fs>? ݅>?v־8>?+C_>?4+$>?>?I>?Ifp>?Α_A?zcRB?ZҍB?毵NB?DtB?rBB?B?XB?eB?=Q7?6 /7?у7?Uc87?7?w6?p6?2S6?Lߐ6?u,R6?Dw6?26?(6?ih6?/3H6?VMu6?[X6?/tQB5>?>?Z=?p >?"G =?@G;?Ŀy|";?r,l X;??>$3;? ø t7?ֶ.m7?<Z7?T7? :?.4:?{; ;?=:?:?{:? :?Vo:?2qAZl:?^[K2H:?49E}:?}:Z:?$:?yb9?p 6:?wg:?۰ 9?V 9?2\9?菑9?'09? >;n9?9?Q ~~9?ZJ9?A<&9?KZ9?Qj79?!9?=k8?G9? 8?,L)8?s%Nu8?[O8?mYc8?^"8? ?8?Wi<>8?t~@7?O7?苨g7?^7?" 8?PT8.8?m-7?ʷ(8?R8?8$t8?@B8?ZqMb8?$=?t=?hw_=?I=?+t=? BBO=?R=?`=?#^*=?'.=?hB@;=?-=?tOx;?׊U;?;y V?]ѰV?Xf~V?&pV?dV?SGoW?DoCW?u4V?~b!W?fO0euW?-W?scRW?>}W?)W?W?dHѮW?ޜ?X?t?cW?S`?f^HL?h"O?Z`M?1hQ?eLO?KGrK?lI?ޤL?J?sgG?(D?i H?/sF?Zا{B?$@?8ED?*xA?x*,?(?3t*?m-?;$(?Vz*?H>,?憰/? 1?N .?v0?]?V3?`<6? 2?VG5?>ʑ8?=?r.;?XGz??1pN7?U:?ϝ?=?qjX?\xV?%*Z?8ܑX?US?K Q?mV?ħR?X$?%%?V"?B$? '?)?',&?je]|(?Dv!?~?Y##?l /!?_?,m? 8?Ei?|T? <?P?#j?=*??}T?K??$("???B5?H?,-?b?{k?B?[X?n? ?q9?[ ?l\?) ??F ? ?z?[??<?6?CC?cC?$?Jε?#u?v? ?=N?co???;3{2?(u?]^? U2?)8?yL?V`L?u#?* ?Z?F2S? P?r|1?* ?s? j?ԇ?;H?Iy?+?4ۋ?K0]??S'&?s`?wZa?#??8x?7?>^1???JPX??s"??h8?0-#? cU?fȃ?I? J??`3w~?I5G{?8DQ?V}? x?s?Gӕu?dQcp?F'z?hs?u?We\?^_?qa?w*Kd?~#jZ?^?(a?͹m?#ug?ϗcj?Q:p?c?h?vGl?U4?&0?d,?D1?EE.?'|(?$?q'*?#- '? ?3@S ?%0#?,??N/?{?c4?;g?[މ?0:?=?",dX?O9 ?`L? ?Cw?c?=?w^? /?V ?@/?,?_ZD?( F? "?liYx?{?B?;H?/<L?cF?2.J?>*O?yS?N?^Q?7? ?og?B?jn?qU??q4!?kJ?KCx&?5!?+9? ?z ?B?c?t?α4??ZS ?F?J? KA?\?$? ?L?N5?Z?@e?C?;A?5?\ ?Tpښ?C?4Z?5o2?&]a? q?c?iL3?E?3:?@?"~a?$z?J w? `?u????9?^?/?[|?oۑ?(x?3?LJ??A|Hm??F?4?LZ"?j ?ż?و?@J"?V!R?=|`?.wB?h<=?f!G?dt?C?N r8?f+?~1?W1c&?:8=?60?o>sZ6?c`g?p`?(l?>܀e?8|Z?p5L?S?PH?9cH_?'g'P?hq V?1{br?Tn}?hw?(?w9k?19r?3x?C~?oO?̹?UA?^ӽ?M? ?J,@?߬H?*u?e? ?]?AR??UO?5/ݧ?/ؘ?0?$?6^ŏ?Kۈ?$%=?]A׍??z>qt?p{?>$r?s.?hF y?\K? d?'g]?7i?^ e?/?F~8?&z??c4?f;?F?4m&O?]qB?f5I?NcW?XR_?Q?\ Y?4\o?S@v?nRk?3r?*?0G*&?9}5s.?(?.2!?yd?y`$?5g?_?L? ?])v? ?Hu1 ?Vm?lwO ?ψ?`  ?M~?5͊?(Cx?>?L?7~?gC=?#?=?8}?1?)[? C?7?Qfe?+~??WOm??κ?:(d?u?] M?:k?㶬Ɣ?ْ?]H$?O?V ?r?of?p!E?IU?v5? ??6,?8?`"??P@?G?^>>?k?dM?SҞ?yD???\z8?iDi?()?ЎԤ?:ĩ?oₓ??mwq-?;x?{?j?Y?M;(1?+??ZY?6S?j)줶?;vڨ? ˅?`?ިVG?wEA?f9?\xyD?偻!??*2?,?Ԣ7?=0?'n?m*j?#/t?/@ap?$quM?YR?БJ?ܭO?XX?^?U?[?giae?Gk?kFb?óZh?I@ly?=~?Y] v?`O|?k:. ??Bbj?#=x?}~ɍ?eÉ?w`?gvx?E?N?͋\֖??P ?T ?ϝ? t?a?ۚ?߮3? ʰ?n?=;?ƴ"?GN]?X2W? M?-SR?G?X?ѝL?)Q?2R~?llP?GuX?C{?A?>?i6T?e*?/FMv?FZ?ٳ?A_??g.? ?s?SG?L+Q?t;?T?Eq?a6?s?:9??:? ? ?>?U S?{8DB?)=?#90?Y '?64?o+?}?. ??5^?9"?悶 ?ڵ?P?|RA?DjB?d9?hOI?M #rB?Q0?3&? 9?tK-?$?Lj?)j#?u'kG?It?C}?yB ?mz?y??)?* ?҉?D?(?Gs?no?xP?2v ?ކI? ?L?L ?O$??vL?}H}?i:{?P?!-?mK?KaNN?iה??I}?Ct?| ?ar?/%`?i?is3\?Дv?k;c?Bl?BI?)CX?[Q?~E?_?.8O?MW?bP?(?40 ?@?,t?рZ?߶?w?{ #?Ʈ(?  ?Ο%?fWP?t@K?ǽF?vEN?Hs(I?}xA?^<? D?k>?0 H7?42?$-?&*?N9? s/?w4?c??T\?:fF??_e??/?Ķ?ME?$?ɤ?0?ox?r?2?d?Iʜ?|jΔ?V?0x?IA.?jO7?8}?^4?Dh?O۬?!elz?/T?O}?y/u?o?Iw?ᠤr?u˽j?؉e?bDkm?,h?Y`?9 }+[?m%V?9+kS?4#b?X?]?V?}/??5V?2_n?t!?!?֢:C?oc?"?'ؽ?;?ȩ!g?S?޼?w\k<?/)bX?NR?6K?㬐KU?DN?l.DE?[Yk>?BYH?k1MB?Ay?RO?]m? >Q?w?'.?=?GRu? (?I#?ͣ?&&?W ?#=?c+b?y ?_  ?~?rq?X??ČFK?E?O??NjH?*B?`j :?'iS4?\ϕ.? |+?]y<?$y1?_r-7?LQ?sV?J1N?޶T?ư\?*b?9VY?˺_?7fh?8Hn?"e?RYgk??^9??3?-?E?k?h?ċ?p7?3N?6?WZ?)?{?|?C?z4װ?Rx?ʽܥ?Kr? ? ?ģ?t?/p?<(ҩ?鲝?y?5Ʀ??˚W?'2![?1vU?BZ? `?,!c?= L^?#a?΄X?Z1?* *?@WU?c|?9?i+??rY??ԁs7?6Cp7E?;?@?]ɸ0? Ќ,? (?.?g#*?F{#?#4\?zL&?SKG!?;??ɇ?ʥH?;L?E ??^%? ?L6Ud?] ???>/?.-?)E?_3?ߌ?8?r?ʱ?N?Ü??ͪ?A?Ыl?qȄ?]쳊?(?b ?ŗΚ?L ?M?L6?Koȓ?O}?/?8s?2!P?+ڎ?f1?z[B?' ?*<)y?[qip?wt?ܳOm?{ {?_q?Mv?o?N?yl?2?A?` P? \u?[O?tҦ?,W?9u?&`?FE?B?֌?1s?!?1I?@|?US+?n>?tr?.{?+?:r?\.?c?#j?F3n?B~?_ ?Nҭ?P?1?o,ф?ګKM?b5?)1?F$?`R?M/?!?- ?Zξ? ?| ?4?_ ??n??,?lY?;d/?\x?G0?i?Ô?G7?߸?f~?i%?>3׶?Sf?C2/?ztG?? ?͔?E@C?_%?Rn[??Re?AT ? ';?^?S "?l;?[?e?n ]?2K?9?ct?&T?fN? Q?b?AvwQ?ß3?I(?x?J&??獑7??!3?*Y?5+?e~?N3?pk? ? 3x?B?z?0$'?yD?ȇ;]?TN/?s?8*? ?;M?ܘ?CS??S??l? ?ѫ?J?xo??=W=?a??+q?{Et? |?X?(*|?@?8_PS?V?"P?8T?{FHZ?/`?]?/d?绋W?Ϝ\?V`?M?u%G?!_J?u&C?sH_?F?i?l h?_S??#ym?Pr?? &?D ?3~?vj?7{?G;^?*V?WQ?!?F;-?n?*? ??u(?0 ?V:q?>?g%?}p?^}?:~?QC?qx??VX ?g!7?Z(?)9?5 ?·(?k~((?-Γ?"XJ.?\-.?07.?7;.?qB.?Z#-?x5m-?''.?Px^-?]'+-?ѐ-?c-?H}-??`-?)͘c-?w-+-?G$q-?H:G-?NH*-?`,T-?^i68-?zr-?rF,?+Ǣ-?[,?]xD*,?,!,?i8,?u5,?j',?́,?߬,?,?]BA+?+?gr+?,+?+? +?<{+?9ވ+?Zn+?R+?{+?J4(_+?`7+?+?h{D+?9)+?+?r*? +?޼*?N׫*?撥*?i\*?Ҽh*?T*?mry*?ѓ*?*?rze,?NtH,?.œs,?c#jV,?N9A+?.D+,?+?.(,?rgX|9,? W++?ig-+?BȨ,?!Sw1? @X1?v 1?K'Ih1?!s:1?'o1?h` :J1?Ha+1? }0??70?"? 1?0?vw0?B90?e0?ܥh0?k+0?ma0?Oo|0?1˱o0?IhC0?<2?+G2?Q;1?12?mH2?{1?P<1?R}$1?*fޅ1?@1?1??1?"O?` 0L?L?Dp]L?*u_L?Ƀ #M?H@QM?M?AP.8M?&wlM?d#ƘM?OfM?KsvM? N?l[N?zO?NN?wھN?+;hN?EwN?@6N|N?%`9N? 9M?J N?뫧M?TMN?vM?RN?$4LT?ސT?T?NT?YS*MV?V?_V?%͗.V?" `U?̹U?MU?@N?U?cɈU?@WU?/f&U?o U?:U?LV9U?,~jU?T?h֪T?BmU?5;kT?.wT?7 cT? E3T? FxT?`&IT?UT?vj5S?\{T?>jS?yáS?.O_qS?ZS?jlGdS?# AS?;wS?R?:算R?kl VS?&R?C$S?@_R?^gR?rxR?atR?R?0E6IR?1]R?]R?-R??Q?BQ?P?~O?aJ$P?iϥQ?ZQ?GFQ?/0pQ?:5~+Q?P?hr@Q?KQ?A?P?JomP?рP?(O~SP?DQ$P?nIbP?iP?m;rJ?tG5J?CP[J?abJ?(-ԱL?U L?OadL?>L?twL?]&DJ?gմJ?MJ? J? 9'K?FiSK?… K?︡:K?57L?iLQ L?"KL? L?^4K?ruK?V fK?fK?LKK?ԏK?=K?LEJ?fwRJ?.5rlJ?:EJ?^j "E?J'|E?›E?vʎE?aQE?ֽ.'E?4cE?#Zz9E?Q1 C?~f5C?"OJB?;c"C?0^C? 5C?&..LC?;OqC?BD?Є{D?`E?D?e5D?C9D?ƺD?<8D?wRXD?~c-D?HlD?!SjfCD?nCD?h'ίC?nC?j!C??sD?wC?C?~DajI?_;;I?I?duOI?z/l I?TNU,H?yt!I?_{H?^H?RH?ٙH?A!PΜH?*`H?F!4H?qrH?XKH?UR H? 9G?R~ H?G?G?7G?mG?`&G?GG?r8E?kF?cy7mF?F?5H NF?q@F?gE?F?E?4lueF?;4F?fSF?$RG?gB-G?MiG?7I?ⅷI?sleA?A?0%A?{6A?72qA?JA?웁A?\A?Q $A?J_@?x 6A?ZA?%@?5@?} '@?!i@?/7@?VyhX@?\ @?}f@?oU/@?Is @?>@?vd@?5}T ??k[??%y??CKD??r??l??^??kRO{??D??ک7??v+T??/??t>?>?i-| ??a>?33>?ڻsZ>?i >?mgF>?>?[ j>?t>?lA?7A?;V8B?8kr8B?(^B?өA?oB?+>8B?;B?5v6;B?GC^B?1B?iB?Qͧ C?k~=B? B?gPh7?/A7?!B7?ym%7?,6?tH7?7?nF 7?6?vצ6?a6?$'6?c6?G6?s8e6?")6?T6?|H6? [<[f6?!u1>?O8>?4GpU>?(-/>?U=?5>Ǿ=?| >?-%=?^P ;?x:?Q*1;?9M ;?~E7?۹7?-o7?7?죵:?*k:?*:?2p:?4:?ܩ!k:?f3:?7|:? |!H:?m#:?ZX:?H8:?[9?659?:?9? 9?! e9?$i9?ם9?j9?KG9?!7?y9?*=fW9?%$9?9?H49?9?-8?u;Z8?8? x8?c/8?g[8? 8?n7?]^ 8?7?gvQ7?_38?r8?W/S8? ƒ8?TL#8?PR8?1M2r8?1 =?Ҍ&L=?Tno=?,(=? =?d-J=?3-m=?8=?aw9hV?~zV?1[.rV?vb'2AV?F>V?TV?.WU0W?= W??}W?p[W?.W?t kW?\I$AW?BAW?W?WW?P??|IN|?;V?1s? bz?Pߢ6?@~?o_}x?E; r? {?mZ|u?Ƌk?0e?.l^?В[?w o?Z/#b?Jh?*D???Y?6~@?E? ???? ?ZOc?HS?J?W?ׂ*1?~? h~?[?2}s ?y8x?\X?A}?O-?Bȯ?Avi>?Ϫ9j?ek?G财?ZR/?,c?K?SPj?R4]?l?˜?1:?+QN?%56J?@AL?`"H?P?9 JJ?NUL?bF?#A?#%SC?.>?eA6H?;N2B?léD?xR,?۸V.?0,*?;-?31?؞4?Nx0?L2?d6?9?,[5?v7?J)*?T ??j'#?Z ? >?cP?t/?.:?I %?h.?;h?2p?Y?R^?4!?w?i?>Ko?$?N?}|-?O?(b?l?14Z ?c ? ?T[C ?9 ?F??i?_U^4?NC$?Un?i?EfE?Wi)?v?wj?ܯ?>?Hg?  ?+??'?W?~&?U6?bO? ?%?T ?"]?@Ij?*(?\?C?}c??w?+??vU?2?)T?`Mv?1?$?0?W,?Fdf?_ ?4|?[nw?d):~?z?/s?xTBo?>qiv?7r?ۣ@`?2Vj?p>e? Z_?i%n?=c? h?7?ed3?4c,?8/?(?>CF5?HPSo,?/?v%?j!?;|(?k#?s? ?o0/?6\B?U96??缫M?>K?B ?._?< %. ?ı?cEG?jO?4x?u ?곸??t?XM?~l?@?iHc? ~4?cg?'??p/z?m7?Z1?ws?ۨ[?Eqx?A~?U^?P?6W?>l?dAge?WȂI?q?9W?%X ]^?d?t[??Hʎ?5h?a]?15?>b?.ݗ?C/v?*!?k?%ش?? ?],)W??RФ?(?Ԗ?ӻ?9<?;@?9?39>?TE?f!L?ⴋH?6O?JC?BH?j JL?[S?X?O?{U?Y*?7!? t?V?r?Ud !??bd(?_?V?0,??m? ?=`@?$2????׋?el|?n?2W,n?SC?Dү4?.">?mE7?aynE?933,.?Ra>?Sn3?7?+L?clS?PֵZ?TOa? D?<wO?uͻV?ʭv?HVq~?pЊn?2y?=('?U!?R&+?' $?WjԐ?"b?.?pY0?Z?\?W?2 ?#Q?Amz?1 ? 6Ό?|??2*0Ҏ??(o„?ܔ?cS??&N6?կ?78?W~6?N?X??Qv??~ಙ?}ȟ?j ?F|?k ? }N@?3q?v ?fD?Y?B/L? S?E?z[?3r?B ]?S?dId?6vZ?Q5??_ƒ?2~+?bOۖ???)mÒ?}l)?4?5?4??wKE?u?gbh?OX=?lt3?FRn?Gb&?\"G?<ٔ?%i?<1K?*?Lv?%?Q? y?R@`A?RK?^Q8?yA?B?6?XBI?ѥ>?*??x82?%?0?7?\֑& ?Gܫ?sdX?H=?D^G?G<Ъ?Ev?]}? ????3Fз?3?o*?j?h.?l9?ii?@D?CdC?J#?:e$?{㖙?;{?2?x?8;t?{^4{? Jg?<9q?~L^?@*?=k?Su? 1U?3K?b?mUUY??ΔN?}?4?s?$#?3$?U ?M|2(?]ς9-?T%?*?BU?lPP?e K?@6VS?|PN?b{F?ڈ>~A?Y{O3I?HD?Od<?ijC2?YbR7?{/?/y>?H4?u9??6T?ֿ?>4?^?.l⋺?\t?iC{r?-u?Hm?U 8?A ?3t?t̤?9v??T?l"?Uה?I?̨%?8?C?S0C?&?WO?J?2C?:nY? z? WrNu? Z}? x?'p?7j?٭r?Sm?e?#[?d1R^`?R*}X?).^h?iQ]?~[Zb?g&??L8?F? g ?Mp?[Kq? ?Cu?EE?w??h.?Lv?e?p? } _?mTX?&AR?[?yU?,ܪK?QE?m2%O?I?C8?A2?@3;?5?)+?i%?!B/?U_<(?|X?z?;s"?=??n ?[?6i? ?aӡ?4 ?P .?_)?Bf\#?+?Bϱ?k=??5m?%hqv?j# ?v?3T?̎Ro?l?OEޑ?:?6?Q\?FFc?L@`?g?)IZ?bD`?e(c?޾R??8**???__|?̽o+?f3x?% *F?d8z|? /G?Qt?B?k?5@p?Gg?»/x?rVn?;r??)?N?@ڙ?tk?Xf?_Ao?Y)j?-05?u9?“3?Qv7?0b?f D^?NIf?u`?/Y?ŝZ&U?-[?DjW?g^P?t@!L?Ǖ#R?wN?7 G?5:w6>?dB?@ ;?Nw_J?Y@?qMME?0?,?4?1? )?$?-?]6'?7?Ie ?8["?Sp?D|? Y ?z? 8 ?W6?YE ?8}? ?u,?[ ?6E0?<?E ?K?0?X? 4?eO? '?bf?HE?9H?#D?M?u?c?JD?۟?t?@?!3]?ʋ?B.??P |?1{? \1x?eJ|?(?B?ـ?:?>$ss??oXn?nw?q?gkv?`.9?vK?'?ʳ$?(2?%>?w?:?N<?[m0?p#?wz??[?΢5>?o??tC?`?^$???'M€?z?̈?YS?4?|`|?0 w?9öS? gǷ??[?4i?]?Vt?B⌵?*'M?+,L??/gF?RO?Nj$ ?wG?G0?8?_?~B ?w+1??gN?ݚB?^?zպ??d ?m4?0G?UF?]@?C8|?H?v?W#?qC?.n?ȹe??f/?$O?❅? 2??|&? ?g?٪1Z?&T?sg?;~?6?(!x?L[???e,?Vå?9t?Ia_?:j?Y?2T?Cy_?8Z?XN?cgf?6~\?W?NH?B`w@?Q?YG?^x?x?:?P|?P?^?ۛ?M- W?r?G?5)?'@m?w? c?,Sn?p/ނ?T?굘?bơ?YCy?q5[?RH?p?1r? ?G?eg ??9/?f?[j?j?k?\?|́"?o,? T'?+~2?)k;?z&?0 +?C8?ŒT?? hE1?i8?؛^?ƾ?{}?Q ?? .?&?ڶ?T; ?x?*ב??"R[?$?s?j "?0 ?*?Z?`?_?ʑ"?>*~?}-?##? iߡ?(?B?L?qɓ?zS?ѽ0?Z)?mFI?9-8?? zg? :?lt??Zc?緷?L?/?a"?#&?F|0X?iZyE?b? y?Hog? ?y??_]?(\?ZR?}+B??0?V ?ӨD?@^>?u?SF?CHi?H?h!ݒ?b ?c?j !?,$(?쨅(?q?^k)?7.l')?to)?^E)?딲|)?ɡU)?ܛnE;)?ab)?% G)? c!)?)?p-)?d)?sS'?9(?ȋ(?E(?)(?Ԃ(?N(?d|D(?9_(?+mW'(?q-\k(?`ڐ(?ɴiw(?cQ(?7(?T7Ϧ](?Z1D(?cqQ(?i"(?)*(?m(?)0>'?%'?e'?9'?fxg'?#'?1'?o('?88ͅ'?)Xl'?5ۑ'?nSx'?4.oS'?OV:'?U6M!'?'?qDV_'?"%-'?5F'?Feh&?E*e&?N&?]&?q&?z&?&?(m&? "vg%?+ e.?I.?b,.?{V.?P;.?=*,?..?2F;]-?콣].?r-?=-?D-?Ҵ--?aX-?nՙ-?~-?-?-?Gb-?\E-?_,o-? ?U-?7)-?75,W,?9,?ujE+?|+? +?17+?,?,?l,+?b+?rZ1? ;1?[h1?=N1?81?_%0?o/1?21?\'0?e0?d*f0?ڏE0?knќ0?),N}0?o0?h>0?^?_0?"[pA0? xxk0?<O0? #0? r0?^(10?G0?/N6/?w/?hi/?K9/?Mw/?/-/?Q/?YŜ/?n/??P/?Y8}/?\/?5 2/?Q /? S>/?яb#/?Ӌ.?xV>.?4/? wJ.?ȅ.?~oI.?44ߟ.?(s.?P.?GP.?o.?1O, 6?@5?|+6?Y 6?Ppa5?5?M5?d5?;[|5?V5?=W5?$f5?s05?Z4?r\5?Ã/4?@5?4? (5? ݷ4? 4?@4?de4? }l4?W04?3̔N4?J 4?:"%4?#2^-4?]~5K4?(3?KJ3?aR4??B3?gx3?V <3?JѸ3? K_43?&k3?K13? BN3?]|3?n|3?*13?UN3?2?P*2?L.I3?M%~2?^2?42?2?fK2?އ:w1?L1?\1? "w1?9=h2?b -2?lJ2?&2?Yx2?̀9,2?BջI2?w:1?Yu1?{A 1?18֑1?>_2?s1?981?k4JO?aznO?yN?},O? O?ZJL?ȚM?ώ_L?4oM?=MM?Z0{M?2M?'eeM?6M?fwsM?iM?#V?:uU?r'U?eƜtQ?4MQ?@LUyO?r[@O?][O?wO? O?D P?TlO?@*OO?Urr9P?gP?J P?PNP?:kUQ?%Q?jQ?mH>=Q? P?OӛP?:JP?FcF}P?~ Q?yL?#J?YF NK?5`#K?LvK?hJ?aK?'xGK?fL?d *K?pMK?`Wn/L?1pK?K?K? (EJ?5tJ?U2|J?^FJ?|4}uE?B"E?|KE?^TD?9RE?VYE?&HE?;9C?v|C?m _C?CMC?)(C?#[C?+C?d8YD? AD?-YťD?VWD?eD?ױz3D?dtD?Ry.D??0C?٨KD?X \C?H[D?qC?QD?jv5I?oI?x2PI?/I?'uH?ߍH?k0H?@^H?QEH?vMH?$H?nƭ7H?gH?aE&YH?:U H?# NG?UˬG?-pG?SȾG?vaG?WSG?VG?eiG?]UdE?]%E?"wE?cHtE?ϭE?cNnE?.F?'F?YF?oF?mNF?o+ZWF?bYوF?ǹ&G?=fF?irF?1B=G?bF?FF?G?I?I?=J?x/I?CkI?9/I?8 I?IJI?!iA?GA?Sf?7k|y??ڧ ??a=??<>? y>?j>?{ S>?+>?h>?>? A?>*A? A?78A?S0{A?t G8B?BtB?>B?q8J[B?B?O MB?%B?!B?;hC?0#JC?PWC?V5C?7?lo7?(bP7?+va6?n'7?6?49ŦF7?6?C7? E6?+!J6?1t6?nt 6?}6?L6?zgw6?Xg>? ->?uk=?K\J>?ө>?Ǽ=?cf=?\=?G =?:?c:?P;?~:?<7?wR7?=j7?`7?4R4:?vPi:?:?ASI:?'Ĭ:?#vg:?ɫ҈:?q):?y7:?fvG:?:?eш9?#9?򗝸9?99?H9?8D9?'=f9?p#9?[yz9?HD9?IѤe9?n9c9?8?$8?ˑ1Y8?"9?48?Qoe8?8?6B8?sf7?U/8?,4q8?h[ᅥ8?_^8?dli8?0z5H=?[ =?*id=?$d"=?j' 18?]B?;?1?X+?X#5?xxy].? *W$?aQ?5I'?6 ?? <?]O?y\?tU^ ?ۧ?+w?=d? ?[T@?a?lo?Q?-ԝx? ?zx{|?bf|r?"~e?bk?Qb?<v?gi?ko?xY?d|@?9?$ ?.? ?WG?>A?|A?? s?]X?ig?Bm?nq?`%?%!?4? N?.?x(?C??&U?ԭ?R^?9y?T>yV?ߑ?49?x??@~&?WE8?G?%v?~]J?XBC?"F?}5A?RL?8D?@KH?5wO/?jd4?61?Z֙6?&;3p-?4m3?$>1?p<&9?"%b?d^?w|x8V?9N?{lR?]%M?gНZ?䵬cQ?{#!,U?tO?~l%?RNz(?"?xeD%?@+?!z/?(?},?O' ?y5)?=#?.N? +8?^!a?]4?r?T?"?4 ?O?d ???Ɍ??6?? ?;?GT?0 :?H? * ?l>?)i/d?S ?·?cv?+I??. ۘ?=?@{?Ĭ?w?Ri?(&?c?*?|?`?xD?W r?1??>2 S?^?5$!?YAa?eO?rr?}?B?d?M??X?/?y?ZU|??dFu?w?;?z?ThP'~?r}q?*Cf?l?+b?tgv?.o?gpj??J1?M 8)7? N<?q4?v9?.z,?V'?m/?x,s*?o~!?┿?Mc %?Gi?%c?f?K?x{?I3u ??RE ?m ?{a?pW)?]WF?9$?Yb?b?s? ?$??O^yo?Ip?ɑLd?C6q?;xe?C̏?ay?dڿ?p+?r=?dǗ?J?rxU?zj?x?Rc0?EA??1?W?2vA?OF?X]>?2D?brL?Z 9R?^OJ?rtmO?jaX?3]?0aU?~Z?/? N&?K{5?.HO?M G?qEm9?1?@@?7?lv)?,?F/?'?w?Lc7Wp?19?CPky?{V?5޼_?mO?>,Y?h?q?+b?TIk??Z?;a?ϫ? ?jf??A?!??L+y?:?w?,N?kk?$?<ª?dVJ?,>?WhQ?%F?]??RJC?\%?y%v?_? ҹA?W?Z?A?M?H?S?Ŀ[I?O ?隠?L(?(C6?Q3?-@?<{'?_w[2:???u-?(_"?$?g&?Pe?ԛ?$hІ? W~?"~u??K{?Ql?a?)r?Bj?MW?zL?M#`?T?e)? ?|y{v?|H?z?y?ޡ^?$8??i}P?O+i?N?Z?`@\?z?SY?_??/*7?R?%?{Q?ag|?SMZ ?\e ?~? `?$?J"K?MV\?NiI?V5$?kb/?$?䮵?o9 X.?<%6:?ŵ-#? |?2?P?E?Y]?rP? p7/?*~2?U?2) ?S#?28?2?ۻ?9%?6?>B?@TO?$"/?4C?k:?-?E?yie7? ?jp?n~!?Ηa?3*?:?nN, ?}j^ ?M?h?L?z?L?\?bE? ?Vd?k˔?jr???`?R ?;mߏ?&Yo?E?=Mf?|8i?*72v?WV)?Ѻ\?"P? Ol?=n`?A?֦s1?(D:?[?V#? Y(?M ? &?R^-?ԱR2?+?CH/?[?lPPU?yP?^ X?hPS?oK?HF?J. KN?I?A?Y%"J7?"\f<?=4?bcD?o{9?ݰ>?;P?{O?I?`V?8jP?Z?8?^?EG??sد? 7ڸ?û_Ҳ?3?m¤?%U[,? ? OT?%?N?0³?5c{?{ t?ܒ?=9?2U? o?Kg?\?=j?DAz?2F?0,,}?ʏu?RnVp?tx?7ws?ٔ7!k? rM`?'*e?17H]?:?n? `c?x&Gh?R,i?Q?q?^?c??dI?u?{J?D?7?1?=i ?Dj?M?.?2l?zMe?%_?_~X?@b?{օ[?w\R?FL?A!U?sO?a[3F?nl??eO_I?C?2?"-,?6?{/?0w?1%?bМt?Dk)?"?h#? ?䝙?i ?G?]?<?!9?x=?{y2??M6?\N4?p? }? ?xz? ?& ?ď ??.?K)?R;1?s@,?'yw#?'?}n?fq?_&?M?jz ?+&E-z?|,?<}3w?v.-}?d/? Q6?.?o?K4A?=^9?~x?t}?MT?X9?C%k6?y6?|tx?ZZ?D H?I?aW?ZeQ?T85_K?>9ѺT?wC`N?z?^E?&9?y??yjS7?e\H?4QE<?2B?c]?%c?Z?}a?Aúh?xxn?vnf?k?:t?I]2z?I&}q?M̿v?E?\, ?!(}?@Y?At?&(?ѝg?VB?JS?]d??5?[X;?^?mP-U?ޙY?&Q?+&`?ؘOU?3Y?H.!M?F|7B? H?GT@?vHQ?2ME?l K?+m7?o 31?+?J6P4?>/?&??&%?9? q#? ')?b?i?6!?.ބ ??eݚ?< ?5??7E?5?d?;?T?k?v#??j? {Ӓ?$?'!?_?@y?^T+?\]=?kuX?k?h?K??;8{?H"$??[+v?G?aD{?r?n`Uhp?i?|u?".n?zԨ?5?C? Y?l?OH?u|?1?QsQ?PG ?n1?Ѷ?mI?a ?? ??}?]G?1?Y?&ݘ?wW?* ?Ǔx??A+?&s?B$S?Θa??oj?hZ?k?58Z@?] ?4bH??_?a|?6K ?vKf?3f?n?T?3s??h@R?6?T[??l׹?~ v?uT5?ofv?WC?w+\?1t?|q?L_??IK?X??"D?5O?A?r T?+.?+[?gK? e?@W?r t?H ?nz?V?k]?U???,w?2^?@ T?)Ůl?%i'?_U?V?I2?,A?s_?EI?:T?"?&?rR?yNY?JF?wO?Bddd?b1@?hWU?L?J ?%>?U#? O8??Mjи?)?é?2o?H,~? Em?o`?Hm(?";?[t?Y#*?;6 ?Md=?fݠ?l"?/e: ?"*?!u1?:Mg??A&?j!9?E?++.?p;?ZmW?j9o?\Y?E?_q?I?N)?? t(?@Rx&?7|'??i'?!1&?Y'?aP(?Oi(?(?iS(?{>q(?(?X(?TP(?ܴڰi(?O5P(?|28u(? \(?%6(?ǐ$(?d»HC(?x)(?8(?.'?,R(?Cr'?c'?-dA'?Q'?T'?G'?('?>'?[('?ݩC@k'?>9'?)~3R'?rL65,'?s?w'??ND'?h]'?3Ɇ&?!*z&?c&?&?T,&?p&?]ɧ&?GmQ&? J%&?Њ0>n&?76=&? GU&?Gw&?G/&?*F&?^&?b%?ڤ &??%?v%?މ &?V/%?a'%?eW%?vh%?P%?vcr%?.VZ%?%q8%?g!%?doB%?#*%?d~_%?(;%?ǹ%?h/%? %|%?d%?N1⣅%?W n%?6< %?A~$?B%?dg$?$?@H$?v\D$?ݛ$?ɑ5$?"(H$? -$?)$?h>n$?fz#?r#?8_(Q#?{x|f#?\$?D$?B$?6[d$?X{$?⡄zd$?o*M$?HeN@$?}$?V$?;Cn$?"w#?{o"#?6Yf#?a5B#?]<#?}#?\#?Bq#?;Mg#?:TP#?L,եp#? Y#?29#?sK##?kB#?+#?{(g #?Ud"?B (#?3"?W"?"?2"?]|"?Eev"?w+"? o"?6"? d.?D H.?D,.?Dc.?靑-.?Ei.?, H.?ͻ2".?>`,?g[,?.,?AHmn,?l-?|-?]s.?Ǧ-?P-?p|-?+-?)[a-?Lw-?%z-?/v-?@G-?Y-?)8'-?NԲ,?K`-?Ϟ-?@M7-?a,?>5 ,?񸾹,?,?-h,?1^I,?|{,?)K[,?Z@B*?ː&*?E+P*?S4*?> *?EX)?3)?l)?fp*?-K)?o)?%N+?Io+?Yɀ+?@+?Hk+?8 5P+?CIy+?a?@]+?e5+?yDuE+?U`B+?)+?A*? \*?G+?[;*?M*?4ѭ*?*RI*?; *?ӕb*?Vx*?*?*?4T^*?i@B*?~2Cbm*?CoQ*?F7+,?=V,?Ɋ=,?k ,?3+?$B\+?"+? ߯Ԧ+?*,?0,+?X5+?0zB1?vi6!1?\1?Pb61?Oz~1?3y0?'1?wSC0?Mj0?t0?60?DxK90?|cw0?P6@0?}%[0?I8"0?)`0?^}*A0?\0?eM0?m+g/?s,#0?"Wk/?//?ˬ/?B/?~/?V/?ok/?':/?_L|/?xJJ/?XfR/?Ea//?.?p0[/?I!/?//?kI.?p\[.?z.?-!.?#A`.? ߘ.?[:.?P5?e5?jm#6?15?D 5?} K{5?f /5?bFQ5?MP5? 5?Ʊf5?q95?㶹u4?58i4?g 5?i4?\?4?]4?פq4?CrTOz4?,*4?"m4?cF4?yKp4?i&3?i3?3?X13?zp3?>_3?{3?Xdy3?H13?CWF3?i1K3?G3?k2?ɮ2?Iy2?K%ܥ2?遵A2? 2Z2?IL2?Kxv2?AU w1?О1??P1?vEu1?)N+2?k1?+1?|G2?o1?e1?1qD2?\CK?~?ڱ?X?P?_M?}2?fb˕?ZW?n?a?m?<?w<%??R(?j ?:r?W !?C ? ? !?I ?O6 ?H;5 ?jv ? ˃7 ?G\ ?a ?H6 ? ͛ ?^ҋ| ?Exig ? 2ƚ ?`q ?5"QR ?C= ?Oe\ ?{m_G ?^A( ?=I ?>(X2 ?Y^ ?+QS\?2y?l ?Wq?o?#տ?o`?S?8?F[?pG ?g?1m?P m? S?w?ĮSuX?|C?!wb? M?gjg/?P?Au9?5%??#? ?D=?`??z7?ć]?/B? ?a?۪?nO?x?2?X?d?%~P?Ŧ<? 2?]lmn?윏F?Z?qO?r=O?N?O?4N?m<TO?pN?O?PM?JM?daL?l70M?Y~M?'WQM?5LM?-PTM?PadM?FˤM? eM?/֐N?,f&N??N?-5SM?KL{Q?..?Q?Rr*O?r O?Y0sO?ұE?i+D?{L|C?C?lzgC?C?9m$D?OJ D?^UID?cD?\C?e2D?qD?H?H?vI?H?=|H?дBH?X5H?HS(XH?H6E H?nG?#S”H? j|G?fĽMG?CSG?x{G?+*G?%G?R(qTG?P2|G?ɨ$E?`E?eE?;ME? :E? R#F?6yfE?a E?/MF?}50E?B&F?yF?+F?IRdG?1F?q @+G?4u`F?ŋI:F?=ZF?sGI?bpI?I?sI? |)I?H?RRI?e9H?ۭiZCA?khA?`A?^{e,A?%@?<@?O@?20[)@?9r@?1B:@?ی@?`IW@?B@?\?? M@?~??G??]'4S??b??վF!r????>? ;P>?7>?]5??f>?e>?RX~A?b4~A?QIA?vA?-#;A?NPt8B?&A?YB?OY~B?bKB?t0"B? C?pYB?J6B?;ݴB?&GSC?ךC?D OC?OKZ{C? f7?Ru7?ym7?% q{7?cP(7?ΆJ=7?& 7?yR7?ܾk$7??. h>?x1>? ~>?j.XQ>?/r@=?f=?g>?1S3=?i\=??=?=?C]=?g-:?DcJ:?q:?zq:?b7?8?":h7?U8?n0e:?N@6:?*kՋ:?AQO:?I+:? ?9?7q :?uڰ9?9?هœx9?o9?9?C9?t]o8?}y9?ZO;8?+D`9?&4?8?iZ%9??SK8?mx8?M-8?e58?M8?ks8?L耠8?3 Ď?Aɇ?M<\}?ia}v?ـ? Dy?0áo?fh?s?[^l?gwa?[?3e?wXd^?NT?3!M?댆W?ƙP?pe&+F?aD??TͿI?IuB?;a8?&1?i0;?54?a]*?a$?$-?ɞ]'? \?˼?գ ?>h?n? ,B?bKR7 ?V'???6 N?rc ?&F;??M8?\=?;̣?!y?Xl?ps?1Xi?Dvx}?ɯtp?dw?Dj?e??2D?gP-?8o?{?6Ժ?\Q?,?~6?鿭?e:?J8?(?S}?v?g!?l?n4?P1x?P778?3?G ??b?J]??[?^?BV{?P~?qw?Z?$?E?2ě?$Vf?y>F?B6zA?H?&sD?8}3?p{i?]?K{ ?C?'~???P*9?dw$?td?/+?$j?_v?HLz]?ͺj?U?ۉ?5iv?6 ?+?e??8ߺ? -7?~?[ ?ۋ3o?}?{?@=:,H?sM?4VR?BW?*rF?%yM?R?\?p c?p:W?Dv_? h (?q>?;?\ s ?K ??XV@0? c?.*0?{"?"v ?A?Y.??we3?s?=P ?x-?|?q"?:¥?0M?E]?(t?}te??z?94J? kĎ?;? J?3P?J?Уߧ? ?nk ?ީ>?Of?r?G|?q/ ?Q ?o7?j1E?U)?I?an(f?Y;L?_cYX??ۏ?ɡ%dx?x?o?w?_? ?'?N?;?[?GWa?uG'?>x)?AXf?keU?ja? ^?`?2v?o?7?_?q#?e?(?>W?&չ??,F ?@AC?b? ?zo?y "F?DI?%?(E?uY?T,?#o?"=U[R?tH?X5?W >?-?uL?lB8? A?%%??ak0?;$?Ld3z?st?d>?{?yI\? ,d?$$Am?T;8W?t?S/Pa?)i?=9콍?Q6?ȩ?'q?c+?J?f?xS?7(?r פ?$&k?5?Q_? ǫ?s?/0WA?4?>I?W=?f?q ԣ?_!M?=Ly?4?`?&~?C ?= (?*? o0?3X?b0!??-K??7 ?S? A?veJx?+YA?>Yp? ??s|?I*,uh?AY]?xOt?f?TQ?ۚGE?F[?!bN?2|?;1?ˉ?Y ҕ??7?+c$?t?4I? F?ou?t?/?ٺ?Os?ܜ&?4?y?[??$ר?!3?m ?z?| ?X?:&?{!?H?tY)6?oX.D?@[,?i  ?nS;??,??adr?Ɏ?Eĭ?Wi}|?e? =#d?#Hp?Y3P\?TPUӰ??N2?Gt?he?❰#??!Q)"?+(?c2?-?= 7?HE'?mm^-?U2?^ `? DZ?~|P?'U?=_L?Am]?P?ɥU?BG?:;?bA?7?AKL?7>?3[D?u;?\g? ?п?& /?Օ:?p?-?.5?M+?A"?R?L%??"?ج? u?o?H?̾E?WS?$?. ?zƐz?;m?;AV?./?uJe?7.z?r?eu?a?jzz?V[?ا)_q?}$e?߳ĥk?cFlb?kEu?,sVi?:No?݉?+H?fX?up?'k?$q??'?~?U?n,?!?k%?d?.e?UDm?)f?F_? E^j?\b?g W?fL?58R?] G?S;[?iզL?SR?GA?@:?(G???ic,?%?90?hg(?m?, ?tl?sfm ?}l? ?)?rW"? O? h ?0^J?:3?+18?q,?⣩0?zY4?o/?59?MƤ4?^d??ں` ?5?Su?v ?Q]gH?B)?*Q~?5Ú#?IS/?^?S!?;r'?F.?Hm?_%|?q???,K?3s??E\E?9?:N?A?G?Cd?^n?EOi?tst?^0^b?k-i?"n?(wEy???| t?)|?3|?un?x`y? ?Y?m?&?<?ûw?c1???2zC?[?l0^?{? ,? ?}?yCš?WL?X?ž?V!?2-(X?i?eX?ܥ?<`?ln$?|?D?Mc?}?X?j$?s1?a`?$#?ł?~?v ?Z?sAƗ?V??c\?4?'?S~;?"?N?V?Ɣ?Wr?|z$j?p?D$9f?'n?٩c?)7w?K}?i|?Q~1t?гz?)r<ހ? ?8?0ž?.A?/\c?{Ad\?@wyg?Os_?=?y'QC?:?CYJ@?^kqU?H?m3O?w~X?zo\F?K?JUR?Pc?l.8?.2?J7\=?fB8?K-?7j%?5/3?BB+?8? ? H ?~S?0|?2>1$?i?Z?mI?$?- ?zP??o??Ӈ3*?]+?ЎP]?f?Հ?/T?˧?$y?A&?q?;xi?ADže?|?Km?lu?]?y?>7?;-?Ì5???x\?Hޏ?k ?- ?~N?a?ꊭ"?^Œ?go?N>?]l??l?]`?IRG?H??? ??HJ?A?7uZ*?K7?"-H4?K?Q??p?lG\?|b?;H?py?&0?xɁ?1(?Ey?2y?1J? N??8?L?"s?` ?+-?G?Ku?ݻ[??#y`3?Uu[x?"I^?T?~(?"Ԁ(?Fpņ?y))? ")?)?Gk)?5F*)?lCo)?q)?iTg)?U)?A9)?+I;e)?|IH)?>~)?*L")?`,)?=Z)?6"(?d^(?8^(?8(?e&??&?'?bCu&$?q$?x$?/ۮ$?s$?|$?yJ$?5bw3$?c$?@<$?0'$?ַ*$?RV#? 9#?#? 653$?m4#?#?f$?Ɗ`$?g[w$?Q$?ED^gS$?yg$?X]~$?e#?^- #?۟#?Ni#?&4#?`=z#?S4K#?ŭcb#?M6#?5]=#?~R#?2mAxj#?I"?jM#? "?/Vw#?)&#?`"?9"?f,#?ą"?[}o"?Hpߎ"?\A_x"? BY"?fDC"?`b"?KL"?s,"?"?%%6"?"?[@"?6!??F "?4!?"?*Kj"?Z="?5:n-"?p"?A4"?3{"?U"?į!?M!?ፇ!?/&!?5f/!?ze!?)!? w4!?n.?"c.?`=.?]?w.?=R.?nY0.? \Y-?f0-.?Fܺ .?5#,?s|,?,?7=i,?=.,?Xfy-?룄-?[ -?iY-?0ۇy-?ܕ;&-?\rO-?U-?K(-?W8-?LYa-? ,?O,?:Pn,?1I/,?,?KS,?r,?)E㚄,?tG%*?5//?:.?Bp.?&T5? b5?5?q!5?FQ4?|5?i+b#5?O5?0G5?)15?=Fe5?85?Hf4?,2.4?~W14?4?y#c4? 04?b#34?19Z,I4?3?ɻs3?4"3?3?8M4?ハ3?F53?U9d3?f@73?33?,AJ3?Ҭ 3?V`2?2/_2?y2?jw3?zm2?fF;2??1?{Qc2?c,2?}a42?GN2?'s1?JmpK1?ˏ=1?"_1?S 2?R1?}w-;1?.[w?/F|c?CpJ?il?efO?,<?[Y?S2E?`')?Vog?!2?e;+?Az?i3?؋, ?D$?l?5?eQ?"?6ߡ?.φ?"?̫?v?6 q|?˷? !Ҵ?N"?0E?j ?}`F??c?\?>L?U? n?l?[ v?.|?q8?Q:?Ѣ?nX?]vǽ ? {)?d<? (?n33?0 }!?}Lg!?"r!?(ML{p!?qSR!?Q_s?Z?|0x?: }P?Qd?WF??L*{??O >?$}??p'b>?ڏ.??a,A?8nA?uQ%A?&A?hw?o;>?|h>?M>? >>?kQ>?=3wx~>?T.=?1=? >?%㷶=?=B9=?Nki=?} =?# 6:?S u:? 9:?:?+8?沃\8?:7?I@<8?0<&9:?ݕ9?_W :?1y9?'ߘZ:?O_>9?A^ :?sYa|9?39? QA9?+yg8?h2܌9?9?B/Y9?%X8?Hz8?1&%8?w8?ഀ?SJ7?P+?E$?,}/?~& '?PKj?m?J ??( ?J?s?1D ?̿?Ӽ??ij?- ?G?">|?P~t?PC?? h[?p?'݉U? p?|?O;?!?%-?# ?d{?d͍?̋U/ ?chK?_^D?BJ=?_ꉆH?ExRA? 6?U.?/:?$.2?G9'?%?, ?rO?{)+?D?Yw.#? E?,?,L?DP?o?`?V?*a}?z'e?གྷ?Zscnv?No?ey?՜s?2 Li?&Cb?\l? cf? n[?nM?'BT?,DI?Ϝ_?ԿP?X?>?^7?5B?:?11?·]}*?S3?ow-?#?7?*d}'?rȴ ?M??C?"? ?nq0 ?$W??s'怌?3O?Ra'F? \̌? M?ct?H:z?{q?"1?QLy??g?T68?91L?I0? ?_V)? /?#?|@??N?IXo?7z%?8E?W?<}?L?Jd?Fr T??v0? xd?a??]MT?D?:wͦ?J ?ͬk?kj?!?r ? k?P'h?89`? # q?pgh?uhB? dY]8?<<=u=?j F?ZtI?91QK?mO|4?.;B?"??.4?ЗѴ?rm?{bQR?5`?Vz?;?1J?ޘZ?%Zh?+VK?Ҙ? t?7#?!G?I?~? $?Q͆& ?lM?Ҷ?k-@ ?yO?a͏?j!ѕ?YB?N׉??Oe??z? S?)?H?I`?"w̼?)R??p]?]B?F?xk?%?D???f??!lU-?t_L? ?!T?"3v?DD?Nߧx?8?(W?ԝ"?I2?iB?R?j?#/?>?N?$9n;?Ț_?N?74?O %?:?LdT\U?zjE?>=L?^n?#fF?qF>?0??Ⱦ??~Ae? T?)?>?doyy??Tܡ?YLl?kC?x4?U?Q?, JO?T?6?y?C?KUTz?`l?s?ri?#W?Mp?w?|?rH?;pW?1 ?cv??R_???%N? ?/=?_n?Wn?Ïf? ws?Bd:k?S^?3[U?w68c?} eZ?EL?mD?}Q?% ? Q?N]?So-?w1?p#?)*??P<?t4?yC -?j;R9?2?+?8*%?}BE{?-?U*?/.?Ŕ!?Ѩ?WF*u?l?}݊?x8?HŞ? }?"E??"0ڙ?S"?1T륽??7ɩ?4^p?uB?Ϻ?}q3?*Wܳ?{wg?U`?s9Y?pd?]?ڎ\R?~rD?O+cK?IOA?/#V?,.G?[@N?=?n?[?v?R#`k?!?R%'r? UAz?w?[I ?Q? ?B?/%??Nv4?C?w?"1?e9? ?i?;GU?b?|??Cf?Q?b5?d/? \?܁s?4?‰?m?#F?b[?5N:c?#?\U?/ ܻ?.?ɱ?½B?u?Rp?Z?֚?=u ?$?q?XY~?P x??iGm?0&}?\e??x?;??!k??m?5[?ÿC?4N?δ8I?9xU?.`?i>?6;H??R N?̟6T?vrd?{k?q'Y?Z b?f9?5}1?ƾRKC?N7?s)?˨#?Xa/?'?j?+l?[>׋? ?_qe!?_?g?X??(N?h?v> ?Wla? ? #?^?xXYî? ?Fm}?%=;?2.?۹?om?uT?֜?]o_?v~w?F?; t?R?DuB~?oj?Ne? ҹ?~E?X/?Ͼ?W?}{(?16??O? (?j?^?ɧN!?C?{.?s"? Kz?q\?o?:{??RA ??f@f?u'?@+!? x?|v?Ƚy?/? b?7.+? N?ch?2qF ? ??.P?Da?$X?}%T?/S\?.Ai?L(q?e?D8Unm?:y?յ ?Tu? ~?9\?ܓ0?|n?X?.bBT?3P7?Xi? B?u4.;?~@ei?(da?8@Y?jrpe?b ]?HR?iB?J? yz??t55V?J F?tN?kӷ?}\?aJ?D S?c5O ?ȷ,?\Q?1*? 0o?'c?wң?͗?ο?RU?0??+;?gb9?.Թq?WIx?/-)m?kX?gt?E |?:J?v?LBh?̣څ?r ? ?Wy?$?HOpH?ѮF@?ۨJL?evKD?!8?I0?C G$<?BŪ3?<'?ʞE??7?g9+?:<?_~1#? #ȶ? k??-&?]?F)?m`L?H?A?8?#Q?k?QH?w?g8B?X?:Dz ?tc?_?˄?l Y?Z:?D*~?8t?rg18?{?9d?m???2ֳW?{Ae|?hD2n? C?7`?Aom?WEV?2 ?2?ĥ1?z}?Mta>C?[i%?mn?l1?q̉?ԓ??:?;?q?*L?Ί? &B?3?0) ?tק?e?k&?$?=?8Dy??n???\`?'6 ?7?]6(?|(?/a?Nvi?PcZp%?&ˇI%?;%?_DG$?\$?:;.%?m)D%?յ<[%?mX%? sK%?B*%?@%?z$?io$?mDڇ$? Y$?{V$?]$?zR0$?x$?F$?G(1$?ʥIZ$?+G?$?>$?h#? "$? :#?U*$?mZ#?'$m$?g_.o$?@$?> S$?sh$?&֑#?%?v#?X#?}#?k*/#?r&E#?.cq#?pz,#?9Z#?|k#?A#?T#?9Q6"?{"?5̿"?Ք"?Hkc#?b#?"?V"?mh/)"?bz~k"?m,Y?"?*fU"?Dt"?2"?J G"?= ^"?. !?|"?~am(!?V!?l`"?s!?!?["?(0~"? kĐ"?__g"?YA{"?8"?|q"?"?{Ƭ"?yCy!?m$!? ]?!?T+!?pDs!?D91b!? !?t!?U".?Ê.?<.B.?@_f.?ιY} .?ar'.?ME.?7Zi.?9-?`݃-?-i$.?T:-?WK,?;,?-j,?pĠ#-?X,?Rg,?2,?aѦ-?GyJ-?Gx-?e|-?AU!-? ^-? 0-?n/,?᥯W,? {v,? IW,?[%,?@,?k :M,?%2k,?A(: *?V)?$b4*?X*?R"C)?$)?"!s)?7)?~ 2-*?Ɍ=F*?}*?/*?gfN+?Ɗ3)'+?Wfq+?xˀB+? +?*?VZO+?nk*?[f*?W՘`*?U;*?XRI*?7PJa*?QRn*?_,*?b<+? +?,?\y+? o&|+??$we+?7.+?a҃+?siE 1?ml0?Ф+1?E+k0?m7x0?Ti0?C(0?/=AC0?@0?C՝c0?TΆ0?p0?6ɗ/?c7/?'$/?/?,Yq/?T:<0?B-ɘ/?/?>/? nK/?x.? @/?io.?I/?F-/?/9/?E.?%5?45?2M5?Uz5?8v'5?%4?5?6J 5?~hA5?c:gn5?ۢ4?@h4?C٧4?Ճ4?mqǒ1?cD/4?oO3?X4?:E 4?z3?l8o3?3?ܮo3?f*/3?ܦ!2?LRH3?4 3?Pζ2?rFw2?fm2?Q+2?7J1?n1?me&41?<:m1?82?5K0<1?S1?^T2?1?je1?82?yb?qcVO?k?PVX?;?:(?\oE?uy2?%X2?rj?^?|" ?;C?*y?{J?!{?װP?Փ ?͡?q.?t?/a?SJ|?֌Lk? UC?)?~E ?U-E?SBzE?C"D?y?2YE?B7K`D?<ܵH?YaG?vG?(# G?ccAH?C'{qG?N pLG?VNE?-܋F?KFF?tE?IG?*uF?7*F?\oI? JiH?w@2H?D#S ZI?Ϊ=G?C ]zH?H?6 @?N5@?Gn@?0@?txA@?ˁ??A?3@?Wр6`@? }@?̤???d??e 1??i$R??%uVA?)8XA?vy9B?H)A?G+CA?@?GqA?Nۆ$A?m(C?PVB?IC?IuB? !C?un<#D?0M?B?GtB?qR5C?C?C7?Sϡ7?8?-7?*|7?z>Q57?]~d=7? m7?5?.=f 6?v Z5?r5?6?K6?k036? &7?K6?Ru6?-56?D>?ٌg>?! >?|r>? 2>?PS=?+==?w=?"Jo=?8?ۙN 9?Jd9?8?5GWK9?/4jB9?bE9?*,V?sr {U?PzU?{b+T?D*?X'Ͳ?m?%?JW_??$e?Ɍħ??b?W??ؘ?#mϩ?G?ij?O?h~?Oqw?q>␂?BO{?-9p?mh?6s?O~l?̪a?JiS?(OZ?n(O?AHe?(aV?u^?k?>~g!?jÜ?_ptK?5?G?H]?9w+?F̿[?J?>?čʿ?<?*ċN???-?^qo?;?'?5lE?/ ?,?Q.?-?tc??%?yJ?P?!O)?W?*c?9Z?_-)?f ?8vtS?vL? @E?(K P?(I? >>?W6?B? :?6/?DH?du'?Ժ$?uB3?Q$?!U+?/"=?]UqE?nM?@A?!5I?Եw?&-? W?/mǙ?Pu? x?D?lS?b|?8o?%v?i?[q?ƒo?1%v?zc?hPT?"-\?xbP?fbi?sȺ*Y?=`?h!^6?prN*?Y9U0?}T#?$09?*?u 0?E2?2?V-?>?n#?E@`?6??Հ6~?+'?&M?II{?b?(QՌ?U ?6z?WEH?D??X< ?oe?xH?i?X?&%??9O0?4.?g??m%|?=?D5By?S ?C{?3(K?=?#? G?0g?V\?ܟu?Q 4d?cg*@?ùzR?4 $I?4?ͺ2nY?7??'H? h(?ȻB?ƦPt?RJ ?d13?q}=!?E@? "Q?[?m?!?>.&? ?Q?z=} ?ֽl?m?f?/kp?J?ZO%?ɲYq?M?K?SC@?0խE?ݦh^9?rGQ?eB?<>&H?M2?8)?$;?`0?jEg!?/D?jP? ?TL (?S97?4GH??H-? c?=?R!?~??;|?՜?xp?=G?kJʧ?._?VSy?Я6t?:?DA?U?-Zp޳?f.:X??a?iʤN?Y?!| j? vt?b?fso??$(?>.?$:?lz-?'?.??1 ?K?û ?oN??=5 ?h~?"w5?Uhr?$f?.????Dts!?ٺ?v}"? %?K5?$z?so??"IK?BK[?a +k?aC>?G1w?DcQ?C/a?nʧ?wK?Wn?Ho?fe?ت?[K?i?jEXC?r-j?,^~?ҩ??TDb?g? 4?N?s?c?Ib?9;?HQ?S`???n1?9>N?r6?h?3O??aG-? ??u#@?NPV?Vl?*a?1?i Q?5f?L?_?”*7?Yth?I<ԁ?lk?Ȁm?&iF?R?t??ݺ?? ??Rp?x?c"g?x`?1~m?ï{^g?{-?3?NY:?Q A?'?N2?S_9?cOY?I?qQ?s`?w@?asM?;/V??#H?PYde?T??fd?b?Ң?H?N?e?L#?4?ǁK??#?6j?`?E?/2?.^?&s?{|?)|m?h)?Rx?ʀ?=F??eC+?E?7]x?Dp?k[t?Ϗx?#`?pM?T?r?`f?}?!"?y8g?;V?wy _?oN?Hp?tU?^?F?S >?ۚN?Ĝ_C?S\f6?ΐ'/?&N;?1F{1?jy?-ʱ ?Y'?F vr?1n*?߸? ?_->?9{*7?0D?z>?zm.0?Kk? u'?e? 7?Y+$?m-?c?&7=??c?GU?yՔ?i0 ?<?Nyt?F?-?B?,?h?-?NeT#?CR>?)0g?a|a?b2n?j80h? [?WK?'2S?E?a?-#O? M4W?~j?J6?:vu?Y_R~?n?߰?k1Vā?oWx?qo ?1??AQ?2?*q??T Y?6d?$F?C??] ?d?]?7@.?o?Ă??1X?e 7?1?ӂd?:,?pg:?JM?OA/#?»Mk? O?ƃ?Iz?p@?8O?ϕ?U?c_??w6?)r?zh?88-y?^n?M?tH_?eV?A?AK)e?U?(M?X6?:`%?ع-??*DA?MI'?'/?w?܊ ?L`}?1u?F9)q?tqE?ED?-ߩ?OD?i?܋c?T?n)v?D?p{?sȠ?V?Q''?u8m?,)Q?d>? j]?NS?_0q?}?4n?z?ϲ?4F??I=?}?A?*@~?$?6?(b@v?Z[ډ?)?/r"?—p??d-?8 )?sˬ?r?R-56?n?@ ?}(/5? Y??Mg4?J(%?_?( ?\ZH?tMP? EX?#fL?P T?``?ŠEi?M \?e?}??A#?N?O?=ҍ?wXM?7ff?1?q?c?DoH?`rc?ޑq?'sy?6*[m?-v?lQ?#ؒ?._~?t?ԫ?_n?3sْ?Κ!?ʃ???ϿaC?'h?Hm?"+?9?r??Y (?KѶ?f5+ ?2" ?m\ ?[' ?R ?ev ?J+$ ?`v ?E?^  ?A ?:an ?FS4 ? = ?0 ?N58 ?q.E ?GisN ? NbA ?J ?ë~1W ?t_ ?BR ?&9[ ?h ??gq ?m֮_d ?9L%m ?KzZz ?(0 ?=u ?J~ ? ?k[ ?}ʝ ?L ?Μ3?Ѿ`];?ERB?|.+7?l!A??#p?eL3i?>&a?LNRm?~%f?#Z?9uJ?ؽ`R?HF?(e^?SQMSN?V?Ӯ?Xԙ?,5?m ?/[U?>;G?L%w?2{?Fu?p4v??$E+? ?!'@?bN'7?kiD?$t<?)5/?29?=&?5?93?rɱ!?#B})?ص??˽?d?XDQ?h?z?iQ? ?*? u?Q?g$Z?=?T C?H?5???h^+?n'?fS# ?Ie#y% ?!K ?NF ?. ?c. ?17 ?j) ?=3 ?CA ?p_J ?L[w< ?/oE ?˨+??T? ?C}?Ԡ?'?P?i?/>?6?5v1?UL?.O:?r7 ??IK))?m?U?ls?dk@?.O?9y0?=?0??hY?c?eX?!Wj?P>?!®?0x?s?(??u5?=A?̦1x?[rtf?Y>?o?ߚU?& C?M]?͑ L??<w?VA?)''?8?>8?wz&?r?OOB??4? d?z?q?]`]`?}*z?#dh?"O?B|=?mW? eF?|,?I{?\85?S $?N ?g?Nj?e2?Ay?y|{?.F?4?5?Ur?T[?? "??cbޓ?uY +?\[{? ?]Dr?|ʥ?{?[)?z)?x[k)?f)?#T_J])?=)?xt)?)ŮP)?BH)?dM(?h0)?Wd )?\(?Y(?(?7Ax(?q(?臎ť(?‹(?9hյ&?\F&?ym'?@&?+&?>bO+&?db &?r&?_Ҫ4'?_FY'?'?˾"C'?Zej(?o>C(?o(?Z(?zb(?O-ܬ'?CS[4(?O (?h'?--~'?pN'?oGh'?^'?#'?V'?hwq&?B&?J&?:\&?go&?b%?W-M5-&?m%?%?f%?!%?dEd%?돕#?4#?)b#?.#?y{#?MQz#?U(#?N8#?]!2m%?%V%?D[o$? &%?d@%?A>%?($?>D%? \z$?>%?2 %?Tz$?$?oj$?R$~$?jn$?E|$?Ma$?̓r8$?$?Mܺ$?@:SM$? C7#?WT$?E)$?r@b$?l}$?Ƒ>$?gJv]$?]'}#?"e#?ю3 #?vt#?;~(#?eN#?à;#?:$#?e\#?EI##?&6#?f["?KVf"?aL"?w"?I` #? T"?v"?%"?E;"?G0"?/a#"?P"?Yd"?aI.8"?M"?!?C4!?KI!?3!?%Jt!?> "?!YM!?&!?X5x"?GP^"?X"?"?b"? fHu"?"?#߉u!?5?,!?o^!?1"s!?N۠!?>#!?4È!?ȉB!? B.?CI.?R&}.?.z.?.?Y O.?i_.?-?-?.?A-?k8,?Mlq-?F$G5-?ߕ,?|'-?P{-?\ۥN-?@1U ,?[6٣,?!B,?yt,?u$ ,?砷,?Kb>,?p,?7[)?e)?)#)?*?՚)?ȏ)?ȣs)?Z2*?5W*? *?A4*?6+?=Z+?@T+?ghza(+?X*?Xm|*?-*??Y*?E-u*?j낯*?%cۼ*?QȻ+?0s+?0m3]+? A ,?vF+?|ҋ+?h\Ƿ+?|ؓ0?Q%Ɯ0?a0?0?K]0?`l 0?K 0?M:0?l/?8E(/?3q/??L /?P/?!wS/?DҜ/?ۧ#a6/?u.?g.?`E/?-.?55?.4?%z5?55?C`5?Tx搂4?_54?a4?܋f4?~W1?1?e0?A1?{1?1W3?qpҤ3?n4? p۽3?_a3?ts2?7H%3?112?XOz3?$'2?O3?q$7o2?+1?*1?ޠ1? N72?XY~z1?$2?ĻP1?,1?%d32?z@O?]ǟ;?0hX?F?YI33(?: ?B3?:'??I;.?/r ?;N?*P?Qw?; l??A?2Fg? xE?1i?ճ6?bH{?a+L?τ?[pq'i?U?.Hr?8a??`?sO?@` ?n?yt?4(?2?{?*c?K?Q?ø?ns?ϯ,?*a?!s?P?Cy?|b?s?v~-?YO?ϔ$>?a?xڞ$?>B>?0^O?gF!?rP8-!?l֡[!?>?!?\ ?C ?6NJ ?HJ ?8& !?13 ?w ?X%!?,a ?5H9t ?!?܊ ??7??/PH??JA?PSkA?xA?|p=B?ڙ@?ȃ2PA?_(A?6!C?<H]C?f[]B?KC?c8?v8?P 7? `B8?Y7?c]7?4~6?]!7?QxO7?_5?0n6?/;06?Q5?'6?F26?Xq6?q:>?=??9ՠ=?>?|>?/ثX>?YveE=?A,?]͠?6N,U??!:? E~?U?]z?жw?MYp?5h{?t?φh?uZ?fa?6W? o*m?O]?h|e?x?R֧R?M??.R"?l^:?mɬ?|+/??-ɷ?Iȼ?>V?\?0?ݤP4?n?3ճ?]n<?}P?1C??gk? ?? ?7+O?M?:$? ?ὲu?Cհ? s?\c*?X ?^T?LT?e(?sS?°wM?-9iZ?+ԛS?4&G?\G??ӨM?qX#D?l7?T[(?A/?$X%?wF<? 18,?}c3?x+?yoT3?A=o<?nD?td8?@?L?LU? +H?P?]ޮ?(?Ʀ!?]us?,)?2??W"?_Ԓ?Oϙ?[U?Xo<?rD?awJe??&???Ș&?Uh?]"?Cn??"}(?d?v/?$n+?X?(k%?? ? ~?2&?ˬ?LY迸?8ڞ? `?o>D>?dN?%X+?tILs? "B?}S?K?? ?Sg?8}G?y?/?ֆQ?f?<?t.?y?Z)e?Y?0E?}>9? 5TP?VD?ys.?g,?D`#?}^?y9?Zʿ-?\2(?0X?wƝ?do?h.; ?O|)?Ȩ.? Я?B?[?%U?~Q?k?؎4;?N,?? q#?^?[V1?e}?{%?{ ??X$+?(5?` J?p&?pRA?ny@7?Xo? ?ϕ?I*R?/)m?ӓ>?-?y∲?v?Ӊ?}t7???Qڵ?w? xh?1T?zy^?c`r?7L?yV!_?'W!i?2m?u(U|?n)!?r7?Me s?O1߂?8??C3?C?_P ?z ?w"? l?ż?4??UT? ?8??p?~?t?Nx=?8$? 6?I$!?J8??A8?Vֶ?0w?#i4?"I,?%?Ϫ?ϱ?] k?T[?vt?또f?^L?:?EW?_E?83)?G~> ??u?EE#4?N.?J-b"?a_??<?V)O??f+.?ک?=»? m?lB?)t=?9"?r?V)?o?m- o???S?1?;?~?z?1y?'9~?(hp?ܷ?j)~?0?4*?ܖ6$=?_7?5xs??#1 ??Q??T ? %?{02??ka*?]h!P?ChH?+V@?H$L?XE?!}X?1`?T?T[?'i?Dq?ч-d?T珑m?(;@?y୼?({?ψ?ݻr ?>A?)?!5n?u&K?#e?w?XA?rnz?лe?׮;v?2:?Y??Lg1?@vԇ?z #?e?Ы?Xc?W=r?Q'?PV?? y?DS?j?zH?^#?(!?o ?Y?cyW?dG`4 ?Ή+ ?# ?ic-0 ?m' ?!Z ?& ?J ?@ ?T ?fr\ ?G_ ?l+ = ?NE ?M^n8 ?YA ? ?y ?|v ?0Ra ?'FR ?j ?j0E ?F+ ?_ ? , ?% ?r ?ΐ ?E ?KC ? ?޴ ?酮 ? ?H> ?Z ?_ ?ϝ ?=b ?M ?N@ ?S, ?_uN ??:W ?6 J ?ɾR ?` ?jh ?[ ?_Ҷd ?nqq ? =w^z ?CIm ?5lu ?1B1 ?,i ?H~ ? ?: ?gѝ ?j0 ?J ? ?@?4?%C?%;?ȔJ?X0?1 m <?z C?4qq?rКCj?{&x?8kq?c?sR? ~Z?Tr8J?Vj?,ɵW?P>`?w ? Pܛ?C} ެ?qH?v2Ȓ?B?u/3U?%y?=?3΃?#>?.?' ?4? G???1 ?lI?$g@8?\Q.?L5=?D4?$?N?̃*?@"?Xʴ?8?Խڡ?Ek?Mr?x??88?ق?R?H#匳?+?aފ? $2?IR?lZ? !?0.?W?~;?{dI??L?eI?5*??93?";?Q[ ?#"?y=?j?9)?-?M1?6?*8?OL?T=oq?Ia'?*2?H#?N-?S?֛?-s(?"bm(? ?4{B?!+?wM?jx:?n?}il$?h??z@^?}2$?-d???Dտ?T$???V14?zT?mϢ?QZ?Y?u?[?)U|?C.c?oQ?r!j?[/Z?)BD@?ךX<.?d3fH?9?l>?wuo ?y'?t?Rl2?' ?:?)?C?)?m?{T??ju?&?r2>Kb)?}3I3)?'s)v&?b4(?(?٘ )?DKv(?5(?>NAv(?pl(?a:(?!TH(&?Ф&?&?‡iO('?{XO&?np&?'?AQ'?7z'?BL,'?6b'?RK(?;!(?osRa(?:3:(?z'?,Y'?-1'?A]݊'?ܧ(?5o'?/Y'?_G&? &?ug&?0&?[%?L%?[n%?x@%?%?q3(i[%?Q C%?rg%?~.#?#?mal#?7#?7%#?#?bB#?#?84\D2%?(YV%?K>%?& %?\$?] $?<33$?Ýx$?A$?㶦>$?j\$?N$?U\^kY$?2':$?B$? q$?mT%$?2D$?0j#?c[pD#?)(#?/Z4`#?6#?yD~Q"?zf6:#?#ԭ#?X"?uɨ"?M"?Ec"?Μ "?x;TK"?Go6"?T "?WKw^"?7"?Qb*4"?Mu!?>`l!?_k!?7%!?}*9"?I!?V8!?q"?}YJ"? CG"?-\"?4ֺp!?6!?9+!?NEGT!? S2!?/q!?!?)Vs!?GT.?F.?.?m5.?Ǻ-? \+-?s-?RB,?L-?+O-?or-?Nr%-?ߡ,?v:,?S,?=O++?~K,?>,?~Pw,?USM)?|4 *?P)?`/)?<6*?k*?9( *?m;*?1)+?cb*?*i*?X+?6Np*?*?-*?Ɠ+?1 +?"I_K=+?Rg2+?!0?lR`0?]0?zr0?ęA-0?bP~/?~v/?)G[/?EcO0?[D`/?zF/?18/?T.?>V/?jB5/?bhn.?3ne.?uU.?t.?*5?y:5?~<5?Tҭ2w5?@4?x-5?*K<4?ӎ$o#5?L!K4?g!3?0y4?!4?A".d1?0?s`11?Vѭ1?@0?~1Y1?Z9'1?='F3?_N/3?> 3?{W3?2?Nm1?%a2?%41?w2?v2? 2?cSU>?):3(?cP?4?M<?1X?$?e??2{ ?N???l ?0J6?w?نc??ӿ@? "eL?? oc>?A54A?iB?Q=@?=JA?ܮYvC?BoxD?b޻B?!-C?Ө8?Pݎ7?r118?Ե7?q'8?Fn8? !8?UA7?AB6?6?-5?Β7?7?D聯6?v+ =6?kj>?zN?"VM=?=?&X1?Z84?dR?61j#??|?\v|?>+?bE'?eN?UH?3?M? *?j?aG'?p?LqI?Ś??߇???I?+,,?,9"?A/?_v???‹h?ǎŹ?1?N88?]?,~?^^? >g? ?$F?sC?_?cy?Z?N?88x?)?g/?I*?P/Wq?=T a?A;.i? gZ?)Lx?ke?}m?ZN?\?? ?ӎbr?y?` '???z3?1ٓ?&u?3*?Zj0?oTY?Wq??⓪?S?&;^?nXjV"?BY?z}5)?q[#?)T?1a? 5 ?NB?q1? ?|3?t)-T?'J?BZ?.4O?G!A?vqk0?#n8?n;*?!F?!4?Q=?!?tq,?{"8?'?2? XW(?4?ID?=<?\L?R2?D7E?[9'=?B]xT?Z_{^?cL?`8X?( TӦ?3?8?q@?;?)>?Tu?~+?RI~? h?cs?/b? 0?3 n?^ y?Z??,%?Pjt?*^?I J?g-?RLd?|@в?.fy?Xe?a[w&?)1c?s?Z ~?׶jt?xF* ?euk?F?M?/~??t?>9?v?$%?2B??)ye?= ?'$G?Z¹%? ?-e?&?Nj$?ElF?+?^?3d?*7?JbT?PD?Et3#? x 3?3?"dJ?VPn(?J8?y[?;v???8XX?L?~ ?? ??H?C-o??tO?4f8W?G}-e?IMt?v"[[?tm?;Q^?2^?ݶ}?Դ??5?j? V8?2O?[@?5?N"6?L?=>?Y@ ?F??ªi?﷖?XN?E~$? y?yt)?{ƶl??R ?օ?<$?W u{?g??A]?G0Hp?̤?΢&?C?i?uH[?U?_?F?>*{?lɻ? D???0?AdG?,?F V?7`?XE9}?Oev?;߿?)4?ʑ*P?o`g??8?SS?P /?j{?IV?ye@)?x?׃P?O ;? ?|lR?!{? ?р? K?6j2?S^%?F #?\n?Ln??]?nQ[?N9B?zy?X?qg??u?g l?&`?v?b?kI?LV?xD?ݸm?˖S?#`?*+?se?wl?`?u?N?@Ǘ? ? ?֙ ?W?wf?IIq?8 3?re ??+?E?.?l?̢^?ieCx?g?o"?2?z*?oKR\+?FOO?B?npY?&H?`5?6?-*\*??GTw;?#!?C$-?CUC?1V?ᨲJ<?V**P?[R?? ?v­?⋸R?{(c?` j?:%? y?e?(y?O?, i?.C o?Pƍy?gc?2?o:v?>f?d?p(?EW?Q2 ?-*Z?XB?? ?zQ(?U?߻?F4??]I??gDA?WL??y5衚?oJ??_Y?j?3 ?D 6?f?sb?aV_P?Fo?C-5^?Ħ"??֣?=J-?b?8aбL?u7?eK%?ڲ?̪?E?D颺?(?ľ?ER?c ?E5?4ѣ?a?R?K?x?q{?A8긚?͋? Ϋ?^?Yj}?nk?;*?>g|?m V??*Dy7?3JBHN?FEG??ni& ?P?xn?H+/?X`??ע;%?<5?8P?sI?3W?@P?bhB?v9?<2I?O??,@_?)./h?^W? J`c??هj?rVm?J?.+Z?fi? ?^?8N?K( ?'c% ??g ?_"= ?g4 ?0+ ?l8 ?cGH0 ?## ?Gt ? 7\ ?U ?И6( ?. ?ixF ?-ڶE ?xN ?ԬfA ?ڜI ?>N3 ?/ ?t:Q ?+ ?z ?0 ?U ? ?Ԝ~ ?DFB| ?ܜ ?Ov ?iy~ ?l} ?;o ?[ ?7 ?+ϱ ?A ?M:O_ ?S ?*Z ?xs ?OW ?b^'` ? 6ZR ?nc\ ?i ?kޤq ?a>e ?7([m ?*Iz ?;9Y< ?$u ?\N~ ?w3 ?gz ?mC ?gh ?. ?8 ?BxV ?X ?6d ? l ?' ?ϲ77 ?:p ? {jC?MP?EX=?pz2L?Rr?]_f]?)g?m7}?^X?t~h?޼ns?$~?f'?? r?0s~?4?I?x'_?3͋?#s ?gj*'?l?C ??*.?5ٰ!1?- ?)?Ы6?f?q%?2-?y?bm?Kr?q?bس?ky??lb?/ ?S#?8pi??)+?`  ?ĵ6 ?%T= ?4 ?}8 ?} ?C ?y ?^ ?} ?177 ?$o ?vY ?Qk ?_ ?Mc^ ? ?Mm ?T ?F ?qƙ ?۝B ?qR5 ?U ?ê ] ?x&Of ?dX ?a ?o ?x ?Vj ?'Pt ?R ?J ?Ԭ} ?̒ ?l ?ov ?do ? ?] ?`>$ ?dc ?=ԠE ?. ?ǣ 7 ?׆( ?U;2 ?uA ?C!pJ ?9< ?v G ?7+T ?l4] ?\hP ?*IYX ?9* ?s ?Ytר ? ?@:$ ?BbD. ?tg3 ?jD) ?8 ?f6A ?>!3 ?wB= ?)ÐK ?WU ?F&G ?RP ?(_ ?h ?VV}Z ?,#6Vd ?r ?| ?P-n ?48x ?8. ?b. ?4 ?> ?)F ?[Lf> ?atyM ?ZN ?/GAc ?: a ?x ?N~ ? ?Ԥt ?C1 ?G ?ͯQ?⠱@?7R]Z?7I?/??_k8?j-m'?*H ?A?4`E?4 ?t?\%?V0Ji?g-)?,}?=z?q?-?ՙz?(9^j?b?Ar?P:?S?LJ?#n?QR<?I˳z?TV?]?bdd+Z??J?6I-lb?vR?œ9?B)?O[PB?^$2??ۭ ?8"??;aԭ?9?ر?gZ?g??+Jwg?[7?ut?,$N)?GYT?!s?ֻZ?Du͒?֤?o ?=??D? ?Zc]?;)e ? *B?P ?!E?ܰ'E?"?CY-?nt?h?Q?[?dC?U'(?l?T ?*s?Y"?[?h(?m)b(?tJ? 3??zU#@?EJ.?S??Mv#?CZF?$?릔?R:$?8_!Z?]?-[??%o?`މ?+|?N?u?yr?g2Q?a?A?[y?hOIQ?fCa?31?y&O?A?=*?n ?bL?Ώ??!?F?)?)?v3?gX?: ?m?`4?N&?j6?%T??t ?<}?^?g?v?+T9?[!?<4?G/ϰ?T-&?&Sy?;p)?(ԇ&?]&?3p&?oa2&?(?Kw(?;| (?BP(?.,n(?q!x(?[4 (?JG'?fZr'?ok='?L'?Lv&?(0?r'?T<'?F *(?>{'?nh'?fDQ(?S '? a>'?ߴL(? X-&?F%?M]9&?$%?ׯ%?^}%?%?ES̏%?ʼ$K%?Tzt%?@[~]%?k![&%? J~#?'[#?vp|#?R#?@a#?5ܢ $?-#?^#?s$?CW$?$?Ju$?ݹr$?R/$?n@\$?OȨ$?~ȑ$?sqF5$?*yb$?g7#?:U#? $#?e#?9#?{"?"?ݞ#?%e"?"?$xq"?nc"?k4"?ma"?ZD!?b!?[e;2"?0!?_.D!?f"?F H"?9]"?2"?lvi>"?RFQr!?R?!?VJ!?#e!?ۛ`!?n!?yYy!?yՋ!?7km.?ʹ=t-? -?<2E9-?:2G.?ݻ-?-?&,?%N,?$U-?9,?gB,?(<+?'c,? ,?|~J)?R2y *?&ԙ)?b`)? ??*?#Y*?On})? $<*?d]Z*?-N-5+?D|+?zܙ+?;*? <+?id*?Y{0?P/?S'0?|/?C0?nkj/?/%[0?YΑ1/?kQx.?D.?a/.?gd/?v~.?_.?#[5?,4?@05?@3?Nd4?RW3?`p5?eQ4?Y5l4?$m4?bO1? 3?=m.1?zQ$=2?H2??0?W~3?$1? ݲ'2?ׁ2?U4?/+?2  ?e<?]&!?҉??*?i?Ջ?Yj? 3?ҐRS?螢?x{?:JN?xDd?K<?!?5sS=!?kj1"!?s]?vFl"?IGA?\T?W?± ?- ?xܾ ? ?>Ы{ ?CY ?w:+ ?me ?k ?nA ? ?Oi ?Wu-/ ?B R ??w?@=T?g>?yTv?2Cc?QM*?%3G?^$ ? ay?.?}HYJ?<j?TI?th?^?dsH?F? u?4EN?E;P?_=|O?0b8M?)(Q?esTO?H N?&6J?-L?2*31K?(I??M?f{K?3IJ?򜑆~E?`:F?-GD?9E?.(H?Y+rI?Ȱp G?U7 JH?s??G܊??Nj>?Ϳ@?e>?R-L??52??lejB? D?IC?fE?e@?LicB?Z$ɨC?:]8?['7?f6?: m6?0T9?IS8?ș7?jw5?\h5?ȈP{7?kA6?S0?ȊIFF0?(X?aʿ?HH.??NX-?J?$wu?'_?7)?'7~o?f = ?ֶ6?"99?1I#pz!?L2 ?<; ?:@ ?bN ?LI ?\ ?R/Z ?ʁ ?-u ?q ?3BL ?) ?$?; ?@?_J?1m?b?5P?ȄQ??-?D??+]S?N`?t?&K^?8?i ?2?͵b?j' ?i"?|L?)?1A?`>?oC?po/f?OD?i?nt?Zed?Y0f?1₍o?OBQHz? ?~?-0N?xt̖?ڻ?ΗO?Z_?ybc?'?Zdu|?93?"h?4!?t7?H- F?"/,?*??ps?/?9~:?de#? 4?وE?pqQ?z??ag wK?DSc]?Oi?dW?1Bb?^ ?N ޛ?D?3٫??.Eu??_n?*f?1}?ʗ@? *(?M?F?C!?H4 ?kLp?[?BR?*}?D.?;E?4?F?61?s?s?WO?7?7?+,?S"?,??w;w?44E?6yo?j)ğ?0g$5?"Wԛ?Buj?72 ? c?)`Q?b-?7[??RY?M[?f1?mMC?(O?0i?Gc?u;~?;??ڐ?Wv?|?[Jm2?=z4?kV n?wن?ٶiR?{4?p?^?Y??i1+?v" ?^S`?}L??,P; ?_C?U3?̘!??YJ]?r7?4?bj-e?L? ?|W?1?矃?qȹe?2v?@qJ?xWo?ri?h @$?s?|z"w?6 ?;?? Ii??dŦX?*?J?&n3d?}?z*?{ϻ?0ZY?.LZ5?\?d?+?$[?6m?s0D?`1U?]X?W??\zx?؃xV]?-j?B?#x(V?-l?cfX:z?n??+~A?V?)0?Q'?TL<?'c?A?J##?6 ?n?5Y? ?? yeYc?:ʕR?H o?X]?ϸ\4? ~vH? xy'?K@?BA?A$?`33?r ? QM?Fyl*%?jZ3?tFz\?*ao?b%%6T?I\lk?̆?t ?:#?@?\?UG?z?Z?09?5w?[?cy~?C`?[?a ?h?u?{?՚]??S?tFܱ?bf?l?/'??뉤???&??xh?5=?W? {VZ?|/?@^D?`FSj?b$?[/yB?9W?pf ?/?p ? :h?;v ?:X?m?f z?^??hs3?6?W e{?Q?2Dh? ?5?7f?@@%P?HowE?0e?W?tJ? :?M&*?8֙ ?aL?$?뚳4?D>[?:O?-7<?SOF?o3?L0U?l=?]G?9 g?syr?<`? nm?y}?z0~?P\ix?ҷ\?#rY?_?f??پ-+?/m< ?U6:?`7 ?g( ?B(= ?{75 ?FE ?1= ?z K- ?GZj ?W# ? S ?*A5 ?H ?Q( ?MahM ?,>nW ?vܫOE ?vR ?`Ô ?nk ?93> ?4d ?vG ?`2j ?ks= ?B ?咑 ?R y ?P'_ ?Y_ ?e ?_ ?U` ?| ?&q ?X: ?4< ?<@za ?zq ? (i ?z ? ,i\ ?i ?Yq ?g5T ?Kv ?Ҥ>z ? ? ?q3 ?cޟ ? ۮ ?T#] ?_ߞ ?[ ? ?< ?W  ?hq ?w= ?5 ? ?-_ ?+T?md?6NN? ^?[t?wF?~?i=?YXvn?pÔ??,?0*?R?2 ? 4?3 ?"%%?:x? q^ڼ?Yb???MC?ҏ,?}\ ?n?<??&?ו}*?xX?S?P?rF?o^ ?=r ( ?T\ ?`ͪ ?o ?ຕ ?8 ?^1ͦ ? ?' ?ڶi ?\X ?SR ? ?֟} ?J! ? 6 ? ?!? ?wAf ?vo ?|Sa ?Fhj ?Uy ?Փl ?Ǣ#s ?-xh~ ?:.Ջ ? ?uχ ?ԇP ?q. ?ȧ ?| ?Hi; ?a" ?HS- ?ZU ?nR' ?|7 ? 1,B ? ̲1 ?kb*= ?ȱL ?Q] ?TT ?:e ?,H ?C+U ? v] ?Q ?x%% ?EL ?緓! ?RLS/ ?%P8 ?WO+ ?~rP4 ?VB ?M )L ?Cb> ?ʙG ?`U ?_ ?(7Q ?D`iZ ?Fri ?Xgs ?Hd ?Tۓn ?TcN} ?ܝ ?z,x ?M ?[ ?"mP ?ύU ?0R ? 1p ?NG` ?Pr ?h]x ?;{ ?tN ?W ?>ٶ ?o ?𼏩 ? ?u ?kvq ?7A?wc0?sםK?9?DQ?N ??(?vb?E?_Ү? ?;Q8?\+ ?:?xߦ?ϛA?6 [?+?#?Ԉ?I j??r?WkZ?q100c? ?ݯP??zۃ?^qz?ʗqk?R([^?r?DJ?:?/:S?)iC?Cl*?շ ?)=3?]V"? ? i\?*5?HR\?QYz?^Ck?U{J?:r?l[?sK?0Lb?yR?#<?ͯq,?eX??$?l)C?t#?oj;3? ?/)?c?L?Ʃ?Ÿ?a?((?h?Q?گ?9k?2É? z? g.ِ? ?@??)v?:?9?a?=???g[?*E9?--߰?J??(?I.B?I?q ?<2?ls?伊?bcZ{?d?NhU?$l?@\?~EF?*7?#ǨM?>?EyW?2%? ? N?PN??Gؿ?%?n}?Q?٪?Ua&? \?R?7y??&[(?rX(?VnJD? E???A3?5n*?$0V(?ae(?^؂?^R0-V?+V*??CB?n#?}??K?]?q. ? ? N?E?P?Qv?CT\?-ai? Ҽ?H3?x? `Q?#9?~ h?!CF?"?h ?@҅/?(l?O"?5ߨ?ϫ`?@?d\?S@Q?AA?ͥI*"?t'h ?p;?`]?8v\?F?h\? ˸?"N?!x??拃?0UШ??=? ~.?By?K/?^? b?"iI?n?,V?380?]^>?C$=?ك(?RC??# ?Ϝ?#13?:J_?t[jo?cоN?y5?AE`?H}p?+dG>?1+?hO?.7?כ?"N?eq ? y?D9$??Dh ?' ?+?h+[?Pm?/_ᗳ?pz?e֣??>?^?x9?4Nw?㶪f?pm?` ןq?lY?U?jEdYC?@`? XM?Рw&?jXeX&?6E(&?>z&?/.:&?Q `)?&)?l)?$-E)?5H(?aβ(?e )?)j(?N&?ʲ-%'?8&?|> '?ڛx(?s<(?;Ј(?y`(?Lq'?P(?0%&'?hEN'?t$(?ߗ'?0@V'?/%? *$ʨ%?%?º%?mo%?խ8%?E%?uSI%?k%?oH$?p%?D$?j#?%^#?#?ڎZ$?%l֒#?C#?~ܵ#?G;$?4;$?>)7j$?1T$?Bt$?{2;$?ei$?+!v#?*J#?qĢ#?Yhh#?$Y|#?."?G<#? #?R"?,]r"?ڽ)"?ۋ}S"?,p"?sD)m"?qǑ"?p!?P2"?u4"?IM!?p5'N"??fIm!?WG"??W!?{!?gs,!?`K!?ln!?&!?oo!?Z!?¨7-?FԄ,?>-?rf,?R0.?WX,?>2h-?l-?/ +?{w+?i4,?8.+?|)?V[w)?8MbQq)?)?ʩ9*?jD*?2)?9#*?o*?rJe=+?Q*?E;*?zTx.0?wo.?&]oo/? 1?%+.?c_ 0?kfN/?2-? n.?D1*/?*6.? 4?o1?\2?w4?Ae0?dL2?Y~]3?w4?=5?D3?"r5?F?T? wF5?\ ?B?(?,1?J?TH?8ܑ?+]Y? u?]#;?Cy?b^?MZz?@<?vJ?Q? E?$?K?R?^'?^?oy2?P^?UH ?PS? (? Dp?PB?|^r?~6p9?~N?~? W!?{) ?x !?6 ??T澐??e ?qZF?%w|??FMA?8M??E:SoM@?WHC?PZD?|A?`|C?f-iH8?s l7?h6?+19?C5?\>t8?]x7?cig;?v,>?= "`?M(? ? ?1+ ?ȍ ?:k ? ?D` ?[ ? ?l6 ?넰 ?~Q ?> ?&" ?5z ?<{ ?c8?2?dqYn?VW ?H?+87??!?*w??J,N?'<?P?u,?L1?4ߖ?R֎? I?sOh?Mg?u\yy?-sߥ? f?*9?Mu?ōh?ppk?VJo?h|?g&?h:?hB?W7?`o?_9?( ?{|h?A?H?>?oM ?or?U`?(?ᭂE?5[)7?ɀ7S?Ym&?i?aG?یݰU?}9?s$?_[?SЙ7?B&_*?# I?m ?4?]?9ͪ-?! vG?10X?©A?I41Q?mz?ԏ?.>hi?l b~?o9? jgQ?znfE?W\?͛2?8F? R?Hh?X/Pw?ugKv]?Vn?(?==?^g?!0)?*!}?P,?*)?t*?Ri??4>,?2l?S1\8?թ%?~`Fv?\A?X?tE?T,?y/?J4?Z??X??\D?u!f?'K?t~R?_y?X; ?5.?Ue?1M? Qr|?g?G?}'"5?!?|w?X0?O?cj?m ?qm0?n?Iŵ?? ?Ȇ?=t/6??=?Yhz]?Ͼ??,?I?IIʛ?AO?`txm?jl/g~?C?o?0?.1+?\Or?zW.?@Y?&?\L?zo? J(?"?9?N?`s?K?pT:?0D?,?A?d'?U=?_c?K?Ў{?>?[{k?l?xN?YeR?z ?6?#3? [?^a?O? ?(?(l?ذ?=?"m?0B O?b)K?D+c?&A?lE \?bV%?_P ?5?%y?~z?UW?DVrs?֎??R_?ϵ????duܣ?o?} ? ?{?=?'7m?dqdh7??{ou?:^?=LU?TUx?:o:?d?pu?H?(?.x?q9>C?TM?ł/?ʴH?#?yɋ?.[?F^?TfDF?D|?i?!yd.?eR ?UQ??13? f?cZ?2!1??.L?`/?;j,a?%mD?R?>\s?9(? ܨm?3z?`?՜/?bd?qN?}3??:?8ȟ? z?яC?a <?Y?ۭ>? Y?T?Eφ?H?^;?>Q?Ϯ?6t??v?u? ?1 ?ie ?? ?4C|J ?J ;= ?O$ ?&20 ?WǦ ?wD ?%8 , ?\28 ?W ?$=d ?[ Q ?^Ș^ ?(R5 ?#H` ? ? ?yS ?3G: ? ? 7~ ?Cg ?uxF ?  ?u(F ?׻ ?` ?q ?' ?Kk ?/y ?v ?L ? ?~?> ?/Hx$ ?UDڳ ? ?R ?+ ? R ?!W8 ?t ?2 ?q) ?nj ?{ ?l ?Th?|?a?Ly\q?fm?;D`?b]?V&i`?k9H ?ip?~ 5?<]`"?H?yѳ?~+Q?LeS?ȫ??gQ??c??0?=?rc?r)y<?; ?r/ ?Y ?s ?a ?. ?\Ր ?c9a ?zG ?i ? ?K7{ ?Ğ ?Ԗ ? ?FRP ?1 ?VW ? Vh ?5] ?l׫ ?䅳= ?% ?-ŝ ?n ?B)y ?8 f ?3Cs ?B,ʃ ?I̔ ?MaI ?؈ ?̉~ ?ꂌ ?bE ?3AI ? ?aoo ?S ?tٯ+ ?7 ?O#% ?K\1 ?ZC ?`wܯP ?1^= ? J ?H] ?wck ?iW ?`5!e ?p{L' ?/0 ?# ?- ?DLfB: ?;mC ?)*7 ?#y?q5?A]?( .k?[Ky?<?X]+?3E?&ů4?ŵ? u ?=$?CW?@gt?9F?Ѱ? &?l;0pj?6Z?Or?D|b?AqJ?ҧU*?D):?!?GR?-/?Dȹ??Ӓ? 0,?M8o?0/?ζ?cC[?kͽ?Y??JU ? ށ?w?xc1z? Yj?2 ?ys?S(?k ?It/?j ?hX ??c?Y?E:?tA? ?M ??bY?z?i¬?mxG???^o?qѩ?p{??]?K6=? s?^)^d?v{?k?O' U?bE?j\?a.M?6?'?H>?G F/?Xҵ?A/?b?t}?3K?׭p?Dו??yO?c;uС??cu ?O ?SsP?B?c?`Ku?uf?|?X"n?ީKX?<-I?%z_?kfP?dm;?+ڍ,?B?\?ծ?"Ȕ?T8?pБ?ɟz?K?4b?a6?)pv?I&J?Ȁa?:!? ?8v5?h?FG^?YFz?H`/?E?fS@a?4H?noq?;\W?0??,F??&&?:%?|ef?(qt ?;2k??zۮ?(???4?}?q*_?o}Ek?VX?Ӄx? a?rE?3?AN? 2=?H6?\!&?j-*&?g 1\&?؂&?1=w&?,!8&?Ɲ%?l6&?mI%?Yc))?j(?fv(?ф~(?W)?JH (?Oq(?53+'?t'?v'?w(IU'?\gH(?#0'?i(?ReJR(?7B'?{'?h+(?%?a%?Ev%?v%?0 r$?ܠx"%?$?{/$?ZC8%?H'~$?^$?64$?2#?R^:$?C($$? zx#? $F$?N.R#?S#?6[#?꣋ #?2,#?~?#?i"?m"?I& #?h'_$"?Bg"?5Ul!?x3/"?gJ !?e5|"?r1"?k78"?Y?!?jdk!?^!?V JY/!?$wH!?KI!?cZ!?^*g!?͐$-??xU,?T8-?Gp -?爀,?aD+?Ab+?|=+?)Ѐ +?gȍz)?S!:)? )?]Y[)?k7J*?sR*?*?SIEŔ*?ԇٞ)?htO)?mKU<*?T7/?1.? -?¸}I1?Ɓx-?<./?a".?w> 2?yI5?#3?.j#Y5?_'ҽ11?n84?*I2?mN9S.?B0]?6D??X?Z?@b?jP?oD?Ƨ$Y?l?{ֹؑ?d;>O?+?AlF߶?g?\*?%Z??*q*&?R5բ?^?>g?st2{?Lx0?}H? 4M?$ej?3b?9/‰?㯄U? F?:r? ?ق( ?ݴ ?XM5 ?H?+~8W ?? ?^m?[iؘr ?L?үk ?Dxj:u?~?:&p=?e?뷝?~̗+?7Dc?r?tJ? H? wF?P.E?ڼK?~wH?vF?ǎ@?(̮C?X{#B?>?$LE?{GB?oA?*8?۱:?YKz7?Q9?==?Uih?`(?KW?!? < ?i-?;" ? ?SGY ?*P1/ ? ?B ?8 ?hJ* ? ?TS ?W^ ? ?Zm ?\?Vx?܇g?l?)?4 ??Pj ?%}?1?|t?M"g?l?a)?!W?>]u??r?pۊW{?s;W?PtӋ?̜?n?B'?J?5?x/V?u2 ?M?0_d3?ax3r?H^?ާ?uNr?9K7sJ?s/?:)=?g*?}s(^?[SJ?U =?0?z~?c(? ?h!?õ:? #AMZu?~*c?'?iK?s?uݱAb?X?A?e`??߄?}?Ce ?^rD?3N1? ##[?iG?lXH?N?4?xĠ`?|?A̾?xU}?A I״?7>?6E??L7?~?Aن?,T?i?9?"t+?vJ?4lC?6??5vU ?[:Y+?RHa?"B?Ւ0?/Ϭ?#H?}? ?͖k?_q?a?Ez?p,,}?@?L7?c![?AG7?ն0?CX?{FI?}G5d?ュ#?u?Y9?bP?E?O?_{?<֗?h*?gC?\!?(? ?Cd_?X?IQ?:u7?v?%',?Z>@?F?8m?>-?E?&|'?+R]?5?yll??`?^pr?BLU ?خZ?݃?&c?4?Ц3?h%? ?zN?X~??u/I?3t?'A? ? l8Q?:M{?y? ۲?gl4? ] ?hn?)u6?U?97gu?R8?V?@gO?a?OJd?L?tg?X?$}t?e"Dk?oGI?C7?>\?EK?9?0ݩ?z3Ҏ? ?Jw?xl4?x ?<t?"dO?p??{Y?'!o ?Oȥ?> ?ҿ랿?l2Dy?6?R?jC ?& ?6*G ?/m# ?IJX ?56L ?Kt3 ?? ?*U0 ?rUQ ?EMw; ?DG ?B3le ?"srs ?,ӟU^ ? 0Mk ?N ?™ ?$fQ ?B¹ ? ?c ?m ?̄ ?= ?Űy ?<@ ? ?N ?n1 ?&׾ ?jVp ?@g ?7 ?6O ?/ ?`/ ?Bx* ?vr ?*Bj ?@9 ?> ?gfi ?l  ?wz ?4c ?_{5) ?uy?zB?{i??ã?┶?"C?},?R$?`d?j8?۩$?(V??9DR?oq?1??)β?ڹR?D) ?gG ? w ? & ?, ? ?y|O ?]' ?uk- ?wK ?ՙ ? ^ ? ?.ޘ ?47 ?Pj ?2% ?@F ?T ?ۚ! ?nI ?{ ?5J~ ?jy ?kO ?S6r ?MjW ??嵼 ? ? ?΀ 7 ?^ԎQ ? tPD ?f\_ ?3TQ6 ?プE ?+R ?al ?~t#z ?g/o` ?Ɋq ? 4 ?n8D ?]k$< ?XлL ?5v&1 ?һ< ?/D ? H:U ?m` ?DK-M ? ]Z ?&:j ?tu ?d ?^[q ?Ut ?* ?+9F ? ?(B"y| ?o ?ti5 ?O ?L/ ?d+ ?# ?g9u ?ŝG ?X ?3z ?i ?gK٣ ? ?V) ?[ ?/ ?ʴ ??I ? >'?[m ?wҾ?(#??N? ?u7 ?7=+?uƪ?Q?v?sB?P/'?'?z?~@J?S2?^ޙ???==?O?*]?t]>?I?1k?\Ŵx?{W?Uie?EQ-??9X^8? $?a ?ƺ?s^?n?"JcM?{C" ?ĕu?v(?gMLZ?xG?ad?."(T?Nq5?J[/L$? ^A?+0?#`?N?Y?Nݛ???Sw?͈[J{?+?Q?'c?g'm?!]?w5z?h?}?(g ?TF< ? ?ܖլ?/V???ː?rW?2? ?dn??En{?/=?_Ɠ?J?{y???At?("^?u |?'d?bT?_l? +S[?YQE?L@6?͈K?'{N=?3l'?|:?m.?l ?3X?֣?VL?ۋ?U=D?P?wbq?vQ ?x?3C?:?3u?>?&?u+? ?눎?OZ??&^?z 4r?_d?J4y?w7j?r?D4?Hpi?}z?04? S?? ?Mz?UM ?gu˨?cΙ? @?,oQu?ޅ<?鹠|?aԫf?KjX?W6m?S}1_?ugf_I?琞:?\P?d A?W,?j?F{V3?!!%??^ ?zӶ?mc?%en?fxl?q?wx>?V??B Y?z??C?0?WC?)v~?Mlq?~v?La%?Ʀ?IuM?c(?F?Cez?#?wK?-<˱T?k-?]4`?߬J6??-.?սB?#Nm?u"??JH?w$?G?Y??\???cw?Z<?ٍ;?޻?]j?P?O??s??Q?\p?U"?eKA?kt@/I?4)? ^f?]@?& ?<7_?ΰS ?G?Y?+Ӂ{N?h?6? ? _Q?j?[w?ۆ?֋O?V?+Y8?&? [w ?4?p?6??/F܅?L$o?;Ժ?8y?].T}X?35?x$G?U+3$?Cc?0J7?H?Z6?k*hi4?!7?ڧd!5? /'?F&??l&~&?"&?K&?zQ&?V %?&&?7%?AΨ`&?]%?#&?T*x(?=?p'?Uy>(?c(?K&'?}NR(?~8EO'?&('?t؁H(?B#c(?0%?ҘM%?5R$?w`8$?v$?#˧%?$?)6%?D>9K$?$?)ӟ$? J#?Bko#?ɽr$?= yw#?`%##?cSU"?K#?A*"?4"?-} "?PM"?S˟!?"?)P"?UuX"?Xa !?7!W!?F ? !?G6`!?dR!?gpC!?QAv!?DwZ-?_|,?R<,?/,?_S+??j,?$+?җSF+?$*?'ij0)?^)?c)?Y;:*?(?pp*?X&)?_du)?n})?$}Z/?z-3?p,qn1?8 m.?J7?4?kf[1?'/?G-?,?hA.?/ -?"a?\V;ov?:Rǥ?=?~.4Q?4?HU?D ?ʥH!?ɲu??ͥ!>?y?|?i?ơ" ?O=:?e?6&?0EE?ma=G?ϧ?*?rPH?{nm?xyZ?s?Si~?7<? ?; ? ?,i ?F P?,ZQ?O?3?5k[ ?3s?؉m???`?1 U?˛)?ǒF?3:;C?>alA?Ob}??N!8G?ڡC?'.&cA?9?E7=? ;?w~k7?eu??_C ?'ڻ0 ?@ ?,3σ ?XVy ?lt ?c~ ?En ?q?Z ? d ?7IU ?-t ?Q;X_ ?@[1i ?!0M' ?[ }" ?51 ?+ ?#y ?J_ ?l45 ?8ת ?TgiK ? ?. ?R' ?A&y ?i ? k ??]?zQu??# JB?|)?,ͧ?b`?[T?e?EyM0??-?m%?[rz8? W?*?iV?7(?q?E%K?^?߾?1V:?jz,[??Dn?fmQ? cD)?uϒ+?$k ?/q.?`D??l?U6?5Y?7??+M ?Ȍ ?{ ?!Js ?b? <?k5?s?ٺ, ?qFBW ?)C ?[8 ?f2M ?S|d ?PHA( ?H ?rtyR ?]_X= ?q ?8ǃ ?K_ ?ډz ?z ?_z ?p3= ?FE ?O ?" ?&4ی ?EAǨ ?^~ ?=PD ?߆ ?Xcd ?jN ?; ?K}L ?n ? ?p( ?q& ?wnv ? Q ?t{5 ?LD ?|S* ?ݘ= ?E셋?4?Q|?Q6?v?qm?x?K?p$?:Ϭ?ҍ9 ?p55;?4d?[ ?@)?Au9 ?6:. ?$)# ?D74 ?ij+ ? ? ?̓E ?6H ?[ ?'X ?uY ?h ?N ?+X ?#4 ?SdW ?*k ?G: ?Y ? ?3ƕ ?م ?3; ?ף ?: ? ? /2 ?=h ?u ?Kqb ?.JG ?VT ?e ?VArL ?] ?a7Bw ? ?Xn ?LA ?'#E ?,xQ ?D,@ ?'QPK ?;3f^ ?xk ?Uz$X ?U3e ?S< ?u0Rx ?c ?br ?cRp ?vY{ ?~_*- ? ?]W ?L2 ?7ʅ ?r ??ik ?M9t ?# ?R| ?f ?|uS ?8h ?@P. ?w0?I)?Ea?M ?t?RO/?B?HIV??M?cjC%?B ?p?O?>D?<*{?D?$?a!?HmUq?xi? V??WnC?A9;Q?,/?_Y:?aԥ^?ORr?ZG?=V?R=?H ?&?3' ??e?N??cIu?#?đT ?X)?'?M?o<?MX?1|I?՗+?#?n8?u'?TD?%?7:?x9?~Ն?c?sCVu?Q3T?mv?ᣴg?>0+y?Z ?Um<??^(?&?KY?z??7Z??-?+?*O?679r?>3[???Wl?m?21u?%c?2?˧l?g\`R?p!6?MMD?p '(?$P[?sW6?YփD?{o5? ?L*^(?`?MT?߄5? ?* 4R?ɖ?k+?[͐?4 ?[?T#?qW?.??>?[T?V?jP6?Ljwq?k?sǹx?Jlc?;>U?!eYUj?鳊[?q?S`?J0?W܏?b?>xK?%U?C?$??װ?ə?Q?$cDu?A{f?@|?V_n?$W?I?_?&QO?? V:?6,?T@?7%3?t?Kʕ?3$?݆?EF?9]?<?@^?7v?bL!?k?X%??U?YL(?~ty?Gm"?2?XK?Kt=%,?ƛ?/؎g?T?-?fhl? EB?kBx?%L?NV?y.A?]V?S?Ӭ"?⭧? ?)j?{(?\X?v?7Y?E??bj?˱?]?U? á?4旅?m7?E]?~?]k?v:?V _?R?%r?}?c>l?4 DT??$?SPo?,>?z5-?"NR?W?Ŗ?tQ?yɋ?d~չ?x˼? n?08? nS?X?=1z?v)K=?:W?BU5?12? M5?J.*h3?`['? G&&?1'?p3&?4o&?A/%?&&?4v%? j&?t%?Q1&?ES(?ۯ΋(?Uj'?N'?#% %?Bx6$?yn%?5r $?٦A{C$?qt#?A#?c}$#?xf$?7a#?^^#?4!5"?Ҟ"?4z"?D6!?&#?O5+"?"?IP ?<,@!?$ ?0 ? f!?N$!?(t *!?_(!?&n+?e?\_:?]8?|GC?}2>?ݸ:?}W6?U93?P휞8?04?\ S?FS?:O?M?r,DJ?dUD?D G?gg??UH? ҦCD?ZA?t?_G?lQ ?B΁?ztO?*k?8:K?@t?UtI?> J? %6?$d?;?~۱'?FO?D?ۥ ?*?iG?/S?ߢR?p=ŢQ?yϭL?I?P?O? ~2I?,E?-@N?p::L?M?&$pH@1?<@D$?f?9?U?77/?߄?ӹ?tZ ?J0 ?! ?I^{ ?' ?d ?f ?N ?L4 ? ?_# ?brs ?Ϯ ?y ?m ?I@# ?rߏ ?Ը ? ?R ?lUN ?/ ?7H ?o, ?1=`h ?؉ ?+ ?o ?Wc ?S< ?Bfӟ ?; ?v F ?6 ?-A ?VP ?4aZ ?hL ?[U ?MR ??G ?1 ?ƒ& ?lyy ?grd ?`n ?(i_ ?@ V ?/ i ?Nx+s ?A0d0 ?!f& ?g< ?P6 ?M ?I9 ??X;%?eU?RS?t8;?O"?+m?Sq*?%{R?9s?%\ 4?weR?Up? ?Xj\?5?.x ?hP9?嫞? s1z?[?eGu?%?GG?0h)?e?!?;ڃ?I.J?m)h?Kd?Bd?ֵ$?MN?6?\b*?m ?Xt?h*?_½N?r2?+?E?+?N?i?V?Y?JDb?~^7?]?[N?n2|?}`t?:?iP?*\h? ?+?|??z?߈ t? K?0? f?-h*9?SYި*?la?3?!?j3?ر&?A??@Rk?Լ?x:?o[I{?kR?Tf?8Uk?B̃@?|k?ď??w?W5?/??մI# ?q ??&8 ?  ?aX-& ?? (B?Qp ?U<?9M ?0h ?g; ?KˆY ?*ك ?  ?aJt ?3dT ?2 ?+ ?lzH ?4jo ?yNk ?wů ?ӌ ?]V ?~J ?D ?ox1 ?B'U ? ?x~E ?䥝2 ?Ѥ??滎?6-7?EE"?۲?..N?̏l?N.? _Y?w$/?PPK?*6; ?J2 ?W?WF ? qq= ?cc) ? 3 ?4 ?4y!( ?mJs ?94* ?O ? ?e ?_ f ?@B# ?$ ' ?] ? ?ST\ ?jP" ?R ?Ĩ ?n[> ?7` ?r ?uN8 ?X ?:bu ?ʷX ?^= ?e ?u2E ? v ?V ?;bʖ ?x[ ?u ?F~Q ?oP_ ?hH ?'6^W ?l]*m ?^{ ?b3e ?Laav ?G6 ?4jW ?úA ?~3 ?F ?h ?3÷J ?S4 ?x3 ?w벤 ? ?<"6 ? ?W ?tO ?б ?`t ?TD#! ? + ?Y4  ?a& ?ۘ6 ?k0A?{?M?H5?9?O2.?%5'?D}?a?|?1??Q$E?%CT#?o4?X??<-?V>???(?b?Tb?:?q? <b??x?h??S?F?S*.Z?K?# ?:? ? D???d>?q?u?L?7?lː?O-h?dXsW?~Su?ƽJ_? F?C+?/Nm9?/?MŰN?60,? :?L}N?V?m? ?ix?b ?PN7?jF~ ?? 3*?O?><?y*$?FEN?/??4?Ȧ.? ?dx Rh?X?-o,?A~?>?ȍoJ?Uư?E+?4ʼ?t}h?V?D~?&?|?xb?Zu?cB?Fn??MY?9ޣu?7S?%cz<?>{ ?>:??ۧ3?O?ǡ?(?BQN?D?/ ?? B?d?C(wd?3?@?XD?THA?{l?":c?lj3?G1?Ҁ@@/?;2?{/?$0?yX!&?c^%?dB&?^'?o*-'?b"%?)i_F'?rh&?ܯK&?H%?q7$?8#?3,%?.Cu$?A\N#?ʪ_8"?g{"?HH)!?x#?"?4A.%"?_  ?Z !?v%v!?}_O ?L7!?] ?ZA%!?o:"?v*?b`)?@}0Z=(?Fa&*?8M'?䔊(?e'? -?Mf8;*? b+? Sl-?(8(?zÓ*?xё)?Ѽ?aT ?nyJ?@?/y?kI[?<?B?l,Ȩ?8?Ӯ?l,?O_t?YH?{f?G}F ??5Q91=?x88?g*!?I?t?]?vK?8?>O?/N7?&W?4 f?-g?#?lpz?:%'?Z?,?zZ?du?[~?_H?8RI?S?fmB? D#?'?~??LC?I?yD?{cv?h?Y?"s.?+c??Y) ?~ ?M֚G ?΃t7 ?z ?7$,?' ?Kщ ?[#1e ?TC ?!U ?jt ? ?۠ ?ms ?. ?ͳ ?&c9) ?ͦ ?tɜ ?{ ?N ?E* ?S ? ?>jF ?rBe ?֞; ?rS ?{:팿?v\?u?o@B?T}?(;;??c?Ye+?L:h?'Q?hW?Չ?_? ?l>B3 ?pN ?B ?Ź& ?P( ?Q p6 ?$ ?ss} ?W[ ?q ?L( ?G ?} ?7V ?] ?Ù ?C}ߕ ?,ۭ ? ?G ?eH ? ğ^ ?U q ?ʶ@s ?W ?Ǘf ?W~ ?u ?] ?ygn ?~آQ ? f ?ך ?a% ?Gd:w ?Qt ?Ž߼ ? ?2Ӕ ?W, ?: ?P< ?* ? ?zL] ?Щ ?$ї ?#PMK ?V ?9qF ?ugPlQ ?0"a ?&)Ul ?P2\ ?afg ?6O , ?sg6 ?pH|& ?Mon1 ?D bA ?#(L ?#P<< ?+F ?2m? j?}a??R?@?I8?8J?(?3?n%qc?G?`k?ju]??r?dVV?7:&?H ?n:?) ?&6?&֢K?0?gI6R$?M?;ǘ??𔏑?~Vo?sp?[̺?E7?8V?(t?qm+?AԬ?c=:?bY?O1?3?x}?63?vVi?:!z?-ԍ?f?';3? 8{?㬏?pSQQ?v 6?3g?Z H?c8??A-?t!.?G? ,?w۰?"?$?FAs? ?}۬?q:Z:?Yi?n?+J?cK?O?+?'V?[p?餉?R(8w?Rj`?'Q?Cg?#bU?7C?e6?RcG?:?A?*2۰?qt?:\?@FN?U즂?kV?l?$WK?[?u|*^?1t? -?W ?_6?i)$?&?*?&?0)?Y?<u?h?n?dr, ?vH( ?倹[?2&0?P?Y\ ?K~q?l ?Ģ)?x? E>?Հ?`?sz$?<0?д?=???×\?K?R_?)f?u ?SNp?Do`? nj?v$?a>?Uc+?TU?+$,?N"?5Nj?8p͝?so?!Ǡ?_?O?iSU?4HN?ڥ6O?빔?'rL&?N-#?S? P?Y)?rb?{O11?Cd2-?w M#V.?0/.?jeL+?x,?]+?[g,?8%?'G$?lg#?V#?u&?^RYz$?i#?# "?`ai\ ?jӲc!?w?"?<|m"?]| ?D"?bo!?3zw!?yL ?ө'?*΄(?%?A<%?I(?,)?#Nn&?a#'?V?n?fA'?E?LoW?M ?+9q?,y?3?' ? ?Z +?)9?pCS3?8?c/6?"~4?撑.?0%1?}Dv/?k&8+??N ?n?}"]$?U  ?@ ? ;b?TG0?s(?84 ,?KMZ#.?ug?;Rp(?b%?XI;j? S?芅?+>?k壼?f? [?${?M)?z?7?*?pdw-???*?0?Xl7?u???t/?F?@8r?rD?=MP?RA?q ?x?g#k?,e?(q?;K?[o0ϧ??6? ! ?  ?NEL, ?)C& ?mR ?l4 ?! ? ? ?Y_ ? ? -f ?" 4 ? 4B ?@ ?0bi ?B ?nI1 ? ?ȧ6 ?ux ?3 ?C N ?8m6 ?%@ ? ?t ? ?1f ?- ? EÛ ?$ ?%%[ ?Z Xy ?7#19j ?jZ=nR ?ǶB ?^b ??rr ?eHI ?cy; ?DZ ?eP ?4Y, ?a! ?A ?%$5 ?3?د?w7??҂?&+?? )]?[?gz??S?H? Jl? ?82?_R?$ w?}c v?2P-?”4Q?٨?26k?Ǝ)o?8u8K?*?>`?R;P ?yKYN? ??NrA?O5;:?K)?g|? ~?ZB:?h?{K??+?5^0?r?)Π?A%?W?z7ys?כc?a???:?k`?R@?>~??B?!?!5?Q ?M?ղH?j?׏iE ?op" ?3 ? 'd ? ?o_N ? &= ?R ?8 ?ƙtm ?v ? = ?]@y ?*$) ?7 ?]P ?}VX ?a ?@t/ ?C"a ?bH ?.z ? ?{C ?*L\ ?+?RV?@-w?j?$|v#G?y?e%)?yZo?λ?2?֡?R(?P F ?E4 ?KdlZ ?l+J ?@Gӏ" ?uO ?jYj ?vZtQ ?w8 ? ? ?Z\ ?F ?iT ?-ֽ ? ?> ?! ?h u ?=c] ?vPu ?:c%Ǭ ?AԚ ?#p ?5Ɩ ?V(* ?Y' ?}˝n ?S ?+ ?\) ?74Z._ ?h ?e4 ?B ?Ns1 ? ?s ?v9Ы ?D ?3 ?JF*w ?\I ?q ?Mx| ? ?Rɗ ?K ?o?p(j?]?~;n?9o>\?rZ?lpO`?u89?\~z?1i6??)z.?3=V?Yjω?`\?i?'?+%?RÖ?es0~=?˙j?,?t$!?B?n?_d?$??+~W? }?]? ?Z%m?Y>?RjR%?;J"N?"M+?R?l ?{ƪ.?i@?/?3?Z\?\[?9?Bt?)??x悀?n1k??n?\?nltv?Jb?$K?ln1?F>? ?7<Q?'.?1;?!@?VR?$-?;[=?Dz?me?9? ?|$P?y,l?Vv'I?m%7?w[?|C ?y4?3n*?02{?Ke ??Ak-3?I?) k?d?/Al?7 ?Ʋ?V^ ??&F?T( ?ef?I?/#pd?u=V??iԥb?1Զ?H ?]kg?{|h?I?xk? g?=?`ÔG?@?`?:♝O?*??#a?v?{P?O?hy?)Wҿ?a+:?]X0?3RaU?0?vB7?PTn?*??Gi?g ?[Q*?A_n)? *?@߲c'?x*'?@3'?!m&?Es?0#?rk"?5C ?/|y`#?V‹?P!?dw ?AjD7$?lE"o%?`oC$?9]l$?6"?L~yP#?DҺ"?P^@?bs?3iU?!d??+V?? j?SU?h+?47(?:<&?jz,&?7$?kp$?a>t#?'"?t=>S?!?<}?RѾ?u!?sa!??ªmb?צ]?8P?6d?vV?.B?^'5?3 6I?m;?'?5\Y?^äW.? ?fL ?؂s?QQ?M9?}<?0?t??ZmT?>?[!?)ۼ}?iC??S?RG?? l)?\t?u ?myS? ??7??@Krx?G!i?:C7)?jj?ʷP]?9/q?Ac?ߣ?G.?ɭ??y]+ ?AK" ?6 ?1 ?X6( ?n> ? ?b! ?}j ?qu/ ?li ?.H# ?N ?P( ?5 ?X + ?< ?Yc ?E< ?G ? ?ǻ ?یã ?%` ?f ? ?vI= ?J ?(0 ?;j ?’{ ?%<a ?A ?zu ?# ?UW ?+>J ?&k ?ǎb ?|= ?K{L* ?WubU ?P}D ?<?w?=C\?r#?f5??$1?z'U'?ͅ?]U`?F|Ui?0]QT?E#?(?HC?_j?A5?Սe?4X?ˈ? ?::y?7>@s?i_+?&J?>#?w2?T;C ?_*?h%a?[1?H ?oY$X ?԰C0 ?i^~ ? ?D{c ?; ?}! ?b ?׋l ?Iż ?= ?P) ? ?"ҵ ?BwW ?E(| ?& 8SA ?)h ? ?Q?#O$?]#S9?;?ߦ?S P'?nc*5 ?xAl??W ?^5t ?DPO ?u ? 0 ?6 ?zc ? p! ?L@ ?PMT ? ?|ѕ ?G ?qP ? Eg ?W6 ?u=M ? i ?MJ ?䜫 ?𢳹 ?" ?ʲ0 ??=T ?q ?+ ? ?~w ?5 C ?W` ?7O ?͗ ?z3 ?S) ?yb ?r ?9/G ?yIJ ? ?BN ? mڌ ?} ?42 ?,s#l ?6 ?]v ?2O ?2Q ? ?dE ?{B ?.qa ?%gl ?/j\ ? ׺f ?R'w ?/ ?N2q ?9}~ ?SBDB ?T5W ? ծL ?t= ?-la ?g2L ?xaW ?  ?J ?D)L ?k ?)t ?\/?q ?Y$??&_ ?? GA?)?OiW?a2?NX????/?,?5l??Y?]V?Co?|{???=J4?8?`?8E>F?e}?uG2? N?\?E?Q}|?{M???/&?C.^?+X;?Q`t?wG??o,?fP?z1J? P%?1?~? ?-r?38??p?7zj?52䗉?|$r?~V?r6A?]?hI?.BH+?;m?hk4?aR?h:?tKW?e*o?ď2?kt?6F?hbO?ٴ3j?<?X?yG52?Lj?hD?&??%3.??/׍g?>?rb?[qN?vL>?Bْ?!?Y?LM!?{k?.lZ ?+1M?K 3M?ZL%?[[?"{,?G?f~C? 2?UJ}?n[?;O?1h}]?m??ȟ?Jq?~O?<_B?t'LV?ɷoI?*M4?'?P;?.??]/ ?4 ?|0?Gw?;?uV?6bC?G?z?|I?ɷX?.:?H`??e?J?4 ?pH??"9??Վ ?.g?D#4?Ȧ?g>x?*~j?ŏ?bRYp?T\?U~O?mb?][U?҇?[$9?)x?ۆS?wD?y?fI?97 ?Y=1 ?G ?~> ?6Ø* ?OI ?f{e68 ?AB+ ?f ? ?/d ?H>i ?͢ ? ?7 ?zĴ ?|d ?4R[ ?v ?q ?Uv*s ?X)7 ?YT ?}] ?A䬀 ? ?Y.v ?Dɺ ?` ?d ?tרl ?nL\ ?׆ ?j | ?5eLK ?)FS1 ?Sk ?WBU ??I?`7n ?;v ? ?i9 ?tR ?e ?[p+ ?P~L+ ?6؟x ?Q ?ʓ ?D ?eQ ?Yx ?Th g?;? <?x?{,K5 ?A ?>? ?%g ?UIw ?!g(T ?젞 ?nw ?0 ?H ?r ?Wx ?ݯ T ?& ?e6 ?@} ?o ?7 ?2< ? } ?Уd ?Sb; ?X  ?ҟ ?}rr ? Wz ?2 ?#!?d;1 ?^ή ?e?;WU=?:BQ?2`(?n?zT:?H>N? ~?m??kEc%?΂N ?&A*?+a?g(F??K?Wq?l*-$?t???z@?8?՟?Gyf?2/U?4i?]?B(U?n8T?8C?eJo?b ?;Q ?U? B ?~H ?Њ9 ?BV ?O? ?Di^ ?k$_?Ȁ?;2?…?C`V?h?IB?4?k;FS?Q0h`v?_F?GY?{?!?Q?dF??D{?+"?.9ͪ?&? ",i?g@?Pg?B?9R?oh_?+=? pQ?6У%?I#?*?9zM??ύ?>}9?8tP?խ_?FEx?<݈?~JW?#U<?eR? ?,?/#?d?s?ך ?8<?;?2?0hU^B?94?.KH?{wb<?&a3M'?bT ?3.??wJ ?#<>?׼3??6$9?Ͷ??ga? !Z?0,}?B?GeR?b>?v\??oHZ?W|q? ?zQݱ?de?E vh?y!O?Ӝ[?Kp?B?=ɸN?x_[?R|x?<?{ c?jo?x|?1X?;-X?gE ?a39 ? X ?o/%L ?tΑ, ?J ?lJx? ?5!, ?>; ?u, ?}W ?ю ?a ? ?, ?LC ?2 ? ?k ?\K ?Z ?p ?~ƥ! ?u ? 6 ?a抟 ?S` ?P> ?Rg* ?Ws ?zL^?[ ?\&M?W(?.t ?Hp3 ?_O?"K; ? x ?<3 ?h ?2Y[v ? 0s ?]rJ ?{08I ?O ?1- ?/< ?MB ? ?7Zg) ?pw ?h ?xaI ?+s ?sc ?B̴ ?J ?XJ ?99y ?JZe- ? ?j? ?@ ?СQ ?- ?ֵ ?9 ? 2?b~n,?9=?J7?ǖs< ? ?u~ ? + ?Ǵ ?lGV ? ? ?%G ?] ?4, ?C^~ ?? ?MI ?37i ?2 ?|3y ?̺ه ?D|q ?JW ?}qJ ?4ģ ? ? ?eLj ?$3pZ^ ?ĝ} ?<1v ?z| ?f?K ?j?^7?S:?FyA ?10?҃&?c1?v!?nx>,?4e4eB?i8dM?.=?GI?2C?WH?˜YN?NS???J%? S?_V?5@?C%p? a8?)+g?‹}?4?/?h}1?n?CN?4?/b?%lO?&WO?~k?k?$!?j1c?<"?{Lv?}4V?|ಒ?pw2d?sOT7?n#?F,?2?F$*E?2qF?-Q?߂??]**9?@?m? ? :?i;?=R5?T?F ?`Ŝ ?%6?/R?{/b?x"n ?Iwi0K ?@( ?X : ?p1 ? ?{ ?V?/?el?&4\?lON?_&Z?:??:cE?f?tW1o?7mQ?襾[?;?f&?`1?=I?KoR ?sk9? ?j ?pZ ?U~, ?R ?  ?B ?0$H ?(S ?E$' ?d ?Q6 ?c ?f_ ?  ?u ?jW ?fJ ?DZaS ?o1 ? ?ޜЋ ?ϊ ?'" ?G,f+ ?3w ?Ac ?~B ?`os ?Ì ?{6 ?I ?* ?IR ?=|؆z ? ?.p ?ͿW ?& ?~ ?og8 ?/Lt<?7?drpG?-Q@? ? ?ћ ?$׫ ?aQ ?k= ?E] ?`j ?J ?kL ?x9 ?RO ?'@ ?*[ ?v4Y ?nT ?t ?Rv ?"& ?# ?NJ ? ?F ?Zus ?dI ? #Ô ?֗ ??k?wH?bc|?`G?7g1?Z&?ގ;?ÈV?ol&?R 1?"iX?LurR?K?o]?;nW?d? (\T?뎤_?S~Y?g'^?\1Md?Nn;j?Y?>?r4R?% ئ?.??Y O?Jakl?D?M-??jrk?um?NŸ٨?/zT?J}?p?5,?vAV?)|?Rm1 U?K{5z?pS?F{i?$s,?'ig?l?<ȓ ?O4?D^"?Y{?M??^ p?P|H?Q{?rv?C?VA o?y?2zd?c ?_ ?G ?ND ?X" ?D^ ?UX8ȅ ?U ?x]x ? } ?Xa( ?D ?j9Q ?2RNj ?{ ? ?" ?aE?y;?P?]9I?O ?2 ]f ?-ə ?E_?R ?;6 ?Y ? ?&k ?ẇ ?y/ ?5 ? ? ?nB ?A ?H ?ScsA ?{M ?" ? ?2A ?أf?=z#?R* ?Jg??w1?玽??o+?cx8?/vo?Hi?G~b?*t?&n?pk\?4R+U?.p?S?{i4!?>+ޮ?lh? Ա?0tyS?2e*?!?ؚ?Ɗ?rΒ?J}? ?ܮ?}ψ?Tko?ś0b?ҌN w?th?ϱ[?m?Ԟ?x?ȅ??y?M??@?n$?pܽ ??}???:?y;-z?>.l?B]? S]?9K?]~O?cS)?#<? gbJ?\=?l{-?.?d<&P?GU?E\? mI?փ|O? Qo?:#b?Z[?fb?h?U?g,e ?FzR ?ʐ ?c_ ?Ť;@ ?|? ?݉Hpt ?`t ?, ?_> ? c ?7 ?`83t ?hs ?`NN ?j?; ?#y ?E" ?&b ?Ħd ?`J ?Ί ? ?F ? .4z ?N# ?Q$s ?-} ?9m ?Lo< ?P? ?c C&?P32?G*\??cK?q&.?z2?(q???5??ؒ./z?cW?G'?ͻo?w?ewv??vC?Q&?a?NJ?'U?Sh?lL??엩J?zU?FZ? ?g5?2?k?l2??dN?Չ =?W8?^u&?,?ԫ?۔?Ni?Dn?'?A ?')8?ƘI=? ?C?0?ΜL6? 6U?hPH?kn6B?iH?UO?%G<?/) ?(Э ? ?0Bu ?߭2 ?~ ?;e\ ?P, ?4H ?e ?}El/ ?|?' ?@YQ<?# ?9Hܘ?JJ ?R ??y?qKw?J+ ?!?3?ҫ-?DqW?c?}Bp?-K?I&>|?Jt`?l?R?| ?O?&??=(?#?ZT? S(?۝,?z֓C?J=?4t&??O?XF?n gË?lV~?} ?2J?dr? ?>܊?.cҏ?ǩ?ePD?[?£?:y?tRΣ?}?|4H?kdp?ҚC9?9.iڷ?2ҏV?ɧl)[?F\XT?S??T k*??Ԅ??Ge?`*p?:j)?#cy?M[?ʳN?<0?3Δ ?zf+?i!?Dڂ?`nP,?O"?> D??XG?"? ?r?oP8?%ҷ?.Р?m??<?9p?p?7n?4Ux?I\?ѯzy?@_e?^׉o?-Q4?n??Q&?Z/? BJ?yqS?kHՌ:?@%*C?0?̥??0Ր??FT?6?B*ķ??!?oqs;?^.?th(? /?)5?dj"?#8?f ?AW%?P8<?[?*?1Mb?N?z?)???(?l?sC?8j0? }9? г6?,i?u/S?l:*]?[??krvx?!ԕ?_?Z=?_dB?Y?rE'[?U{i?80qG?oX?\*}?n9`?_ (r?a? P*?:¯?G.??{k?:g?!g??Ck?:\?zze??D?\do??4[?n}w? ? lt?T?!_?xp?a.?&?H3v?ҴǺ?]m?3&?>?㐀c?ׅz?Ɨ?#K ?I8?0?h?&6 ?$A?|௩x?)?Qxzv?Bsr?i9!? fz ?FL?Z@-?5ś״?e?xt:?xr?Pd?"?smj?l?O$?/?wmu?p?,G[?NKe?ODiK?Tˮd?HƺKK?y/U?ue*?B2?Gq;? bX?Ey;?g$?!-?ϵ?I??[|?)wt?1o? ?E?tљ?}i?x!? ?z?Л;?0n?,n?]u?m*s? Ȁ?I??-?C8?-?g:r?O?pQ?د?`%??L?\W?zY{??-?.#?`?k?0;?{:"??r-?nzX?ɘ?u?|%?43_?k?*L?O5U_?x鹫?}`j?~?+ ݂?c? S3}?M~5?ۥ?8??-?ow?M?U=?g@_??-x?\ap?2??}W4?2?++?X?oC?V7?˱??,?,?*{?^x?3K?q6#?]C]?V?7?e?d{F?2oO?LjD?7x?.R?c9c?h3?&#?iL?6?{1?[??NU\?]?U!Z?BZ~?P?v/w?`@?4???/?W1?P r(? |?)?B?EW?Z"5V?d2?q?B9??N?6?"????|k?v??Dܻ?9UB?9@?m>?*z?*p?;cSd ?? A7?e ?Y,?Gy=?8se??7U?|=zZ?1eO?㿀?9?ў0?[LU?ئ?]˄?S+H{?E*?? ?k]xS?W$M?f- ?@~ ?yw?-l?'Ef?i H??u]; ?7?K?H??KR: ? |?L?m?m6 ?e?h?%?bE?H?N?rY?z+X? ? Z???ܟa?fw?()~?d? -?8_?nr?9Cs$?x2$?(?3%?0?2*?y6?5A.?.?(?ʄE9?"e)4?j.b#?$K?.?gq(?D ?l ?g<?^3\6??ņ "??(ԫ@?xj#h?? Cs&?Pt? L?Nq?Q?.䀲?LD?u?n?l?8?>{I?ޡ?Ww?'? xjy?%Fr?u?N^I?|-Ȏ?uUdA?A.?!Tf?,梜? v?p?fL:?EZ ?0?ؓﭜ?}?W?|??he? 7$?->t2?fj?np] ?}?j(e?Q?\B_'?5&?l|?I-?ʌ?*te?@Iݹ?¥ĜV?n8Ѱ;?֩V#I?fA?k?HmQ?[_?g.?Q?;?!W9?Xw@?DGG?BW?M?1V?|,K?O D?'>?˕Q?sMJ?O9?fO4?vyE?{??&"?'.?fk(?W.?,4?䔁9?Z7X?i?:?O?'?dZ?i?MO?ѓd ?EΣ?e`*{?Ę`?~??Yu?tm?:y?Rk9Y?Y?j#r?߸y?o1?)B?'E~?xN]l?Lv??׫?C̖?0 ?E܍t?A1?uEp??^wA?K p?2?DV?ht????,"?.GT?x,? ?C?Ҩ*?wh? f?~3?qt?PR?L@[?tqe?N4g-X?MLs?,m3a?J(j?Zhg?8 ^?5W?9i? ~gc?b/9*Q?s&WK?\?&W?h9?J3E???9pE?=aK?Es;Q?t'+F?<(XeS??1?w\???hs?Vj?V`?)yk?(?L?)`?޲V?2LtwX?ac?5j?y5{HX?h^?{=Zq?ךw?~We?X[k?1?I$~?(w?{k$~?]W?ݟq?:1K*??J[vg?58?JG ?:|?q?_?>\?|^?? ??T7?P]?,B%??HB?b/ p? >x?r? ?jew?67J?qj?|t?a|cn?m?R z?]h?W][b?jt?tn?9=Q?Sb\?\W?V\? .b?0h?2\8?B?ĭp)?8ߓ0?ORL?w L?i;?'[.A?L?eR?6i@?BԦF?wX?&_?1EL?ZzR?C?q?*xie?kg;_?p>`e?Аk?Y?fQ]?wm ?!?gۋ?C?g5?R6?l0`[?PH?Oh&?@U?Q#c?ށ?f? ?,F*??P?DTߪ?8X؎?-b?4? `?L??`H?ב?G?iFz?:E??kh?t?HRn?Twt?Vez?!z@?4C)?/T/?Ҍ?_."?mjg5?9O ;?(<(?3.?)j@?̭F?bx4?b͈:?A9Y?zEL?gF?L?zR?@?Nۊ?RT?zt?-?? V4?r?ֲj???0.>?p"ȇ?>s?Y?h͈ƶ?<#?U?I6?"?L`?×?\?6?H؝?@_U?!)?7z1?8?PY?[?~?#!?K?ݨ?q>I(?#U.?<?3"?rbd@?RR4?@.?w$c4?.v:?=(?_Ƒ?V:?E ?5ߜ?*J?d?5C?^? 3?P?k>?C-?$#G?+*?n??&O?w^? s1?hb?';?bqc?C?4ک?(!?Ⓕ7?*?q ?, ?ye (?Ex?>?? L"?:?Bzm??bp??Z[?R?-?8/?>?<??ȯ?=?O8?b,?[?]K.?c??J?R{&"? ?Xfa2?"W?j>?V?'ݙ?J? ?#K?y?-[? I?-?WG?A??ؚۊ7?`Mb4?Cy. ?&1pvp?dH?Vk?fg4?`0}T?!1?? .ʍ?i?cFO?/4?;?y%,?!?*-V?.\??)`?k"?&8~?Y}D?ۭ?*Cc ?GfjyT5f+CFuq~9@)t?u???t\P0?C??:?4 ?ob?z:?$l?(?(?aJڰ?v?iH?7)!?f?:?r=(?nV?$b{?a>a0?94*?<?l 8?7?L?i@?ۉ?mߑ?Z H?v^?EQ?oB=P?T!?zCQy?أf{X??/?}`?watm?Ga?isi?Dkw?Ji9?>0r?+ U?!̝fH?ELz?wh ?!*5W?b ?[;?ݺ.?v'?MN6?jk?=B?n}!?b{?.?LC?`%A?zѲ?<?J9o?vƊ?=B>?Sz=? N?#h?l $??ӓ?_Ŝ? O?/a??Q\?s7F?y@????oL??7?}b? a?fe?LՌ|?C ?e]?") ?F\?k?Z?0"?Tdߐ ?e ?}}).?|LH?`Ʊ5?XA=;?syZg ? ?oH?Β=#?(o?bU?I ?Ul0 ?Zc?p?^ ?q?U8 ?' ?r?I6?(?;R?L 5 ?F' ?~?S2?;JВ?Ulձ?-B?8o?h^G?a?h[Ǜ??(|?@з?^? [?F?97??Q?)g?o$^?Z ?n???N?Il?E??O$p9?F!? ?'k???Sf?m] w?h]?J?ݺra?nhl?5?C/??dQDLE?aL?2ɯ?[-?{?to?>Ů?F2?? p?]{?9}?3e??ٟ?+?t$??n?'C?]?*x}?1?d_?c" ?wg?K?̲W?J5(???µ?fS?QY?oe&Y?B?'?n+?RV?TiE?{ӝ?Kr?ʁ??)???L?~?rs? U[%?\?o?6??5,?v?L?y ??0Ms?;?ڨ ?_?|V?k??A`?EǕ?R?gx?ٛ>??G-??K?z1?ki?n%?yn1u?fH/7??)?+ZJ?)#? ?P?kE?! ??mPil??_?DL?#1?w?R9x?x? ?̒f?zc4X?(?ph?mL?D?y?"l>?z0@?O>?f??j??fD??Ub?L?W?i,?(3?kP?c ?t)? ?2xG?W*T?e1k?!Km?ho?47l?"[MRn?Nq?󤈮s?qp?fr?nu?Ox?'t?v?.A3z?f|?Wy?> Q{?M>~?/BJـ?X}??4 ?JZ?j?U1?p??u?2 ?1+8?:{?B ?m\? f?c[x??n ?gǔ?h^?&?*r? ?bd?<*? D?R (?/?{4-?Ke?:3?0W?c?Q? pt?bc?)?[ s?i?J?F??pW?8c?? R?9H?yt ?ᓫ[?~?on?ә?kb? Z?u6?\ ?,h ?Hy?B? ?3 ?V ?t ?A ? ?*Z ??+Vh?,? @?Oh?R҂?F?=?9O?cl?}??ÊD?Q?LW?J?%G!?9"?8~ ?s"?W$?$ %?@#?u%?{?w3D?kʽ@?C^fB?LJC?}A?>?!=? ȵ??K=?u'?)n )?6&?|I<(? j*?ɑ=,?{)?)km+? -? /? -?#.?Ra%1?2?sSN0?aU1?y|4?-6?3?yeO5?7?9?-&U;?+.:x?͉?‹?!?Q+?W?"?TR/3?x?D%?]K]?X=?[V[?Zp?j>J?~Z?O[ ?Ĵ%?hN?$?q6?.x6{?H?i`?j?Nl?nػ?4T?Ǟ?7tg?i m? ?B1?t???^?0@ !??I?!$?$?!?_3D?h 5)?7?Җb?s8? ??>l??fR.??'?&A?r~Y?z?X?IH?xO?w?^?O4E?vD?Ci?L?F?WK?q??C?w\?-? 9?|p0?Lm?Ԭ??~v?7:?P1?o&??w??H?S? ^?3g?>?tl?}?e`?=?@PY?2 ?eA?9&?U``_ ?O@ ?"5?m ?f ? ?tOj~ ?> ? d?j-?k ?#? ?݌?;?,_?Ms?yn?F0?疸?]E?8 ? ?u?v?h?‹?WV?ut?%se?Xt?۩??[$?x`?p???V?e0?wI?? ?uVf?{?Em2?5Y?0d?/???Ǝ?2~f?i?~?3/?ӤI?p?G?SO?9G?jH?م?6?<?"K?39?}???m? x?#I˙Y?wUv?{t?Ww?ou?4r? p?s?)q?E9n?ml?o?&rm?hj?eAh?Jk?{oi?sxwf?K}d?g?ke?% c?0 a?~kd?b?0Ϯ9_?6P|V]?)v[?㐖Z?30`? i\?>9JK^?TN?S?XX?~#Q?y (V?5&?l?D?5? ?wE8?P~?qk2?T?{t?pM?k?h?/?'tؽ?*??r3?FSA? ׊?\V?Rr?Gh?"?Q??fv?}8?ș?iۣ? 7?b\??V'))?/*”??G-?[?D1\?p$ψ?qt?zp?Xr?Td?|˃?=Z$?rZ"?7M?2g?Y:?zK7?[4ȼ? x?sĬ?uC+\?? y⥾?ډZM??.??B| ?B?T ?v?h?l)?yT??ԛl??{J5??.u?\?6?e,?Tp?#k?T<0?{?UY?e?wQ?/ ?Z? A>?":?<~6?6w? fg?4.?Ĩ?N6?Ϳ{?)pQ?2_?c h?1c?^Za?8e?}-Dl?Kp?%j?Y_n?t?g y?/[r?Yv?|S}?:0?#{?(h???zO+G?}@?I?;? ?2&j?ې?L^?_Û?;??O -?֗?(?~!?= ???#y`?a?Ay?`د?6IK?H?:?Lf˸?R?ա ?cH.?*?S˰g?-?ұ?]a?" Ѕ?JI?3OD?:'$L??c)G?(??a:?1B?<%D2=?85?50?kA8?3S3?V+?pN'?+0k.?K')?#6"?ρZ?}$?{C??{?W????a`?4I?` ^?7?.L١?D?(_??g<?c? [??Wz?5? KD?^(?w??01Qx?f?Jx? &?>g?|Z?I?n?73?8?в?l?b^?e? ?z/*+?2??EP?xy?:cr?OQ?? ?6?:-?;?ǖ? ?o?c}a?ׅ1?m?ŸC?~=?%u?+t??).?6?(N?'?.f?lK??Q?v0?? v?Lc?o?[?dT? I??)?ߘM@? ?U*?k?E?g3M?ل? M?fW?rb?/?w?Ԑ?>6CF?xG?E?pF?H/_I?ҭƋK?HH?կ;J?¾jM?%BMO?EevL?A+?RN?:Zi?M g?R[j?h? Vd?yB_b?Ī%e?c?LU3Q?0xS?y6P?R?ܚW U?U]V?dT?4U?X?(VZ?{xW?pY?m\?%`?`^?ua?[?~1_?n_]??A{?f7?[? 6K?L ?EM2?uP?ސ?E}?7? ?0?7K??oAa?:g?M0W?r^?ij!?RSp?*?- ??Xt?dm?y#u?O?[9?Ѳ8?2Z?\ rJ?_U?k?+?HьX?:q??-4? i?O>$k?K;t=m?j?-l?ZZo?){q?hSIn?9\p?wTs?F&u?0r?uPt?zx?#7z?Xv?--y?&o|?q5؀?k~?%?c{??zH}?K?(?C?!?r.Z?ߟRۉ?l,?MR?$D-??P֐?cJR?ì?io?劰~?df?j?5 ?h?el?&]?Nn?a? Yp ?FD2E?#?}P?59?gt??î>D?zm?_D?Cv?l? ?Dm?=c N?On? L??<5?GY?f(?akz?{cg ?W" ?8 ?ba ?ȯY?E] ?! ?" ?҈{n'? ?߲`?ʱ7?S=??F?3%? ?6 ?7?Y?Q o?6?A;!??zo ?s"?%?~ ~N$?Nў&?!?_%?U#?n}?S}?9Z?"?=bF?ԍ/0D?l,1aB?37E??HC?ŕ@?>?g{A?j??=?FI;?=?3?t~j??u3}?J?b??BM?g??5W?^_?B|*?\N?ZV?T?Cr?'?쥈?pl?Ot?ق?`?" QS?ˣ?;ԑ1?d??ȕ)w?\+?|l?'}?5?зM?mɩ??uH?J?g?>~?>?ƂG?i&#?7d?B?V{?ڇ?h4R? n?W?tSZ?M?w?zZ?H?bgH??{*N?g8??ӵ??!?U\f?ՙ? _? J?$?]$?',?-?(H?&&3?BG?s`?_0.?NW?HU?OMoX?aV?T?]GR?0U?5S?ozP?AȱN?KxgQ?y͠O?0L?X)K?v6M?N!L? jI?06G?XJ?H? buE?j"@D?F?EPc"E?'?=&?=$?8 &?"Wr%?%#?!? JC ?̩?I#? !?)"?ND)?r**?df(?)?,?CN-?+_+?i,?X&/?^U0?=ڷe.?D//?QD2?=3?61?!3?NB?ɣN@?nC?A?\3??hF=?@?k-?e>?Y;?<C:?}R?f|S?! ?(^ ? ?P ?T4 ?e? 7H ?H ?;,?H?с?l=?Lq?_?Y[?ǟ2?W6p?`lI?|:?? &?[?*_?Ek?j=}?a{?L?cs?_۔?G?/?? ?բv*?f]F??à?_?t?V1? s|>?-x?G ?d?S?.n?E?fK?~Қ? $6+?؂P?G?z*?xwu?b?i1?4Hx?Yz}?‡L?oj?B?x?#*?S?.?+R?&j?'b?o?v?`?\?$z?x?RAv?y?4qw?RW?ikY?{[?X?ߖZ?t?>r?{u?s?p?l n?gq?o?Hol?8j?^m?Ik?ᨨh?:f?i?#g?=d?Dc?? e? d?x2'a?KV]]?G@_?7 s\?i2!b?zO^?Z4`?Pۖ?T`D?4?'?^?z?3@a??S? ׃?@۪?sx ?~λ?cs?)c?l|?P'-?RQ6,?wf?W[?̰?׶Ȑ??~?tO?Hr?M?+%?;?Ȕ*|?@ w?~?Yxy?Hq?ITl?At?)o?Ag?|b?&˦]?/[?̠ȇj?M`?E[e?مI?Jd֯N?Xu%S?ztML?:4.Q?nBX?=1]]?'ff2V?%M[?849?p-6?F:?DdX7?*3?D30?H4? 1?(r@-?`!Q*?B$.?{+?T+e'?M{s$?R{(?1&?Z>!?ܿ?=#?OZ ?P?>? )?`QN?`k$ ?W8?x?9?}??+?5i |?$~?j?r ?yy?b))?ɼ ?A?5)Q ?cx] ?:?H?$i?X8?%?q?% ?)?N?0)[M?ok?z?zݖ?RJ?r?':? :?V?(??{?3,#?9ۣG?ޖ?&F?xc???˰fa?C?⣇??AS?X Q?\?lj?]+??P? >?v"wB?؇gE? DA?14-C?!Sf[H?v yK?%LF?{ҤI?AΙd?yma?/k^?~ c? Dt`?[? bX?؉]?VVZ?s-U?1?N? wQ?L?! W?$IP?S? r k? AJn?>hji?Ol?G0?wdҌq?gt?bo?48/s?s(x?v{?K*}v?y?^?ޜ"0?i?x?^%|~?5w?s%}?j?5C?FӚ??? ?+ˠ?2 A_?,?Bh$??/\|?%׹?$m?)?gy?^h?F\ܛ?N?"oz?L?Ã?N.?Pf2?ʍ?7r[?5)HW?VǏ]?g7aY?$ ?R?Up? 臷?yp?y?s#?t???AL?<"3?O?l?,Y?=?w\?cg??\0?Y??/2?P?n%?2?,t? 4?w?:/?q?H??23?=k?(~??NJ2??%K!S??t:? @?d|ۺ:?D5?9K=?c+8?0?[,? ^=3?ls.?7F'?#0"?q)?.'%?4?Y?f ?ϩy?<"?yLA?o? ?Oc ??qp ?6 ?O[? z?3?pS?&O-?>y?? v???P3?ALq?]}k?q??i?C:?6J?ww??e"?XV??(??9?2?CaR?m˃?Jy?o-zYs?Y8}? ɶv?gl?iNf?G,p?wi?d_? UY?d+c?|\?&R?;IqL?!YF?յB?]'V?*I?x)7O?`b?Ѓ ,?SF??< ?vg?Aы??a ?bBZ?5OTW?w@?ZE?\?՞X ?hW?<^T?Կ?#?HQ??)[?'0?~?>?ki$K?I>?0b?[?Gt`?cT\?{?n?q?{?uG?sI?4ZF? H?K?4]M? `J?/jL?5:O?,9Q?aFN? =P?M.f?rd?kg?fe?49b?y/`?!Ac? Ba? pS?NT?NUQ?S?v1V?+X? I\U? ~W?Z?KU^?̟\?_?HWeY?ht]?[?Ci??Ǎ??Rn?h.%?񌝧?۪'?/?%?Py?:T?}?(Q?߲?;???N?Ĉ!?bf?վ?nZ?Ψ?_DX?xH9?q;?تM?fg?]ɸ? DD ?;!Z?F?Rֿ?/Yt?Ey?买?Ek?c]?!?T?Z?o?f T?k?yi?l?&8?9?f.r?O˼?| ?\?{?u4夶?[9?L,?? ?p |?7fވ?ۊ?ʉ??H?UJ{?> v??ډ* ?F?Ќ??bKL??nu?\z?r?PuO? 39?*S ?9?M?dhF?,2?wo?,it?Xs7?&?Q?P?Eip?g E?99z?66?'?9Vf?i!ـ??'`/?g?6&K׃?h?k?@g?r&j?C8m?fSJo?}Cl?m9n?Lv_q?s?Lp?g_@r?3u?ve x?URqt?nrv? Xz?Q~?KR|?"?MAy?F6X}?yj{?d^j?1ʼn?~!? v#z?^;#?d|?3ھ֊?m?ؐ?,'?Rȏ?Vb?it?w?_Y?)?F|?$T?*(?9?[?? ?M?N?.b?Eέq?ߌ-?f5?Q,i??wc?hTҡ?M?)?5?r!? ?-?$=?@K ? ? ?T ?A?NBD=?;d?U~?!}?bb?ލ{?G"?Ћ!?lغ ?F,rl ?Z ?j>ft?Y/ ?!!?77?"g?& ?!B1%? (?na'?'Ա%?/(?k#&?[X?\d?875?u$?B?S?gQ?͗?!?}h?q5d?Ի?D*!?2 aK$?kP""?1 %?c? ?#?dWR"? ?.n?iOO?䋭u?"G?#E?u.D?xIF?FyRE?aB?:@?+3EC?EA?3>?kԭ?Czw?Q?B? ?(?+? ?K} ??K?0u}?ٔb?Qn?X?`?}?З?l?*?Ly?|?α?>?_/"?׮?6U?o?ϡx? L?VL?sM?-J?2{O?hU? K?P?Y'_?i{? k?w?KW?br?d?w%P?#U??;U?"?MI?H?Z?e?|T??bW=?ٝo'?>Z'?i?r{??@? W?d`?ufR?xR?4@?c?LJ?*+? ?o ??!0k?z$?ov?!$?ں@?kB"?x|&?n8ס?A?&y?{?,? ?I, ?kk}#?Ϟ?h?c?eZ?Ҍ?K[$?[3?R? t?V?|$?C$?^?? ?ǦC?h2@VG?3`?bZ?ڔ6U?j$T?NjV?KU?TR?ȉP?AS?2sQ?JjN? M?=OO?א0M?BGK?ɤI?ܴK9L?h~J?ZG?N6 F?3H?^bF?MPD?XB?|Y 7E?TxC?c3)?ʾ'? mF&?!(?Z&'?ҭ$?!?oV#?Lk7!?%?Ś~"?3$?R:*?PX&,?<*?hi+?N-?o\S0/?S6o,?(/g.?R0?~#R2?!ԭ/?\1?E3?15?]~m)3?[4?\@?,n???nA?0@?eȃ=?S;?wq>?8]-a?W^?&3d?'%`?b??vƳ?Iuc???{D?k???;?`h?/p? L?P7'?B?M? p|?e?2?D8?ݸ?nω?BҾ?Yň?6S?hn\?.?a%? ?ˈ?܊?NB)?Y|;?Jܟ?: ?Vi?uJ?s*?e<"?P.Q?!D??'!?=z}??ї?Iy?:? sV?~W?Y??8????."Bړ?k&?܋M?~?"\?|(Yh?l?j?*??$*gS?H?V?-k?@#?u}r?q~?AF?\ī?&.?m{?e?#?=Z?/?B=?JdD?C?kU?Si?lC?^?X?_y4?E$?Jݗ?#픤?[,?(?YgF?$?2r*?rMY?3NI?4^??aB?ÓeE?xJ? arN?)H?r)sL?#Ad?O!b?/cg?Ld?{_?[@E\?1;b?v^?a|Y?tQ?/.U?䞥O?X![?IvT?J)W?^n?}Dgrq?c{-l? o?&?nR'?3?GԱ?p?ӄt?;,)x?'r?v?-G{?1~?hj z?y!}?7S?{lا?م?ݛީ?0 ?wy?{?Y$hf?R&؅?`?!^?d?k?~?Ro/?&8?$?~?(Ժw?8?c?ֆ?JS?s{?o?L 8?.ZäE?lh A?:?6?r=?۪8?f2?.?;{4?c0?5&*?D޿&?0,?ԺS%)?L"q"?8?%? ?<@ܱ?Yj#?{?k?ۙ?YMf/?S}?G?#NP ?K?)% L?Ƃ/?Xx ?(\Id?f ?ڮ%;?~W??,[?@ɵ_?(2Z?]?MY c?'Mg?؄a? e?{0l?sp?02i?ٗn?^t?x?cr?Nv?|?ܺE?ʅz?FDu~?@"?sa?:[??Ƹ?g5?i51?ˑ?ї?.`?Tˏ?$f?H ?^I?c?6?5?u?Qx?Tr? Q/?7?m?p12?P =?qؿ?kݻ?f>ѽ?|x??go?p(?w??\l?[n?sL?"?{??)x???_?sn? ^O?^W?˙?Ll2?1Wȴ?$z?,0?)dK ?Q?cO)U??k?$b?su^?$:l?aM?[4??;?3}Ж?Qo?(?HA?e]c?>c$?ovz??9U}?zVhs?EYm?"v?gup?Ҝf?4;_?uci?R*tc? oY?PL?R?ϻH?\?O?V#V?޼6?rH? :?UQ?gq??7 5?"?&Ah?nF?rjG?C#C??V?0V?aa? @!i?1?&?URiL?Σ?s?{ ?;S?R?iK?Kw? ??~I?i?O\??|:?x%?,;9?nP?"o?`+U?$?S,?^ $?&???xԏ?@?D? LJq?j"?&V???&?7? ?NxA?e醭?2?\?PwA?η? ?T o?',=?P4?a?R;?y0m?L?u?c?8?1>?x?k?a$?k? ?s6@?v?zgJ??ej??oN???R??(s?`B?XP?l? "?AC?Es??%?ABS??O?nH??}8?Q?j?~X??ٲ"`?wȘ?$+$?O?)fW?$%?N?n??V?D^?|?0T˟?b?i?z>Q?~?@q?+J?QN?b6?9+I?'|K?YH?}8J??SM?c9$O?pL?0P6N?~P?X>KR? P?bQ?tFd?ˎ5b?e?c?Y`?1=^?RϾa?W_?hT?gV?`S?!IU?X?XO\?#Z?q]?KW?\?Z?I?ͨ?[U? =h?Ljb? ?dƃ?윋?MV밢?z?ˤ?3 M? a?NeN?% )?ֹ?b-rT? l?C?R?JF?:/d?Khn?!?A%?yo? "|?팔?Z`?PE?v2?5 ?jsJe?aNc?: x?违?gol#?w{'?h=?#?2:?JR?Z??>?ޙ?PV??L ?R?(b5?3H?xj?i?(D?WL7??g? ,? `P?3be?h?o4??:y?f? a?e?P?Fq?4&n? ??rb.?qu?~`v?C?[?˅??w?k'?V!???Y?T$?aϸ)?B'?8%?Ub?q?pJ??T?,?IW;A?gV?x0"?<]}!?L$?r??ˆ!? ?g9?b?7b?$+?\UG?Jsg*D?rE?TlB?aH?ԑE?D?xM @? L>?LBB?h??Ԕ?f[?5Ie?Vϴ?u?J2+?p)zy? 8?+?\F ?&?DW?? 'v?I?\?Ug? r5?{|?ʁ?]"?vb?P*?Q% s??3,?G?o+?1z??j?;?侪?c4\?i?'~?9g?Y`?z*?1 A?z?q0?+? ?eRy?I^?DZl?:?B?g)?/~6?N)?#LR?I?Bc*?n?X?){a?e?s?SQ?7?koͦ7? }8?j\78?@ơ8?;Mu$8?D,=?n=?<=?˻L=?v}=?<(d=?%L\=?+<ɫ=?qӖm=?TJ6=?y\=?1G=?ܚ!=?O8?;?")#8?ۜ^:?) 8?(s?R??Me ? h ?Yq ? ???)6?7?4??a?1?\?V%8?o(? ?"ȁX?8 ?b ? ?W ?Tb?Ry?y??N#?ˊ?ȵ ?KI?D| ?()??@ ??Ot; ?븿?]K?T7??0??TR6&?k,?8D$ ? N?k&?O?",?r?" ?@?̌W?VoC?ky??r?c?O ?Mm?=%?X0T?$߲??݀?I6?G2I?An?-?lģ?~u?<?8?|?@L?BvJ? ?X?]lq?%?ZD?D?2l|?x?%z?? w?9~?9Ay?{?e u?s?ӿQ+w?WkLt?a?m(c?Xm_?58g?93b?ϭTd?t-?B-)?RM+%?F+?_'?ԛ!??-#?l ?%?綝J?-$?P?Hq??G? 3K?/q|?Vǃ??x"?Z5?#?M-?sQ7??&?rL?Ko@??Whz?#?X3w??? ?!t]`? ?Nk ?C?yA?IOE?>?q?⻡?s\?[9^?W3 ?~?pq/O?- ?j?d?@?q?(e?O6A?Uʅ?a^P?L"? ?/?*?4?&%?&?T?b?W?N?0?-8?"6?V ?aD??u!?T?Nb?0?TZ?*C?\-ŝ?o? ?*Xx?We?t9#2? ? ?Ȗ?L7=?%??6~?̀ő?|6?d?F?q?Q?C--?K?G>? %? mi?i.G?1?E? [?p?~?CP? t?3e? ?(){?S_?@?P ?A ?lqs?˨?a?8,?Y?Ol ??Q?GD?3?k ?ӂR?Ol???>g?F/6?үٟ?m!X?_?${:\?Կc?X5W?ua#\?Xs_?Ng?l?Dvc?K|xi? fp? x?Swt?$13|?ؘBn?00>t?m x?nc?M? R|?}Ks?%ʼn?yއ?C$?g} ?5WN?R#?c͐?TYە?)??E?!?'d?{9ͭ?;??Qzä?{ O/?i?5?K?y1u??g?E?M?,YZ?֍c?fF??ۧ?C#Q?7;g??%f?V??E:1?B8?sIz-?f B? `3?1P:?uk)?!&#?kk9/?K2'?u?V? [!?ǃ +?m ?w`?<>? ?0?`?[/+?y2?eu?_?8O?B=b?F???p?<>??-p?6?M?d?d?Z?kd?бR?g?6d^?:?P\ry?7?*r? ?:?.o?U&?x@?4?f?-Wő??)X?y`???!z?{s?=l}?]v?B|dm?eӿf?ѝop?xj?_`?M/R? TY?mnCO?eHd?rfV?J*]?lsR??W(?lo?w?Oh?<+0? oz?0d?1.?ͣ?[8?ё?a?b9N?K?[|?Ң=?D~?½?fhZ ?L&?}#Q?M#U?%/O? (S??%Y?ʊ3*]?)W?(-[?p?Yi??:Œ?C??}k? p>???݅?Ӈ?Я?z ?}?Q҃?u?luy?oyu?ϩ{?m0w?eq?FUm?^0ts?j_o? Fi?G:e?I1a?KJg3_?kOk?R=8c?SNCg?:?Y~?v<?ҴV?be5)?$$?XC ?y* '?Ҩ"?`?TN[?΍u?x?= ?|_K}?~?ᅵ?j  ?3H?I ??bC?!I??7}-??}?hN(?ˆO?z^?5?li?f#?=?~~?CӼ?O??(~j?j?FY?ޢ?c&?U?q;?y|?a ??b0?!~?1{??2?&D?l?[?3ɝ?)?W i?`C?Eq?A'?: ?+C(?)s?d{"?Wcq?*?6^TH?,_e??G? \? OD?e?@?oy?^?^>?zU?d3?IX?û?5?x?t0?? ?i?A,A?hJ?g??]?. ? ?;S?A? b?yn?2( ?Sk?Ӌ?a#A?IJL?4?k`??zl?y?^?rD?(?kf?5?JW?u:?䰟??IBn?cQ+?KhI?^?-?R5??6?uvL?~̻?s?s ? ?@?N?)??w?9?h.?Y ?q?VD?xf??f-?0RM?~ '?(FTl?Ed(I?N[??K?gy~ ?,4(??ȷr?N ?ȸM??y?%<#?8?f?S?8K?gVO?RM?P?&fJ?/MN?&-M?dR?T?wؗP?+,S?KuTPb?^?֧`?D]?)I*c?~L `? ^?IV?J[?ѻY?^^U?]?\Z?+X?L?u >I?UF?>J?Q{G??⊶??PH?j?ã?xÉ?Ȑ?|?O?M#:?Q?HySכ? ?C4?k?wި?颰?]?{(?L G?p ?uժ?D`?ۓ?m?Kl?Ld?S߶?C! ?Q@?z?ymi8?SZ?BW&??D⟳?_bV?nP?4??5?ʎ?ᗺ?zS??ZN?UTW?Ig?KX?9K#?!$?U?)@?(]?N3p?I?X?S?*|?W??.?? ?]?i{? ??Tii?Cnx?=?m? ?,?O?=>?lHxa?vd?Ԛ,lf?; b?ƞd?ށh?k?0`g?Bi?@~?1*?*5??ƃ? 3?:9?]?2ϙ=?o?<+r?A1l?ip?4]u?Ev{?-fx? PKe}?xCs?z? w?'p׋?[?rʼn?Thnj?J?;J}? N?"?gT?4?Gth?AB?5?7ƣ?:0v=?3?(?'?Y0?dqP?b2!??3};?!?x? 9{? k?? ?9x% ?հ/ ?w ?q3?+V??n}l?T$ ?"?ʆ?k??jd?u?^V?[?Cn*?m06(? u+?Du)??UR?rL?햐"?>x%?>#?sB'?'$?ƭ?+| ?Q?W?H`?De?\$!?,x/?y5P?XP?(C?PA?"E?'Py)B?NZO>?;?\zf??[/?8?g?*~W?8?Z%?ҽ?f?0Aa?z??KtS?l ?)a?op?ز?Qq?5[ ?xX[?NSO?C?M?Re?*T&; ?`?x$?ܧ$?45?t6?R6?ֺS6?Xb6?06?6?w؄z@6?Oc!6?W 5?XcM5?5E5?Z5? 5?Ӛt 5? 5?^Η5?f5?o]?E5?Bv5? ȝ\T5?U'#5?Ts5?25?V5? 8?4?) 4?jW!w4?jZr4?4?Z ~4?PEH^4?Ѱg4?$t7]4?f<4?A{l4?YdK4?S4? #3?&+4?% 4?85j3?>3?f23?sM3?N$ y3?=y3?13?!{3?l~X3?83?7kh3?lgH3?P*N3?.4u2?2/t>(3?*H3?fk|2?"2?`F2?bq2? 5Ř2?y2?N 2?ه2?O7\Y2?992?l&h2?mH2?FA2?ə1?v(2?Ty 2?Es1?(*1?1?^1?i5VJ?@)J?@-IJ?z=J?vJ?*J?VCdjJ?.uNJ?HJJ?h K?xa`J?J?@rwL?eIL?AL?t(";]L?-/L?.,K?|xK?RL?_4K? K?MeK?H>8K?fK?WQK?% KK?cVyK?J~E?d.E?OE?SAE?VBE?dB?B?/dDB?cB?d,C?zu@C?C??*C?aE?唄7E?6tE?>2JE?W ! E?/ESD?DcE?cԅD?j{JD?]yD?jD?0D?D~=mdD?v:D?FlwD?IMD?D?geC?#D?C?o[IC?yC?}qyiC?DDSC?; C?h|C?dfC?{Q1I?3׉I?a~I?*I?vI?uJI?NTI?h^I?I?\ήH?1I?ȫ'I?IjH?P:H?l[H?_D H?uH!mH?YAH?fH?{[UH?P/H?œVG?'we)H?VG?a0F?1bF?ZH67F?(W F?E?n2rF?:'\F?^;\IIF?/P̢F?9ѓG?G?0xG?G?Z<;PfG?:G?|CyG?BgKG?WfeG?g=F?:R2ӸF?< F?!zG?vF?U*HF?|,%J?SI?X|I?O'[ J?WI?t!B?B‡MA?jb3B?=S B?BhA?ߜ 'A?A9^5A?-RA?~A?u]VA?a1A?O\iA?E4.A?A?8k@A?-zA?] @?xݵ@?b"@?F@?@?)f@?NrW@?B;x@? _s>@?@?!SP@?(@?WAN????p`-@???1??0/???1|>?)&>? b>?* >?ī>?erh>?B>?J>?>?:1z>?^->?+TS>?s[B?urFB?ynB?ζ"0B? 9XB?boΗB?5\B?.B?s~B?(<7?&~T7?;6?O'7?7?:&B6?='6?Q6?n6? k6? sq6?ͦ:*6?GCt6?e!>?yt;?vO;?Aȅ;??x`;?Xw^7?7?6I7?pU]Il7?[*;?;?,H;;?I;?";:?'6T:?m_:?$:?#:?s:?UV::?3 :?z3O:?*:?`(`:?<:?:?ȇ9?=:?I}9?/t9?;x9?9?/&9?5Abv9?)R9?r69?Hc9?C:.9?}hS 9?Ɓ?9?A9?8? n<8?7D8?8?8Ϡ8?Gv}8?1Z8?G8?W7OO8?0j8?"8?c7?vY7?4q7?|*7?*ןe7?ni,8?r7?7?58? c8X8?̀"8?VF8?=?A"T=?KÚ>?6=?=?\~=?No=?s͏=?+X=?S5P2=?wHi=?iDxD=?^) =?JwJ=?{;V?dT?2ȟQ?HU?lHS?7e"?T$?y%?%Y#?ƙO%?v|!?y_Z?C/"?v ?ݜ?ABs??/?sP?cBu?;?x??xA??+X?F?=?V5?F@ۊ?A? t? ?K?ӣ?}p?lj?(?~?e ?1B?&s? ?E!a ?`?[H ?F ?ͤ?iy3 ?څR ? ?@L?m?o?+p?" ?|V?Lރq?~?yc_??7%K ??ݳ?U[? .?w?2Sw?_3?Zy?Cjd?A^I?]14?f2?[$1?? /?1?W'o?[??-?|?9?*7?0? ?0y?k?9? ?A?t?st?q=?ѐjj?DQ?Z(B?PI?b?G?a ?j,?(M?XΔ7??OLfQ?'B?D$*?kT?V?G?sF?fG?t?ˁ_|?mDD?ڢ~?p=y?ݵv?r{?hCx?T2t?F;|q?#~u?Wд5s?0JY? k[?;X?.gZ?r]?֡`?&*\?e35_?so?l?sp?m?m(i?5^c?Ke@f?a?_k?sd?Qg?`C~1?N-? 6)?߄~/?+?,%?!?Xg'?\$?,#?6CM?H+*# ?*D?Az?e ?Mp? ?`?Ė ?o?xP$ ? 1?e V?-8N ?b?#-??K-L?d ?5?|?6?T.? P?}?w??B?!W?6F?Иϐ?S_ۣb?4u[?#|]6M?RXT?,?4s?EA?g?'?ꄈ3?& "?.?^ ?Od5? [\9?(1d3?BV7?̿V=?"SA?}V O;?-eo??*RE?-7@FI?i>mC?gEhG?MG?y:?9?+?ݹd?m?ۓ?#?0x2?$?X8?Ӵf?,Y)?bA?1P ?ZVY?"?ap??xI?`]=?Z6?S?;?q4? "?4x7?p?Jb?&?`?l?"?mX?Bc?tCk?`?,?Z*B?oN?8? w?8d?J.?2[?v???v@·?? ?KC?0Ŗ=? +8? @?vP;?͈(2?tx'?X<-?. '%?6?n*?F/?0V/p?&e?LeIj?i1a?r?Ag?^l?n܊^?UsY?ݲc??]?/`T?SI?ȉN?_ruF?AC)X?TIWK?߱`Q?e7u? >z?on? /}t?-Kީ?@7?Dz?Ұ\?t1??&]?!L(?U??Y?M?D 6?]i?̰?C?@:?n Y?A? uT?ΤSЦ?Mg?x?P?du;ޛ?K?Ĥ?S0p?Ձ?I?Q娬?|?Q|?|?j9"~?i3?*ʂ?H?^y?Pn?٬It?Wl?2o~?hr?Mw?DE۾c?q :?6"@?UcG???̳?* ?=\}?Ȣ?;$ ?bI?Rx?bF?1??> ?;1B? O?hO?d.?E6?h? ?׸?7^?7WC?^*?5????$? =?ٸҼ?3?qq?+S?A=o?0?ebq?̘??6? 38?&?d\?P??t 3?D{?!XK?G?Ѯ3?]?mhn?i|?k]u? >?3m?7?um ?{?=S)?Qjq?m?Z,G? ?4D?Q3?Wz͠?8f?'?/?U?zg?7 =?m?+8e?!Qկ?ˀ? qY?-?Rx?0Z?v?O ?zu?'?0/袴?1?9??餼?s4??/A?wvA?w=?:E?S;MA?@n :? 2?X x6?G.? Q=?an 2?0q 6? 6l?l h?;p?otm?u۶I?M? ZE?ή/K?lR?m%#W?O?fWYU?s<:e?[?.`?1j?hZ?m`?`{Je?At?7QKy?k1q?& w?2?c?yβ!?Q?L ۬~?ã?f;|?{?:?C3?&a?o?eE?y-[?|dž?|?q?ɑ?A?m?p?6\? Jט?f?ceZ?kxO?R?"*U?Z/K?V?nqN?Q?,ո?Iw?Gך??6\?Ͻ3?֫X??瀟9??+?.x?J]k?ڪ.? ?т?ӳ?hX?f?=T?l?*r?Y? hb?i ?Ȳx?{?89?;+ ? X?.Z?/?F?A?rS J?bъD?>;?jd5? y*??ۃ8?@/?2B)?z!2?oV,?E>L#??i&?N ??fM ?m? ? 8??,?,Q?EJ%?Fh? #?X&f;?iy? ?H#r?@[ _?ƣCk?27e?!'[?`!n?va?+g?Bx?#~?b+u?ڄ{?τ?g?Lā??_N?jY?ڋ?g?h&i??/t?3K]?&"?R??o?c[?-,? Mp?; ?pѻ?pH&??L(?#1k?o.?!<[?qv?D?xs?c?$6?'?N0?MPk?Y1X?S{u3?(?;ݗ-?/w"?mC6? l(?D.?$?sY?Ck7"? /?E?. ?I̩!?a?80?6? ?jҹ??a^t??߿$8?,?JcǛ@?{er2?7?hmy ?J?2%?.M ?[''?=?g ?K9,?r?h?`#?`1CE?zw=?҃VL?JWD?a6? Tn.?K=?U%4?S'&?x?:/z,?Y{f"?\q?0???C.?  ?zz?-?ٍE?kXm?}?t>?_c?D3?)/?t6??5=Ό?be?*?;aD?O>? A?x?yEUz?3h?˷Y?K?a?`ULbV?{)n? ]?~e? H(K?AdR?cZ?ʣCO?tV?-U6??X_?,/ ?W3?x ?b?ہ2?Hc?-?N!?Ko?z9?#!?4>k? ?Z吭?u-?[?D$>R?3?wGٞ?I?2?;j?`.U?51Y?۪1S?56W?&s6]?|:a?>:[?)4E_?f!?H!e?Ř?桔?JRp:?J׽ ?5u?%??2ǁ?m?&m̃?IM}?Y:y?6[?c{?Yu?mq?w?Egs?*Ym?NAe? @Li?wJc?6jo?@g?F #Lk?r?2h?wG?w?}*-?i12?B+? /?h?ΎJd?ݰ_?Xf?b?2,[?,XV?h]?)X? Q?`M?IDT?O?P"W)?%f$?Eb=+?~3'? zzQ ?z]? z?"?9T?ɀS??H[?i ?K?S ??_ ?E?$eY?rl?Yٚ?\L?$7?}7?A?j??Hu$?er?vH0?5+?|*??gt?q?X ?Yvj?Գ?z?;Nr2?f??ԧՒ?I">#?f$=?(AN?dAs?Cń?=*?Ã?n?b>q{?`?k}?2v?'r?5sm?ƿ#k?0x?Uro?@bt?jA?@? F?])?d?5?YQ???ho?T.?O?Ʀ?j:?0\?@DO+?CR?U?<2?{??H%Za?Np? ?H?,aȸ?3?kL??:?Atx?qո?hlt?%û?3#.1?@? ?#o?mNˁ?u?ŷ??c?^na??T0 ?1-U?ٷJ ??K?\" ??&?t6?Թ{?&?&?? ,?ˀ ?pm)?d? }? ?![Jt?F*O?Ҟ?? ??&ά?6Y??V8x?@?[ Ѱ?0E?_?Lb?&?ƾ?\?t`?6t??/?~h?Q?#+#?at?>C??% ?]?ls?#?1?sKK?z! ? "?Y??-e}a?vVe?c?h?8_?9Oe?Qe?c?gDKj?} n?u|g?.k?6!jW?˘õ?k?/Ŏ?J_?39|?ci?]?r_?/̥?+xq?ͭy?u?{Jo?%..~?(iw?]s?K???鿝э?WKc?5z??"ė?G? L?-?|],y?'35?๯? (?U:%?K)?~&?y?Y"?W.?KA ?<8ϫ?0??|Sn#?kn ?^w? ?& '? ~@?;?8=?G9?A?S;?S>??+?L)?X(?{.+?Z-?6?MT1?+3?ﴏ/?D+9?-?44?#2?l.1\0???_s?wo?+?,p?_~җ?^w?]{?o\?%;?1tm?yI?DY?ūC?J?ݶB?!\?(}R?@?HR??0G?45?E2??dL?z?OP,?ˋ2?ݎ?? ak?Fk???*~J?+? ?L&?κq?G?A?U?~?!n? ?&E ?fi?-@?E?'m?R;b?pt'?1{??Bc?uw#?F?Bc?7Vt???w\?V?6?n 6?_M5?7SO6?с5?55?|5? O5?RǸ5?!5?wd5?`5?ds5?g9B5?3 5?Q5?7Z/5?ͨ4?4?{t5?W&4?b4?v$)4?4%4?4?\({4?!*[4?Kh4?j4?n:4?ػTI4?+yI4?Z *4?b&3?-xl3? 4?Z3?J=;3?Do3?c3?m3?0x3?y+W3?u3? Og3?& u73?'3?MG3?3q7Y(3? 2?ɺ2?ۯ5e3?:G/2?et2?ǭ)2? 2?^LF2?Mw|v2?2W2?mR2?We2?j.72?Q2?E2?t&2?1?1?`o2?mm1?la1?<_1?_}p1?*)1?0OZL?SL?ÈL?w7q۸L?^M?*|/M?_L?VM?JO]M?M?UxCM?Eh$rM? O?ƗʵN?T N?\N?"QN?͘DtN?. EN?g,N?L8YN?UN?ìM?E@M?"1kM?HY+N?ڿM?M? pT?+R?맘R?SɎVR?ÃɚR?lB kR?0&R?+wQ?8 ;R?94 R?8Rp/O?0=g^O?&O?ޤ CO?VpO?ONO?u̝rO?)O?xO?/P?OO?P?Q?_qQ?:VQ?%(ǫQ?BěGgQ?-7;7Q?<|Q?ρLQ?qQ?:qP?ZQ?+B5aP??sWL?4L?0K?:Ʀ)L?OzK?(sEK?*\7_K?E>K?% *FK?K? rK?]-K?KJ?WE?DeQE?A?'{A? A?E>்A?OSA?!v+A?%^eA?(;>A?^ԁA?u@?L&A?@?!@?Qcm@?IT)@?ve@?z`|7b@?&:@?1=k&t@?}K@?@?炮??En$@?B>5??:+c??3??Q??R??"u??SK~N??5(??+z_??3}s'??8fw??e8??}C??m>?,%>?a>?H>?6>?0N>>?ioe>?)>?[>?aO>?&:v>?NAJA?oE >B?mYGBB?B?,B?a fjB?B?dTB?ȬzB?2B?J!B?mB?b&8VB? M'W7?2/847?B)7?x>7?o!7?F6?C6?"=7?+6?[J6?w6?B6? 6?An6?M6?8Ne{6?M]6?n;>?$q>?f[=?&>?HQ>?(f9L;?-7(;?i];?9;?!oy7?7?ݫx`7?7?#};?9F:? ;?k:?i:?R3:?Qj:?T':?b4jr:?lhM:?W:?i`_:?aD):?bG:?;:?P:?Ϝ9?M9?z9?>B9?*ߗ9? -s9?kr̨9?yd-9?P9?Fm`,9?AC`9?=9?Zq9?PE8?{9?8?&>8?}{8?Ui28?SN=i8?V<8?a8?328?(>7?9YK7? 7?i7?h)8?׫38?J7?Pʫ$8?KW8?`py8?~H8? (cg8?m^m=?eA=?E0r.=?ܵaY=?_z=?s`U=?ρ=?JKf=?dM(0=?: =?g A=?̱=?hF[;?nV?\V?ɄV?d]N?V?5NV?dW?ؔJJW?XV?}'W?3 ]{W?`ϽW?"E?YW?\W?z^W? W?0;W?+?X?rP?j]?Rof?ĥI?DȳN?mL?*`P?[j N?DДJ?9tH?K?C:I?=yYF?WC?FG?qE?WfA?|n ??e3C?@?s*?¸'?U=)? D,?ϝU&? Q)?*^ +?͓.?40?|g,?[/?@FU2?ۭ5?!1?ku 4?\go7?VӸ?Bv6?;|9?#)?2W?0X?ܹe?V?ؓcW?*???2l?KH?oL?SĜ?f]?u?<??D??-r;??Kr?*A|+?dk?]DB?.a?%0?ľ?'(5?~?)E?ò4? B]?=^?+??|"I?{WD?ljp9?r&-?I3?T9'?.(^H??1?af7?jh?e%gb?z_n?R~8g?@[?PbN?)U?>I?"`?ku"Q?R^eX?s?~?lK ky?2? l?U1t?̷y?8?ż?54R?X^?5l ?foo?ed??ٵ?oX?>/?׼?@ޠ?RQ?mϼ?(6ɨ?'4?ݫ/?=<$?:?΅n?IE?9U3ޮ? ? k~?;2?XP? H?6?;Ƿ?HO(?&?HW\?;n?*Ҽ?:G?6%A?+V9?iq[D?>?x1?s,?g7?G}0?n?8`r'j?;3t? p?]M?4-R?xvDxJ?V O?>IX?BJ^?₱ U?[?eE[e?%k?J>b?;yVh?sy?^? v?X|? 5?|ɤ?]}?'t{:?\?~A։?N?#,D?яf?Ş?Ռ?ߓ?Kt)?2¢ӡ?ʍ?䍓?ZX}?3?{Z۷?q >?LZ閪?߈?NM?`]?ulW?l~M?R??Q*H?'Y?qS.&M?8R?BV?g?jX? GW?? @??W?F?o/??C??Xl7?M?z?Z??z՗?ͽ?ԗ?e?0K? ?r?,a? ?c`Q ? ?z!?էB?W"1|?pM? ?&jˁ?g?4S؍?/?mS??ڸ7?!f?Zm?5@|?ŮgF?AB? ?nK?4?;U?m.?W_?8l?iʃ?VKS?㵨??xE?®@?9?3? n.? pg,?]f;?o%q1?t6??m쁊?I!?5N]?r[?w?JpZ?pD?-(v?@_?Y?Y? *!O?N>H?pe?ge?,?ʡ?[kS?K?-7?5F?V?F%?@i?/z{?X:|?{#?r~?v??q?y?pt? l? Rg?Z6o? A9i? ]!b?nc\?~W?P0U?-d?XvXZ?b_?'Ee??+?e5?N?,?5?Om$?k[F?{?4)?o?7L??k?7"?mO%Z?w(T?]&M?3tW?/Q?jG? A?!ÿJ?cUrD?bd`??4?s#9?m? ?A?Ut_?7H2*?6:%?t?҂(?Pp"?mC?MO?5D?4W ?D?Ύ?9O-?>M?ߣyG?xA?@ebJ?+ȑD?$;?tLG6?s0?n-?f>?&:2l3?2!9?µS?M5X?v)P?e V?3^?`d?;[?E϶a?,cj?\Fp?AVg?)4em?ŸT??z ?-? ?? a??nF ?B?zz?u$T?d?gE?ܯ?N?Í8?PuGw?#:?BGѭ?3 ?O?z?~ͤ??O?Sr/Ӗ?x?8^? a>Y?rH]?t4W?e[?պTa?He?1_?4=Ic??-_?Hd;?l?ʆM?(? \?ꮇ?+?k޴}??p=|? y?su?7{?Qw?o{q?qeJ?i?‹\m?V>g?&|s?Rk?>.o?)?ۤ?v5?s?%]m?7MF2?jl6?)0?'I|4?Zh?C+޷?$ނ=?կ???r?1?(?.? ?I?f[ ?j?RTx?K?-?+?OMƦ?C\c?sq?j?"?T?K?j4\?4]?tX?xw?1:\?<?tǢ?!m?q*i?E??B?Xb?Ua?Ǎ??x?2#s?oG?I؅?H`?|z?Aq?]Zv?Mo?1|?fs?Hw?c 1?TO?A ?t>5?I?O?<"?V?Ws?dI?$Dft?[?G?T?̒C? ?F?E4?ȼ"???u?^#??ks?,D?c]?JI?ر!?_$?p?2?Th$?M8?8s?^l?N/??o? ?ז?rH?߅c?(?Gx?Rh?V? U?V?a?yv?ut?~ߨ?J)?|??8c?ʪ?cj?ZH ?M?2?V??U9j?"|J?N˼? 5d?o]l?[Ph?4Pq?CO`?)S k?+g?rȉ?-u?'b+|? .?֙Lo?Jkz?7€???|\l?ݗ栓?0yΝ?I_?Վ"Q?!0 ?1?s? -?P?X.? ?'_?nt[ ?+s`?X ?#=?zF ?s狚?)z?mj?u^?x:?[C=?, ?QJ?~?mI?Q9Q$?yL!?:U?3?%?f&?^!?C? ?a'?Y#P*?֬W#? ~j(?}?;?>J-?A˚E7?=2?7M0?ew@?.B]+?,8?*(3?o0?J?md?z}?ra?^1W|?4(*I?}C?[?*t?‹`?i=?B?<g?$D?9?MG?s~?5? g?x?Dut?]J?+ ?R?ty?j??m?MNY?%-??P?z%?=X;?5Q??6%?7??,}Z?B;?Y0?t??4?j~t??ml??__?D?z?A?J?Ž,o?{Dp??CZ?ē?+?>b?0?DY?P ?|u? 3?Kb?ف?D?p2??N;]??H?Q ?)'g?HF?i$?F $?K3?sO.?rB*2.?^.?@.?^#.?q-?tk-?u.?]6>-?w-?ۡ-?PpQ-?PȮ-?yQ-?ǎh-?m7-?Onv-?@L-?0-?`kZ-?}=-?/-?,?k!-?r۠-?m,?{Cc,?p|,?i ,?oJh,?7 ,?y,?W&,?BH{+?A+?CP=+?~cM+?[@F+?6Ž+?-+?+?@JNs+?ZW+?ږ E+? e+?5$<+?!'N!+?~I+?l.+?+?ߒ*?aό/+?L*?"*?FӴ*?*?*?H|ۙ*?q~*?'7ܦ*?ɷ{ *?8j,?;>{M,?T}x,?o[,?b{+?K0,?JW+?nY,?8׹>,?8e+?Jh,?BE,?u}1?Vg^1?":z1?]6n1?J?1? 1?|ǮO1?n,>11?l1?r0? ,C1?H90?:5m0?t0?~H0?AOϲ0?0?̵w$g0?0?'%u0?{2H0?*0?J!V0?-80?MT 0?3?/?٢0? K/?S/?;{/?.H/?5=/?C]/?*8Hv/?YO/?GC=/?_yEX/?.:/?RfC3f/?ĺ9H/?5 /?.?iƙ*/?; /?=W.?֌.?~Ar5.?Rs.?oT.?l.?a[?.?SB].?< .?>(z.?UY.?L!-6?c 6?A=6?Unn6?ll5?15?$5?I5?$_5?@t 5?cQ5? wĔ5??`5?b2>5?J}q5?JK5?OS[;5?C6!4?Φ)5?]^ 5?R4?)`4?@Q^4?Ӏ4?34?8y4?&$˫4?vN4?1OX4?kv84?u})e4?aEG4?4?Za3?'4?L 4?+7LQ3?y3?223?Π3?63?ڻv3?Qd6p3?­/3?hȠV3?"73?'c3?G3?!3?YFz2?t(3?ja 3?#ZO2?+2?|i2?`2?~c|1?Ta2?jծt2?2?dd2? 5ST2?2v452?ogBa2?G׹C2?O(2?j1?Cۥ$2?@2?ADF1?t1?G1?)M1?1?΅g 1?]21??)O?@jP]L?*9L?N-L?)L?fO)M?/WM?1*M?3h;^>M?IpM?=B˴M?=?mM?otM?7DN?W\N?O?\SN?N?\+FN?SUM?HSN?FFM?/%N?T?T?qVT?+C4T?` SV?]"V?ufV?L 5V?M=U?P*U?.V?RU?Q&U?'1^U?kI-U?##U?阡U?=?U?>cpU?GjUT?yT?ǿ"U?;l|T?feU?;jT?49T?ky~T?VXeOT?%E T?EiS?HT?οS?S?DӱwS?xIS?9VS?{[GS?AIS? QR?~/R?8r^\S?R?E3<0+S?^nR?pR?7R?kOR?܀RR?5֮dR?d4R?Q?ނKQ?LER?#Q?~5WO?ÎO?aQ?6Q?"xvQ?8]1Q?g/Q?EFQ?Q? P?-tsP?е)$P?ىLYP?hP?BYP?wP?:[xJ?ҤVJ?aJ?켥J?(WL?nBL?_.jL?kL?,}L?5 fJ?J?m J?tJ?x7]-K?YK? K?pL6@K?Q=L?rzL?#MQL?AzC&L?)\K?v҅K?&mK?M7lK?^K?"K?.'K?/akKJ?wp$J? rJ?9YKJ?$E?ՂE?E?G̔E?nWE?2@.-E?iE??E?8#C?Z;C?±B?7s(C?pdC?m+C?M!RC?BwC?SpE?DxD?E?D?Q2D? ;5D?tD?24D?y5M^D?3D?CrD?]`ID?Fv D?όXĵC?UC?IC?[ZD?)C?<}C?}9pI?SAI?Y=a-I?K VI?}I?BH?V5'I?@^.H?;$H?u]H? qH?:H?ʊ#fH?Έ:H?.xH?R_QH?ocH?'[IG?N&H?G?(}FG? 3 G?G?i4XVG?7I;E?+F?]>sF?F?{VF?_wFF?W=}E?{FF?[yE?%|kF?t :F?ituXF?8/XG?w%G?(oG?=BG?y?F?ߢ-F?H̷ G?AF?RG҅I?0sI?a$J? I?x[$I?|nI?%,I?HI?nA?qbA?`A?گA?gwA?iPA?A?bA?L1*A?.)A?;A?r@A?”@?1eͯ@?n7 @?{@?.@?]@?nЙ@?;p"l@?ݿr5@?oQ@?D@?4 @?>pg??+p7??D%W??\S!????q??A|??A??nfJ??Iy$??JUZ??G۝5??IK>?혞_>?NS??e>?tJ>?T`>?莡އ>?aJ9L>? x>>? o>?2>?$ZVA?' wA?Y >B?A$B?dڟdB?A?iB?88>B?j!B?++B?!dB?nQ"B?nv~B?C?-B?C?pLfn7?0OG7?d17?5ҹ*7?$11h6?<մyN7?#S_ 7?߸%7?S:\6?p6?qx6?_6?fXxH6?EfM6?=j6?u/6?g796?akN6?k6?7>?Sw >?1B[>?^P5>?u=?2=?hQ>?3=?) &;?wF3;?M6;?N;?7?}7?*u7?s27?n:?$w#:?:?ﰀ):?3':?p:?=i':?If·:?+M:?HE):?4cs^:?!|>:?{P:?7:{9?wk8:?IW9?go9?t9?9?b釣9?y.np9?5NM9?u~9?5h]9?Z-*9?4a9?[%[:9?K9?z8?Cį8?o(L8?6 8?8?GWLT8?ͮ8?7??n8?u 7?z8?sw98? Ex8?UaX8?}n8?3(8?#XlX8?w8?-n=ј=?BrQ=?"IXu=?pOp.=? =?)0O=?0Z]s=?; =? ʿA?1C?ˍ+?-?ߪ)?*X,?o]Kw0?%E2?J/?N1?:~5?[v8?uC44?h+6?;?y>?{9?7/ß-?!? 1?&*?:6?2\-?B+1?y&?`S"?Q2*?jq$?+0q?Өm?Rcf?{?$&I?Rd|?p?e%i?GQJu?u?.,{?7j0?7y`?jRR?Y?4n?/xug?%K?ft?gdY?ڸ `?#g?8Ow?L?}5?w r?&08˧? }R?\?[Y?:}f?m޾??!e?_yN??M-\?/?x+{?Ԁ?:?Ⳃz=?- A?-:?t;@?s`F?ܨsfM?!I?LQ?6D?7 J?s#M?!5T?R_NY?b>Q?_> W?: <,?AB?c?)?յa?$ k"?H?S[)?P ? ?o^?d?`?^M?/4 ?sS)z?_G?l?LZ5?hd ?^?.U?z#??n?!t?zF?Y?'!?s?[?΋њ?gd?8 o?pmM?I?m?bJ?Ol?Ŗ}?_9??nY?(?[+J??M7?CKj?C6?u x?:A"?W?޼?^|˱?>!)?z˦K? ?q?K}?Ӳw?U?m7$E?ww6?;u=?L?3?6??9$F?^e?T?0]?=Om?pN?!b?=SZ?$?j? ?^kG~?48?1qz?4T?"'?OZ7?l]h?# b?yٸo?h??%2?qE޸??,8?BrF?N`%/?%T??S̉<8?2M?vT?>7[?י `b?E?dqP?VhW?T,w?Qu?0 p?KOz?7a&?^*!?l *?K#?F6yT? …?- ? )?WD?zƀ??X? ?> ?3?D8??D?I?3?A$އ??[D?𭑇?K?=?I]_?x|?h}D?oh?Gf?FR?2C?|?w?Ƨ?i?%fܰ??ʔ?Ůq?V?D@2?'??dx? a+?k?S?e?d?G\S?a0?Ad?ޗQ?^]R?nI\?C⶷?K:\?>`?V?f?"?-~p`?Y?-R?nc?JͿ?2G?3B?x1L?#G?"1ׅ?H{?2?Ym?z{B?|r|?# ?q>?= ?{b?Ј?kV?/+Й?S2?_ָ?u?f7?ُt?DV㔣?C? ڴ?)wZ?L?{S?$ɓE?B \?vL??R?XvZ?\?y ?bE?1dL?s*??x?M?OGG?h5?A?<=9?"?%?{?Ɏ?C?U-?p_ ?n? 7<?L4b ?Qj{>?e1?qK8?p+?fVD?9?aI2?&%?v? ?/D?, ?,?l?]!?d ?>1?ƅ?)?P?$6yx?I~h?Xop?)Q" c?&vO|?#j?pr?_]?NT?Qe?([?P 3?}Y?xh?u"F?t?y/?q?sښ?rϩ?Ǩ??!ة?9@?I{?<)%?G?=?u?(o?;$?-Tq??c5?Û,?r?!?O0?P? !??$&?~<?c ? rj?[x8?$s'?a?r?4y ?=,?+P5?7$?Ds-?x{R?=:?nW1?:H%??c^5?$?'(?R  ?F??SRR ?T,?b/?ڬ?l#m?;!?26C?M?X:?! C?9D?Y[8?L?@?}H,?,7!?o4?x+='?l?v?~8 ?O?gLp?j?O[?i*?M?'?%?M< ???Fn?V?n?a?,)?,-?b?Ѵɵ?c{?$ ? :?Y탛?)?+ς??^s?筬4?x9?w1? Fx@?= 6?r;?v?M 2?r??ӳ?f?j?R-N?*?FB?M?%m?L.Ů?[?^'K?W?ׅT?"?E? [+?u`?`???\[Î?s-̆?:Vݍ?y?kD)?R|?-@w?諌~?%-y?3Yq?,l?Jt?ho?-eg?\?MZ&b?CZ?p'j?~P_?Jad?SF?m~?9_?;??pVw?cR???y?ifv?-P[?o}?(?q?;K?)c?KV3a?MZ?͞iT?Ƅ^?2W?~N?G?oLQ?M~7K?L6:?jc4?յd>?7?)+].?̛'?̥d1? D*?w!?(.?=ʯ$?\?4l??iy??o{A?TD? +;?W͑>?q?iO?A _Y?"?8= ??oͅ?˪ ?a0?n*?M%?.-?hO.(?Ja+?ѿ4l?tr??#ۂ"?8y@?vqq?:.v?*[|?YKs?-y?8 ?u??2???@?l?-????y?,?n`|?,?NP*S?lLM?&xzG?*UP?"PJ?KgA?sUE6?;;?Lh~3?^dD? 9?p3>?!r Y?[^?z5V?b5\?d?Jj?sb?,Bg? hp?PQIv?'m?Qs?c?B%?ld ?h`?8n?p}?ּ#?ɳ?M/z?IF?N?Zy?5;?z?4G?u(?懾?nR˗?4?z)<?t?=U?.o6?I?\:?m$?/-?p[*??\mH?!:\?5^2?G/?3?|\e?9?cH?G)?o?T?ИG?t?Xx\?^~ ?דմ?;?۷?–,?b?w0?B1??. ?yҢ?i(h?eԨ?Dd?)ˢ?R=Ɨ?6?1a?Rd*?ġ]?=e?ʊa?ui?+[?>a?Be?~ѩ?R#?)?BI?f&YN?Bّ}?~?;y?4h?U=p?k?6?!56;?Į4?_W8?TN?v?ђb?+. S?9?L~??by?}??o*~?:Rn?OM?u?uo?saNy?N?s?Yi?? ת?]?DC?N?͊?1y?+'?lc?m?<@??6]?Jϙ?դ?Y?$?e5?O? ?-D?w^A'?B~?Lb?E?Aq?!Ԝ?f??i?{b?v?p???{H?.?0?r? P?g? ?: t ??;}j ?Ų?o?A????l?GJ#??-J ?s?vF?[F+?vlp?J?umh?+?xmt?=?FT?AK?kn7m?ڽ?R!?F?j?o&?`}?NN??u?`?g5?'! ??&1?_?֬b?:?EU??5?? 9?~?,zB?5A?B?E?fD?о,?g?=K?o?RT?t?VĘ\?^rk?G?ǰh?!tQ?twr?ɜ?.sp?@;?`??ՙ?b?;&Q?׼[?2V?_a.K?b?I%X?r]S?lYE?CK?A?`?~?{T?889?a8?kRZg?{@?uC?l1??1$?eMQ?Q??xB?J(?=rp(?N(?%||(?tV(?Q=(?奼b(?sFI(?A~d#(?* (?&MT/(?D(?wO'?'?,w'?ȷ'?`v'?ѯ '?'?Tp6'?Fي'?JzCq'?'?}'?LúyX'?M`?'?NU&'?e'?]ad'?[.2'?[?K'?أn&?&? &?&?h&?&?K I &?味&?yT&?Ix&?nܚ&?KFF&?A!`&?IG&?+li&?4SQ&?T*/&?Ӓ&?uC8&?y &?[G,?vi,?4,?kz,?GѠd*?KwMI*?+q*?0U*?;.*?a*?5;*?޷M*?6l@)?+߭)?))?}ֵ)? *?Ln$)?:})?18$+?_7*+?vG/ +?lS+?ˮ>+?Nh-q+?5`+?+?,V+?S;+?Pc+?_H+?&J +?~&+?+ -+?W +?*?HE*?T*?h+x*?߳*? *? @*?U@]*?k6B~*?|c*?\ȏ*?=lp*?FEL,?+,?N?\,?)J>,?+?|.+?k4+?1ap+?1r ,?^B1 ,?tRg+?D$,?q_1?A1?ul n1?KS1?w6"1?hg1?CB51?PU1?s0?ؑY0?<0?>@0?A80?lc0?UR90?6ۤ0?t"d0?F0?Typ0?6U0?{)0?ݙv 0?$wV70?_0?/?N O/?w/? /?xƅձ/?/?7Z/?ِ#/? $t/?K"V/?K/?c+b/? D38/?@/?dL6D/?c(/?Q_.?.?[% /?V.ˡ.?$.?w.?3.?{x.?9.?&ؤ.?C.?x 6?QRz5?Zu506?rQ6?H5?wE5? 5? t5?\05?I\5? -5?^+l5?,g|65?`04?:nE5?z)e4?vUF5?Ï4?"v5?aTg4?/4?(.4?*F74?Zr4?A64?$QT4?ǭ4?P4?Tb24?JP4?3?c}3?UJ4? 3?F3?]3?h/63?62L3?` (q3?_v73?\mGT3?^3?M3?εnB73?|T3?x8j2?Ǥ2?3?T2?_׶2?82?} 2?VĢ2? Ԩ|1?^1? @b1?o d|1?Ym2?O&32?LeP2?|2?}x4~2?12?c^1O2?1?Ed"1?~1?]E1?2+2?C#1?1? PO?m0!O?zN?(2O?DO?lIL?<4#M?CL?FO M?m nSM?snM?l48M?kM?4M? M? M?/UyM?AjN?":N?DN?%1N?1hN?6 N?e[9N?5M?vN?N?;WJN?>߲T?FO T?YdT?o{wT?T?+V?aPU?L#*V?=7U?zO U?QLRU?mJU?%Q4U?TU?aB.dU?`U?kVT?twT? T?XVT?eU?4*FU?ZT?t&#U?24T? T?tTGT?T?{S?S?S?S?y`qS? S?/@S?؆AR?[ 5S?"S?bGSS?.S?V~R?9oZR?«'4R?P@R?S䪴xR?xVHR?ތR?0|_R?ȭR?@Q?}/R?nG0xQ?@/Q?IQ?4YQ?dQ?.O?4~O?HaO?*Dn@O?vO?3LP?a<_O?&LO? ~?P?C[@nP?e&P? TP?D0\Q?4C)7,Q?ˁpQ?h^CQ?W NP?Y9ޜP?A&P?DP?sQ?v@P?,٬P?m.L?ekƙJ?LJ?}rJ?J?CL?@dL?|L?=9L?VIL?i`L?Ϧ+L?2J?ËF0TK?L+@)K?tk"}K?6J?wFc3#K? oMK?' L?@$K?X vK?!5L?# vK?yʼK?U$K?g HKJ?c]J?VJ?e}LJ?8~{E?3B(E?EyQE?ID?٭E?n_Y%E?NE?w?C?BqC?FIeC?zCC?7U.C?WaC?cC?rVD?W=D?mD?M?IQ]D? 1D?b,/D?D?z4D?/(C?DD?RC?VCaD?JiC?e{x"D?i(;I?4 I?;VI?=I?4HH?H?sDZH?ndH?EH?l8H?(>H?rh=H?H?c`H?'g&H?8w^G?"۲G?LG?%G?iDoG?/׌YG?MeG?33oG?a&WjE?LE?=3zE?%vE?=E?LqE?rLF?-F? ( _F?oyF?$TT#F?na]F?UF?%,G?GqF?֟G?CNCG?4dzF?yF?(.S$G?fR:I?ZI?4^J?ߎKI?qI?5I?()I?6PI?DnRA?PxMA?-ŒrA? )*A?z_A?"KA?f<=pA?4GA?bt@?'A?kr@?M=@?Wu@? 3A@?0@?|S@?C @?/@?;Y??sA-f@?*- @?{-@?֨`??\t??Fr??4ב^??Vɀi?? ??7E??km>?`p??E?? :C??A>?.I~>?n>?zX>?v>?:W<>??RϿ>?%ZA?lLjA?]E B?N!A?eA?/4>B?uzB?innB?+8aB?:SB?fn>B?B?8sB?fC?EPC? C?M6@v;C?,G97?P u7?r{U7?87? -7?36?]|EL7?Cp6?L7?%+vޤ6?=٬O6?7GB6z6?88&6?6?3vR6?|6?+m>?;2>?7=?onP>?z>?Y=?9F3=?xzN=?~פ=?Ɓ^;?S]:?W띗%;?:?f'7?J47?mm, 7?dM7?5:?bXo:?(Ͳ:? OO:?x:?~gcm:?I:?m&/:?79:?,M:?P L:?e9? T9?*k9?W9?3\9?~J9?uk9?f/(9?jU9?ZzI9?NSk9?~9?D8?}+w8?i8?/(9?_A8?8?esq8?[ G8?u8?{48?nw8?) /8?zd8?38?$N=?q=?sSj=?O(=?&,?44?5i-?q7?xת0?=&?*?SX)?![$#? ?IF`?Eb?e?> ??Ct9?續?? ?<?)+w?|ށ?p{?bք?t~?Lt?;g?^(n?.|d?8>x?3 .k?q?a*?i??>?eB/?ɉ,?D?`Y?gf?nf?+F?h)`.??&P?C ??w]?3o?5ݻ?K?^?ЎM?K?pv?!s?y6?a??_?)?(D?@M?l7?\l? z?G??i\ISI?kj.B?E?@?{K?r]C?Ż>G?I .?2?(u0?>t5?=,?22?f^0?"g8?/;?v>?{A?-P5?AT9?B ???܉?T+?$|??iB?6H???vF?vշM?PS?EK?*wP?# MY?KG_?ɊIV?00[?.1?{Z(?8<7?Ғ-??hY??"?a?d6?p_?R\d ?T?rHK$?Q}?sb ?۳9?U?վ6?l~l?R?͛?kù8?C?'$D?D$a?cGk?Υ?yYq?TxV??H?c^H?~?`? D? ?15RT?i?FY?4I?rV?u/?i!?4?'?S?#VԷ???:?~f?&< ~?9#B|??@5&^?33?^H?_?3jgT?LO=?) B?*Th?c ;?pZ?O'O?jI? Eyr?mt!}?2?S?I?6?WxY?R%B?K~{M?4k~? R?EJFx?.6? ?5?GH?l ?X%?~?:???:Q?2E?0 ?^?HE?t??Ӿg?d?.?r ?E?&?\{?LQs?%? ?Pq?Ր?E;? ?Xo?@ ԛ?V?IH8??~ ?]?"iC?k ?i?_\?2j?}Tj?e?L?'?J?vk?1ͮ? {?ϤSG?ʦ@?D2O?0>G?EY9?Ҍ1?ZR@?'&+7?7^)?1_?Qj/?J5'?x?j|Xp?D?CIry?ZvٿV?* _?ĒXO?GKY?q!h?t7 q?zb?9k?N㗆??e?XW3?DiO?e?#ϩs?ɽ?9?? ?,?Ll@?^?`XF?#? K? y??,Q?F?84?e?n?dt?.?5*?0:I?҇ ?22 ?j?ZN??UOD?Ȏ?0?m!?1?ᬂ?ߧɓ3?;(?ekO(?e:?]҆?N8.? "?N;?P? ?s?UY>x? p?1v?jD?ZE|?]/jl?Xb?er?-j?oX?#M?թ`?cU? Z???"?-??h\?"B?% ?+x(?? u@?b4R??U?"{?]e?sV?4B6?>{?1*?eG?2?͜???Kf?_2;?DB?4?6%?j]!??>h?SQ/?`?5;?zJ$?v:3?*S?cOG?^D_?nfR?u0?_?6d}U?,/?岢%?7c:?4?A?'?һ?EsC?'Q?#_0?HE?ۻ??D17?.0]?{5?^?nj!&??W?:ɷ?8=? `?I?Oo? ?zأ??/^u?e1ɑ?1q?8^ແ?Pe)h?6?U?(;x?8?Z ^?X"\R?$4kn? iGb??9??)]?Y%?2a*?Wct"?T'?c8/?4?D,?,E+1?n\?W?hcR?F^Y?$U?VM?ؽiH?B+P?JK?I@GC?78 9?n&>?U,6?%F?aT;?NDns@?M0?p?yv?Ϙ5?f\.?3T6?fƼ??D#?LY?4<ⰱ?b?૴?u ?o2?V??-*? k?8s?'?>˖?Ҙw?sY??D&?PՆ?"?9?Y-?|U,?HMp|?-݃?Fd~?Ba\w?dk"r?2y?~]Cu?l?Cb?o=~g?3_? p?Kd?3Rj?pk?e3?bx?E??_u-?DgX?{I?Ko???z?JΠ?D6?rn ?qaT?Ph?Oa?;ZZ?b=d?6]?FT?vmN?sQ&JW?>Q?9YH? B?WK?%F?j4?wN.?*<8?.T1??4z'?Ɠ!?K6+?ɹ$?URA?s?? ?f??X$?;?G0??&1"5?r8?A6?2?Ƅg ??39??b?%#{ ?}#?z0?h/+?$R3?2.?@g%?\??۠^?nڌ(?t?lj"? M.|?.?z3y?v.?-23?w;?O=1?s?F?%@?}?߃?%l_?3C?w0>?>??`Xe?n\aP? $S?Yf\Y?^S?RWM?FV?0XP?o3UG?Q;?MA?vS 9?XTJ?[;>?bAC?35__?s"e?B(\?xb?Ej?'p?` h?VSm?1p:v?j3|?1}s?]3x?^?'<"? Y?Wr? %j?3?a?<7?E")?̥y?}Y?D?1zu?k<?'?V?<u?9?[?-@b?OK"a?{u?*GB?1?*?A@?Gѻ?H ??Z}?Օ?7 ?0?4?yѼ?`.?\n?/??!xn?J+5?+??2 ? ?? KPv?'Y?4D?'?30??_\? ?oi?,%?&vGe?k?+a?)\h? ?V{?:F?#&P?> }?Cq?i`w?n?v$O?Y6u?}X8{?Pu/?M!?1j? V?%j?0e?rdn?Ag?yI :?B+??x6?<?]_?*׷V?qz%[?##R?Rx`?b? 4)V?D3G[?-RN?ED?CEI?g@A?iR?iہG?कL?Ė^8?GǴ2?,?V26?0?^QB?Ã&?b'?UD ?*?/9a?V?_J>#??Y?rx?! ?]6?AW?JV?9F?h ?E?Yh?)5?s?E ?J6?Ɖl?'|Ƈ?D?q? 8? )ŗ?|ٝ??)"T?AЅ?wL?Q髍?u7}?M ?yQw?㮖w?|ވ? ym|?%?C~q?iok? 7w?W$Đo?s?߱?N?z T?#H?¡?>"+? ?4D?E?^=:?3x?~?f6v?KG+8?kAv?M(ܰ?7%?%p?Ν?Ho?_?T?:?E ?8G4?Y?=?+??P?w?%:?9?pd? ?tRa?2v?.?-? ?k?(ƴ?9?n ?m'??h?܊%?~L?̲?Z?l?>?k?s?_z?acS?X+?Xn?4ݘ?-0?v?m?"W?O??; ?~E? ?Fn?/?ZQ?{N?,L?P?`?B?8o^m?X??3?;?b ?0t[?P=Q]??6?T3?O ?: ?W?$1?(?]? ?]F\?H) l?5z??*']?C?zpY?(p?J?Y ?$?4 ~c?0?r?T '?Bo.?4V ?6i?Ogo#?6?R3B?*?$j8?nP?U+A?0l?o?\R?q5?$]0?@?ҬP?|??BY'?]6?>4Y??Rd$?L{?v?NU?@?_?Cnr?S=?,R?==?'?#W'?K1>1'?K|'?^VI'?Mb'?dOˋ&?=&?mf&? &?_1&?hBr&?X̬&?&U&?a$G*&?ǣ>s&?B&?QZ&?7o|&?ajE4&?,K&?c&?͕z%?&?V%?%?[Q &?ި%?ԯy"%?WS&?Iym%?U%?n9Yw%?J_%?͸L=%?~%%?tbG%?n/%?ϯW%? 2%?$@%??%?<%?c-i%?#?T'#?WGG#?Vk0#?Bs@#?@xm"?`Yt#?V#?e`K."? Ƕ"?& "?G,"?9K"?ڝ%"?D"?%u "?\`i.?N.?N".?SS:i.?N2.?m.?whM.?kuQ/(.?#,?ns,? j,?p,?f -?t-?vX .?CR`-?[w-? G_-?%v-?m:2g-?mv-?%Ob-?JP.-?%`M-?l_< -?2!--?j,?!1e-?˾]-?G<-?P,?4K,?DzL,?oX,?+Vm,?&7O,?#'Y,?L3a,?G*?+*?lU*?|9*?!K*?Rؤ")?zQ)?H5)?_.*?̬)?)?R/+? +?|y5+?ޙ+?t;p+?{U+? ~+?RFub+?8;+?w+?4.OG+??.+?@+?o *?ۂ79+?.*?Xk-*?i*?&y*?*O*?/m*?R(~*?>)*?>*?c c*?N IG*?Zԍr*?A3V*?7W+1,?*,?9C,? #,?!*+?7+?@+?J +?#,?%%+?;!7o+?d}TG1?cˡ&1?5_)b1??;1?[Vr1?kh0?˒1?0?{d0?ij40?4]0? 0?m}0?M\ E0?qRa0?'0?prƋ0?F0?Eb0?% 0?e?/?(0?0?r/?Q*/?|/?/?w/?Mq/?P _/?6/?-:P/?j=/? 74/?B;A.?`/? /?c}_4/?%+.?=ͯ.?$@.?Y.?\.?rC.?ve.?s5?Ԓv65?H`)6? d5?ȥ5?oVYۀ5?5?k[5?0V5?Y&5?9[k)l5?p?5?4?Е4?9\5?NQ4?T/4? $4c4?mn4?4?9/4?K4?ZL4?84?L\y3?x3?q3?ӭ3?w3?ʚ}/e3?VD33?#~3?73?O1, 3?x%P3?u '#3?l2?&2?̪V2?2?Zr2?_2?GĦ2?02|{2?6x|1?V?1?  V1?z1?S02? &1?h?[1?4L2?Bjx1?Lm1?r/2??^1!?ZOm?aq?q4?MĢ?Z)&?Y2?Wr?C?P~?H??]? G]?"aH-?/?O#? u!?}!?:՛ ?6t !?I ?@ ? ?%4 ? ?/Dz ?r ?k ?wJ: ?)SD ?A l ?R+S ?=k9v ?BpxW ?[{)A ?1a ?f&;L ?ȉ, ?ƫ ? 7 ?s(" ?S ?\*?' ?M#?(Q?Gڃ?9E?E?0{??,?A?&Y?Kq?"ab?x{?]?2H?x!g?iR?Do4?jIϖ?\>?Oj)??) ?.?9?괷?;p?·T$?([?S??.?[?{?^?i_}?BU?=A?zq7?7bK s?R*K?|8/_?<xO?.ĭCO?JN?fK6O?N?XZO?N?O?:M?z5PM?:2L?%uU6M?ԊM?M? M?%6N?SjM?M?]M? N? ,N?aN?xSǿN?\DM?BN?jwN?=M?TKM[T?uT?39/0T?VzOT?AT?F>bT?UiT?֫T?ŃU?uU?Ҡ+cU?MgpSU?2U$U?U?_>U?"NGT?F6(1U?VU?yET?1M_U?k T?U?yJT?l S?s#T?tS?S?{6S?djS?UUS?izsS?gZKS?+,S?\y)S?;R?&4 R?K]R?jsR?93XS?R?=;R?WFFR?BR?snR?x)R?cLQ?ƇʡQ?@Q?ֲXQ?4ᬼQ?φQ?hѬQ?hO??O?ݤO?$H?vG?r?]G?qpYG?nG?Ꮞ0G?G? t~ZG?[ AG?z؁$"E?fE?ZhE?^cSE?8=E?)F?jE?*E?SF?s4E?3,F? F?lTz4F?poG?;F?ޠL1G?)fF? #CF?/fF?cI?vI?#TJ?7"*I?*L/I?ҜH?.iXI?&QI?G9 AIA?.8NA?&GfA?@K2A?x @?m@?m@? @?d,x@?c!@@?֢@?]@?8p@?H d??k,,%@???/f??UvY??ۿr?? w??{??S >?&>?н>?y;??b>?Qs>?컫@A?~hA?SrOA?d^z|A?QA?3a>B? A?pB?gˆHB?CB?uB?})0&C?"_B?B?՛κB?ُ;YC?4ΠC?tAB%C?EOC?@k7?s7?.dѲ7?F݊7?r%ʭ7?3 B7?`7?*EX7?_9w *7?Y]?7?wZ6?6?6?69Y6?@U6?QIov6?Cu6?1@76?|>? Im>?՗6>?噄>?S;W>?~>?4u=?N >?bU=?w)=?zD=?E=?c=?:?QZ:?-;u:?u:?K7?V^@7!8?t 7?Mg 8? =k:?*=I<:?(:?mU:?w :?@U9?fKd&&:?3c9?1bS9?J2C~9?nQ9?⫚9? l_I9?$8?%9? 5S8?Kqe9?p8?V+9? <Q8?G~8?B罪8?y|:8?C8?5by8?0*8?mT=? \?o~?`E$?,?G)z?pz?D&?M?L}??t\?v z?n? i?e??"]_x?NTQ?S-?(?;?d ???H?u??6?S&?Hf?o7t3?oH?|e?,E ?c?)?9fF?_tm??(8?Rf>C?w;?~0?t3)?pt4? J-?:#n"? a6???&?MWL??v?׍?♍?,릆?!?0%? 3?x?>(R4?cv>|?Eq?T#k?1@`u?0!n?Hd?1Z]?Fg?Fa?nV?:tO?ŪZ?NR??ef?W?"?gK_?q?Suo??ds?u#л?4Y?EӾ?@"?n?3uI?9t&?M?-?U?/??U!!Z?3ƥy?4?e? .E? >d@?G?4aC?e2?F ;?j7?/?2>?34?a&t9?\J? L?ML F?SLI?%^?nH2#S?X?dQ?{b?*aU?TG[?/ O?8K?g*S?\xM?N25$?ꫂ(?DP?F4 ?I?_- ?JL?z?%b ?-p]?8d?φH?;??LY?$H??6aXk?&% ?!0?Ps=?3f? ?Ir? DR?v7??wЁ?na_?p?t;)?&F? ?H8?iPP?0 ??4ڔz?km?)s?j'?3?D݈?/Rj?8?7)~??s”?E8?gG?P 1+?;O|=?U?Kjd?_S!t?)3~?{%K?}_?Dn?;>?}7 ??Yٽ? ?M?hs%?x?7,O?m.!?;o?wɁ?s4Ѵ?]?Z/?mk&r?>h?⁏{?xp? v_? /G?pfGS?x%??}:g?DBM?eY?:4?Pv?%~y?yp?bF?g`?F ?Q ?M"o?A?q?6[H?K?_?]-?hεL?Ƙ8?Gt"A?j%??`0?t$?~z? t?`kM?'{?\?1d?bAm?\(W?.t?ZGa?ծi?1+VӍ?SYS?tE#?B?2h?ʛ?y?%/'?y\?̌??k?6?دI??iA?5?aJ?x=?.?LF? }C?-޹0??:ڴ?I?])+?_ÂU?p?*o?>g??_9?!zu?D?GR m??D?!ߙ`~??ɓ?ce?0E'r?rx^?|CȲ?ni?xA?0١v?sP ?`k%???#?>1*?w!4?T/? 8?8SZ)?j/? 4? a?< \?R?]KW?HM?^?RR?&YW?{OI?0R=?PC? -A9?QM?I@?[BF?k_?Yc?fx?36?EL??C?Z;?gc??kZ?OȻ??_۫?$0?~RJ?cۼ?F?Ѡ?!?ϥ?<[t? ?ڻL?I>?C)?팏?m 5?^n|?WP?wzdw?R؀?J(H|?f*?*s?Ppm?d?Gw?o k?&p?o?+?S:?UZS?Hi?[X?P?>?7Ht?L?}ha? 3 ?h?$j?>? qo?1oUh?=0a?sxl?vd?>Z?N?x1`T?ň3I?e]?X4N?F@{T?hoĶC?T/<?pNI?K~9A?.?(?82?zW*?/Ͽ?؄?b+? ?vڋ!?u??H?l;w$?I? &?[fi?5?T:?^.?CN2?_$M6?f# 0?BGx;?iz6?ċC ?`o?DL?,L ??Q?˅5?v+?n?%?U2F1?񍷖?QC#?FCYc)?-[I0?vp?{~?_t? ?ۺ?B?x?Fš?4?_? ǝ?0Ը?'?c?s?P ڗ?xU׵?RwG?M-?aJQ`?H- Z?ܖ4S?^?[B0W? yYTM?A"@?rAF?7c;?{P?4C?vI?]0+~?eKR" ???),?I??#2/?F3?9?A|?P?Z?q?Ar?K+?[?@?ݯ?n???Vj?N&N?t%?Rf?EX&?Bh?k:?k?s,?L &?,)??(???d}?9|?z?*?[?6|߱?hIk?K?Ll?Ȃ?x x?24?Lz??AP ?K?G??Ɇ?I ʎ?9qk?K43q?߅g?ՎVo?a<?Ҹx?c0Н~?q҈?u?|?D1?5k?>}S? ?[?w/d?XF]?d>i?Θa?^*0??>*D? K q<?t:B?x}|V?~J?;%P?x Z?FWG?&[_M?7}S?xe?[9?5:=4?F1z??&:?.?zA_'?_4?-?6Rp? )3?G?>~?:?%?=ʎ?^twq?- ?x ?s?߃?X?A?I?Y?5W???('.??,?ev?Y?00,?tV2?V?c?L[?Y;?? ˊ? ly|?(m?ʾt?ai?tHu?*r?$!z??7?m???%?3A?ϒ|?6]ҕ?b?"6?[I?/?Ǜ2?4r?Ɔ?Kߤ?uR?M'?qG{?L?{???%g?u?w?\/ ?&ܒ?\j8 ?(4??8!?Ӿ?5ֱ?K??Z!?R^?y ?Z>Yd?_})\?@T?Hu`?X?M?ShE?MYQ?"OI?$?vO?}?SuW?.aP?z&{?s?l?f7h??Y"%o?,u*w? N?\?s"n?=?I.?N:?>!:?/S=?D?XA?(?=}??ɑ=+u?䮧?h??\k,?*]:?A G?6?@&?PY4?*?88?J\?Tjv?3:?/E?[/??P!?iTb?_F?]?N??7?A`? L?z ?C?r?!?I?f,?^QI?[?7׫?gJ?L;?@?{?F$? $?89? N)?<ǥ)?v> )?ae)?iMXL)?$͊t)?}>8)?VI)?Z)? k?)?~<6j)?t5iM)?VG#)?&"?)?11)?Gw)?+r(?Km&y(?1$(?S(?E\&?K'&?[ '? &?!&?+3v$'?ZC<'?y'?)I0'?+(?_(?}(?iᒨ(?K Pم(?&Vm(?$z(?3!cy(?3T(?L(;(?J`(?:I(?K~!(?6qN(?]$0(?peX(?d='?es'?j'?~d'?q'?%'?Ș'?yʯ'?oN'?KvvU'? n'?H'?Ә '?lq_'?eUDy'?&?Y+՝&?X7m&?_&?J4&?Y&?D5&?A&?&&?[E=&?=G &?*#&?&ʓT&?/Fi&?Di:&?U3P&?r%?{A%?~۬%?c8%?%?ap &?%?_%?#?"@k%?P %?ɈQ%?Adu!%?B549%?L[%?tT%?P*%?hB%?+{%?pKe%?˿|%?t%?lL%?hb%?`5z%?c $?Zw`$?$?<($?+Zh$?5ȳ$?mu$?k$? :N$?Z^8$??G!$?䨱A$?s,$?PB $?9#?7#?F#?$?`5#?V#?܊$? e$?YE|$?$=$?OX$?l$?Յ$?d#?|#?q#?)fѢ#?d9#?W#?mZP#?ag#?#?<9B#?)W#?"Uo#?|"?y^*"#?s"? P #?5ה+#?dEԱ"?<&"?d}#?^N#"?YOt"?l"?+=q}"?5+=^"?yG"?V0g"?Q"?u1"?y"?:"?'T2$"?K2"?Ϣ!? b"?ٵ-!?ꉆ"?/?"?֨Ϝ"?q"?x_"??"?O"?gF"?>X!?w!?)!?]!?!?0 ,!?oM?!?Q-!?.?sDi.?#:C.?i'|.?ފ;X.?Ef.? g-?c>p2.?| .?$J,?W,?Nj -?'E},?лr,?Ԍ-?7L-?J+-?=-?~-?u+-?uU-? -?8@r-?[=-?$@Bg-? a,?bU,?31t,?4,?7&,?aY,?Bx,?Dۉ,?8"+*?,p *?_Ml:*?\*?5r)?hBt)?)?什<)?.*?A<+?T6(T+?5*p+?uJ;+?UE+?V*S+?=`o+?Ez"+?#x+?;+?_w+?*?Eu*?$*?c#*?د*?N*?Ưn*?*?yI*?Uۤe*?5U >*?,C_*?W*?Yïs*?<0,?ɑ+?O8,?/4,?YY+?(݈+?[ra+?{2[+?V/1? 1?&sIT1?Yoq 1?X0?څ'%0?0?z0?:w0?V/p0?1*0?Ũ0?YG0?]w 0?04i[0?˽40?i/?$x/?vEL/?/? ; 0?j/?Le/? /?p/?rD/?G^/?:߫`/?sT/?۾.?$l.??s.?9u4/?S.?,)~/?w 5?Jt5?T.5?m|5?y4? P(5?^(5?XzU5?3ٗ5?OX5?Rj5?&q+<>5?.4?S4?'4?:4?#Ch4?u64?pـ4?V#N4?n4??3?٥3?Q3?ru4?* 3?ݾ3?lZj3??<3?+3?eO3?H3?*پ2?42?2??b="3?Փ2?`e*2?quXE1?7.i2? yx12?2?(ܽS2? 7rx1?J[1?A1?ؐd1?'2?Ijž1?D1?+{?Ux h? Dڄ?1(kq?nT?1A?uܹ]?UJ?O-?@U? 7?`#???'~^?`?n?=M??V\?I&?k$ ?}?"CP?l?4?:?#b6? +??UѴ?aѻ?H*T?}?ϵݡ?uQ?J? #?z?peA?bDȃ???#q0?YU?1-?\[A?#O@$?.7?Zm!?%l!?8!?*@u!?W!?@~~A!?B+!?/!?+_!?*:4!?iYJ!?bG(!?x!? ?rq!? !?P) ?AA{ ? 1 ?‘ ? ?! ?rb& ?nt ?Goe ?iF ?R ?z{ ? 3k ?zaX'V ?r cu ?%s!` ?W&A ?P&, ?w K ?3x6 ?2 ?1 ?~! ?qN ?;?q?;S?.9?fm?| ?k-u?؊_7?l?Zą??f܏?3&q?: \?9{?bΉf? -H?)3?? R?? >?fyK?? ?)?[?)cH?? p?l?QF?UcO?.V?eoO?X?T?Lnh?&?#|?dK?لiL?K?l40K?N0L?WWK?WK?z3MK?iNI?!GJ?*cJ?՘&J?sgJ?CX?D? C?#)FaD?$D?BFD?yE?C?9 qD?^ۯD?4_F$5D?ܔ^D?"DCH?r8:H?/oH?<H?H?kfD,H?CaH?lMG?#':[G?}G?_7G? *G?+jxaG?њG?ZMAE?$!E?ӻG|E?$r=E?P:E?łE?g?E?2 @F?uF?*bF?ytv%G?#GF?J~F?(F?I?jc+I?P9I?3qSI?FC+H?WN8zH?:H? gH?`A?N@?`VHA?@?;De @?d@?oB@?Kw@?^O@?bj.@?q4^@?yΉy[@?Ԑ??^܃??H??e-??iGZ??j<>?rS??>?#nߴ??M9>?Eza4?? A?;tA? d7+A?CnA?2D$_A?`D?w ;B?B?WB?m|2iB?,ltB?>ErC?&*?yA>?ɖPn>?є >?B>?kW>?̿L>?Yd=?P5Z=?ʌ#>?e؆=?E;D?=?(:?12X9? :?9?Nc9O`:?69?rg:?7>9?1 9?MG9?3I<8?>9?$9? '1_9?8?8?-8?ӝ8?v{A?w=?6?CA?׏9?4 U.?Ҫ&?yG82?e*?Lo?4S`?c"?؎N?*%?V#?Ԭ?0z ?X?r?V}?|?a?!?>?t?fE?}T'?P)w?X|?7??/x?z?s7?q?"?0 ?^D?aЭ?%?&?`?L?K#?v?Ќ?]g!?{EJ?3-ۓ?q1?I[?vrfu?ɪ?;y?AUr?}?Zv? )Hk?Nc?]o?Ug?4\?UMU?uM?ڮJ?>eW`?jЉQ?jY?B?e݀?6?K?U?S`?à?Eb ??wޘ?u?p(??\? 1?!"?s|?C !?32(-?8?f?y;?b?+?Q?5?5??/?p%?k@D?jb?O ? B?۽?ֽ?ԭKN?G?/??jK?3eC?`;x8?1?E0~<?<5?})?A?!"?½1?a-?"6p?%?q=H??1?7?xp??߽?;?c;?.?zނ?~x?w[r?VN{?K]u?Ask?zd?n?ADh?-W]?(kO?V?.K?a?q8S?ndZ?1\A?W9:?EQiD?2<?d3?,?6?|Q/?ܶq2&?}'c?If)?%"?d(?)7+ ?kG?uD?j%2? ?"_?0?X?q]y?:Q?{V}?Ñv? }??s?޿sb?>{{??К?}?wO ?HC??I2P?l?2;?F? 㝁?7?yB??pg?w5??[X?C ?f<,?|?q?fh?n|Z?(5?DfO? ?»?0?B?#?;Ĕ?Y?˟f@?*?sAg?6_?hq?g?_A?J:7?uY?f;2?;7?gt&? ?sYF-?$?Os?@\ ???K?"aD?wJ.?-_ ?A3_?? ?6?fV?1?W?:Cզ?+ߓ?Y,V?y^?TT?eݖ?KV?.l?Yxx? M?J^??*Ho?IGbp{?V?+7?7 ?ޤV?#,MT?~*1[?\8P?s;oV?c?Dhk?Gx^?E yg?τ)?h4?/?R#??TrR?v?,?V}.6?D ?w?wm ?[#?]E7?i*??4?v?t?kN?A?Y?R+?B0?(D?u?;;??\`?HAz?nG?U?B?U?G5?-G?)i?䧫z?*N[?1k?&?ҿc4?U??IX`?T?C?z?)˝?a?k?o?U[S?< #a?H0{?Ҋ7K?#[?$i?s7l??Yu?]gD?;P?l?_H?{~?U? ?v ?k&? ?B{??e?x3??R?R?.?Y=t?駪?^??[2?=k?’>?G}p??1ǘ?밂?éG?@?߽?%6?.R?Q?̌F?b[?GR?A;?Xb.?:'G?`R@:?KVr"?ah'?+ -?e~ ?ao|?e?-S"q? ψ?ȎT\?gM{?\o?Y C?V?M@?b,?|?-?Pտ?.o?y?vC?"?#a9?hJ*?[B?|6?ŷ?ӿK? ! ??U'?RS?j?kx?b?gLA??$n?w!s?`?brn?0.e?x_-L?Y????r?s;R?\ _? s?蘃?;1&??X>?Zw?NB>?{s? Ӝ?p? ??$?U?_R/2?`K?,e?梩?‘#?D3?OC?SkS?MBW?Tpp0?u?? P?5ß=?a?|`&P?V%?Lx&?k>?R!?j4?dV?vGo?L?8msb?)($+?09 ? =?~z&?:Y?{?& ?7m?n%Q?nd?*c? z?;B?H??~V?eVh?hy'?H+.?HJ$?ͼW+?'*4?:.<?' 2?c{}8?`³a?0,Z?KDOe?cɦ^?@yR?cC?7TK?6??"W?,G?%SN?f?_E%? ?j?ٵR?B欤?o?B?ہ?n?yYe?aXS?c?}?³D??  ?@h?Pam?5#?*P͌?s?)?'U/}?V!|?.ψn?Ru?k?t&?AHer?x?mv?1?Ļ:??E|x?ߺ?}H? ?O?[?gN ?A&?% ?p?sh?fߥu?fm?Aў`?nW?/Sce?~8\?KRtN?]F?S?K?7'>?W$7?C?籟;?63c'?QI??/`6?J{.?-;? >04?,?Xr'?]9j??|+F,?Xl?x#?QY?ey?S?bM?t>?3E̠?o ?[N?M!?,?JK*??W (?_ӫ?i{???bܼ?d9>?(Un??Bui?/b?o]B4[?VPe?v4&_?3hUT?jkiF?[M?){EC?26X?I?|P? ?5p?l?5]x?ui^m?oN$?殴&t?/B|?$ ?o9l%?!e"?M ??=???:A?1V>?%(? njI?d(?@O?a?Xi?Ut?a?M?]Zz? &?}C?o$?؞j?0?A/?47?o4K? ?[2?x??\?8?5?@?Q?jZ?!wV?Agң?l B?K?+.1?mg?N|U?Uc=s?P?&/ry?WJ?,Io?f*Ք?F[?!?j z?>?h#??#)?yo?]?oFE?+>P?YQJ?WV?a?aY??+J?&O?u#V?Neaf?8 m?HZ?c?9:?2?}D?9?vi+?'%?'B~1?|$)?;/)?Y?W?1y ?{."?\h0?N ?6?F`]? ?NQ]?ۖ ?H?ϝ?MK«?%-?8hfc?.?p?b;ל?Q?A&RR?n^ ?iʱ?%Ιr?~9?Jx??|0v?v?*?8O?A?2)t?wKA?ж?;??Es?~e?}?47?߉8? 5?e$?A`?ɐ?4@?0p_#?b?#mԏ? ^}?] =?^h"?'gP?9?*(? }J#?1?gLD?E??`??)M?T˒?sV ??bS?Sc?W&[?uW?l_?h l?r~It?5sg?!7p?g |?RDׄ?hyx?6Ԁ?!,?߽Н?4x?bH%?6e ? ?e? ?#D=? l?LIRd?[Z\?2h?`?SBT?cE?V*3M?M^A?X?MI_I?Q?Gf?Q??"5?:帪?o'٢?a ?Ԗ?bB?4F?by??Vx?Y? o? ?6C?dX?R?وs?3{?9mo?6???>| ?E??!4K?p C?DO?4G?wT:?:oT2?f>?1Խk6?pfv*?y炉"?n@s?f?QL.?y?B5%?Ux?VnO?i8^?-e?-Zr?lj?N?W?rQe?c?0H?hZ?O?K?t??~9?*?&?堖?oQW?lÒ?wݕ?Qq?@?Kan?p8?!?*l?T?q? [ej?K@?  ?ݣi?ΟLS?iʄe ??U&.?I?A)??_tC"?տ?v?N#?zmk?C? Hֶ?Ň?NU?&|?V8?eek?ʮE?)B?D??$??Qބ޵?ȳyCu?}M=?6?g3?f??$?17j$?4?|_m?D[?5w?!d?H?$JAC5?zq6Q?=?9 ar"?w^G?.Ź*?)WӍ?0T?Z@?wE?ʧ?ؙ?͂?\6|?A?ƽNo?R? h?D8(ߨ?-Oeo?~`z?Z_??Aݚh?@V?Gq?a`_?[~C?չ*1? M?:?}s?D ?u(?m?> ?>v?,>mD?$? ?؝#?ڄi?j?}?`l ?(u?,#?W`'? ZL}?K9?Kx5?D'zk?7Y?gG^t?.տxb?))?Zq)?u@)?KR)?DASy)?\)?9)?aCZn)?H$/@)?p")?JQ)? 1)?GY)?cDU(? ~)?]K(?(? -d(?G(?X[(?LJ&?f&?s&?y&?\&?'?G<'?$;%'?xpR'?r_'?4W$'?b:'?ࣀ(?3Sl(?v(?ӊU(? (?j6n(?G(?4>(?;?!(?x/;W(?r*0(?ҁ(?n '?Cl'?.'?eF(?U2'?+]D'?\'?)i'?T f߆'? Q'?7j_'?v'?E;'?D{H&?y#&? 7&?x3f&?T&?2z&?E&?ZQ &?8.M&?6&?x43&?a&?&? 4l2&?%?Yp$%?}o%?0ɦ§%?G&?)?%?.%?]N#?#?pp#?l#?`ě#?^SΎ%?E^w%?W>%?9ZPu%?u9%?vN2-%?K 7$?hL%?i%-3%?]AI%?_%?]%?<%?ٮ/%?mE%?$?\$?T1Ō$?DE$?D$?L$?$?*z$?ɸK$?n6$?_$?CB/D$?$!$?#?D $?M#?0#?R$?|2,t$?$?pX$?D(m$? #?L{#?ܸ6̤#?O\#?Ef4#?I#?\ZK#?0#?+_#?p#?qF#?`gY#?"?)M"? i"?XP"?~;#?s#? y"?:5 t#?o-"?Pp"?<(D"?Z6Z"?}y"?Iv7"?L"?wb"?~!?="?p6!?"?%R!"?A>!?PKǘ!? "?p"?1 d"?g0l"?%da"?Yϭ"?I"?"?K"?Fg~!?E?!?!?89!?y]+?1*?;8 +?L*?D&*? e*?g*?}N*?e*?dos*?B2Z*?rmw+?פ+?0 ,? $+?+?uլj+?XnK+?kb +?91?0?11?0?po0?/Vo0?o 0?RU#H0?0?i0?&j40?]0"0?'/?:/?/?P4/?9v/?xXB0?JQ/?\/?T/?bP/?c!.?g/?0r.?/x/?- /?9?/?Y1.?mp5?sD<5?؎S5?W~5?wr-5?Qfh4?5? 5?>G5?p!s5?}ke4?0nyn4?cV4?];4?E)1??44? 3?O:]e^4?ze4?]Q$3? 3u3?Щ3?_3?653?E2?MN3??3?zH2?)}2?2?l2?#22? t1?w _2?}Y2?81? VON? +`M?a4N?FnԱM?~M? |8N?6M?NL?_M?xML?aM?&iL?*vM?B TT?;U?pd,T?QXS?v|PU?3^_T?'8T? mM~S?R?_̩-S?uR?@ :SS?Ek.S?_S?R?OR?xTQ?Q)R?Y+qQ?O?hQ?P?|%PP?xWMP?uO?3 )PO? P?ɀO?ܐI?P{QL?\-K?2yK?tDK?z L?jJ?DN"L?^{K?`K?L?玄I?D UJ?Er)J?fI?FaBK?xJ?CJ?*D?JRqD?Y[?;݃C@?sg6??-??շAA? z^BA?i7?B?(A?g_IA?)m@?T&A?[hm*A?Wu!C?GB?kQNC?RhB?*C?[]6)D?;EB?B?6HG;C?;8&C? ,37?,q7?7vM8? 7?Bˁ7?Uu;7?7?r7?8M5?2׹6?S>5?Dn5?Oq6?QjP6?*͢6?Vgn,7?*Y 6?~~G{6?ū6?s>?`m>?&>?ml[g>?7>?!=?.MC=?ʏS=?P6u=?\D6?o.?-s :?eJlK2?lj&?sJ.?B *?/#?]?U?"l?ع?q?uE?׳K~ ?8)s??Y7q? 2???uF?o=????j7?Ϫ]?t~?BQ?P@B?8<?h ?ɼ?5W?(?l8'?kI?? ??h?7y?y^/?T?>W?? ?]?m ?U?H ?Ӱ?zr?y3?&i?d?M\"S?1? ?'?htk?<)OP????fO? 6 ?j-?@?(U?0N?ŐnG?1כR?dHL?@? 9?lE?4=?261?+I"?V)?"ct?3C5?D7&?/.?v6@? AG?jbO?1oC?iK?Fq֛?MR?]?{8&?*Ҏ??Y?E?" ?tq? ~x?k?ẽ?Zq?;~x?f?ͲW?8^?a)S?|rk?R [?b?eL8?,?Z?|Qa?|N?S?T ?g?9?(c?85?\?61?-9? 5?y?2)'?(V??,?P?mw?<*Ǥ??Wf?W\?t?S%Jc???9!{Q?boH?t 2?IwX?7/>?81G?J5t'??3@?u ?|2??RZ??k?+y?=b?t??cl?u ??F!?8M?50?32? wn?Qp?}(΄? aL?OA?F?/:?R?*!C?^8jI?[ž3?)+?e=?H-1?,"?#ny?dbH?VJ ?֣E)?$l?a?GN ?-v?Ol? ?^x?9?E|?k6O?Fۙ?/Lr?nԟL?n?0a?@3|?V?p}X?uo6??! ԟ?A%?*Y?xgb?vO?. +[?**Xk?(v? d?p?t*?[L?bo;?yq.? ?[i@?/?X?M?8"?svW?)L?}n ?4?j*??0 f?1ǭ?4M?JD(?0@?)>?;/?A"?Ȟ?!u'|?5A?SG?'L?u(\?4Zl?sJS@?O, x?qR?0b?* ?6?Է??ܹ6?TD?+ә??xk?iVd??\u?hZP?%?S.f?NDaw?K? ?a?-?e??H?F?l?U!?6?Bޱ?,hzu?y`?.mֶ?Ì??I?F?I? N?+?/ۂi?dkhc? $!?疓?*D?(?Srʲ?~$?N03?SdIg?wl ??7lq?eE?M?x?Y3{1?sj ?ɰ?APX?k?Ca?ZxC?=*k?)?e?S?m|?7?j;?L<\?:v?UH?kQ?U?$!A2? ?˺?n-?ngju?t}?k)qo?l4?+AXz?,?왂?LO,?!?GO?0?bkz?wJr?⤄?Obz?R?tg?N?:e?F??k?s?Pw????Ψ?<?h?LrX?"Pc?\?dx?<?-Z'?m1H!?,?Hw?:pq?cK?M,$?V`+ ?8!/?[%>+?(.^?%?ol?"YA?N ?N?k ?g? W?(}l'?:?&!?p'K?'6VS?%oI[?bO?~LW?;tc?4l?B~_?nApg??MHw?f?ϲ?^5$a?;?|.9?j?~/G?zt?zo?/}?et?|?X;#p?ʨx?뒲?w_?*?|{?̠?>?wHD?}?B?X,Uo?4Ǚ?g?@? K?$w?d{?+L?n?{y?Z?\. ?YyY% ?S< ?%OD<* ?ojg! ?ߜ ?5 ?/fk ?! ? ?> ?L}>L ?67 ?? ?2 ?I; ?=H ?M1YQ ?MGD ?vL ?~Z ?=b ?<٫U ?H^ ?a0k ?vXst ?Hg ?Rp ?/F} ?ts ?x ?ҁ ?A ?tdڗ ?A&, ?0n ?96?{=?E?k:?d A?}Ps?OH7k?MMd?4o?<6h?S%Q\?@M?ՁU?}qI?拔@a?#&P?̶X?D?8 =F?ۉ?Q?u1?"8?V?@bT&??䳞b?z vL?ym?i{?kDTA?Ąaw?F??Do{1?cLN>!?җ)?46c?]6?4P$?%,?K?I{??Q?*FpX?%qH?Sd ?#?5??.sf??sr?@v??HG?m <?ֱ?{?!O??j! ?y( ?snK ?7 ?LKa# ?O@1 ?: ?-), ?DG@6 ?s"D ?dM ?w=z? ?H ? I?X??;?c],??c5?C?Y(??W??yw?ќP?gJ?2Q?F՘R?ީc%?p,2?ac?Y?0;?Fb<? ??&?^?Li(?Vkn?u?Ql??K??"^?6?+V ?8J$(??|z?@M?D?5O?ﻪ?QxE}?ɵ[k?΄ۡ?D& t?EK1zY?AMG?J#b?:kP?xI??Ϛ???G]?)?q}?#Ȳ?і?՞@?ze?wΏ?~9u? d?9}~?/'m?vrS?nm?B?BN[?t!J?1?\yZ?󲤆9?d3b(?>fg?\:?:4E?q>?M?;gQ?p3?Η<?c?+3?d;B?aHY?Ƚ?\"?1p??*P?OtSv?l??W?a~)?)?Xf)?VR()?kb)?~6B)?Xy)?"U)?d")?gj)?Y5)?/)?]W(?p(?(?0u3(?y(?\ު(?ܾ(?&?gp&?0g'?: &?1&?s.&?P&?&?\,_9'?Lm^'?iv'?F,H'? U|o(?LRI(?&((?:_(?V"(?椥'?p9(?(?&R'?D '?s]'?ISm'?]$ '?Di'?pf'?Oxv&?m F&?8F&?@-a&?F"a&?=%?~32&?^&?%?@.%?ѳ%?)%?o#?B=#?HGE#?#?(*^#?Z#?%ok#?*#?r%?ֵ[%?W_$?>?+%?%%?|!C%?|$?wI%?IEj$?h %?1%%?Ue $?$? W$?7$?.$?M$?4M$?rbY=$?3$?e"$?hu;!?X!l!? !?ߢ.?YN.?q^}z.?;.?Zv^.?JrT.?AׄZ.?T-?'[-?*^#.?kA-?<},?UZv-?3L;:-?0,? 8s-?&-?:$S-?yAO,?5,?hH,?ky,?FU`,?Z ,?rD,?&ju,?r6*? )?I)?il*?u5)?'C)?|)?1/B7*?z`\*?f殰*?69*?^t;+?^ +?Z+?s-+?70*?uљ*?*?&"^*?齦*?3+ܓ*? *?$+?tgx+?ҕ+?Lv~,?CK+?1 Ê+?V7+?S0?b-0?.1?6Z0?b0? z0?r0?49@0?QY/?G./? &9w/?n/?/?0X/?90/? ;/?e5.?.?3:/?INr.?Č:5?Z4?*f5?}擫 5?pqKf5?O4?jI:4?UQ4?CWl4?T2H]1?܇q$1?as<0?8F1?YM1?W3?͜zT3?1Q4?V0^3?P[f3?l2?vU*3?Zv2?3?/62?~e3?Ցt2?U4i`1?ޛ1?g~2?h<2?'1?*3Ft2?TQ1?'m22?e82?lS?+@?Y=\?7AK?=3,?J(?wU7?p⣱!?k?7?"?s]?bך?a z? A?"?'?v??qH?f?*?sΚ?Q?.m?DJZ?([v?ZOe??e?? ?_9?n l?H? AC?s?1?^pq#?V?f?>d!?[^If?5,w?|T?ڄ@?a g?"rx?W$2?ZIT?G,C?1Sf?c)?pB?+S?OIWK!?E[1!?ge`!?hD!?QmO ? ?]̍E ?&q ?҂i!? ?˂F ?*!?Q ?:f2 ? !?(tD ?Qmn ?5# ?SzC ?c0g ? J? ?^BS ? $, ?Itsu ?d? ?.S ?]v ? ?I%, ? z ??#ٌ?S2_?$?b??3Zj? [@??1?a ?/m?in#G?kZ?34?y?Yy\G?!IZ?_3I"? ?*.5?`v?&?Z>r?2?R]?p?Ҭ2?ߺ?/R? lfx?^U?f?g?J?2!??wN?ZșdN?l GO?y+N?McM?!L?vVM?N$*OL?JM(GN?u;M?(M??aT?KϦ}S?b_R?$9DR?9YT?U&gS?R?©Q?1eQ?4[fzP?u- P?O?oM*O?BR.R? &P?dP?&O?5]I?W^J?ŘI?7uI?S|}K?n1K?^PgJ?OM~L?R3J?a>K?)cf)K?zD?ڬ"E?kͫ`0E?D?Tt@E?~E?#z;$E?ka[D?_C?RǗD?lx`D?~[G?!_F?ܹF?™ H?NE?JOF?|.VG?xH?/I?G?(UH?T X@?ca_??|@?4J@?I3_??G??v]??$[M??8RA?[Q A?ܡ~A?UB?c@?VA?= aA?4 'C?VUC?v!KcB?;QC? {i8?6= 8?Ԧ7?𧿷G8?/~47?0/c7?E7?|æ7?BU7?(s5?y^ 6?QW56?틡5?;P6?B R6?0$w6?-t>?>?NmU>?\=?>?xkNi >?Wͦ^>?{1K=?5hvL5n:?9?N;?:?;wZ:?MFW? *8'W?[rV?V?U?JlT?}[ U?3S?J-U?wwT?PS?؞*?$-cm?bv? %)?7F#??bfl?h5,?ZQ1/?L;3 ?z{.? n&?:w2??*?e>?1?Ww"?A?܋?[B?]Z?Q ?`&J?ְT??PQ?c?b?gjÎ?9?5?l{?OF?O\M?L?N?zK??SY?Nؼ?{͊?9/T?[?b?4ո?ʱ? {?0?USv?ж[?7G᱗?i#6?ͺpۛ?飓?e?]y?F)?U-?}I8z?cr?}?qw?G}k?F\?pD6d?Ag2Y? o?2<`?Ux܁g??i=?p?sxK?&#?z?k?9~? (?D-?N?vt`?#V?ɚ?i4?"?Q?.Mg?v?]Ԅ?4?? )n??<?zޏ?cZ#??Tv"?EX ?9?XD` ?X}(?S-?s( ?o6GV?p~}O?8\?@hxV?8 I?*%4A?v#P?q F?.9?s*?ȰX2?Cy='?5L>?ք.?:q86?Qn.?ڮ5?8??M3G?;?7*C?0MO?bwW?SAK?J+ S?uh? v?~?7Ӣ?Q? ?<}?m?Ai☄?Dhq?_?FCh?r_a[?&+%Jy?zRie?z=gn?v-,?vk? g~!?Kŭ?GΡ1?@?1%?Ŏ?A?τ?o?YtKv?t ?m?fo?;`*??1 h?XȎ?f/?M?ܗ'?vk?!H?ٮl?+[?! ?{3??(tP?B?T?"b?p?ia?V/?{ԣ_?/0*=?*?M?#*?hKtr?UmrA?ĈR??1?ĚNQ?q?kç??ʻ`.?d?ƍ?g?B5l? l?lkd??!tF?1);?ڀQ?hF?3/?}b?R!%?Cv?v}:?e?M,*?X?ح/??V:-?Y? /??r?%?f̍?뗖??lk?V.?]n?TK?\?Avi?e)Q?Ia?kj1v? 7Ӄ?Pn?fEφ}?c3?DhR%?$F?oe5?ϻ?W?D?+?}r'??),??,?)۬S?R?\ܺ?U6x?oU?º#?Ф:??ku?Є?DX?q)ҧn?G?Iv?ởa? Biw?Vt?{.?O?ؒ?&"?6W)g?N깅?:qG?_?s5$r?MC@?5?t?YUg?|d?"€?qD?'ׇ?xt??^?M?9?h$?Frr?E q ?rT?&Lg??,$?xR?Qy?^oî?G/e+?=ؐ ?ݧr?p?uJ/?8kS~?"vV?+;?ځ "?cHb7V?}ok~?3l?J(?i?ؠ R?3ѥ?3?n`?|Q?q4?.LDo?3נS?$?53C? ?'?.c?#?f2G?'o?d?ERu?-6?V7d?,?y?~?w?>?vY?ż?R? z6??$&? ?/t?kgci?Q^?>r5p?DO g?Ƿ%:?QT?cq0G?<6? }\?B?aO?!&?S`9??Ƣ??RT*W?~?O?[P?6"?e~ߘ?*!.?q??7M?'ˑ?aK?d?6"{?Q֜?wΐ0?K?7-?* o?Ai?3?n.~?\]z?'X,i?mo?ݖt?Y?g ?-R ?r$i?.W?=5M?ۂE c?"+4T?B?SV8?pLJ?b=?}H/?>?Po %?N?`Uy3??(?:4צA? y-?u7? L? (?ݥC?9?&i?,y?@՗?̦Z?lw?;R?>?u??/(?BRA?[Z ? ?Lu4?~ts?3uj?V?Bu`?CL`t?mPA0N?Y*a?k?u?JV~?u&$?A.>?غ( u?Om?c ?3~2?l M?$?2 ?E'??}?s=i ??L??f ?*?B^?}+?9 ?N/?C?6頼?7Q? @k?׀?|А?6V?7p7?.%8? ?a?̝?,f?Bn?&=?U[ǝl?F]?`|v?@sh?1 N?K<?l/X?5VG?h*?@OE ?K}m?^B1 ?}-5?1?#?%E?@7?ؠ?q?ޅ?fʡ? x??>9?('??? ?c?8+??z ?̦&?J3?2?f,? XS?^jpK?C?~?,]cMH?(hC[?Pc?J&EW?6M^?>k?xt?&f?jZp?Dy?S[;?Tu-ٲ?vr??bc[?xҺ?DC?9?_<?5&?< y?n8}??y?}N?'a܍??֠?$b?|L7?k.?#mR?tIHB?`Z?t(?5[?l?h?D?ed?l#? ?Jg ?!?%3? %C7 ?L. ? -% ?3 ?i:N* ?Ҫ9 ?ӧ ? ?K ?Stp! ?IR: ? ?? ?cH ? 7; ?4=D ?l3 ?_m ?ǫt ?4^ ?@ ? ?[@ ?W2& ?_ ?hn ?f ?j ?B ? ?S` ?{D< ?b# ?u% ?x ?C ?4 ?ũ ?$ ?bQ ? ` ?41 ?  ?[Q ?J%!Z ?L ?AU ?4,b ?llk ?Cѐ^ ?$lg ?:{t ?uR2J} ?y3p ? x ? ?  ? + ?M[ ?" ?f ? ?Ņp ? ?p#6?/E?)PO>?~5M?Ω2? >?ǤXF?Tt?ܮvl?R{?-~_t?ٻe?'7T?͖0]?BטM?5Xm?XZ?ytbb?U롧??!Z?Pf?8r?)4?[D|?9{?5M?lĶv?ó??,w?[?r²??}'t? M?V?h:?J1?H??S7?:b'?-I?-R-?:mA%?`z?DNɿ?k"O?HbK?^*?JS?Wж?ƽ??*2?X e?z?:?W7???Mhw?Pp?U~V ?>_ ? +R ?ei][ ?+QGi ?9"pr ?Q*d ?4m ?۳{ ?mGW ?&Mw ? ?* ?j% ?/ge ?Hi ?W ?t ?zd ?Ȝ@ ?Wo6( ?x1 ?2He# ?W, ?yqu: ?i+D ?.5 ?V? ?χM ?{V ?VI ?wk\R ? 4e?| U?n?htE]?u\D?7m3?"B"M?rN8<?C&#?u?g+???o?^ ?2j\?c?K??(v??H]??TWO·?K̴_?Y ?vf?c(?|?u?a$?Ro;?/?a1?B??]n?mG'?R ?s?5;-x7?V]C ?o>?p??j)?j?g?j?Àj?I?ڔ*m?O?/?%?V?SO?%?m$?&$?Ѽ?%F?@a0?re`R?@??lrl??)<?)R?Z?s(?aՂ?&L?my?`K?PO%?r~? ?7S?ʻ?D?^͋?#y?d?Z?#Lџg?X$V?EDo?^?bqD?&2?#)M?~"S=? ?3 ?/щ+?UP?z;I}6?9Tx)%?$#>?|G.?t?΅b?Pi?  ??epB?0ƀ?ּ?F ?aY?O?0? ?oK?Źn?+?l=?+5?>ެ?.?.16? pb}?š?f.ن?>_j?)Y? DAt?-/`?L `G?qH#6?-$yN?S>?f?Y?A?({ ?f%6?#d?vV?6? ?mKu?e?n~?a]d?˓'S?Xl?}[? A?֞0?Q*zJ?*A9?@?q?\(?j?eh?5|??ͣ8?pͷ?v?8A?>22?Jj?zB1?I?q?τ?O?"?XQ?H`w?˟f?SC\"?}k[o?%mӐ)?o m)?c*eu)?)?yX/I)?s-")?alg)?"8)?u+{&?U(?3k(?3)?(?v(?nX{(?HlS(?(?/'?Qrԩ&?g&?X-'?MR&?2u&?번'? V'? C'?y1'?Bg'?TP(? IN&(?hf(??(? Q'?)'?TA'?{8'?(?i4'?PDz'?ѸL&?&?,l&?5&?%?19%?j&?;:%?kj%?b^`%?:%?ll%?L6џ#?>ڻ#?ǢT‡#?s#?#?=$#?s##?P#?g77%?G%?¦C%?%?w$?|~e$?{]!$?V }$??1$?[aG*$?$_J$?X]$?\)?2BU)?z(<*?Ɵ q*?2 *?@*? J\+?]$*?K﷙*?†^+?8zu*?}}O*?^T+?ۤ#+?PF+?0B+?Yj+? gN0?ʷe0?ķ.0?nFڝ0?g0?.nV/?|b/? `/?lVbU0?R/?\/?]GY>/?`_.?/?\8:/?: ź.?W>j.?CV2.?AM.?8?5?L5?A5?|5?l4?s05?74?(5?P4?Jk3?WQ4?qm'4?+ji1?=01? #61?B1?&0?h_1?,1?'Ș3?x853?o|3?#[]3?0]2?I,'R1?Wdjg2?X1?B2?o- 2?;pK2?|B?LuJ,?0VRU?k9??p#?&IX??$<?Nc#?I??1p?U?:- ?y-?,?\?f?jQn?i?@?t8?^8]? J?_n?@IX?Μ ?n* ?p9?g?/Y1k+?sS?[WG?S??~??>g0?Cq?A?kف?aϰ?mJD?qg?ߩK?e+w?ҕ`]?3)S?_o?'(E?^?L1???Yz? ?-,*?^ ?WyN? M?W 3M?YMO?uL?,zN?ATQM?;0R?0Q?1NP? ٸS?LO?kQ?zp(P?f^'}I?7J?k,LI?eܦJ?ŨK?ǶFLM?qMJ?A- K?XrE?CkD?Qj*fD? JF?C?FK*{E?D?=MK %G?IH?sQgG?B_I?uxSF?mG?owH?'=@?L<?: @?.(??w>?pA?]ZB?"@?7A?MP|C?+~D?$B?m C?$f8?ݱ37?m)&78?X7?`9?D=et8?bڞ&8?vzF7?3?Qn??kS=?n44?l0 ?1??#$W?y?@_?f?O.?W?_?d?E? ˏ?/IJ?GB??v}΄??^v@?z4P?o:?JD?a? ??"l??:̗?㒝˧?F,?疏?^?y2)?,Mz?N?GtR?y?os?KOc??៹?Σyf?8u?\?w#o?? ?tZ~?pKv?x7?Mfn?c?RyP?S}?6z6?Nf?6?D?M ?k?։?{-k?>? {]P?r?sNy{?uv?f^P#??;?M?j?BB|?.i@?ܑ?<#w_q?%J?C&?t.?{C?2;[?F,k?#F?h{?7?W?Džm&?†H?^Q]?6)٫?D?hL~?^]?w`? G 5?|4DP??+??z?(ȓR?n?q?LoT?|?js?wy?4 R?!4?6a~?`&?R?Z?B?m? ML@?#?\͏?ɳs?Vk?V w?m?.?ٗx?.xd?K?X?TMF?Q܃o?7LU?6a??jo?"J?i?3^?o]?Rr*?܂?X-?b?) -?_Q?Z?BK!?ݖ ?Nh?)`!?DpN?F?In?D:2`?N ?z?!ij?Ƀ$?,24?֭?IN-?tQ?Ã{D?x[?cJ?N7?`"!?JX},?嘗?=?"#?E/? E?IGX??>?)5M#R? ?y?Ť?;̯?`?]s?Gw?}?J?}W?q??gk?s?Nǎ{?+Ke?(ȏ?x?A;? j@? ?E?M ?`^?KA?\?$? A??B?#}L?p'?B@! ??<?{#?3?StB?ԋ? ?3G?E?O"/?e ?;?$/4H?c?6R?Fq?ی_?wۧ@?e?.?3?'`:N?.58?:M.-'?!?pl?<_?\?=?\?Ʊt?a?Bv?tM???<?y?p?0PT?Et?`2n? ײ?In~?^m?a??QF}?FSA?n99?yz P?|I?4[{?"\!?%x ?8?+.c1?=IߕA?&?ĸ6?TGS?7L?ܥZ?S? +E?wO<?xK?&7B?b?Fbjk?GcZ?F[(f?t?~?iFo? z?Eӿ?0?Q?u1?v?ي?? A?Z_?'?{?nR?if?ˉ?q鳎?8a?ԃ?ݎ?zqz/?`$m?Zw?kjM/?bm?[??r@??"+?5SC?L?jjd?w(?BUg ?#n ?U? j ?lV@ ?S7 ?&P. ?=; ?ľ3 ?)X& ?x ?nB< ?Gk3 ?Z+ ?a ?&! ?͊H ?7^Q ?U];KD ?z4lL ? ?u+i ?\|N ?Jۛ' ?", ?~ ?æ ?3% ?"v ?ts ? ?L ?*t ?Xr ? ?f ?t ?> ?Z~ ?+ P ? ?y* ?sM ?[6Z ?c ??ȡAU ?K_ ?k ?t ?x(h ?GEp ?ݜ5} ?v6) ?Mtx ?'; ?! ?a ?-"0 ?/MW ?+"7 ? ?ðE ?oeI ?I ?e ?( ?]665 ?Qm ?yF?PB=S?i@?uN? rt?j `?9~j?Ũ?[?k?Lv?>|+?V_?C?!?:,ŀ?-?y(Œ?j?XJ6F?./?А?(}?u9 ? ?~^\3?I%#??+?̼?m9?%y?ǵ(?[0?MT?*? ?#!??o3?^?e?2Fa?l?2s"??@??^ל ?[l ?]V ?! ?$/R ?} ?$ ?:- ?ih7 ?o ? ? - ? ?[ ? ?EJr ? ?;BW ? ?Dl ?ӊ՜ ?S ?YKEE ?% ?x` ?UWi ?Ҡ[ ?d ?mr ?M{ ?[mm ?Zw ?3w^ ?> ?֋$ ?z ?F ?g" ?fC} ?& ?$ ?$ ' ? t ?eE" ?X1 ?n : ?H+ ?5 ?GDzD ? M ?Й? ?*\NJ ?xM2W ?Q<` ?nS ?rxL[ ?Go8G ?Zҏ ?  ?@ ??ܪ' ?\d1 ?%=R# ?- ?n"; ?D ?\~6 ?lZ$l ?] ?Bo|g ?9u ?mx ? GITq ?M:{ ?Lq_ ?^ ? Lc ?Qo ?yv ?l ?{z ?^Q} ?א ? A ?~$ ?/ ?rC) ? ?LR ?,ŪϘ ?U??xD?3_?L[M?A4?t##?v=?9Q+?I9?R4|?)sL?Ħ[ ??5]?9???'e?=D?-dt?i~?Cn?ކ?4Rv?2o?-?z?)=G/?m?ml~?"?O=ʆ?Z^?]/N?-&f?+V?=z >?-?ӷ~F?PQ6?) ?&( ?a;&?=7???!A?K@т?Z?!-?ޛ?U]?ţ$?jL?;$Wy?%?Sc|??Oå?(/?>????!9?) Tk ?ނF?]j?í??H#?^?j?C"?'iy?X0? ??~?[5??Co?3Job?s#X?m#?c#?r'C?7?xlh"?f'E?u3.3?9?%bD??|Ö?{U ?zY?U?5?Ɲ ?"}?O?I?d?lb#?qf`?h6q?_v?撂U?_Bf?BF?>i~?` 7U?)(Yf?_k6?"?ܭ F?'.?T?=4?s?_5Q?ڳ-&?R?0.?О3`??L?7`?XT?s+?1e~?.M??c?ëp?,t?uw?R&K?c-?@?ݰ?~?pb5?Q)ŋ?Oo}?ni?~?yr?`U?>O6?&7WE?3{'?}kth^?}(3[5?QhD?;y?4U??\?V:?]x?h?(&?vu?c?S|?xPl? R?_A?#J[?8J?ۧ0?GKk?SV9?E>8'?(T?5??H[?(??P_2??' ?4;ӹ?J?>s"E??S?Ihn?<??k5gx?WԢ?6l?*|>h?n W?F)?ڂ؍ )?'0׌&?r &?V\4u&?P6&?ch(?-;|(?#(?)U(?(Չ(?9}(?xn#(?:O '?a w'?K| vB'? ['?}&?nKw'?_1A'?|^/(?F'?'?0]lZV(?]¢'?O'?0;`(?*&?$%?f\>&?w &?Xaд%?4U%?)%?9 Ô%?%P%?3f %?dsb%?M+%?m^#?|#?{[0O#?y~#?3D#?VK$?j#?eC#?9$?\ $?dy$?c$?-G^$?Z:3$?@[a$?$?-͡$?K-:$?g$?Mk#?vUeZ#?p(#?Wԡj#?&R>#?]ɡ"?:"?d0x #?/<"?Ο"?Jv"?N*Z"?9y"?K>!"?!?41!?b7"?qw!?i!?@3 "?v2L"?u b"?}Ӫ "?E8C"?4ʃw!?1!?JePO!?l^i!?p!?m!?l~!?ŨeS!?I.?S3y-?-"-?uI>-?{L.?--?--?"_-?ō,?r[-?7]M,?@dG,?Nx+?w/,?m%,?Ep)?b*? @u)?)? ?m.:??9?Լ?w ?p d ?w{ ?KmT ?y#: ? ?(, ?C'$j ?e# ?fֵF ?L ?Y͆ ?m3 ??W ?=$?#S?Rũ.? $?a.h?V/?K?OՌ?~?2?_ O?` ?'z)?A ?? e??0x?,KN?uP?;Ӳ[O??>M?//Q?|iZO?κE%N?5??Y>@?Jew8>?I??7??xX B?D?Q C?ėP E?.LA?VB?i®C?);hnc8?˩7?o|6?,ؤr6?c@Z9? ̺X8?k7?ե 5? n5?W 7?`G6?c ?#WS?JТQ?pR?%O?L^R?|Q?)nP?TjѴ-?b+?~X??)?n}(?7?q??3Dx?,hp?}@ ?IJ6?-t%@9?|!?@d ?v/)o ?r ?X硁 ?{v~ ?Ȓ ?7f ?, ?" ?^ ?!ּ ?H ?C=g?cH2?-`?eq??O?Bh ?ؽ?o?V/B?:6?EJ"?fD ?|P?B?!???.p?t<?0Ȕ?c?6ֵ?Po? Ǚ?ldÍ?'mʠ??YƁ?GNl?rw?z8Rg?i ;?ང r?Q|?Y?$?S?0?'??F??>x?R?lb?K$Q?BWb?bW?KJm?#b?6q&?*N?;?h(1?5?>K?bA)?]~M?$7;?}D?uX?Eg3?A?~J?[0.?|Z$?XW/?Kav?#?!\:?bH?j.?k7B?ru?)2?T<?wc%?oo6?aG?>S?.A?BYDM?\v_?>Ʀk? KY?l+e?#l?NX7=?O?:?Px?Vw?I?q?Og?lX.?O9K? qw*?MC?4K?^Q#?W|?/?]%˅?1?C*?^?O{? y?~ t?&?;?"u?'?g0 ?0m?qIx?z ?ϟ?~?FD?{@n?O?+3?\?Vi?h)r\?jAe?R?ہ.?@??]A\?Ƨ2?{}яD?޷Y?ƒ;?# n?À?=?<]1?&^+?wX?x,*1?Hᣝ?7e?b}?D ?\o?3*?]\$?HA?Ux?@i ?.z?-vi?Y?RZ?r,?16R?wbf?4f+~?e8?3YȽ?1[?&z7? }JQ?~LJn?FɌ?tHq?9a?&?h13?`>?nM8?ƕs?`%cz? _?mOl?Z?:X?Wn? |?s?lo?}ݖ???Xs?{?J?W,?>%?kO?M?=?Bu ?N?<`e? T?*7q?3_?K,6?(nJ?ֳj)?AB?[ D?%&?T%V5?y?2'O?0}J'?X5?u^?,-`q?0V?}S??B=?/G=D?I"?F ? 7?\?"顡?|?z:?-_i?ٰ?1?(?яQ?%9G?5g?8X?T;?Ń<?1,?x$O ?~%N?;W&?J `Z6?Ӹ^?qR?N >?VH?'06?@r>W?0v@?FYJ?X2Jj?cCu?c?u6p?ԌD?kJ?R=@4{?^?.?ø?nj??9~o?$?:?m?G?Y?Q?5oY?5q{?>?C>??O?n짮?[U.?.Ah?Yn?r?g?p5?y ?] ?~ ?AuW?D$ ?.9 ?U @ ?+8 ?+H ?1@ ?R -0 ?WBJ ?q8& ?O1 ?2$8 ?Ds! ?[d + ?azNP ?TUZ ?Iο4H ?;~U ? ?+e ?ڤ ?>^ ?v@ ?Cb ?Pr7 ?4 ?j g ?n ?0ſ ?݉} ?$Z ?YR ?=S ? ?7`f ?=2- ?}[0 ?ڻbd ?5(t ?l4~l ?'I| ?]r_ ?,l ?- t ?^}A ?h/d ?4} ?֊ ?$d ?۴╩ ?+ ?g^ͱ ?16 ?С ?Fթ ?] ?": ? ?9o ? ? _ ? ?O ??/W?o׃)g?'vP?ea?0w?t0?Љ'?z?gq?Zn?[i?t?Ovl-?W ? ?Yެ7?7~|?FV(?Ɗ*?v?A?Zn\?I?ǣ?M?b9??^~I?,Áb?l]??KI?ͼÞ?(?K ?wC ?5\v ?q ?_܊ ? ?i ?X ?Nf ?/z ? ?X ?q ?gg ?_ ?zM ?` ?0) ?kN ?  ?#> ?%I ?\Ok ?fQ ?d-tJi ??Mr ?&Zd ?.Tqm ?D | ?vx ?QNv ?s ?U ? ?܊ ??^ ?Uٗ= ?4٪ ? ?Y K ?ͨ% ?ЫU0 ?7Wۡ ?}S* ?0: ?fv0E ?O4 ? 8@ ?}7O ?ooY` ?X ?2h ?1K ?ne2X ?0` ?HwD ? u( ?[| ? $ ?ҧs2 ?k0I < ?O'o. ?7 ?E ?0LO ??A ??m>J ?2NX ?Rb ?`ZT ?4=^ ?l ? v ?^7g ?Ǯr ?w ?dC ?V{ ?Ģ˅ ?J ?'M ?G* ?: ?m{ ?I ?)@y ?14 ?C ?] ?'i ? ? ?H"^ ?$ ? ???f F?0l4?5-O?W=?l@#??'i|,?BD?;?B ?4K?Rrq?۾X?x"q? t?i4?>ۑ?Mj=?)Q?78?n?Zv?^?AB`g?e?Ǝ?% ??*2~?*8?o?w/?.v?N?>XF>?iW?G?7x.?A8?ni7?C7 &? ?E?d_?!?o~?:o?<k?X>v?_?/O?" g?OV?@?@?(0?'!?'\?a0G?n'?V7?Β1? 3??-?ct?PK?u?5C?Hr? ?H9t?g?L?sc^?5~?]?:?o?<`?BR ?wP?.!7?NK?3?o?;L? ??^#? ?ËOR? [?|a??b&w?[ ̎?m i?Elh?UsY?e1p?|`?!OJ?3;? Q?+4B?fڧV?$? P?V[M?y?? 6?"c? ʥ? 4?wm??fHQ?EH?yg?]',?8#?#?\s=?Ќ B???,i%'?#?M#?]~?FyR?:.?:C\?nZF?L'?W(?;T?q|!?2r?!?bd?*?P Hů?`?f\К??m?.I?4 ?H務?FU?ؠU>?֑l?meK?ǐ&?"E5?L3?8|?ތ?"/?C% ?Xժ?-:^?Z?̜?iӇ&?hk??Vc ?냛?3?5?"????(6?W?Uo?㒕?{&?]&?:8&"&?C&?n?&?jae)?+)?‘!)?1J)?He(?s(?@)?8.(?&?*'?~o&?V'?3n}(?bCA(?hp.(?Ce(?:v'?&w(?g'?$S'?G)(?v'?g'?6%?5­%?&?M%?t%?\Ș=%?Kی%?X N%?%?Yi7$?|w%?|t$?&#?g\C#?#?$?\#?l"#?#?Jq $?n@$?B!o$?%@$?,Z $?U@$?`ۖn$?Oz#?>yO#?大#?Ӧm#?}hAW##?C."?!GA#? u#?W~"?r@7/w"?"?ƴ$NX"?CG"?q"?)"? !?G"? 9"?P!?wR"?o,9!?"?_߆\!?GmN!?cP51!?wzP!?'6!?!?45t!?ug"!?|<-?VɄ,?!jQC-?ǝ l,?5.?+C,?Mn-?-?.,?4<|+?\|9,?Wh+?t=)?)?qsv)?8)?5>*?0s*?\_)?bĪ%)*?x*?dcFB+?/*?E*?D30?Bzƹ.?iVu/?<1?.?`0?R!T/?[ȥ-?_s.?%[0/?#;.?5=4?hP1?f.2? ?}4?Y-0? lR2?pb3?$7%4?{:gy5?-Nk3?5?[5?3\n?)~{9?Ɠ?a?D?`?XQ?ƒ_?Y^?:Qz?&ڠ??p ?*eb?gM~?? ?U?q?9e)?5P?U?=y,?Ķ?Ke2?Ty?n ?׈X?D-?t?"F?j v?=k٣?ʯS?jB?I!?i ?UKu9%!?v ?$O`< ?ׄ@?6?~" ?dܙ(?sw?R?V5 ?7eD ? s ?] ?hWE ?4)P ?uƑ ?VU&?;ċje?Tr?uu:?"g5?2?3H? ?W?^z?x: ?(M?CbeL?{׎J?u֤I?,[,N?`FQbL?ؒJ?F?BO{H?һY.?G?C]ZD?I?BG?q|`F?0]@?'9A??ܹ+:?*EM]?9)? ?4 ?^. ?y+ ?Ҹ ?ߌ ?hi ? ?gޖ ?% ?Ђ ? & ?Q ?j![ ?ܱ ?7 ? ?GݩJ?IQ?j ?b??m? @?U+?Av?[Ɋ?Ïa?ƒ`?R? T?-? ?<;ѧ?h???Ig??>?_`w?l?u.[m??Rug?n.?>Š?F?|?Uk?"b~?>q?­,~?Ԇ ?.,?<? d ?he3u?Qsc?]Q+?SG?)Ϡ9?[ѲU? eM)?6l?jtJ?,X?~Iv<?l#I'? [y?^:?,??`C#?u'6??h?) G0?J?VCZ?괳C?+S?|??lk?|X?о;?"៺S?+7G?'(_?#5?3ZH?R]T?Rtj?5y?+7|_?x_(q?=C?9g?0ˆ?!?8?)uk?f4↑?҈W?<ֹA?, .?<?_:?K*(?n??xj?c?LH=?Bn?q??͕?`??R35?a?EJ?7?~tkR?B?Ag!?r?Xf?SwN?;=8L~?h?*?DTa6?Wv?y?HLP?~?2?k[1?M?n'?r+h?-/?(X?7̔7??;k??pXS_?ɞo?e?l d{? *J?#?6v2?β+o?{?2p?J˙Ӳ?K?̍{+?Rr?xQ/?c:?J?LOd_N?q? df*?5{k?rd56? q?3Z?"F? ?ҵn?C*?pJ#?it?s4?vuJ?V%?9\s?wK?A*? 7X?\g?CKZ?+xA?nOo?3Q?c[M?e?BJC?*Sy^?'?AL?J 7?-j?5G|?X5\?Fru?W$ې?vl~?`h?c ?;I?q+m?l?0?i?D?rH?:?s:j?ð?e8?xb?d;h?5?9V? y?@r;?5f?'?o#A???p?̡?Ќ?t?\?)0??o_?>G?~?Qk?!0?B1?y5]S?wZ5? i?$*]? A?-HO?(+2?c?j>1G? T?!%v?s?qp?p?|?ˎ?t?lQ??*K ?֟?g?aW?!?؏?%3?Ž$?Ƒh)?F^?yY?uQS??pͣ?=Ah??@<-?=1H?* ?  ? ?(A ?bM ?@ ?+b0' ?q3 ?]֨! ?! G ?. ?zd; ?rZ ?Ͷg ?hT ?a ?^Q/ ?85X ?0 ?΃ ? ?.42 ?5 ?t ?]0 ?^; ?IMf ?G) ?:ʾ ?H> ?Bt ? ?n ?w;| ?I4m ?O~< ? 1n ?Ol- ?  ?;Ͷ ? ?3 ?i! ?d?b ?^?O: ?A#?_?7?b(x%?r??C?{,?C_v?`)x?~ ?Y!C:?M?D]?T?Jc?'?@W? FX ?LK ?= ?g ?Z ? ?Ce ?i>| ? a ?37 ?2 ?jԓ ?[ ? ?W ?C/5g ?)p ?,Tk ?y ?.mo ? ?tR ?8 ? ?G!q ?4| ?7(i ?yw ?-=ֆ ? ڗ ?(rV ? ?A ?j ?I` ?\aY ?f% ?WJѠ ?%Bd ?r. ?: ?}#( ?h^4 ?ոF ?S ?a@ ?sM ?2` ?8ٜn ?z8Z ?i5)h ?zk* ?`3 ?Y& ?&0 ?ic= ?χkF ?/~K: ?^B ? "˿O ? !pY ?0K ?T ?s&c ?Nm ?o] ?h ?X{w ?5ڥL ?圽r ?ơ} ?o! ?_ ?tOu ?b] ? ?W ? ?/ ?.} ?!Q ?Kt ?Kq ?O ?^/zű ?g ?_r ?+n ?NQ ?9퐢 ?Ome ?/?L?Խ?̩ ?/ ?;5?ܬ}#?4jY??˷"c-?K?4?c**?'d2?"`g?V??A#?է?<> 9???rNw?+7? 7x?_?mkg?6, P?Y?q?ɗn?|}?G?qa?2^o?~?cC=@?,/?]=J?j8?a?B? ,-(?z?AeX,?@^n?0?8qLO?=.n?_T^?Kov?̐f?Ns"N?HX)p.?]E>?^%?A]dV?3?`C?]l?=Q?!a?EU?o?<~?Id?$??Ie.?Sz?9Q?3Q~?xn?n,?C}x?,?%~p?Es}3?)r$?+?([?p%j?:8_? ?|t-?ב??":?QIl??"A#?2?.Υ?̼??0,?S$?V?sL?w?$Fkh?B?o?7Y?I?pɥ`?%9Q?:?+?uB?N3?4X?1?^hg?*?JT'M?Nhp?6ח?Y?]s?ԦΥ?`?, ?x ?@jL?Zs@?AqC?0o*y?Jj?{TȀ?Dr?WD\?æM?tc?y?T?t???0?)3F?7?M!?]8?4O$)??? sF?v?]a?Hp?jm?_?<? Ig?b?|Y?F!~?)s??NI?M?[x?Т?aF??+`}h?u+,b?e!?T_?h%D?пq%??I? ~?3?` 7c?rPb?Bl ?[':n?r@??)r~)?v?VM?u?@&?}D?^z?A`?k9?\+?wRP ?`?eU?n ?y6?K@?}?Z??pW?s?m6?[? a?]?F5C<?,?j?d4?*#02? }O?r;Og?@g:? K?6wqN?Vf?^%?)?~>Tq9?Mn?jY?$|n~?mzH?NkԎ?&ґe?&L?+_u?oL-\?PYf4?b֫I?C??+?2A?B?*??_1?M5!?m+?h*?8)?O5R?N̫??I?bިZ7?h6S?yA?3"6?X&? -&?Ԝ2a&?&?@|&?8R &?B%?;&?ԏF&?z.)?I(?/PP(?(?5])? M&(?'(?4)0'?ťy'?') '?45Z'?l;^}M(?,@'?L((?qj(?KCQ'?'?cY0(?g%?re%?4p%?m{%?9Pv$?Sk'%?7w$?E$?I<%?i9$?/η$?p;%$?%#?B ?$?s $?NX#?K$?M4#?>$?Qp`#?/ 3##?#( #?"E[D#?!"?]-"?#?D"?tixl"?I!?n{4"?!?&Hs"?m"?="?^sD!?t)p!?< !?24!?6!?7*!?K_!?O).!?f7)-?!Z,?-?C-?չ"Ģ,? +?dN/+?p+?6+?`)?j`)?`)$)?2{`)? t*?vW*?g,u *?n]*?HC)?gw)?A*? 8/?nN.?[e.?N1?I1~-?r4/?4.?&u2?fNѭN5?:33?8C5?h,71?{wO>4?| 2?pX.?Z"#?,D?FL???P߱?`jg?񲕐?ZmNH?0?|f,q?V-[??b ?r?h?6.\/?}^?{?9 *?m3?j>c?d n??sP=5?.t?(kQ?bU"?MK?2a?B Z??v?? ?j ?at ??p' ?O?[ ?NO# ?9F?JQw ?+5Q?eQ% ?Ϳy?dM" ?B?I ?b]L?W?0?+{g?B?uSJ?\H?}F?T4E?&'K?zQc-H? F?1Ej@?6C?)B?a>?9$E?myB?) A?Uĥ8?-o:? 7?A 9?BX "=?GB??eX;?b=?U?ZFPRU?ϳR?sQ?1N?j ߨL?RdJ?4H:?b?b? ̷?x?n8?t ?/?qcCD?Y8g?'?@NEw??$B@ ?C ?rۆ} ? (E??ڋ,?H*?,?;7?1?9?iN@?B?X/?TC* ? u4 ?#ݏV% ?9lm/ ?> ?H ?ơ9 ?-7gC ?- ? ? ? ?]O ?]a| ?4 r ?. ?P6Cw ?wWg ??p] ?*S ?.N ?x^l ?CvnTX ?b ?Ե k ?J ?l{s* ?֣y% ?C ?I ?pc ? ?;0" ?x ?` ?J ?z ? ?M ?iP ??/K?f?|@?A?euԜ?)O?\l?S+?  ?Q?(Vp??6`?(??e?#b}???>W?S?N?W?Ҏ_?v浡??"?L0 ??-5t?afU`?DK*?MZt?L?tga2?E??v \-?P`?ĮFM?kщ??p&%? t?|sԫ*?8CQ?$?\S=?cy]?cjmM?kl?Y/7? H\?GL?^=?1s?V]j)f?B隻?O~?Ii?$T?^w?~J?1ڲe?r%?bG?%G?BR?vx?W?{?P Ҋ?+b?r?x?#J?-[?f" :?D_?0S? éi9?/Pt? ?%?tSMG?Ў?/q/?0"H?K)?ӥ_?7?kn?/ip?Mb?u?Pʳ ?c??-=ӷ?F_?w*? ? ?1?% ?Ꚓ?-mg!?$"K?"Zu?۔?{8 ?BR? s}??|?LA?'? ?{?"? V4w?ɻ:?X?e&?1 ;?f?։˄? j?Pʐ[?6Gw? n?Z`pL?:?ҋ^?Э% N?=ك?r??++?z?Gv?LZ՟?B`L?S?U?cу? Խ5? ?:? ?>xr?{J?׈?HS?sN# ?a) ?K& ?42% ?[ ?1N ?XbX6 ?9JB ?Z73 ?? T ?l/[> ?/J ?:0dUh ?{i]v ?V=a ?b9Jn ?s: ?DM ?{G ?W ?^h ? ?5hc ?v%q ?+ ?Vr| ?!E ? K1 ?:9 ?Gq ?<> ?U` ?F ?y ?^G ?l=! ? . ?- ?7r ? ?~ ?z ? ϥb ?y ?n^ ?8 ?, ?2i|?q`?pi[l?(lJ?p?=-f?ƒK?ql۳?0߮'??@;?Ÿ'?g){?x˃?L ??2?/h?WF ?.,- ?9p" ?qc ?* ?z  ?^& ?ķ ?*0 ?=CC ?$Pm ?.6 ?N ?d ? ? PN ? ) ?@: ?W ?7 ? 3 ?i ? ?Q)1 ?gu| ?5\ ?ZWv ? ?M ?Pxڥ ?[ ?Xd ?c=q ?铫ȿ ?jv>+ ?Ȕ ?!Ȁ : ?T ? UG ?!#b ?T9 ?m_\H ?V ?)oÙo ?fr.} ?k%wc ? St ?);47 ?S|ZG ?TE? ?lO ?MG4 ?\f/? ?N9{G ?o^X ?R^4-c ?ݞPP ?#'] ?n ?qx ?Og ?:t ?g1Ƀ ? ?uIp ? ?epȡ ?"Ѷ ?A|` ? >0 ?) ? ?VҀ4 ?#G ? ? k- ?b۬ ?ŋ޼ ?! ? ?z)U ?D  ?8 ?9 ?*?/_?\X+?x9?IL?/:?>G ?|'e?o %?d?U+{/?8{?/k?L25? ?;Fa? ^?ڄ?"?h?/?l?yŧ?!q?rS?a?E B?_M?o?]VK|?Q[[?Mi? ~1??_<?tC(?'?f? G?-?u? /??KO? i:^?AL?/h?`REX?ߌ9?BTf(?ȔE?Ī14?(?Dk???,? A7?+!?)?:Ij?oO?1# ?r?$uq?9a?ЮU~?[l?<?]u> ?C$?C?Vē??X?0u?֡?ž?}?: ?)s?$ ??]?q?aZ?:h.? ?|?Ͼx?mm?D?C4h?IX?Avp?^_?[I?]4;:?0iO?˻A?+?0?%ȵ2?s$?' ?? > ??'4?2?Va?m?~?p/?Xp1?db??M?? ?FAr?MB?a香?OG?y.v?jg?}?0͵n?v6C?Fɫ?\?m|?qI4?IS?j ?⧻?y?R4?0:2ʬ?0W̝?@;? Ly? ?.?nj?i[[?Nxq? +c?FVM? >?^T?E?8M0?%!?{qL7?)?.v?{?ٌ? V ?PWl?k?q?>?Bл?>?s%?] ?B"B?vB?gd?osB?S?΢??v?)?j?ӬOR?UX@-?W?~? ?>'?i%"Y?pF2?Sd?!;? ?_ݪ?AU?0?ܩl?-??򀌠?!Z?DxXr?Kks?5.+?ఔ?Pk??5?-?O()?[͜f?vÝ?ylL?&r?˶? u?󬱈?K^?q2fM?vay-?Wj?D?I* ?I-?`$?-OY?-T?ԦR?'ךXl?)j:?4v?IMU?ML>o?j"?3,?H? ?N=?DžR?7h ?{?v4YB? ? U0?{>?`-fs?*?Q4~?yD\? 9?uMPK?GLp(?w%cg?㙈;?bzL?n6`6?^4?w]7?Mӹ5?ilD4'?&?F&?KBZ+'?cŬ&?Xn{V&?A%?;&?7%?(We&?%? &?!o(?F!~'?R(?گSh(?ū'?3_o(? QT'?/E'?\\(?%Jh(? M%?K R%?8~W$?Qg&$?a$?pƌ %?; $?2;%?zlw"P$?𶳐$?$?@W#?Lt#?٘%$?`?AX#? ў\(#? P,"?>P#?Tt#?'%u"? "?sGQ"?;)!?˶"?"?F]"?}|*#!?y.[!?R ?{Zh!?p;N!?"4!?UFaH!?v =!?XF`-?"FX,?W݊,?4-,?ոcY+?Zho,?0:`+?:zK+? aʗ*?75)?hA)?Ģ)?#f?*?+ (?Z*?Xp")?O8z)?:Ƕ)?m /? H$33?s1?v .?&D4?mv1?넹/?}!-?,?ڡsW.?-??(z?oK?D?m|U?Tc?b8c?w ?xf,&? ?`:?oB?_^?"t?>1\n?zy?<~>?UC/?m 东?Oj?'yK??OF?pH?fU$?k*a_?°K ?'U?@?D’ ?3l@ ?t ?Hn ?ڿ?V?n9?(8?gq ?dw?Bc9?|h?Dn?շY?F?Ƿ֘F?9C?>NrA?gC??`PG?+C?iA?ě9?C3 =?<`;?K#q7?{G|{??mlI\X?]?._ ?CO?ߝ:E?YG?0?O ?'g5?;q?`$?@o|Y?_K?eQ`?nR?@=?U/?U bD?50~6?!?q?Z~(?,`?+F ?e&T ?}a ?N ? ?V ? >J ?yW ?> ?yM\ ?;G ?G ?T ?κ ?_Y ? ? ?J ?h @ ?fp ?_F ?4 ?@> ?d/ ?9 ?cZI ?0?S ?/dC ?C LN ?3 ?t2 ?yx ?\, ?W ?C| ?7k ? ?]k&r ?S ] ?g ?{aX ?e|qw ?^b ?cl ?l`* ?B% ?4 ?明/ ?R ?$M  ?`B ? ? ? ?@4 ?B* ?] ?M. ?>W ??xߑ? L ?vI?1?6?{0?W ??M-?,o?U#? П?PX(?F0:? Q?̧?v*?Lrt? M?v `?kb?lo=?)_]?E#Cq?Јӎ?.?/?Yg|) ?31?dbF?a ?,=9?v3\\?Lu-5u?~sN?rVf?y)nO?w!?HS~S? ?}?C>w?if? ??:. ???Eߔ?ML?]?t?iv?͘>?jc`??C8w8}?AH?M4L?9I3?&Qi?TYN??7?c%?)cK?o{5?H?t? ;?u:)?? d#?H Z?n?h(5?\Տ? g=?4H>??}1??r???W ??|>?Z??[,?B#J?i:;x?ؤ?FYB?Yx?ۇ.'? c?t/]?E0Zq?Nu`?1 ?ulw?qO?D;?Yf?%MvR?t{7?H5??D{?zZ?9-j?0?ډ?ו+ ?W ?Y~ ?1S ? ‡l?5,?A?c?/ ?F)Z ?mF ?^ : ?EP ?5eg ? "+ ?hK ?TvU ?n<@ ?Eit ?)?n?V,?ݢ,?#^< ?HlZ1 ?:H& ?u7 ?^. ?B< ? ?B0# ?EHe ?:ݚu ?a' ?) ?zn ?he ?ڏ( ? ? ?%3 ?U ?xCp ?5͊ ?܀՘ ?/p+ ?F ?^ ?#OL ?ru ?8C ?F  ?G ? ڭ ?:[ ?P&]W ?Uth ?ߒwO ?YE` ? Lz ?! ?ӏQq ?M ?"FH ?{U ?nMC ?vsN ?a ?{n ?jjH[ ?[ i ?t%r ?W8z{ ?o ?6u ?􏙄 ? ?Y ? ?( ?2 ?  ?T ?~1۟ ?8 ?I ? ?Ƭ ?yv܅ ?Fy ?<3_ ?lI??.{#?A?=?ɫD?lY?Ёel? ?|DJ?t *?a,???ƺ~?5?z?ӈ?B?u?)wfջ?yp?՝?SJhG?;?6U?N?C3?|>?Bb?bv?L?Y4Z?e޺h ?q?<*?7J?C?t΀v?$8~?ǖ?-?oE?7CuP??ٚQ?,)@?r.\?bUM?O/?U>c5?Br<?~!!+?h?Y)? 6;=?MϦ?p?Jkg?&vy? 6gY?u6-?Mk?K#L}?_ ?-A?!?3r?\j*? J? ?ջ?X?A'?J$?o'=?M+?jG?Or?s"%Κ?\?nz??}?}>y?qg??Sp?V?*:?*XH?a 0,?[_?ڥ`:?bH?i|<?s ?pZf,?F?:`?E]w%?/A?/tB??2p??#?D[?2x/H??D?Ht?BApݠ? y?Hn??{?Ҕ?u?H? }|?@URg?#Y?;n?@-_?L??!W2?3?S?\{?𦫓?̅?!?͇׬?,?H;?P_P?y?uj?,<?)fӞr?]Zܲ[?/L?ac?BIS?D(|M>?lj0?|UD?ɏ7?h!?Xj?&_p(?#e?a9?^?ts ?`U~P?_þ?!?sb˾k?.%?@͠?k1Iȶ?d )? Uz?3C%?S-4?2%8M?z0?L?ʅl? ^ 2?tKp?GbF?@4}?Q?c@?o?0Y?k'?UH'?z*?:w?x\?L?J7S]?I{?ӝ???إ?C1?y?6?\? ?;?va?4M|? _d?cuPd>?U\d?D7?^?o?z?X?(?s?~rB?x?~v?ҖB?=?A?bx ?"???1rMr?d%=?4W?466#?;/"7?zOA?A\?IZ5?Π^2?~!5?Jn3?VcOe#'?{)I&?x@'?Cz&?u8t&?_S+%?/۴#&?cʿ{%?n&?Z%?$/&?Jh(?(?,p'?%-`'?W%%?:$$?ps%?c$?@FdH$?`(x#?!%#?})#?+k$?}f#?#?/ʂ "?Slym$"?_]"?G!?1t#?]90"?!ϋ"? ?\E!??ia ?# ?.!?,O!?.!?!?G~<+?«1+?ZB",?^+f*?I}*?ߐ)?Y)?*Q(?gB*?! \)?\(?'0?,-.?M-f0?c-d.?܅ \,?-4/+?s,?]K+?w?![f?Dޣym?6?CN?^)?}Qy?䐰? 4N?r9ByS?qen?Φ?`Ta"?u\d?R?ݗ?A?tG?!xJ ?,l??X?-or; ?~,H ?%bD?sG$?T ?qEx?;e ? _A?tJc>?JC:?hԦ8?hC C? >?:?ܚ]6?D:3? N8?44?$S?UMS?fu7AO?#M?QuJ?]D?.G?b#M??l<H?D,PD?A?>v?(?:?5?顖`Q?_-nl??@?W~ I?\{J?#Z6?N\E;?u'?脗?WE?V ?71+?ڳޑ ?q??=LR?2MkQ?tL?I?XP?TLoO?F8I?n<F?ݹN? @L?<}EM?@FA ?K ?333 ?م ?E ?eu ?; ?'$ ? ?ڽ ?kBsq ? ?|EI ?TL9 ? D ?xS ?Iݢ] ?1MO ?KX ?` ?i ?IΘ ? l ?ν| ?ɒg ?Z6r ?.b ?A ?@HLl ?vv ?̧3 ?) ?|dP? ? z9 ?7 ?9O9 ?Jf ?߄ ?xc ?@0 ?X ?4) ??[?,V?ji_?F? ?%?B ?%,?m?%M? ?7c? Da&C?mٟc?Kd?#?]WqA?jDu(?;X?=OF?ך>?i<%?.o?"?␢;U?v?/6?a8T?`Dr?fnJ"?,|S^?o?=B??Iep??;a|?_d$? }?ʜ?frY?IX,?M?v{o?#k6?R?:k?eBg?A?JP?1oP?eE ?,?P?lv?-?@-?R%Q?4?5X?xח?84?>+T)?8Nk? ?5?%/ ?8?(?vd?ؗ?v?l@|e?kBQ??Y,?%@?í%|?/? M?nb?^n?De;?t&\,?Qo?fKK?0'?5?nM(?կ?d>?ƺQm?K?{on<?8#}?))IU?i?9?6FC?TEn?r?bŴ?W|?>b?}\? ?l.& ?' ?uӜ?Y; ?$*  ?T{w) ?:Wk?36?XߪN ?5?P ? k ?'g> ?_\ ?/&Ɔ ?=Ĥ ?^w ?PWC ?+ ?^w ?E%; ?Pe ?e ?8# ?A$ ?!1R ?|" ?=(dG ?SJ4 ? .X ?#;" ?H ?n35 ?8К?M{?f>f? ?=?ȟn ? ?&j5 ?fyI ?5 @ ?U:, ?1 ?7 ?I¬@+ ? >Ə ?z E ?) ?+k ?G. ??| ?׆; ?z< ? ? ?t ?0 ?Mb ?ڑ ?.M ?E0G ?Q ?#K ?.Rn ? ? m ? ?:Oh ?Q ?,y ?Y ?&=ٙ ?~h ?x ?KꫢT ?Y=vb ?öK ?,+ÂZ ?1kQp ? q ?7Yh ?ky ?&l ?2 ?q_ ?0+V ?oFH ?M ?w ?VD ?D> ?StК ?ͬ1 ? bj ?8 ?V; ?u) ?+I ?RB ?6k ?w%y$ ??'/ ?0_ ?א) ?CP9 ?aD ?#Н4 ? J? ?a8 ?C]?? ? `??M?Wy?\ ?"?]O'?=?=3? =?*?m?Z|?,?{5?Tt5?v̂C?[?'?ϔQ?Tm?5?gE?p1 ?2u?Sz ?C-??FX?HN?Ρ??$BJ?g ??׾J?Rqn'?]Ի8?= \? 4? Ժ1?_| C?4Q;?+o??Gz??U?2t?tw?[??eO?F?m?𹤪?DA?0?;wV?-y?*?WD1|?ۻ.? ({?t?I,.?»-h?M^QYQ?-s?D_?5[ ?ŀ:?XI ?pt:#?cKH?ɚ?{?!-?r=H?g?_?Z~?s{C? o?tǃ?\P?nb?O?3׀?v?S?3 ?0'?m?&u?v{f?_|?3;l?W?Z`I?ј^?* xO?@Ӝ ??-K?J?ʸ?:?? Oy?T??`wȔ?,(l?*VJl[?@I}Ny?rDc?LJ?/?Xc=?-"?̵R?H840?IV=?~"A?>?$"?kQ ?!j?lv?Y )?~$?z@/?ܦ?Q&? 睈?e%?haBP?%,1? ?3?Cy3?1?l??jR1?ve?O s?՟N?",?$+?w(?tdl?f"?2?H?"?uf?GP?<?zĪ? ^? y?*<?b @?a?"Ed?m?~K8?(?p?$U-?R?eH? j ?W?-$?m-?Nh?P?re?>w?l1E?T˿??hYg?!88?zb1?GF/?n?2?O /?=0?6[U(&?YY%?h0eG&? ˖'?{I 2'? ~'%?Y'?EZgn&?:P&?l%?I$?t#?1%?]$?JI:S#?F8R/="?~wZ"?g!?|&|#?cPDճ"?)"?1a ?׬%!?#{!?{T ?!?. ?<!?"?E*?ȁ#)?qB(?0S$*?!W'?$J(?@w'?-?}lf@*?8+?0q-?2U(?b*?)??5Ё?N?hOR?,}?+_?Ǔ$??*1?g? d$?p? ?<k?ם4K ?^r?!!?7Ő9?t:?{&7?6X 3?׹"=?Ne*1?:~.7?#3?6ʴF?R??B?n.D?i49?2x??b%QJ'2? /o?O'?U?UA?*8>?ڧ 7=?m8?Pۊ ?}TV ?X5>?{}::?#?$~?+?|ʹ>?ۡ?U3=&.?|bk?I?PPkZ?%&?+B ?N b6 ? qQ ?E ?g) ?gE ?9 ?fn' ?7 ?ܒs ?}8 ? ?f' ?I ?+0 ?F4n ?& ?, X ? ? ? ? ?t ?+c~ ?Kv ?`f ?9??aϾ?O?خ(^?3?7Ժ?q ?o?p+?6na?t,?v??g*??g \d?S:?زGO?:r??( z~(?;(?9??t?(G?L?Ϣ?4?9 <?UZ?d%x?g E? Ή?Gb0>?Lz]?24?Z7?;~?.?Hp?Sf 0~?$ ?Yj?Or%?#K?e[?V?s`:?!k?RhL?Ƚ?Bn?1|?N?L?y4T5?R\?]B?ɫL?-`ma?J?UBd?A9?߉ ?57u?Q/d?;?)?!U?C?/?vSw?j?q&? 3o?b~#?]?$?t]?{8?JY?[?v?R۵?J *?[e?dMT?4:??61?&}Æ-?m}[.?h.?"tQ+?,?Gz )+?fh,?%?C$?<æ#?bo #?1z&?)nF$?,S'm#?"?A ?/xh!? QD"?[ggPr"?rN1 ?-ƒ"?_!?)|!?o ?:"'?ۛ(?C%?R*8%?5j(?7X2)?kSu&?uvT('?<r?,?;?#[?SR?xu?QUÚ?n+ ?RY?s>I0?c?^ߟ3?n8?^*56?e\4? .?c'1?w{/?H37>+?a?韋S ?J?b$?-?Pb$?YZ6Y?CĚ0?SZ(?`,?V(.?(?6zu(?[>%?^TE?7]?)6?5"?l|?1˲?̹%5?XS?Rg-?A?ݎK ?V4?YMY1?BA?B ?Х?^c?_P??Q?lZp?.?/"?b3hO?wǗ?B$?(4t?mؐ?|?M]n?Q9?~u?H"?l?ew?;U?T % ?;ic ?(4\/ ?)) ?ɋ ?r ?,% ?R ?Um ? ?!A ?| ? ?C ?( ? ?~ ? 6 } ?Lz ?( ?\u ?Yx ?k ?߁ ?zT ?@W ?M ? : ?- ?* ?4 ? ђ ?T]Af^ ? [h| ?-{m ?nU ?v ?@f ?' \u ?␏L ?@B> ?1] ?0S ?3X/ ?7Ӝ$ ?M E ?LEa8 ?ة?.e5?TvK?wH??[I.?=7)f?2?A^?g?+DK?$[*?=DpJ??Co?$7 ?騱e?U?v"y?|áx?/?BT?þ?]8?+9r?(TݳM?GJ?A6?_6"?{sfP?E1ˉ?@{?f<? ?ЬI?ƨ??Gj?(a?Y?Mg?Y?x䝵?\ע?%f'?&?Ց?Voe?N^c?Tޑ)?n?}Q1b?\'?/2?IN:?߸?@?w ? ?VmJ ?e% ?9?NH ?iQ% ?0&6 ?fg ?bj ?Q ?1i @ ? ?[p ?_p ?Yo ?17 ?F ?,! ?++ ?mhD ?P ?c+ ?G2 ?++d ?gK ?9} ?OO ?jA=F ?*BS_ ?k<?)%0?Ơ?d#? I?{?W,?tx$r?ߚg??;Q?y ?߶/I ?f7 ??[] ?:M ?|y% ?t* ?  ?j ?F*!< ? ?{ ?un ?I ?4d ?^ ?c ?L(X ?⽈7 ?v ?l ?<[x ?tSد ?^ ?@~ ?4 ?Kd- ? ?&er ?^~ ?|: ? ` ?5Sb ?'I ??7` ? ?Ԕ^ ?n$ ?xY ? ?D'0 ?H S ?oz ?kd ?~8u ?e\ ?fD ?W+ ? ?D∕ ?;Z ?e ?T ?_ ?o ?^yz ?g}j ?u ?&,: ?D ?qo4 ?=R? ?O ?k2_Z ?5J ? U ?r?#p2?TR "?W„?LEѮ?#3?H!?ӽ|?Bt}I?<⡔?{*?V=G2?:Hd?l5f=?y~?k̤dC?^V?6g?W?Dˁ?!?Ay? ?8O?4dA? n? ?jE?b F?>Ȣr?$e? 8?H'?J1X??qga?Ǣ)?ir?O(B?5BZ)?Ou-R?Z/?o?[A?ֺ3?V+??j#?PM?3 `?=zH?Ж?b?2 ?ߖ?Z\Tk?U?.8?9r?Ƶ`?o%~z?90f?804sO?4?6)B?$?;T?J03d2?ݨ??D?WJV?%כ1?RA? (X?/[i?A??T?"p?~eE?v+?Ȣ4M?#6?;?O.?$5m?ܗX?Q?o ?VA?Y?8J?o?ҿ& ?nXõ ?Z ?f?vw?g+ ?`?H?8Uf?8X?uUy?4=g?m;?wd?'ãk?_:l?"?:? P[%?QFޖ?4 L?&?1m!?rS?_bs?;?+?G9?iFM"?a]T?,0:C~??)>?Ph?n ۚ? MiK?(<?pzr?4_?Sn??*?Lys)?4*? Ph'?BD'?88'?{sTw&?SHgx?T5#?: "?EU ?\E#?[?yĎ!?Z{ ?G0<$?t%?<7$?f`$?Kp"?蠝U#?&"?T;:E?Nw?&X&Z? Ȏڢ?9D?YHo?Z?Z+?\p<(?FZA&?c1&?{.$?ԓ1^u$?d#?i"?>W?{Q?*H?#?$z!?eGf!??@g?OAja?cPS?,Ӟh?2iZ?&g.jF?5 8?F[M?!5??$_+?ʶ$?\%2?I<$?:?r?;T?P^ ?R;?<[ ?e?ۮR?3,?@פ??T? ,#?D?!?k&v ?9>?Ce?zXN?U6?30? U? ?t]? ?E|?{?_.?n?!a?\u?|g?RG? 7;?6ʉ?G?. ?C% ?W&: ?h4 ?@d+ ? ʚ ?MbH ?F?% ?I ?ɛ ?u ?q]v ?9 ?w ?o ?Ty ?I ?[n ?R ?NM ?ȣ ?dM ?^ ? ?U ? ?F#sɩ ?_ڵ ?>@w ?rn ?ȵD~ ?1Xd ? ?OKy ?K3 ?r͝Z ?F{M ?L):o ?/`e ? 0A ?|- ?5UX ?dS\G ??ېƧ?Pd_?ׅ"d&?+ބ?2t?F?r)?;v?b? k?V?0%?DZS?F!X? ? ?ÎG ?NZ ?e ?T9 ?, ? ?o ?^m~Z ? ?yUWD ?X k ?. T?o OT?>ې;?x<? >Ț?hr.??1p 8 ?,8?O?KՀ ?LuO]w ? R ?(\ ?e4 ?A ?Yf ?Z$ ?k4C ?h ?[_ ? ? Y ?M ?V} ? ?dӗ] ? w ?cN^ ?a` ? ? ?[v/4 ?QU ?mA ?K_ ?즙1 ?< ?z ? ?K~ ?aI< ?p ?c ? ?r ?6 ?Ch ?E ? ?48]; ?&:w ? ?n%Κ ?co ?H# ?rLk ?|& ?yP ?đ ?L+ ?'-e ? (p ?;_ ?j ?8XA{ ?fZ ?n.u ?\M݁ ?ZE ?yZ ?UuG P ?4l@ ?տd ?WLP ?y"Z ?} ?xY+ ?G ?~t ?xgD ?Sb ?FD+ ?<⣫??$?? ?ޮo?V_F?gr"?N\?-Q?.?!)?h|?:-?D]? 9?]Sus?"??"9E8?z?R#?~5J?!B??1s?2#;I?5_?Q N?}:?r,?=?^:b?{:??})nx?yzK?[Z?0?O?6K?)?l ??#Э?p\?Mo?Gr?r?9Gn??V v?KcZ?fqE?wa?IM?% )/?UWM?8?.nF#?K$>?D[?F ?6?uPx?ƪC?ۦ [S?N'n?a?%N:?,&?[?݂2??N?P>? n?+mS?rґ<; ?6)4 ?QK ?ړ8B ?- ?j! ?Ύ; ?a. ? ?k ?J9f" ?[ ?7 ?$ ? ?n ?!? ?Y ?χ. ?)` ?f ?: ?9 ? ?2 ?І`B ?]nbz ?* ?&y ?h ?7/p ?㈳V_ ?  ?/F ?oN ?Sj̐4 ?U:an ?b5Y ?ˈf?R5r?w?BCt?(M?\D?_n? ?Tm;?H?Ӧ?U ?sk? ???pz?g?f)??k?@5??3v ?x:H?9?S5? ?2] ?s?7?֣[?[%i?mm8A?/'U?OB,?Ȉq?A7>?=#R?^?~?9D)?H^- ?nMM.?e?8r" J?Ed ?u?"(?ĺkC?1?75 ?-?LP?VG?gU?:C? ?09>X?wD*??$4I ?~N8 ?=p; ?4n ?K ?B ? ?֜B ?e~ ?]Jwc?+ ? ?m?ڐZ?k?Mo?m?Yl?C?)3?6]:n? )?a"?*ѐm?jD?{\k?jN ?PY?B)ٸ?Z4B??X-)? .?PQ?7I?V8?,>?ܝ?w;?|?+g?l|碫?RYk?8?Eb?nk?g?*?H}?d?Q]Mx?I?b-F?Q8?xnL?{ 1@?5^ +?ȓ?62?c#?d?M?Q?wzh ?Jݛ??_?\?0?PֈU?i?Ȫ(?ې ??s?=U4?H??)\?*d?u Il?R?lp'_?ext?F?TR?I0_?n_|?[?[g?Tv=s?>@?yg?ܺ?v6I ?R< ?8wh[ ?RO ?,w / ?q5 ?jB ?z*60 ?_ ?Z2 ?mAY ?[v ?q%f ?(P ?6D ?q% ? C* ?>ҹ ?(F ?6! ?S ?p'4 ?| h ?y ?ZӗB ?Ӣ ? c ?IA ? ^p ?{ w ?I?ڋ?L P?Tk?jIw ??[jI?%i?7s?N >U?_?0r??oh?#JĠ?DU ?Q{C ?@Pn ?Q[D^ ?͎qK0 ?mc&s ?Q ?1X^ ?ޑNuK ?G ?yk;+ ?VtP^ ? ?b! ?H ?#Q ?ԍ ?(Ǧ ? ?VJ#VV ?E ?T_ ?5y ?J9E ?#| ?h. ?d ?װw ?S ?{v ?wя ?S ?eI ? ? ?C} ?" ?u¢ ?[ ?O ? ?U}; ?U??yɋ:?(pJ?U@]D?M ?bԾ ?Ek ?}r ?`W ?}8ҡ ?C ?e~ ?. ?Y2 ?x̣ ?') ?) ?JPO ?< ?v ?uخ ?s١ ?@ ?I ?yfQ ?ܮ ?ût ?v ?Fi ?% ?z0 ?8k ?C?)Ot?Dc?G̶?/;25?)?"J???J)?5?k\?QU?m\O?EPa?EZ?Og?=W?mc?e* ]?[Kb?Yh?~m?Z??B@V?M?u?e?C T?Ëp?Y?6H?"@?wo?^FL?!P?X?F? ?0??l?n?zY?~n~?*2V?cH ?Ô/?Pk?A|H?s?co28?^?? D]?8]a?'~L?;?2?^G?ڄr???N8Bh?E ?T ?[ݵg ?ř ?(?9r ?VO ?*|M??B?۬_?Y8?i)?q??P?aɰ?@?Bn?fX'? +? .?9?si$?N?=f?6?+?z?;X?X֩?J?Fz?Bi?Y$r??E?(t?>q?Tuw+?~>?X)6?U ?1 ?Y+R?pn8} ??? ?sB?Am?Dh?R0]?.6k?S?Dg?26|?Ҥ?J?gh?VFÁ?\{g?B-s?6r@?K?<PU?bo+?6WT?DԵ6?/A?y? l?ٌ?! ?oqy?jC,_?󁛆? _Ps?]hf ?GXA,& ?]F ?: ?I"D ?)G ?/g ?dQ ? ?MQ ?D ?8: ?' ?T  ?I ?1@$ ?^6at ? ?}ȯ ?=o ?ڙÕ ?"U6 ?$ ? ?Zi < ?2Z! ?v ?c.c+ ?z! ?jzT ?%eզ ?lD ?O ?w6v ?zH? >?eXXT?ăM?D?:?? ?<9??{E# ?lun ?; ?o8V: ?8c ?HiO ?nXי ?(M~U ?Z ? ?t ?-LMd ?nj ?;< ?Z ?4_ ?m ?M⦷ ?dV?ɗS&??sB!??5?m0C?\/?S;?hr?$l?Of?4Ք`x?fr?!_?\FX?5>k?B e?C~?L"in?y?rns?y?F?`pk??E?> V?U_6?MS?k??ъ?$  ?C?X.?d1BT?\ ?O?w?z?u?k?r{L??6?2r> ? Q<?*É? nhv?{7:?(#d?8}n ?j ?OR?`b ?(2?K?4\î?,9?ܿR?@c>?"?E?l#?zLK?;@ר?%?։?oYR?r(=?̭?x#?ݺ??І? l? 7 ?i?zC?H+H?ws?f?2~z?] jFl?Z_?ϱ09?*^?/9!?ʪ ?K?k?F??A??@v?W)j?_'?J(?T~?So?Ua?`?KO?R?{ -? t???J[VA?Z?͸2?%S?.Y?n`?AxM?q7S?nr?xe?(_?>If?Ďl??){Y?`&i ?SV ? X+ ?y: ?GNC ?bfB ?Fw ?$Ux ?a~ ?T9B ?j* ?bu ?\w ?[rqv ?@3*R ?`ׇ ?b: ?N'% ?=ne ?h ?CN ?UQ ?u ?ۊ ?g ?b$ ?E ?EaQ?J?=]?ڔy#V?R&b?<H_?? ?X̌ ?KC ?O X?zC ??w ?(T ?s6 ?!! ?#bK( ?^ ?Xj: ?OHu)?9C=6?CB?>RN??afk6?LzB?c>?F?)}?Wя??EcJw?xmj?p?^n?&9A?ꇌ|?u???Tt?W?@B)?Tw?ˇ?_%K??f8??4w}?K?@?n?;+?ZT?Ô?8)l???(?Ge?0 xt? ?)o1?Nf?Z{?_3?ĸQ??`±?(J?F ?)?RIW?~o?z?(e?LEy?/ŏ?7eO?+H? `?$D?T`_=?!k?ڛ{?S;?3?^n?cys?'|?ܦ?z?ΚW?{LG?md?N?CY?,MHk?`C?BN?AY?p#?28?p?,<?$q?ɞ??0Q??@?&<?C*?2/??aPO]!?j?Mg?@??1 X?]L9?_?X?*l??M?u.R|?{? ~+?%@?n-j%?$v?a?3t?y?)??9h?xg?E?6+n?J l??)?Wx?\/gt?_?^/i?L#O?Sh?9;XO?XY?f..?0D6?5=O???݇2??rD(? 0?!w?8}[d?B?)tԋx?&9?X ? c?uM?Zg ?L%?ŭ?t?G?F<Ė?u( ?-g?:v?A?CI?uC?4?[?+C?Kl?v?q JX? ?Nw?8?gAfZ?Ь[y?r[F{?0?бL?LLc?OC|?,@P~?n9W?&q}?~?z?8ʡ??Iו?ѳ?sj?Sn?{?A=?H?O<?(͡?JFt?L? ? ?Ne?\\?6?@?i!^?oB?ni?x? ?[H?4?͡ ??.v?PO? ?UW?."?N/2?x?Z 9?Fh?9-?gZ?Ko?Ls~?[B< ?~A?/?yI?*2n?Vү??U?M?  ?Ex:??4??nmt?;LT??܃Y?`?. ?IdD?*?8G\?M?BuT?;*D?mw??m"?=0?d2?Gc*5?`?2(?BL?ތ0?x<?f1?r5?Pz5? ?]=b??x? ?vJ?Z.?U??q?<?ox?<.?o?f?}B3#?NQ\?j,?#?_)?A?b?tz? ?&?Î7p?Ʊ?p²?:P?Œ?*? *?? ?1?~D?U,6!?^ ?-:?J2(?R/?A?{i?YH?hJ?^?R?6cQ?Bг?1)4?tf?K,*?b??i?0.?f? .?Th??2F?ܒ, ?- ?U??'e(?"$!3?y?@?9!y ?i??%+?S?m0?Xe?Ok"?ž?R` ?BQ?)<?ܹx?4?Ԕn}?X?.7 ?q?ʢ?ԏ?7I?.j?z??sP4K??#$'?f_u_?-+0??M?9??W??\sg?t?FX?[?Q?f??'l?l?Z ?^|?{?C?m8s?U?b?f?뾪?fvX?h ͷ?ߏ?yz=?Fs?罝?󎌲?< ?2S?{?(B?bZ?wr???&S?L?7^.?{1?$?^?4iP?ӗ?%'?L*(?&p#?GE)?+>4?8=-?џ}O:?"2?42?W},?B<?r7?0~&?, ? 2?]e,?B>?~g?9?q?b ?L&?PU?\OD?8wk?{DY?a*?Jw?ͨbP?.?nO??z,.?@?9M?Cť?Mun?ǯ??鉥?? Y/?17g%?P??A?Wor?˒?xٚ?Q2a?^5N?z.?^_?% =?cW?mJ?68Y?+?m?/i(?T0??Ц?`6?hin?吮?^?C?r?U?\l?u*h?Ȇ騃?J#]?F?et?V*Z? ?^<?.D? fK?6\[?A7RP?#l7Z?= N?^-G?C.wB?GT?`%N?-Y=?07?5mI?.J5C?_ &?"W1?+?1Y1?,[7?)Zw=?F~\?ߠm?/>?$S?Q?|[?J?g7(?/ʍ?rL? ~?n>d?)Qj?ny??Ōq?6}? ?>0?u?s0|?_?`|j????]!?Q?8V?Zw?3gˠ?5?54?X ?x?o|?Э4 ?$??n x?B?_<'?BQ?,?\ ?ў?kzڼ??ZAk?2Y`j?akł?|x?U?Xijv_?چi?A.[?Sʹ-w?翁d?`n?*攣j?Ka?'[?l?uIf?JT?\{N?`?uZ?^=?UI?e:C8C?ЊI?3N?~T?I?J W?4?%B?mw?Sm?a4Od?Q|Vo?6P?c?uZ?R\?N?4g?%n?[?_b?(܄u?{?h?Do?У6?́?7֚{?t́?]?jfu?z3-??  ?bB?E͑?Col?}"^?2H?hA?8?|"?eFX?~?8j?6?ɻ?a+^4?P?l8s?Ș |?,u?e-?:?@݋?6?gw?Nq?>_?e;}?Sl?A\kf?)w?C-r?*T?`?J"Z?;ˤ`?Hgf?` Cl?[12<?1Q1gF?!-? ]4?!\P?PKrP?@>?D?{CCP?"`V?mˢD?' }JJ?f \?ab?9veP?2uV?߈ju?ri?=Q3b?Ni?07o?&\?N?% ?7go%?U*?EW%?`'?@?0?,؉?? ?p? ?e?p?p?y7?A?ǿt?H>k?X&??&-S?~?Vٷ?gܚ? 5j??L}?_|?6磉?vMl?mx?1K*r?fBx?w}? tу?=,?|$2? ?(%? 9?0>?f+?x2?3SD?:P_J?8? iW+>?#I\?ǨfrP?CWMJ?'mP?p,V?h{?g?}l?>?K)?tÉ?RL?ܶm?d?fI?k'xQ%??H?&+?91?~^?<%?UTl/D?o7?V1?8?7>?/i+?3\L?c?+C2?3zLj?q4=?v? ij_?Ș?P>??`?PJ?e$?xv?;ٴ?9?kX?̗o#??*?9w?e?|W?K&p?ƕ?߮u?@K?kA)?ׂ/ ?+?C>??N?2%?-??W?q ?p 3? FX?<??%?l?@?k-l?^?qJ?5?1*?t?Of?t?(Y?_Ł?.?@ ??"=?E?m9?4?Lj5?/?z1?۵? ?.?s??ܺ??B7?SV]e4?2 ?ɺD{p?jI?IխW\k?D9?L T?%x57? ?>Ѝ?9"i?T+O?1Ed;?V,?p2!?4?+`?Ka X ?)Wb ?p ?Z? ?!`r?Z|T?eG?J1{?x ?*X?@?)C;?#.?Wa?Ϝ2?Wְ(?EyĖ?e ?kTO?MA:?gD?\?'??"9u? Lȳ?5?`>?ex?A?sy?KS? Ŕ?1?j|?&?cC?2#@?ʡG?ZP?J]-9?$dլ??K?Q? 5c?2?ȗ?.{?ͤQ ?+?Dr, + ?N?YWj?OY?j$i"?x ?6İ ?&4H.? idG?K4?#;?ei ?.^) ?XH?#"?vt?b?g0)?D?t?N~?ֆ?;H?'1?|?6?M??Y(?u?c\??zc?~?a?rN&??uDE?(A4B?P@?W"C?I^?[?KW?I\?YY?]T?Q?#\uV?GS?CۋN?sypK?~YH?4F?%8#'P?<+I?M?\s?c4?=w?_(}?l?,? <~?7ťa?ӕ?NRO?(? r?x_?ip? ?,?(]Q?-q0?0.c ??vJ?l[N?{?pI?J?̶e? ?SP?2?aR\6?Ɓ?k?O? ? x(?HQ? -b?E?WI?L8?=??hu?4?#?C?a?sM??~??|m? ?8?O(@?!.?esyl?R*?I?!O?s?\t?,9?@H?2(??6x? 7??OTV?U@?0?h ?4'2j?z?= ?_X?1۝?Vp?s? ha? o?J?K!?^$? ?(f?imت?t?+ ?,L~?A??S? +?{C?׻?W?E?)L?ts??? S?6?1yp?w{?j{?F/7?i?qZ?B1L? ?vN?rE?p?`? @?_w=?G&?Pż?fZ>?x<[B?9?φ?I?DONT?L9??WpA0?n?۟D?ȩl? ?,8\?W{i?_l?³6+n?j?D9Tm?hKp?or?3o?JVq?X|t?v?eӆ|s? !ެu?4x? %{?:w?lz? [}?ѫ?}D|?x~?{ԁ? S?Yr-?x?2[?:X?SW0?Kw?4?XA?,‰??{Ub?Qs???Q밈?\L?R!?6 ?#s¼??!#??f?%C?? ?X?)+?"?Q?6Ό?O?K?΋?S?5?V?Xۘ?`?xw?2?d??1??[4? ȩ?2?~?P?"@?"u?F?ImM??B?:P?2??GB?P???} ?{t?Q?u?H>?' ?#)+S?9r?7&?+}?ו?ԉ7?F?I?r§?ʵ?C??J5?O ?.Oo?I?O,4?9?Wv?nkS?~~?v*3o?T{?w-`? \B?8?QV?"?\U?':?(?6O??z~??,e?9'?Z 4? ?t)?>?M$??o? ?re?|o?gO?&?VO?ƫ?Pϵ?;`?|?=B?y'?;;e?V{?גظ?u?}o?&?-?*1?M.?O)*?Y?7'?S֭+? ڇ(?/șH$?^]!?%?mWv"?ېu?X1? ?un ?4??N[e?S? ?e? NfJ?ܸ|?L??M5?b`?Jz=?1?J ?QA ?~AV?ZY^Q?+wK?%tN?RҍI?8fXvS?M?5+P?4g?Y k?=Hf?`yi?^_n?KNq?+1ql?1go?St?1x?ƻ;s?ѳSv?YP?5{?~?y?XYR&}?*?nc?fi?-x?[0?#|T?Қ?3y?+NE?"ԙ??q?pg?z?(r4?<͔?m? ,6? e??M׈? {?a$?x??!҃?a&,?Y3?F?w?k?`aJ?[hۼ?$?:)&?ܺp?y?Uy?xa?? '?9{>?V7:?ب6?k{ãw?c??5?E?k?r?WU?`?k??[??`?! ?KC? ?7?\?!b?[?l?dGa?G+t?&3?L?/e?4?O?#Ӂg?Bݽ?I?f6??u? ] ?y|:s?|c֗?%}1?R??Aj?q =?ZyR??`?:?o?(xm?^?AI?5p?]@?i?T,4?+i?O?w???me??+?V? ?$??kV?R ? ?'?eR ?IU?WJ ?ߦ;?{"?A?K?{(?㔛?e|?e??t?H\?f?K[?hC?eU?mR?4_R?n?d?' ?CT?V?4́?bg?jci?l?h?Ij?uPn? =p? m?o?br?yt?/Aq?!rs?*v?]x?yju?_w?Α(.{?I>?_}?i2? u"z?"~?=T|??$L?܂?u??4W?r\?\?=9?Qa? ?Ʊd?%yj?$x??\D?&x?iEk?*8?L{?e?!P?.$?T???:D?AC?)K4A?C?pB?.j??TB=?NOpO@?Z"N>?7;?:?8?m5q?c?mR?N?V ?mw??&姍?Y?~?[?eF??ԕ?S5?E?8?ĉ?P? Q?z٭?1v? ? \?S?a\?~?X?bF??`?"CG?Lk? ?l\?E??\3?xJ?i?uP_??!?Ҕu?/H?a\??W4?[&N'?{뿦?c??)?Ď>?_)?0Iv?]?l?.??#bm?=-??@?=?]Q?0? $?'{?ֶ?C"a?D?Ö/?0ϑ?%?4x?c??sa?] ?~?^VV?$(? Ƚ?Na!?pT?9?Y?,?+?b?)?k?.*?y?_p?$?Д?H?x?Z1?v?vG?;q?* ??OD??/@?|u"?I"?o?AR ?J ?}?c??`r.?v#Z/?qW?taU?dX?o:V? S?2[Q?ҶT?R?/)P?7L_N?eiQ?jȵNO?L?)cJ?aM?K?_I?XG?7J?nCH?IE?:C?R(LjF?bD?̺+'?Q%?cX5$?&? %?\"j"? AK!?_k?{o1?#?B ?˯q"?(?Iu-*?㫟(?Ex)?3RDz+?pi;-?}*? {,?V.?rT0?M.?/?݃1?!y3?B!1?:2?ls6B?@?!bC?M'cA?;[>?Sk1=?5??mm >?$2[;?VS9?dC??pq?W?[?B?hA?2d?f?V ?$I~?V?$lB6?@?$?Us`?U???MN?mL?҆I?!? ]J?\H?x?:?©=L?PR?v "?E?bx?Q3y? l?DF??g?a~?nwy?4e?Ǯx?qR2?| ?$?I> ?9?6L?;^ _?ƺt??knr%?U??(>?U?jt?m?g ?&l ?v#S ?< ? X- ?l~?@4 ?A?E2??tQ?qQ?MP?d"?*?\?:?8c?fƎ?wd?Nԫ?u+p? |?Վ|?Q>?6?М?8?6 ?|p?&?$?IJ;?N١?3?;gU?Sp?~? ?$7?^ű? #?O%?3cB??I?7y|u?%?-J??e9?ۦ*?, ?lr?_,x?%?'? ^?-Ɛ?r?YJ??&?:x?*g?u#??WN??k?qT?W$u?xwz?,xSx?Gv?y?ڰw?9}W?bWY?2[?o%sX?Ci7IZ?Mgt?qr?Uu?7hs?p|p?n?kq?&o?[Ċl? j?m?|wk?Jh?&Zf?C{Ji?g?\d?b?e?c?`?7*]?^?.&\?d|a?a^?_?A?袭?Π]?^k? P?tvD?4Nȵ?AK#?9?EՂ?O@?.ms?Q!?M?8Ǡ?A)_?-?C6?Q'e[?>X?Ք?s*?:D?F??Rӆ?ɬ?LӅ?_AUp?Ә|?iw? cK?ATG;z?2Mr?(5m?(u?@o?n h?c?51Z^?8C[?6j?W?`?uze?aa J?^5O?@ T?eL?Q?ܺY?K.^?V?-a^[?>)9?Gw"6?v:?7?~c3?''0?4? 1?nE3-?9C*?gT.?,.+?dfV'?Xd$?=(?#%?u!?8?C#?QJ ?/}?z?l?=&<?x?$?RkNf?c<?YD|?w~?z{? t}?n1V?| ?o?S?gʦ ?+>?;k< ?fG ?Ż?Z/? p?7[?v+i?0A?[)?3??e?2*2?Q??z?r?c?"*?p*p?kn?A o?zM%???')?²w?=$?$?:;c?"?@sE?Wf?aA?ʤ[?u?Ȕ?^iO?Jҏ?^~?<?@Ҡ?%̌?n?*F?Y?N?&?H7??ጕ?z?*>m?ڻ?J/?S?f?\B?Oc?ګ?9h?=x"?a%?r8N?9.~?QP7?G#{?v?ִ?#?v*?[_9?x|?'?Z?jŸ?)?{?h?ŀf?۹ﺦ?:vB??eۘ?՝d?a?B?R?8Ȼ?0?51?\}?+?_?Ep?l?.?񏑳?X?m(#?;?o?k?E?I?lh۴?T0?ѓ?9p?ù?-m?/6b?^ ?6?YC?gY@9?7d?̳ c?xg?y:f?bg??ڦ:?25>?x'oB?6h`E?;A?C?CTH?76sK?PaF?* I?ڙd?(ma?^?@c?'#]s`?![?+Q_X?a3D]?xǢTZ?Xa*U?*N?h? ^?*U?? }@?u6?#?kI ? f?%K?!p?~ff?& ??N9?y?TO?U?}7?j3QS?y-O?Y0hU?PQ? K?dݰF?lB?_@?8SL?#4D?H?ʼnB?20>?|:?rG@?oO.?bS*? B0?,?#&?5_"?[8h(?b$?n?]j?lo ? i?k_?lR8?U??"?H&8 ?+?ϔ;J ?mQ??]&i?ׂ?=b ?nSx?c^?`F[?_?u d?]?]\a?,:h?sl?Aqf?O}Oj? p?|t?-n?mfr?_*y?k.n}?-c w?Pb/{?B?R_?zt??Gko?}lߎ? ?FG?dLS?ԍ^ʗ? =e??oTE?]?(?̧1?R&?Ë?}*?W9?@8?Ruf? ?wh1?tܶ?Mb?q? -?u?~@x?.S?1ԶS?ܿ?+Փ?:)?EWa?6w$?TB?"?p?KE?Ha@?G?B?KF;?*6?6=?Oр8?`121?YOd,?J73?A.?Q^'?:"?1HO)?b#z%?`F?5[B?!c ?<?Pr?*(?';?zRG?k ??f ?NY?NA?:?؀?ϱ? y?yI?1B?ǵ@0?j?9U9@?Pɂ9?z3?Fb,??:c? @?@L?~d?o?/?x???5F?FTt?lV?3?3p?-?CA?H2??A-@?m?o?L?t? ,1L?w?!q?L?V}?V&??T24u??{3?5?ܚ??, N?զu?u2:?ʕ?nl?@0?{?kPu?j"p? k?ʢo?+@?c?@?? :? ?f?T?|v?8'u? ?U^?@Z?4?c? ?Aw?k? ?&ud?- T?XB?W?F?|;? W?U+ؾ?e3?-R6?:/?~6?? -ͭ?N?́أ? m?{B?, ?@ ?,[?FZ?2'h?Kї?e|m?X @?T՝?oi?t7?˦ ?ˍ?S?ɝ;O?e??u?]??{?yg?.|?\>$?)#? Wſ? z??^?R?? *Qd??5g?w?p?|T?qw?h?Ю?^p_j?>pͲ?'ࣶ?U#3? Q?? ?7А?W?Q?뭏&?#S??h?e5kU? ?d?e ?@??y?gL?gv?i?~HF?<,?{#?Mp?Ha?d ? ?mK( ?rc? ?ѫB?S?y?>vO?~a9?}x?#?t??QJs?{bg?/k?Q?2?"?;BC ?u~?3T?;??&9?ě??Ʈ3?#y?;BNe?>ە?V?έ?z1?g ?zg? ; i?@>f?Vph?+ k? n?+k?r{l?y!p?*Pr?.o?q?t?v?F292s?|u?y?\m {}?{G{?~?Nx?P |?uz?$?ۅ?d"%˄?^4?N݊?>4?y7?RN&?n?ޑ?C7??n?p??W? ?u??8%?l??֪?< ??xeD?Rɯ?>M?'A'[? ?%+? ^?ߘ{?~?oa?"?I^ ?@)?#2?H ?yEĶ?Xl(?х8 ?A. ?C ?ƒ ?g?9N/?׏"X?^Uq?o}@o?g?i8??K? ?;s[?`=H ?x׉d?K ?p?JU? O?#qz?PJ? '?{@&?,$?3P&?csz%?h???C?E?SC?R$5A?FAc??;B?d]@?P^=?;?ڌ>?%4%?u??ں?32?$?aP?*T???4N?ɞ?}$?P?)u?Z{?k?,\?R )?5,? ?6!?`>? b?M;?}?9ٵ?W?s$?@?GO.T? ?y?<܃?mQ?|G?O5?W? ?FA@?C?z%?P?rrS??~t?3¶?= ?$d?=G?a?4??. +? ?@?S&?;?ˢI?D~?_9?7?6?۴R?ә ?Bi6?_%?|8S?7?ʖ?Y{?_S?Ņ7?‘?#B?"A7?N<?1vJ ?%^?>`B?o?8?SKU??S"?b"?[{??ٲ?eGD?*I?B: ?_Z?ִU?(r,S?mϛV?ZnT?:R?8:P?|R?rr"Q?stN?QL?ZO?KnjM?J?~-1I?MK?B-*J?g5sG?}*E?iH?=EF?3C?DB?JۏD?t~!C?g.(?3%Z'?n%?cV-(?H=X&?F5nk$?~ x!?6"? ?,jJ%?S"?#?eG*?i+?f)?@+?D-?S.?wޅ,?DW.?^0?1?/?41?3?#5?ԉ2?f4?j$@?sV>?='mA?K??~ ==?W[;? >?p}u?^܂!?5?.?^Q?A?f?Զ???.?U:??5?\?v J?D`?K?%?]?,O?\ 0?jI??M?iK?nL?;z?f\/R?4U?L?dXk?isԡ?.?&D?ޫf?^?pRx:?e3j?V/?*??v ?FӀ ?z ?%`u ?h?z"?Ɣ!k?eF?rC?X?>?E?2yo?(R~?I?%z?An{ ?2 ?8Ǖ6 ?L ?v?=|?|?7>:?W?'hȰ?W?iD? ?wm?~z? ? ?9?u0???;0?;|?] ?^w?g]?k_z?"}?Xo ?N?3?h?1??%d?1h?`*?z?Bෳ ?L?c?Žx?/B? ?h?"?}?4?4@? ?p~?a?a?̣%{?Na?gwV??IL?izI? հC?U3'>?(^;?XLL?t@?pF?PT=? ~?ґ?sVt? ?K6}?#'_х?m?Ӣ?!f?)+?;?}=??Hَ?lj?W?+*|?]?|E?+w?+r? z?'u?*ym?wOc?نzh?_8`?[p? ff?Jk?U9E?CJ?Pk#O?q6H?QL?T?) Y?lPQ?B?V?@%P?bV?٩r?X?&Wp?!?c?R"?[G#?.?=?<]? I?>?í?Xe}?ح?̎?? ?k?*/? t4?I?XZ?YY?W}s?d?$fHp??pY?7E?Бo? ?W?kޖ?Q?R?6Bd?0H?8H%?`&1?}?v̟? d?ώ?2?&(? uѠ?k?6?-+@?KNzԥ?4c?;驓?ӭ?@?@?:?'^Yr?ե??eu?yЗ?i?%??&8??_}??i? 6Uj?YIx?_u?p]?? z??H,?q?%~?#)$?EB?N^E?J?DmN?"H?ȓmL?W`Yd?d!b?g?v d?F%y_?IAD\?UO;b?1-^?9Y?g-Q?5U?O?@6[?4T?9W? Nn?`uq?#B/l?Čo?cϵ?US8?q ̮?>(ó?ꔁ?J@t?|6-x?Hr?+v? {?~?O@z?&&}?(d0c?C??N(?\???l? ٌ?{/n?Th?Rqss?:k"?"Ê?댛;?}3?mu?7?yo7?{\Ӳ?rw?@?? *l?? pF?ڍ?5x? #W?2i1S?96Y?""zU?G:j?h-?c[?,]??]?H"? #?f|Ov?? +x??Ś??pXS?h?.??ܓ?uA?ft?|=a ?bG;??<"?}2E?J??M?^~??zn?sS ?Tϧ?S?|?Fс?,Iu?DF?Z?u;N?wf}F?PxJ? _?6dDE?D5A?:?%N6?M=?&̫8?82?b .?;4?R0?*?X&?U-,?tM)?:ؑ"?Ǚ?/E%?e ?}?R ?G(? ? 6?R?5 ?\Wk?8Js ?;l?n?dPP?ä ?G??G ?cѠM?p5W?/a[? _?|cZ?$v]?]c?|*.h?Ua?/4e?Fel?f(p?i?WPn?}t?ZSy?Rs?*w?MTI5}?bƬ}?b({?՛~?*@Ʌ?AN?)1?>?.؎?xϋp?#6k?y0?HI~ ?)?-˕??WU0?k؇?eǥ4??FK?S}'?M~B?dz?A!?l?#?tH??!?q ? $?M# ?a?1?Ku??Q?4m@? %e?rp?T?T?yA???0?ya?ૐ!?,?I@?"??RӋ?LrF?e??"ث9?v_C?FO?δ?r?(.?Ώ1?N ?P? Iv,?78f?իH&?P/?rlE?Ҳ?a?rl?h[G?dVJ?>UI-?}ti?QH?H|?sc?@+?d}??c8m?rg?>?BU?{?Θj?-j?v??_?2?L?i?/?W?Uͷ?).?;?.e=??1T?oٷ?T^?O?,y3? q?vU??)t?>?s?fS?{:t? l?T2?{?/1^y?r5/}?RMu?`{?x?rD? Z؊?迆? j?Dp?}ؑ?' ?o ?١??5\??\-?V-?N?sH?E?g?ķ?{^c?XX%$?ۉ?x^l?5?"R?}\?s?{_?G?RW??r?롽?ݓ?\d ?W ?0-% ?tܭ ?1?А$ ?} ?wj?sR?S?fkL?v׼?bʒ?Շ#?C5һ ?3?a6?ȗ~?( ?Et)???qF?H1?7C?88\'?̴$? *&?55#?~;(?w"&?8E$?Sy? *?ȍX0?V?Q?tCh?.&?9?޸!?o?-#??^$ ?ޘ?^ ?I?H?䭞?YƣF?wTB?D??A?JЈYG?[ѤD?3B?h??PN~=?_A?gBT>?H;?SpN8?[9?6?},V? ?8?_v?<{?U?Q?S9?ICL? ?+?آ?H?;?z?1?H?C׈?CR?}?$?MJ3?(?$?s?┡? t?*D?A:?Hsݽ?U?s#d?7?7?Z?c4?~?.+?Ѳ?b?obF?ϛ? ? 1H?<? L?T???&??D?S ?e{?s??L&?o?\|Q???zU?1?Z?Ο?س?r?9?<;?TO?Y?J?y?p?ӋY??'?=?ڜ?K?(?e?I??!?t??")k?{WN?WN??)?&?BW?!pW?Uvm?L?? 25??? D?&?V?>5~? q?`N?a_3/?y k?z??$mP ?`3 ?9?Al<??Ȧ=?B"?yDb"?0uH?ɡI?KB?-B? ĤtB?0UL^B?ȓ/B?[U5"7?>6?hdY6? 7?#=@6?{ 6?И6?};6? 6?hD7?7-cg7?NA{07?QLR7?I7?/7?fu7?.ѧ7?B7?)7?yy7?*y}7?g8?B88?Ly8?L&8?@R=?.=?-Vv=?91=?[ƻ=?23I=?%w0^=?iP=?W>{o=?-8=?4?=?loI=?19#=?Ui7gEvA?\c*?[,)?kvT'?X_)?q`(?t*&?G0#?e$?q"?'?W$?(|%?e}U+?WhG-?t+?Gma,?H$Q.?3h0?Л-?q>/?'O 2?!Ȥ3?O%51?R3?NB5?X6?@4?26? 0>?!J=??*?0;?!f8?:?]ȧ7?q?y?+&;?+4}?yr?'wk?MCd?d{<`?"u?2dg?Jn? H?+1Vԥ?qa??~??Ţ?]_?Vy?o?N??S%?u3?y??g&? ~?-+???WkB1?+5?5(/?Z3?ݵ9? =?C7?~Xt;?MضA?,E?PD??3hC?HI?eM? G?K?;)?'B:?N`H]???MnS??0P?\M?`ߘ?_~?yG?zy?r??up??Wf ?a}?u ?c ?gZpB?~-??zm?~K?[?Oj`?ę?K3?m%?y?bz?8u??*r?nBw?~? d?W?׍?'?Y_? fី?B??uTݻ??19?R?C@ʦ?K?/^?Mq?0r?2v?Wᅫ?,BP?2??/>?ܖ8?Wi3?/ S;?Is 5?۹F|-?o"?''?~?K=[0?qN%?}1*?(&gw? q?8y?e t?k?tf?P`?/JM]?לQAn?X b?5$h?%,_?JZ?$=T?]\?yF,W?qO?ָC?tI?I@?*gQ?֥F?+6OL??{?SAs?f8Ih?X;n?w]f?]Rv?H l?-oZq?9@?&)F?x4O?ĭJ?S?FC?CJ?qeO?.'tX?kH^?2T?ǰ6[?kc?yi?P`?Qg?Բ2?8_U-?0?v*?=PB4?jm-?t0?C)(?k$?I*?;Z&?!?iMm?&P#?TS?s????ת(?yFx?~?{?MZ=?SIŷv?4q{?CPF~?72y?? ʽ?~??`?`ځ??$d?v?+?5u?_1?Ǡ?G?+6?.?,2?EFR+?ɰ!9?73/?SY2?('?#?:e+?Fo%?il?]???nV ?OTa?Tz?O? <,?yD ?I*p?:y? ?\A?ϏZ?.?y=8{?"AH?+ղ? X?`? ٚk\?Rc?fW? f@U\?F_?cD1g?Jl?Ac?QUi?1q?"Yy?u?1Z|?[Fwn?n t?_x?_:;?lmJ?Ou|?O֫??PŽ?:|]?@EC?!?]_?N?B?9?"?6:? L?-?Q ?tV???$y? n?`$??ǀv?w蝍?!W?=D??lLs&? ^?)_+??/5?eq??q?Mv?Ұ_?~<2?8?'??๘:?@ w~5?g=?.)P7?'0?b(?O[,?h %$?y&1?{A(?mI,?vB7 ?!80?P$?J?h-?{?C??>؉ ?b?nJ?v ?+ݝ?\k?7.?} ?-?Q?vBT?O?C^yy?m?[6?u!5F?|K?ۡ?L?.5F?٩??'I?c&B?~YR9?|:3?Tk;?QB6?q ?v(-?;&?cv-0?Zr*?ݗ ??AI?yT?)$?UO?ſ$?aF?Q$??A=2?d08?6-.?ðB?=t4?.ec;?x1*?a#?It0?(??ta?ud"?Wh?t?( ??z\ ?kg?s\??g?(b?F??6? ?v[?[@?m"? ?h?JA?=>?l?|?6jm?. ?Q?ۄ?l?,}?. ?w?3?l(??Vb?'?CǏ?ib?)֍?b| ?g??Q3?KNZ?8uk?˨?=qz?_t?W ~?Xw?(ϰn?,r8}g?'q?u&?Q?sML?o>?=를?aKi?پ?壺?D /?]N?Nnmh?by&?t?*]?rC?ҨD?{^?$a0?ϴ?b!T?&Q?TU?kNO?S?')Y?7]?o W?[?zj?jۖ?'?f?0?.?hܔ?Wȯ? n?c fN?<'?K`?+1?Z~?N?B?&?ky?u?;, |?OUw?Nkq?qHm?Rs?o?i?yHe?Kvia?YY_?k?!Nc?bg?Kh?'?h糑??)?&9%?E ?8R'?#?KNK?T/-?%?݀ ?Cg?8n?Eϛ?>1?EBύ ?<$? ?CyJc?n? lY?Pg??PD?h?"4??E*i<?5?z?]Q!?1?HEM5?C?'Pgf?q ?>k?XD??s?ud?F_?̀\?Zz?/M?V?Cz2?B*?H}?$9?R?Pp???u ????%h??$.??e?? ?ݷC!?@?C?0"A?"q?/L?ڠ?,?]??\G?Y?,?kx?`G??n ?0F&?yq\?6?!&?SR?0??D?im$?1zj?i?;PxC?3 ?w?8??kb??H ??D^?0`?Cö?Ǔ?%?+n?+?)~?d]5?7{2!?1?Sr?v̐?V8?ھ?Mw}?ɓ?sK?ySj??.?g?D[?J,O ??-?&&? ͩK?^fX??D?g&?x?}4?1?ox??8?{*?2?GG?"?>>f?B_D?/3^??\??? )?ݛ?t?;|r ?I3L?F?%? ? ?ޭ?Q?}m^J?oM?0"L?O?"ǎ6I?M?xtK?X1Q?>NaS?JeO? Q?Ga?6QY]?kOZ_?,A[?Ta?}f_?pE]?ȂU?!Z?9W?*T?.[?^&Y?nV?1`pJ?,H?^(YE?HI?SF?YaѨ?3?/ll?Ӡ?ٔO? u?yP'??)&??r.~%?`m?r4?5? ?LT&W?{E?f?Y{o?aC?7`?-^O?:?vV??thօ?8 ??<.m?;p?gk?,o?X t?e4z?S5%w? U)#|?ڇsXr?Siy?%\v? ?D?w!~???`?m1s?j?È8??]?ܣb?m?8{-?1x?>"5?LI?R ?S?MRW'??wg?< ?#IQ&?y?m? m?m?0Q ?ͣ ?b ?; ?W( ?%?BF??6g^?Ш??q?jB*? NN?u]?}?Y?g)?5VP'?u*?+(?cVt?9?pv? ?娾$?#U "?! "&?u_#?(x?H!-?` ?M=?^?{?m* ?=??k?B?;#??dC?>7@?4$=?*;:?'^;>?z;?[)?"*?F-8?jJ5?:9?@ 6?d;.?&S 3?{0?!-?u ,?Z,?SF4?71?s4/?Wl=.?tk?x)2?vRM?8E?^?TW@?j?ݦ?'_?0?剀?"a?Ǟ?EcI?(j?P?Ŀ?y??o?0?F9? c??(?A?ܳ?c_?%i?1?`?3?}?Ct?Z8?c?Hu??#?eڮ?[?? |?S?kg?3?p`?\?j =?y ?-???`?I?4O?-2?I#?b2?(*?UgF?b?z&?y?}$?[?]ގ?N)??g?&:?Y$?-?wy??!Lp?`YA? ?ʵ?О6?7?{?<՗??$ ~?_ v?w?*?l`?N?]?"?Vd?Wq?ۦ-?O?} ;?9y?[B~c?~?y?q ?@??X ?K "?< R??p֝?? ?;ڽ?n??E|H?}?4 ?$?"?k"?[?v6?lT6? V6?!Rd6?چ26?6?ZOMB6?y 6?5?5?M ,5?W$o5?1s5?)[ۉ5?G x5?[5?{sWh5?IwF5?`kx5?R-V5?Uk%5?LC5?d45?GЂ5?4??x4?~F4??A4?i4?U4?Ma,4?<64?E_4?K.64>4?In4?M4?v4?3?,4? 4?ѹ63?>93?C3?Ӂ`u3?tD3?jz3?+3?o3?됡Z3?Rm:3?G=7j3?LV2J3?̰L3??2?) *3?~ 3?U#?F2?Sn`2?2?)2?V72?3Bz2?3x:2?顉2?qމ$[2?;2?zi2?g5J2?Q2?<-1?*2?WgA 2?S:1?N 1?H1?(1?;@XJ?B+J?,GJ?y?J?֔J?࠲J?NclJ?ÜNJ?bVJ?_$ K?R`J?J?rLuyL?LKL?L?>_L?1L?O.K?9!2K?L?;D6K?)K?,gK?>>?:K?h K? ᩨK?*MK?)W{K?_E?g$E?Ȓ,E?7E?{8E?/EB?B?V4B?͢B?>cC?luBC?"NuC?20,C?cE?k}y9E?6ѩvE?'LE?HeE?$D?*!E?LD?.8D?nmD?"~^D?D?Q1`fD?R@?I*@?F 8??K??7V@?H??3j??${??Y??Y^??tS??,Jw,??4\e??8>??H???_>?J??z(>?b7; >?XI>?5 #>?΢>?~j>? DD>?#>?>?|>?틒.>?pU>?VIB?RGB?H pB?H2B?O(ZB? ̠B? AB?cB?qnB?->>7?"Q_7?}`6?ns)7?(7?26?g86?E&6?M*6?=>6?s6? 6?Kǂ6?>?Qlv;?xQ;?T;?b;?ɉ"`7?7?TK7?/n7?Mj,;?g%;?^=;?M& ;?۷\:?7x:?=:?m :?¯:?:Ǽsu:?fa:?A5:?aXQ:?|,:?4}b:?[k\>:?):?"_a9?0 _:?9?P9?eS9?Ķ|9?i9?4kx9?T9?%q9? t#e9?_]09?- 9?V\A9?:9?k8?p8?Ȧ8?Q8?8?N8?џ \8?ǎqI8?B(8?/l8?NЖ8?W|97?-07?~Y7?ɶ7?@<7?p8?n7?Ӝ8?Ȍ^68?|Z8?m$8?-H8??(=?-9=?R>?wܺ=?D͡ڦ=?&=?@#S=?Б=?UZ=?{@4=?>zk=?\F=?!=?%x-MB)?1ox+?]cÅ*?4(?^"%?5Ѝ&?X*g$?xP)?Q&?;љ'?,?s.? \+?w,-?T`0?-2?E/?b1?}3?6? s5?m8?*13?Y5?|m6?oj=?9J9?iխ;?:??a8?(;?!g#?_?>g]?уWb??1ɞ?t??2k?霟z???)T?s2?u?T?q?Z?Ca?%? ?!{?ɑ; ?J ?} ?j ?>T+?%G? +??iP?Wk?tZ?A??1?=??C?fi?ۑRT? ?@V?Ǹ?_?-%?B?~9ms?: Ť? p?`]]?4V?*5?$z?H?ٰ|?q?qmY~?Vlx?rv?1{?6dx?ks?CYq?rTzu?ir?1X?![?W?0PZ?I]?U/VK`?\?X)^?̢n?7k?^7^p?2Rm?Oh? ¶c?(Fe?v-a? j?g}d?5cg?o1?9\.?7#*?L/?$,?}zF&?WSg"?JF(?Jh$?O?2R?ѤD ?UC??k?ؤ?+"?(G1C?ck ?TS?8t ?3?e?I& ?H`?u?EjR??e s?/ ?t›]?'(H?Ў?ŨR?)x??,?VCO\c?vf7\?M?nU?ڮI?ڴg_?xQ?4-X?)Mtx?Fj?S۪q?>{?f?|m?HZt?_?WI?h!??fŢ?C!?=ᓵ?K?;W?I^?~L@?D ?Щd?p,?23l??\?o?M??f ?蕬?@?oE?'X?)t 5?9?M3?J7?l=?WA?@;?}m??K E?1I?ǥC?hGG? M? s4Q?ؙK?B4O?~[?;n8?&|?fO?xQ?/]?2/?a?F4"?4?[>?9? ѷ?]o?J?H= ?A>R?$ݘ?L ?D?i[?U?}@O?ge?u?, ?(W?"Cа?g o?Dµ?]?!}?&?*p?#ƻ?:w?H ?u[?ٔ8?K?(??a?u?,p?#?w?{ѯ?%?77??Xom?N?̚r?=Gҭ?K?vx?H?3?'&(?V-?}׼?7?Y]G?}=?A?.?D9?O-1?R|?a(Q?kន?g1?C?0>?K8?7A?&ev;? )<3?/(?e-?O%?)6?*?%ml0? Bp?5=]e?(k?kHVb?("s?3g?*\m?C_?IY?<_21d?s@u]?.`T?I?+,O?DF?4X?.L?T!Q?~•u? ^{?"e4wo?Jyt?+?i`?0z?)CQ?o??t?4ӑ?H?k6?` ?0? 1?$? \R? h?(b?*?"ix?"WB?Z5?,ͯ?̨?BF?yA?v?o?Җ?AV?1Ŭ???3ދ?C܂? \?12Á~??)*?޻?5)z?H(o?t?4ɳl?~?6r?!Gx?qQd?tK`:?q@?AEH?1=?;D?$O?MZ]?jV?a?zK?X-T?;a[?@k?j?{Pp?$g?S?)m?db-?9e)?IN/?,?[%?=!?A2(?£p#?z?g~#?,"?)? ?W޶?*v??4N ?M~i?(M?j̈́?P??w{?Mn_? ߦ?-4? ?/=?-?X#?X_?hy{??}M?,?Eb??jd??yt??hٲ?]x???nA?տ=?sQ3E?EA?T:?̿1?|6?.:.?M"/=?<}1?u6?7l? h?Ίp?&m?JQH?1ˮM?38= E?@#*K?YcghR?- W?9ZO?%UU?p:e?g[?:O`?c."j?Z?ì`?Je?Wpst?~G"y?oGq?"%w??jH[Ω?2?d+?˲~?tӃ?4K|??$?DO?;p?hc?z?e?xφ?MW ?vOʚ?1Sӑ?Jr0L?X?siz?j2Vg?8MK?*ϯ?ƧZ?v P?{`R?W$U?]]K?ôdV?2N?Q?_?3M?y?Ѐ?.5r?(d?5Cn?8ڵ?2TiQ?4?)W?x?Z?r#?C~:?I~?\o?it?/)?Þ?*? &?ay?ji?`+??l{?*?UYA?Ig?5,?Ma7?i5F?<5A?à:J?WD?hм;?+5?eV??b/<9?i/?nj)?<2?pT,?@s#?#&?.&?  ?U?p ?n?;_ ?L]?tY?86 Q?2b?Nr8?ʹ?׽4?/`O?l?l4?3Xr?l+_?G}k?vde?T[?ݿn?b?%h?A]x?Zr~?̏Eu?_|?VQ?ne??.?%?+?m?Q ???I@试?陛?)f`?L5˨??)iR@? ??6# ?d?f: ??]`? ?53h?oG?>7?HBJL?5&FE?O?s5H?Ϝ;I>?33?s8?q׽v-?l4A?% 3?<Β8?9 ??u?dny?'??M ?b M-?J?Ib_?|Jd$?E?)#>?f߯ M?$tE?B-7?4!/?>?VO5?|h3'?a*?iz`]-?;Ch#? !"?cOO ?D?Lq;S?<?ML ?-)?RZ?do?q ?F? ?&6?!?L&?T+?Y1?_7?Nh?hJ?t?B??Ab?z6??kv5?F?k?G?yR?l?i5?;?d??? e5?(?lX? ɔ?bY?fNt? ݭz?n?x?%qt?@vXz?%5h?Z?a?V?sn?t̂^?‡e?P]K?9jS?'h[?RO?|W?%??Is?:??)N?lPi?#T?UR׼?L6??m?=Y_? ?Ua?$:?yޫ?l?@r?0?$Yu?1ũ?c?K?1'?ЯP_?Z?zU?mY?S?W?v]?ʤa?Ԧ[?_?B?7^ג?7?`??։~?Bq?j ?B`S?MB7?x"6j?ݫ<?+~?z?x;!?B |?ڏPu?J[q? x?Q`s?om?Wήe?Ci? c?o?,ݯg?{.k?e?د5??S?0.? z2?<,?yz0?,ji?d?u3`?^S g?bub?Z؇[?W?wi3]?F{[Y?wrR?M?`T?<8P?l|SI?W.D?GVK?tG?e>@?L;?27?6E4?@B?v[v9?=??L.?p5)?b_Q%?$0,?'? ?}dN?6 .#?K??{e?!?=?|?~ٙ ?81?0 ?Oc9?dqq?z?|?nq??,\?ۑ;I?? ^?;h??&$d?a?gP??NB?zʄ?K?j D?G0(?d_?PXh ?}?Jf\??ĕ?qԐ?ӠD?VK?-Y#?#QC?q؟?k{?ϖ?/}?Z/Pw?Sr?D n?Bak?vHy?qDp?R(Xt?eɜ?Tك?9Œz?@@???ѓN?;'?>L?U}?h?i??0A?g?[?ef?Fϐ?6޼?0Sg?Y8?v?+y?jf?$51?! R?D?\Gֻ? ?ï?? A??7HD??{?[:?ڀ??ʟ?|p? c?v I?h~?1X?KQ ?"? ?7?i?q?u?L??? Q?ȢC?Ԫj? ͎??p?B?t=0?P? ??i?[?@?Sc?q ?V?{^?Pw?1?B??L??@?3?s???"v?!MB?"?s=?I\?G??SuS ?m?1j8?( 8I?X(c?z?Z.?5?\S?Tp?μk?H?&? E?/]?ce?LD@???u&?`?d?z9bV?/?6?&?Z?C?]-?j0?s}F?[p!?M?,P?iK?+N?3R?*zU?5P?XOT?۸]?*9X?PZ?$_?""V? \?7#Z? J?|CG?bmbL?YbtI?Hu.E?O:gh?B;?}F,?Ms?&"?m?:C?\j?* ?Rd?U?$?Smp? `?xUd?uşb? f? H^?d?sZb?(i?њl?PBf?1æLj? ~?2SՆ?\J?Hi??e?v?J?EꙎ?f?.?,?Ib?B?cLo???u? ?/pK??-:X1?1q??y,?_X,?L,?<Lʳ,?F6H,?(eGn,?Ҳ,?rY]{,?0ʄVR,?u6,?,e_,?sB,?^V,?+?}&,? ,?8Dع1?zT1?Ġqo1?Y,1?~`1?A1?ޖ֤o1?Q1?t="1?1?. 21?/"1?&0?=U0?زV0?ķ 0?W0?@/0?jr0?"0?zj0?%KYL0?gy0?gIZ0?ʹ .0?g/r0?HeJ<0?~g<0?@ /?2/? 0?/?RF/?jD/?L/?,ӥ/?qy/?J[/?d/?xi/?ު8>/?w /?PcL/?Kz./?s$/??t}.?@O/?b.?.?.?:.?WNr.?l.?ZK7p.?ES.?3xC.?C4".?`.? }.?R6?06?+a6?Kx@6?^BS6?1B5?w!6?5?1s5?#5?E 5?5? ҇5?z e5?5?;5u5?5 D5?〻"5?IVSS5?rɆ15?25?Pt4?2D5?{·4?dz4?Ǖ{4?n4?64?ۗT}4?\4?nj4?Kwk4? t<4?x{4?ZGK4?W`+4?3?p-93?S 4?wq3?`[3?v;3?73?3?Fy3?t,DY3?muA3?!i3?vs693?Zbp3?JVI3?:#*3?2?H2?x/ 3?&22?8=2?bn2?Gf2?f2?)x2?X2?.Ї2?tohg2?|ΡM92?]2? G2?z(2?h\1?J1?66 2?B1?8(1?n1?:1?΍1?!]L?;FRWL?-L? DߺL?RbM?9i1M?:gL?0:ZM?_M?M?ɢt}EM?S)tM? ̑O?Jz6N?R N?XN?QEXN?XKvN?dpwGN?ON?p \[N?d#N?M?ըEM?ApM?։_-N?UM?sM?T?R?læR?WXR?A؜R?3mR?Z(R?{Q?y?=R?A R?ejx1O? Np`O?{O?PEO?xO?fO?oetO? O?xEO?P?wO?P?JQ?םQ?*,cQ?i>ԭQ?5SiQ?S9Q?~Q? NQ?L Q?|P?%Q?=HP?ogP?r{P?[u;LP?(51P?0ɏǿP? aP?{kP?\;SJ?r(#J?@9J?Av&fJ?BL? J?'J?WJ?|J?SZK?Ȟmx4K?J?9_[K?{rL?(7EL?υL?BAYL?lVL?ᯝK?Y+L?+|K?J.GK?]FaK?aRK?HK?IK?ZtK?lK?OMJ?J;NE?XGE?#f3E?xZqE?rUE?"Y^E?۶E?W3oqE?uhB?p@C?B?Ha<C?K G?C?ZhC?)C?8RC?[uf4E?@ E?XFE?XE?y$0D?`(aD?@c{D?&D?D?bD?=eD? LpvD?8D?D?_wLD?I"D?}C?C?Ce}C?A|C?^C?ҤC?fC?f*I?'>tI?UI?n@,I?1GI?F I?̛U ]I?+.I??z:}>?">?Q/>?<>?U^v@>?lf>?&o+>?ioB>?1WQ>? x>?\x8A?O,B?<6DB?)9B? .B?VUlB?ɸB? VB?)|B?1t"B?|M:B?a&B?-RFB?_X7?267?7?,?7?~D#7?j6?"L6?B7?Fu6?` C6?e6?NA6?])i6?g.Xp6?DO6?9}6?{)_6?(<>?6V>? =?|t(>?>?6}N;?*;?xڼ_;?ǔ2`;;?}g{7?`7? Mb7?4w7?Xe;?ۜ:?;?+J:?LG:?m:?yH:?E:?/s:?RLO:?ڄ:?ta:?B+:?\#:?=:?*Qj:?K׬9?n)9?9?9? 9?u9?ѝ̧9?0f9?%Q9?~;.9?,b9?E>9?:@ 9?th8?+U9?^8?G8?!V}8?@v8?>1gk8?F8?Z(8?}(8?$\7?8"7?ف߮7?R7? 8?v58?/7?qYV&8?nY8?s{8?eJ8?hi8?M{=?\&=?Ǿ=?.?>=?a|=?{DW=?,=?/h=?G 2=?e- =?,EB=?ؐru=?ػ;?1 1;?;?4o;?Lqp;?tز;L;? ;?f];?V?Q*V? ]ކV?TV?ycV?W?2aLW?c3V?)W?-#}W? &W?0U[W?W?;^-vW?4OW?`RW?o$d^?n?u?>_?_Lh?ܮ?UGvN?G YL?xP??38B?{a@? O*?_%'?=P(?Aܣ],?ۅ&?KV(?AN*?{+.?E0?aq,?!/?Ke2?4?=1?IV3?7?E^?6?>,!9?5R;?<"W?UT?RMY?~qxW?Mo~R?O?1#U?ϑ'Q? b"?NXJ$? ?o&?y?:0|?/M<?<*??>?&E7? ? *F ?J ?J ?'H?1m&?Sj ?"} ?v ?[?Ip?༅D?(?@??$E,?ir?ʛ?[???W? W? ?ր?>&??`%?[ ??m?= ?ܦ?4??@ڤ ?r ??t?oY? W?e j?W?$C*?Qlf? I3?%p??Fҹ?m^?i?`?^?Yv?S?t`?B6 /?L{?vM?ca?2?=?2(?;=Â?H?xH?o?^j}?;g5z?MH?CSG|?aw?)q?V0{t?Ao?k~y?SJr?zt?f|[?v=]?gHPM`?@c?"Y?tF]?IO_?l?|e?"8i?Жo?b?Prg?gk?W 5?{1? .? l3?//?ͲG*?E0h&?Q',?㇯(?F"?[֪?F$?Tu ??Z:??x?]c??N?? ?@?\U#(?z ?G? M;?DN ?vFP? !?rS?{?w0f?Se?vi=??Z?~?̅?hyw?~}?1Z?oS?sp?Av?%i?o?j?M ?Bu?M3?sO?{C?;?/e-?L5?#?MAb?-j?e2'??D?~{? x?y?/F5?Zz?N;g?H?g?@9?/ =?+=^7?;?uA?E?`j??w^D? {I?9M?ϷZH?K?Q?GU?pO? XiS?WD?.lN?_H?0Dn?YX?U y??t #??vGS(?"M"?>?EY?[??5?hڨ?S ?,;?{=?8 ?<?#WP?!8+??2; ?f,???Lu?e?7S?d×?"?6?<{?wѕ?I?&={?? J? ?s?}?Ķ2?Hy?Z?$?+?0?6ӿ?wZ?NF?;u?d?̓:?}L@-?pKݳ??<? ,?@_߷??PI-?kb?ɨm?A`D?X#??ĝI?D?K9?KJ-?:3?Mz=(???2?ql=8?]i?X:Pb?ԫZn?qQVg?r\?N?U?>=J?@a?&k&R?tBX??e1?xpf,?R[]7?p0?[n?c(j?w-6t?p?ܤXM?P+R?":rJ?=7O?vFX?Jp^?\( U?g[?%[e?۵k?=b?(gWh?xy?pd ?Zjv?_^|?vD?6Fפ?򎤭?wk6I?#3?މ?f?d?Ls?]Z!?q?b ?蜜5?8?ęIӍ?i??!d›?#??$Z?e9#?+]?r^?tW?mM?AR?_HXH?ӈLY? UM?hR?52rk? M?߀ä?m? ?T2DY? ??S?xT?H>?*?G?ju U?Q7g?2r?u?bb?&?-?JP? ?7?=?Հ??-?,Pt ?f_A??7B?넨?nϯ?A&^?/?e:?t(?Y;o?zJ?.཮??V?F?KQ?L,s?dBO?]?'?.???)?@ ?f;-?v%?le?l ?<t*?$L{?2c?/_ ??1?f*?&??'?YG?ҥ?t*?ۘ!D?'x|;?,9H???>bX2?÷)?DJ7? -?p?D?tO !?|?ۂ$?k< ?Q<?i^?]C?WD?J:?{|&?5?O5 ?FYS?Y?*?g2?ۘ??~e?;mD?M?@|F?=сU?y;v@?I?1?}?S???ů?Ph߿?,'??D?JG??}X?z|ؓ?{V?]e?Rƚ? ?$?eJ?t?5%b?Pk?@L^?L+%y?T*/f??*o?SL? AZ?ׁS?=SH?w9b?P YR?"sY?RL?fK????zd:M?wl,R ??2?_?Z%?xe*?A"?'?bk3S?׫mN?oH?wP?,K?XC?A\>??;_F?{BA?F9?Wv4?ns/?3(,?[y(<?2?`7?糊?D,'?/ ?0į?Oڔ?$gX??ѻe-?8?N?1;?$uY?x'?6?n?@?Հw9??;?|??y?RPJ?#X?9YM??4F?ۨ|??H~?1w?pWr?w>z?u?m?,8qg?Jo?aތj?;:-b?]?ZJ\X?U?Ye?^Z?n`?~F?Ӹqv?h?̾4??&Zg?.2)H?xr?"^6?}3f?X>?LZ{?,r?A{t?@?K?LA[?T?<}N?Yq)X?Q?n`H?|A?VtK?'E??n?lXL?6?#?( ?k? ?uˈ+?r%?@j5 ?=(?#?>rđ?a6?p T?R ?(m?0?ݎ?iM?H?U^B?hK?"7E?;֢<?:Y6? 81?6h.?}y??wW4?b9?ܮS?Jo~Y?bP?9?V?LXS_?C#,e?\?{]b?| k?kp?1:h?tfb n?K?B?Oy?t?G?_?B?g? ? }'?DaX?b?}?ݚ?0P?1 W? ᬲ? ??BE?/|?BOs?+m?#A?=x?8Raj?E?ߐ0t?."љ?,_Y?vf]?j inW?[?a?dYe?4`?ec?<"?5^\Ў?h̬?ЃW? _?UR?g͌?܁? &?k$~?O(?6]#?}Ee%z?|v? #|?T,jx?^ q?2&i? Zm?Ig? NLt? ~k? Co? ?i?^??m?_2?>7?j0? 4?&Ei?1%d?4k?9Lg?Hy;`?[?pjb?$-]? W?ھER?OhY?T?M?%LjI?[XP? K? m D?ݍĺ;?t(H@?=v9?>G?a=?qB?[2?\`.?2 *?3t0?d,?ɵ%?s ?I(?;B#?P5?_?lr?­?/B??^N?O?[O ?PhV? ?i?c?D??YA{?m,r?r0.v?Do?o(5&}?[$.t?4hdx??H9t??A*?F??֯??m?יY?o9?j&?8~?S.?"{"T???l?|?L?& ?>4?4?o)?|I?t ?9J[???8&?pƴ?Wx2?b[?T9?,h\?Vڬ?v?ot?q?]M?: ?ŝ>q?fd?@? d?>[ ?-;T?m ?`?vB]??|?aL?C?# ? ?"?]8??lV}?e~?Aq(?@B?m?l<??F?W,i?*0'?Mh? Kq?Ȩ?BY?Jg"_?B?bG?I`?}o?c?ǖ?YN?Y?C?s?R?|w#? 'X?>*ˢ?cQ<??&aS? ?+;??ƭu?A?_;W?Lmc?F ?:?*o?%R?/Z?q?||?H_?2+m?N?tR?ɗK?N[WO?Br^U?\?XX?gj_?&ץR?_X?tc[?\H?ymNB? /E?a>?+ˆ`L?Wbv+?$Ih+?rt+?u+?~Y+?_+?Gf+?/F>+?'#+?aK+??C0+?#P+?De*?+?;*?l*?*?:*?vP*?R*?۪ *?<*?`(*?qwl,?~O,?wiz,?wN_],?^0+?O2,?)+?C,?{ p@,?z+?CT,?К,?De~1?G,`1?1W@1?o1?'*A1?> "1?!1"lQ1?b31??D1?Hd0?F1?'0?10?&g80?v0? 0?3nS0?DMKh0?'륕0?"v0?8J0?NFw,0?xX0?e:0?B t0?gf/?0? /?pl/?;/? /?yq/?­/?bJx/?'ؤ/?/?:Z/?sZ/?OX,/?|m/?.?J.?f.?1.?=Zڨ.?tn.?癍.?=I_.?2^ù.?{.?FK.?/.6?ɵ6? ?6?^A!6?Pk>5?,5?X6?3ʩ5? *15?c݅5?_#5?\5?b5?9O@5?0-Ns5?cqM5?< 5?.4?Ķ+5?QLEy 5? 8p4?C /4?-4?4?c4?z>{4?\4?4?AfZ4?h:4?zf4?y I4?FGR4?Ǹ.3?N)4? 4?@3?Wt߹3?ZD3?Wqn3?3?,Px3?5<3?}Ѕ3?hkX3?n n93?rme3?-H3?w_3?[.D2?)3?[?j 3?2?Ҡu2?|32?Y2?xzq~1?,2?6wv2?U?WV?zU?P:U?L2D`U?(+t\/U?r5U?ڂU?DBU?UrU?DgT?T?aq$U?T?U?'MlT?;T? T?ŢvQT?K T?WpS? T?oS?I&S?ٙyS?idYS?JǎS?SjIS?.#S?{R?f2R?Fn^S?6R?%]?-S? R?rl> R?P"ER?um_KR?R?9dQR?ŵ!R?L)fR?sr!6R?C7Q?qIXQ?TSR?%Q?᳤YO?g'O?>O?KFmO?gO?HO?}=MO?*O?lP?qݝFP?Z 2O?:*֔,P?N%PՒQ?™KcQ?;Q? τxQ?%3Q?f'Q?1:IQ?CQ?n)P?HuP?s.P?擖[P?*;tP?dP?Y>P?SɜZzJ?^VJ? #cJ?*/J?rKL?佨ØL?L$1lL?oL? iL?fJ?7*K?J?ǧJ?ڳ^/K?z[K?'(!K?XBK?M?L?|L?ZӜPSL?sF(L?r;^K?kӇK?NՎK?*rnK? K?\{K?:=K?7jMJ?Eo&J?FiftJ?KXMJ?xpE?H%d˄E?.E?a–E? YE?2#/E? 싂kE?ېAE?ƨwC? K=C?YB?rh*C?ĚfC?(^C?UTC?3r|yC?I E?b>mD?j~E?D?%D?(D?'D?0(D?@`D?_^5D?C7tD?`SKD?, D?GC? sC?<C?=)!D?ACC?y?C?u|6rI?QCI?#+I?RXI?1I?Vy&?H?j2)I?*H?+H?<H?H?_]ߤH?IuhH??G>?sA;??[>?pa>?Zbb>?aʼn>? N>?­r>?q>?٘>?@B?B?N7fB?SSA?B?|@B?TB?oB?`xfB?"uۢB?[nB?O_sC?B?rvC?23?;>?;c-)]>?b67>?~d[=?z=?ے>?o{f=?(';?Lc;?jOj8;?bѐ;?uDm7?S7?ރiw7?Bn7??M:?d:?5:?0:?ɕ:?)r:?SȤ:?~0:?4O:?te+:?d`:?jYX@:?C,:?~W9?9:?39?9}9?29?bj9?rAc9?3D]r9?;(O9?tɀ9?=P__9?5,9?Qd;9?/6<9?IPu9?{?78?(|۝8?-L%8?H)b8?88?A-8?}8?yX7?SNF8?^ma7?8?qMO;8?{z8?FZ8?Y4JG8?J*8?CDZ8? Xy8?A뵚=?uS=?ŬV?*V?V?bdzV?k֨IV?[5 V?Fbu)]V?8W?a?al9?6v ?W?̌?-?f?}V?@??DY'?"{}?Z?ԫ7j?h{ ?C?1 ?d ?. ?~P?Gw??͡M?4N.??USX?-?o ?hb? 4Q?2iA?~?2?q?|$?ڳ?UX??.???Ƥ?3)?^?˶V?n-??m|e?oJU?C?3Y?m]?_?%&&?$ ?4?y@?tbϝ?`σ?o+?PY"?sd?%"?̯${?(v?X}?Sty? r?n?OPu?]~q?Y/l_?Ӭi?G=d?^?Y<m?p>~b?qg?uv9?^ 5?Z5#.?(O1?*?9p6?cI.?F쒔1?'?˰"?h*?20%?%EXa?:?)?o?ݕ ?dX??b㦀?d ?Df? ?pK?V6?`??.%?˫ ?:L?eV? c?`?g-?C?aߪ?6)mP?RhF?pE?`?}?-?$?v?w?a;{?1?uZĴa??'lS?DZ?i&n?lOh?%L?St?*Z?LBa?;g?H3?f)đ??P]Y?'J?RbH? ښ?_-v?,&?C&?U?.(?N?Yc_?Ǜ?֚-?H??0?j?]=?ȀOVB?҇Z;?T@?pVF?M?؊MJ?~Q?D??BH?2O-??A*?oW ?Q ܙ?=?1?Z18?̼+?Ba&E?>P/9?~\2?y5%?cP$?j?XD?۷,?8?N!?Cj4?N?g?9T(@?1?J?q5y??Xh?Tp?;=c?商|?&2j?ts?4%]?w~T?$Qe?6z7[?l?3sF?ڋF?C?@Ɨ?JҞ?%?1?1d?/?>o'?#0? ?Y?N%e?G1f?2j?˾f?*? Gh?MV)?oG%?Dz?s?Ϙa0?m~k?,Ωx?Д/?ϋ!?0?ړ4'? 3?#?NE?yv?Uޝr?TP? ?ĸU ?[<,?И5?'j$?C.?2S?P*;?'1?a??A_6?\'?A (?L ?R?Z`?r4 ?)`V)-?L?[:?Ǻ?.*!?UD?uLMVN?m :?#T`D?E?ʕ@{9?L?]A?D$1^-?E&!?X.d5?CΦ(?E?Y? ?΀f?!? @w?ш ?^?g?s\{??ӂv?/?$?Q3r?X?vF?z?SԾ?nү?J`?<>\?dq#? s?5 ?=I'?A-?&(?0?x?% }?ޠi?{Էs?a?4 ?~:n?_j7x?bX?2`N?G\e?f[?8(O?ЪX???`Fd ?2p%?@?!#?bP*?:ш/?s(?L-?B>hVX?/S?;N?&U?wP?J1H?&xC?NJK?CfF? >?=|4?⥤9?0 2?2IA?+ 7?{)<?7?s?g?1U?-P?>\L?ً^??_/|??ҫ?9?#ea?z3>?N?փ?q? ?dD?}v*?a?Y7?P뭌?p?\?Nd?)(&??Tq?1^|?Hw?B!?7nz? }r? u;m?9W8u?o?ag?Q]?cKsb? Z?Oԙj?`?)`:Se?` ??*U?<2v?RT?m5?K?^{?Y??`?i?7B֘?i$?p?ɋl?(a?R`v[?#:U?߽^?WX?YpN?f@{H?fR?pK?2l;?15?xӕ>?Tk8?.?v(?2?&+?\*"?x?b%?6?9<?Bg)V??oi?k/B?:ϧE?;?\R??z?]G??!m? ?0t? '?7 ?7?1?ay`+?"[%? hz.?(?V K ? [??3Y?P*#??D$?v?|?E,s?M!qy? 0J? u?b?tDž?i?V ?9?Ǒ?)?O?e?kW?w6ŗ?3RGɩ? M4?LAƣ?zS?7M?\~H?ƙP?;J?"QB?6?3<?t"4?)%E?Q9?b??4Y?3x_?HV?fQ\?cje?6:k?b?m}h?Z{q?cv?4%Pn?>s?r ?,?aF ?d?1?Sz`?.WH??Z)?~?`?])?;!?J???4l? _E?a? =?>"?T? r? Q?²?и?p?*֯?m)4?1<?1 ?Sس?&U?Xxa?S$?;H?끒p?R??Bɽ?_Y?Rb?s??:dJ?$j?nP?X⼠?o֫?@'ᤳ??vD?|֑~?җE?}ڛ?뢁H?9Txw?!>?@8? /?jӛ??&vF^?}e?a?]M}i?ِ[?Pa?be?Z?߲Tk?b??h?*E!~?Q?VTgz?RB ? 5=~? ?ZHev? EQm?Sq?ˮ3i?z?-cHo?rt?=+??z??Z0%m? i?BSVq?nhS`?I#h?Bb?{[?2W?ƒ]?c_wY?R?h/+N?:T?|P? )I?;@?D?a#;=?{hL??$?lME?j?9"?Ѧp?]&?|?|D?2o^?5?H?2?9?L?&L??O^??N? VSl??ǘ?Q?X2?F?q?2*os? e?-?J9?FXJ?U?U!?#?4?w?m ??#X?y"?rz-?{n?!9?|O?1w_??D0ա?8!?* ??8x?lZ?])v?U`?7l?$?cj?.7U?Oj?)?ۆo?N?^`?9\?s?^?*uO?ʮ[Z?wNU? uI?Jka?{W?|*R?h',D?m;?eF'L?QC?Ћ??^}?)&?V'?}?8?c{?eNF?HYƿ?Lʲ?)f9h?r?"^?!i?9}?x7m?]Eu?ez?+t?5(0?lb?lF? &??Tݿ? >?? W ??Ȱ?݊W ?? [H?KQS(?Zm;#?m-??Z"?LΤ'?Tv3?":?ٴ,?(?fd(?Q{J(?:O %(?xXz (?H1(?(?8h'?'?--)'?C4V'?'?(gsǥ'? b;'?aݱ'?W&U'?FTHs'?8'?C6'?sZ'?A'?h''?'?Bf'?13'?^L'?U&?5&?'?4)&?)g&?tէ&?+B&?ݤS5&?Y&?JSVz&?Y&?e"V&?ga&?@I&?Qk&??R&?l0&?f&?oJ{:&?=<"&?&?B%? &? e%?A&%?Ub%?מJl%??%?rmL O?QL?c9%M?%L?㐑 M?arUM?(l M?9:M?~nM?&7M?D̬M?LM?M?ꀑqN?ʃAN?N?N?w%jN?Rȱ N?gb;N?&M?~N?%zN?E#^LN?`ĕT?mcC2T?SE/fT?tyT?'T?V?Y[ydU?S8,V?NwU?U?TU?O =^U?V;6U?>U?nJBfU?U?PTuT?W5[T?| T?nhT?a"U?E=HU?l8mT?߮%U?ht;6T?kْT?VJT?T?;S?KS?S?ATλS?wpsS?S?G?BS?wPR?YES?h$S?VS?tS?R? R?gCR?dNR?[zR?a JR?R?aR?}=R?XtQ?#1R?rvQ?#g;Q?(ϿQ?IQ??eqQ? O?O?ߧ9cO?3dIO?6O?{fVP?筴O?zMO?ܟAP?.oUKpP?(P?e3WP?cg<^Q?$B.Q?yrQ? FQ?8GYP?xP?6FP?J瓅P?5i*Q? yP?p&"P?&]?L?*;ƛJ?LJ?c}tJ?ZJ?1LL?fL?YL?&;L?N&L?/UbL?. /L?K?`W1VK?@%+K?T@#K?LnJ?BK"4%K? ~OK?e+L?%K?yh xK?eZ7L?ojxK?au̾K?v&K?-GMJ?g$J? J?z|NJ?it}E?ʲ&7*E?LSE?dD?@E?~cTN'E?mPE?G}AC?OcC?fC?G?EL9I?7{I?aJ?II?sI?ctA?t",A?㬞A?MA?(eq*rA?}lA?_@? )A?#@? x@?Ta@? q@?=@?gU@?ti @?o8X1@?c%1u??v7h@?{V @?z{e/@?XPJ??pm]??;[??G??Ck??"?? G??<U>?mk??s{ ??<#E??eA>?^΀>?gU>?Z>?5^>?#>?ԫ>?}A?ZA?B?ЪvA?]TA?܊#@B?:e|B?!]B?'cB?'׸B?.B?^܁B?KcB?BC??" RC?`= C?Tg=C?7r`7?~v7?c2zW7?b7?Mj.7?gv6?e"N7?GE6?v)7?*e6?A^Q6? |6?ː (6?67j6?NJT6?:b~6?:o>?4>?M=?TR>?.`>?Lt{=?%k=?3=?S=?&=;?ͣw:?9v';?-G@`:?Yt7?z?a7?g7?p$7?+zʳ:?fq:?Be:?8,Q:?=ͦ:?:&@o:?Sg:?:1:?! :? O:?( :?hA9?/9?KG9?6e39?_&79?*/hL9?zm9?{_*9?G219?klK9?u.m9?\9? Fa8?8?wڙ8? *9?KK8?`8?"I8?6I8? #8?68?UGy8?E8?&Sf8?]8?5=O=?ō=?N1wul=?{3*=?FtP?#gI?S?pLL?]B?n;?rgRE?b??4?c+.?38?]zl1?Ec'? ?7*?D#?`h?Fn?w3e? fx?Otk?Xper?K??B??(ʜ?5?]?dE?[A?]H ???-?+b?&f?ѕ??|?q+?Y}?rg|?dۿ?y? ?{?I?]BӲ?2?]h?VG?'?#?bk?RTgn?T?&?3?ຈ?ϗH?vA?KDhcE?r??L%(K?rJAVC?P)F?Y-?Y2?Ч"0?~;5?T+?.>h2?d/?L7?:?!=?gBA?4?+n~9? ?6M???bF^?y4?:7|?2#?$?lݰ?M<?h?Τ?ڷo?c?o ə?F,?!b?5??"??@?\İ???|$?:]???=?`J?Z@?P[/|?1I;??r? L4?TH?P`?LT?1=? (OC?Wmi?;?ZP`[?ԓO?~J?֮r?Wj}?nqwd??s?݇?ٽ?g*?w?(?m?dv ??/?L?B>?(?Wy?3k?#1?'?>??z9?3n t?g_i?^?qbm?d?L>?+'T?BhnI?h17?WzY?>'%C?]M?~?q ?iZx?Zm?Jʭ ??d6?2s ?8-%?)r?S?)?_n?n0??\>??ySp?jʶ?*?[/+?3? ы?w$*??v^?)q?bG ??ޑT?-x?K?Y?*?%)֝?iXޡ?g??!X?0??9z?6?&x,?~_7?Rk_9? 6?oZѿ? ?y\?&Y?NZS??_K?k??8|#R?JFF?Q:L?5t?_آ?d?J?YD?@?&?^(?G`3?0c ?б??g?3?vU??$?k?` 3?N?w(?x):?G?rA..?,"?R?%/g?4?[?E?n?_@Sv?|?y||?6l?{]b?r?ʁKk?X?DM?`?XU?p?0Š?Y?Q0?i?]RT?X?+Zn?e2K?TGi?zd?J̀?ޔ?i?k~*?mz?d?_ C?ݽN??Ks?:?/*?E2??P ??u?]?9?c&?1K_???/?HƊ;?uZd$?3?xS? H?`?lFS?՝1?˄?0?e?f8&?פ:?pc?Bp?'(?G hO?QLjD?Q?1?&E?^op=?6sے0??txH?;:?k#? ?J?㒀?%a-?l_[?-?q?}3?pn?Pv???i{e?Hb?w?+? D?)#?yR?T|?Lp?q?"|k?Աhr?8b\?4 h?C$?x? ?g/_?PR? o?ȝb?X?\W| ?J.΂? ?V%?*?B#?D_(?P/?4?Ygd-?F02?+dm]?o2X?\)S? 7!iZ?BU?2$N?H?LP?oӕK?)C?f9?Yi>? R-(7?/F?\O;?B#$A??oV?j)?VH0?ߵ?W ?Nb?y?n/??{L?/Q?>G?ưӦ? 4?N? X~?ġ??R ?+w"?We??)d?%??m?z}ҏ?G-Ɖ?Vuw?1>}?q>Bv?h?aw?ir?|z?Cu?Hnm?٨b?9Th?z_?(p?MO}e?fj?DFI?79?mL?Rl??|^? ?)q#?`^3? >?\ؽ?H9?9 ?e$A?7?5?HQ?(h??%b?s|[?Ne?e^?':U?9^ #O?3'W?ώPR?2I?aOB?3J:L?3ͼF?* Gk5?mv/?8??[Q2?ýB ?d(?#SF"?f+?"l%?p7?@y?AZ? f=} ??E?`?sv<?GS{p@?55?9?6?Dp?: ? 0ь???&--?/ ?w?ru\1?̱+?z&4?g.? &??!_ ?7I?@-)?&d?-| #?|? sׂ?zy?,9?ޤ܈??fڅ?C?=?8K&?q'? A.?_m ?XM????x*?9,?z?Wʚ?EZ?(T?4M?="[W?P?7G?8s<?4B?9?µJ?7>?D?#`? e?=[]?c?X(k?8q?ݍji?{|n?ۏ v?nY!|?J%t?ѻhy?-^?k?XEH?"?[+[?艘?N_?po??(?bw?)V?Fm$?Z?R'?1>?x#??/???B쑂?C+?/T?͞\/?S?Uc~??:L?O?Y ??כ?h?~C3?Rk?a6?m?˗G?-?{??6?j'?s~?j?pPv?P{Q?Ӊx?_p?0V?o?,?:Δ?*?4ۗ?`u?z8Ie?0l?2b?h?XY?V???0X~?O4Tr?Sx?\So?ٿ?`Ku?ԧ{?gy?p?cT ?}E?Sk?+e?n?<`h? ;?"Q@?$7?؅\=?X`?9W?6Jا[?R1S?hvOb?[/\W?<:[?+O?:E?;J?`YB?TS?ϧH?M?o9?33?Y-?E=6?I>1??'?d+O2?e!?'%+?'G?3&W?޻#?w~;?n? R? ?}??v??$P?~Sy?>,?ǭ??ϙ??`?_7 ?ǕE?J)?gLv?PL??`?}?ϣڏ?= ?Ȩ 2?wC2?@}?zn??$?-Mx?9Dwd?v]}?F䝁?)}r? k?ۂw?p?@?'C:?֦?$rxݭ?b}?*0?)^ι?tOq?e??SF?jx3?9?"?1?A!?$?~C.=?>??{6?)?m?s???[ ?g<]?!f?~}?h׍?YK?GTi?mi؅?B?^?h͏a ?2l?o?a0??肐 ?ɜ?QLE? z5?_x?JP?J`? ?4?z0r(?Q?F4?'J??R&?Mv)?s?ă?W@?$?=?J`?o]?<3?]?? V? ?zZ?\?d"??*?K™?eџ?̀M?CG?\y?@_?d??t ?-n? e?u_?R?c23?<̶?V`?U?6i\??0?|y? в?6ʰj?sl\eT?*iA?J?OLj_?WN;?FQ?2wG?+f?KE?w??U &?h?sm?Tj?zy?Í?eS[? 쒸?~?vk]Ko?r>?w"?^?3V?2;?d`?3%?\zK-?P ?O?TQ"?rN4?}A?mO)? A7?Ph\?`??;c ?y}I?:??@DN?\!?Ju?8/`?jz?]? C3?a?\?C?m??;f?y?fM?۝R?!?M?zR:?{?B(]?_Z'???LV?8RB ?g?Gm??&="?("?w?u})?k6)?ޜ)?N{)?/j)?w_`v)?o?ė[)? ҇)?0i)?v9-A)?G&)?FN)?S83)? )?.Qs(?^)?-u;(?"&?2 '?ci&'?)<&?L|'?(?w-(?^(?'e(?-S(?{ۉ(?c(?mnh(?(pp(?OA)V(?[{(?e{c(?=(?{a#(?c;J(?*T0(?̟I (?cyo'?8(?'?W\'?:d'?Z'?bP'?Whۡ'?hNB'?%%/'?: I'?cdq'?v3?'?U~X'?tg2'?'}'?c dK'?Ƅd'?E1n&?E0#&? &?ҍ&?"&?I&?QEp&?ˆ&?+&?"*lt&?u-D&?9\&?n~&?P75&?0M&?Ze&?ڰ%?6&?8SyL%?g@x%?ZR&?K!I%?#C%?J&?98o%?zFW%?b !x%?$`%?cZd?%?WQ'%?I%?Lq81%?6_%?vtњ%?&* %?-V%?*%?wj%?R9%?~Ct%?&w%?|$?Km%?}%?il$?T$?-$?C< $?j<$?P6%$?`$?b//$?YN$?dR#?uS#?Q$?E#?dߵG$?˙$?'z$?#$?q]$?SҔj$?+S$?F$?#ty$?\%r]$?)t$?r#?x#?M#?펻#?p"#?sM#?xԥ#?Q/#?m#?VV#??w#?C*G_#?>]@#?hYp)#?H#?R52#?#?SF"?E#?M&#?jC"?;efK"?mD"?GpI"?L߸"?~"?"? "?sdVk.? O.?Xo=.?j.?Vg4.?).? /O.?P).?0[,?r2,?7y,?-j,?A-?-?~ .?/ε-?TmNW-?(z-?zI1-?h-?0~-?jҁ-?cq-?XN-?*-?i.-?s,?&ަg-?6Ľ-?Қ>-?d,?,,?%,?,?n o,? P,?_^<,?[1b,?cNjI*?A-*?[W*?,;*?P`*?I)?ML )?j)?(tG*?ӂ)?Vp)?:́:+?QӍ+?\m+?9+?zr+?%W+?D3+?ݗ(d+?YW,<+?yn*!+?HoGI+?{o0+?Wͮ+?>*?+?+*?Fv*?*?<+*?I*?6O*?v*?8ڦ*?r*?^R/e*?_H*?z;>t*?'>JX*?l2,?Uʎ,?D,?|$,?+?ӸL+?s +? +?w,?5+?30?$+?I1?uf(1?*c1?4L=1?Ck71?~0?W1?Cq0?;L0?O!0?!0?Bd0?m~0?+\G0?c0?^G])0?130?7PH0?!قd0?*`p 0?™/?Q*0?y[0?Dz/?)%/?/?;/?)8/?n s/?p/?i/?+ycQ/? Jj/?g6/?E/?(Kb/?:/?6/?.?mm.?Ɣ).?.?Uw.?~.?\.?t5?L5?*6?I165?6w5?@1V5?S5?Ҙ5?-7zX5?gU(5?mm8m5?F[A5?==,4?4?45?b4?Vޘ4?W+e4?Oʳ4?ߥ4?DU14?M[4? 0M4?/4?E3?е3?.=3?7H&3?nC3?f3?3?ɯ3?n83?y/ 3?zR3?$3?62?K̹2?8!2?F2?%i}2?sqa2?0)92?Y}2?ښ >~1?VK1?oW1?_ z|1?n#22?a1?"(#2?!N2?>1? 51?2?Z_?Ch?+?(c?A>_?B?^Q?]?q ?紗)??-'?ʽx<?Qۀ?Y.??%?!?Џ!?( ?| !?_! ?uF ?1} ? ?0 ?V8 ?:y ?t6 ? ?;{ς ?gPm ?(ߌ ?w ?}|X ?߱DC ?vԦb ?M ?&K. ?j0 ?Ж8 ?꽛# ?>5a ?L{?cc ?,/?LN?e ?I??!H?'?!S@?鷍?0?։=s?g?qbE}?h^?2.J?h?*T? 5?!?N??0+?x ?XL??`<???HW?fJ?Df?B/?^<?5?y?\~?%Μ?Oۧ?9zYj?NɿV?c~B?V8?Zt?-yԫL?`?X zO?+EO?xwN?;p>O?~N?~!a\O?,nN?O?1 M?}RM?oL? 8M?M?dM?>M?BxMN?ElM?5M?M?g7N?G.N?mcN?\UrN?AN?nVDN?8yN?}M?^]T?ޚxT?Mbc@2T?QT?\οT?tT? kT?faT?%U?{uMwU?wTvU?`UU?8U?~U?%;RU?(1T?};3U? U?( WT?`aU?0T?ZU?.T?E_S?(ל%T?=p7S?S?d8S?H$lS?S? S?njMS?S*S? +S?R?ƧR? R?cuR?|\gS?R?WR?HR?R?JBpR?+R?LZQ?}CQ?wzQ?ZQ?Q?OsJQ?VMQޮQ?`rO?LHO?ޝO?VaO?51P?FTElP?2>P?3ɬP?eћO??Y|>?~6>?=??9>?{q>? }!.A?n VA?뷩QA?g~A?+A?P@B?愸A?tB?F"8B?5B?oB?(C?%.aB?+B?(B?q,[C?&C?I93'C?fAC?s}m7?5Y7?7?^}7?͠7?ND7?c7?GZ7?ޮ+7?2A7?$f/6?v6??o>?[98>?S(Ѐ>?zY>? >?g=?W">?=?|%=?6F=?o=? d=?@zF:?x'8:?͢iT;?:?~7?#8?7?Ҋ? 8?um:?&>:?Pj:?ޠV:?8T:?19?,(:?9@9?y.9??9?-9?d=9?9K9?d=8?K9?<8?XJg9?kd8?^,9?79gS8?3o8?8? <8?L8?qa{8? A8?|ț=?i0⅟д?6xV?c?Pػ??RD?UJ??U??ܪ??n?M?"dq?H?gmt??z1?#u?_?Yo?x7 ?R,?v ?r(G?+=@?/08?ыD?v<?me1?Uw*?\~5?%.?%!Q<#?1?c?{2?o|&?bb?|P?5T?p`?cKm?s_?X?}?Dp[y?ɔU?j}?ݾr?jk?-%v?H5{o? e?,@6^?%h?ba?2W?XV7P?Z?8S?nT?I?XWB?L?bE?lr;?Ď4?>?97?-?i'$'?<1?eAOk*?L|mg ?ُ?Q #?Ps?Q?N.?o3> ? ŠD?hz!?l?-K_k?П1&?K?'?4 '?{Č?2Q|?Lko? u?M!;l?0\`?Ys?VUyy?o?=^?nF?2?C??C?%|S??4?L&X?39?v?$#?v?*r???N+?$-q?N/?2c?PX?zu?kV=W?6a?Wo?`?HJ?j?O?ڧA4?Vr9?]BJ?TzL?gpE?ɹ*I?^m]?R?GX?7P?/`b?svU?"Z?N?`K?yWaS?֥ȬM?~KD$?DTP(?qz ?u xv$?!cs,?r1?}(?-?Ί?me?*: ?sz?a$???XJc?cH ??1?4+?[ ?/?Zi??tř?~{?LNs{?t55?ۈ:??d ?7?L?ݶ??|? ?e5?뇭[?!?hP?i?y+?rHE??V?~l? ~?g? @Sz? #%m? s?4|?uM?.W?pt j?s?Jz?߫?&};C?J}a3?/jf8?=.?|2?$Oo=?GA?o!7?֗c<?*?efkh$?*5.?+(??S?`)"?,O?x?X4?):e~ ?j?;`?~F ?#?O?=?+g?`?(w?U_ǜ?Y&??>\?E6?G?c??*m?Ž'Oy?`?9Bm??#ӌ?~Xy?m?%?,:?2???H2?f%ŭ?0}?h?R?%I?޵$O?I=rT?tY?O!H?*O?~4wT?Q^?y%Ee?SY?\a?Q *?{|?b ?X? ?\l ?m?O! 2?<1?E?uh$?/XO?fg?\z ?`b ? a?Z1 ?r\?U?̕??tߧ?Ցku??W9? ?&?z?ia? qϻ?W?+*?P?g?0X{?F4V??3~ ? .z?lK?'X?!~?h2?_8?%;l9?VG?1+?d־=?`sV? |e? zơt?*K?1utL?pO`?6jo?8V??3S?'??.SP3??p? ?_uGE?}AҺ?"?Șg?l5|?~z?ԚM"?.r? ?9R? bG?aU5?MS>?\{-?dCL?eF8? A?%Ȏ%?.?dw0?z #? z?b,Tt?T?z{?h3\?d?69&Cm?*Y%W?];t?W Ga?{Bi? *܍?i%_?2*?.?1~?4R?y)?l<>?Ǧo? ?̨?^"?[?` ?+Ҷ?eQEB?~|C5?gYW@J? =?`I?a2?cDG?D?=?6??6?(?dI?u)1?;?D"??4=???.b4?3$?W=!? y?_?u)q?/sX? w?>A|?tz@i?h]??t?5g? R?VE?kQ\?tGrO?.͔?v ??꼓?Gҗ?K?/?LWة?A+? P?Bs?:5???w @?r[?1?Ŷ`?Ns ?!n4?F ?&?`ĸ?f8?(&G(?/n6?Þ? .{7?ƦE?ʧ-?Iu=?q S?G@E?<ܕ`?`W~R?Jg?ı2?לn- ?2#?F?؂6V?17?f.O?7?%$?_2D?P9m1?F?va??Ė3?D?_}?ᶃ?8?@f?;I?%"`?2?6?5?Fv?ё?\5?-{f?r?_?&4n??ᅰ?"Aw?Ik ?$%?[B7?cfu$?1+?m`4?/?Ts9?a)?G0?eL5?Pvb?fi\?-o$S?W?0]N?t_?1Ԅ2S?W?I?8%4>?rC?ӟ_9?,zkN?S#A?|F?{%n?P?!A?0ZG?Dcv?y.Ƹ?VV?W]?O<ԭ?R?vʋ?ʲd?-d?v?3sdZ?K?\W?%?Ǔtk?dG۲?Mo*?U?>|?2V?B׌?d×?W2&?Io͆?3O}??cx? ;?|?TN?)s?,Oh?sk$n?PLe?."?פ?,1?XA)%?fX? ? ?sE6?o;?1Y/? Hqr3?+{6?1?z<?<7?f ?W"EK?{}?d?Gh?.z?a)?P,?!* ?K`.&?71?kPF9?S#?*?*^ق?3v?c??^?n c? `?"?~ l?;?7*? 6q?;D? 4?<<?}|?IfB?:?|+Ʃ?Dٯ?UH`?xDzZ?NPhST?ý^? W? &M?y"MA?QG?Yi<?DzQ?c-D?0xJ?Cg?ԗzhq?oHTl?;$v?We?^_l?tq?[{??Nv?H~?Mu ?7??H?/?<0d?jO8?l{4?B^?88A?R$?/Q?[ ? !?-!?Ex=??:YJ?R\?{Y?]mh?p?f:Y?'`ҿ?Y?%Ҽ??`??Ob?{d \?]?D9D?>HZ? ?^??zS0??y?]?`S?z߫?ԬZ?eљk?]o?RHN?%7+?#M?l?|?aI?n??0?,H;?=k?hr?x g?o?(?x?i ?B?UtQv?[O|?F ?ݹ?dG^?KH?'?Ume?#%s^?i?foa?̺ǰ??WE?R\<?qY,B?9,~W?1{K?C>Q?gZ?+dH?M?kT?Q?e? 2:? x4?X??r@:?\J/?s'?=05?93-?7?F?׺5?-ѕI??;w ?к-&?c, ?f?Cc< ?Q?}?y1C???]>??al?>a?WH?yWT?zNL??[Y?z?$?u?~?<'?y/?;????*'Q?In|?Hfm?&Ru?q_Gj?>S?mjs?{?ۊE?%??L'?w?ch? ?k t$??W?na?Ҍw?QB?!?&6?=70???[@?KHB?.+W?6U?-? 1?vZR?j?L?sx ?@QT#? ?Q ?(?21!?oy}-?EC?6y?[e??}_?Rc{ ?i^7e?Ku]?0KPU?ZRa?ɨߝY?:M?\qWDF?h;Q?.+J?w?J/?O]?ޏ?/?|?xt?nl?Ni?f _?fHyp?oۘx?~k]1?k??DP?*?*JB??x?! ? W'?s`??Aq?Џ? ?V?Rc?Zw?^?N=? ?1)?X??ܱ,??>?.9?HKz??2?wѝ?H? ?w?t ?5h?-k?_kM?tC`?36tC?qDP?H'? s?Kܳ?8֮?=8b?Oݑ?\`yz?pq?-?zF?=MY?0.?U+?/(9?7E?g?r%?33?7?n؋w??M?>t?rs?E?5C?0S_?r?rj=+?a&Ť?Y\?=?H)?q?m?bY??n2$?Z8?.Y?T׺?w~?ij?at?ECu?V?0?(?xmؤ"?<""??t)?u)?')?[!Xi)?)?~v)?*)?6)?@S\)?:@@)?yk)?O)?G%)? )?ZLf3)?q#)?(?$(?5(?4W(?F&?y |&?DK '?}:$&?a27'?i?&'?>'?jb`'?J1'?=(?0˗(?p7(? @=(?H3(?lIo(?,$(?Ý {(?WV(?g<(?b(?K(? +'#(?Ƹ{9 (?1(?F(?{['?LK'?gb'?X H'? I'?&'?/@'?Ŋq'?"'?Z~W'?}p'?>nJ'?PǗ'?ܔSNa'?z'?1&&?x&?A}&o&?יሄ&?cض&?~H&?d؛&?N&?&W'&?%>&?&?$&?Q5V&?fqk&? <&?ǂR&?/K%?%?8{%?p%?;%? &?CxSH%?C%?"#? %?? %?]lR%? #%?8:%?eС\%?K%?3+%?C%?׺%?])f%?ʔ)~%?;%?M%?^ d%?,{%?3͸$?,U6$?e*$?Lk$?9$?=Cd$?_IG$?k$?5(P$?9$? #J#$?jLC$?Y.$? $?LK#?#?s-#?%I$?4#?C$?{$?08g$?}$?Dٝ$?тY$?)Oun$?m<,!$?>#?-Q#?W #?Wi#?:#?̺#?kQ#?0&i#?5~#?C#?iY#?Nbp#?""? Z$#?A|"?;K #?*-#??F"?("?%#?]*"?sPu"? KF"?"?_"?@vI"?h"?OR"?߰R3"?s;"?<"?f+_&"?"x1"?^3!?P"?sX!?Nq"?n"?c"?ϫ%"?H1"?pz"?s"?'"?;sC!?"u^!?Xb!?]!?J !?`Ż!?x!?մӋ!?9.?NbHj.?EwD.?lP~.?z`Y.?;.?d-?,4.?rs.?3,?Sx,?F-?L,?]3+,?b˩-?۸-?S-?=ɻ-?U-? ;--??V-?E-?[1[--?X?-?eh-? O,?+:V,?/ u,?mҬ6,?mަ,? Z,?1y,?撋,?gh,*?[ *?*F<*?^o *?$)?L@#)?#*?F)?Ԥ/*?@ +?U+?'q+?[r<+?+?uܔU+? q+?Y,$+?&+?ٷ<+?E+?0y*?9M&*?3I*?:95*?ŷ2*?U<*?" *?Q*?^iK*?6Ug*?и?*?^,*?7mY*?.7`u*?3?1 3?'{Q3?"bX3?(^m2?8L@2?F 2?$3?}Z2?}:2?:G1?-j2?32?Ou2?XU2?Z&~z1?&ׅ1?u1?MVf1?k J2?yF1?|t1?m}? i?i?X? r? V?kdB?f_?vCL?./?L?u8?*E1%?~?H6?]?[|?+?6?T?#?M??,?A[ʱ?&]r?nk?uY?+?8?r)??[?N?%t!?8\??`)~?E?-|?2??F?Q?>8?QuQo?*?2)/?B?Iߨ%?I)N9?x3!?IJn!?CKȌ!?"Tv!??$pX!?,= C!?Ṕ-!?y!!?nV%a!?MW6!?nK!?E6M*!?^v!?!?<!?uu~ !? ?kS q ?ΑE ?a ?`6 ?` ?X" ?' ? ?gҁ ?" aޠ ? ?aٽl ?#αW ?fv ?\a ?\sB ?õ- ?\WL ?ƒ%8 ? [ ?Ž ?,# ?CU ?_?H/?[?I?:?Q%?#?r6?ʫE?$OK?QQ}?Sc? r?*^?M{|?J>h?I?.<5?iS?V h??׭ ?DI ?bH!+?mv?G?Tk?O?F6?M?Һ?N??%p?s$?p?? *?O~?iV?spj?@9M??ۗv`?4_s?1h sO?'D.O?3AO?~UO?(RˑN?,kN?@EO?K N?VRM?EM?l60M?O?z;~P?Q iP?eMP?Id]P?jwʴ Q?ȟHP?#)P?|P?,yO?݊uO?!O?l|O?tL?j6SL? o2L?1tL?aqJ?v?3K?mJ?d K?WlL?Ѕ&K? HK?2L?r-YK?ٿ3K?uOK?8I?n7IJ?WcJ?%J?:.J??2D?9C?'p:cD?D&D?E|D?!vhE?0,dC?S7sD?c0ϱD?,w7D?71SD?"R?H?Ew3+qH?H?dޥH?o.H?,cH?>ʳ G?v3]G? G?0!G?=G?rcG?C˜G?6BCE?JJE?K~E?A4E?8FF?q*F?mfF?I?as`-I?u8I?ϽnUI?** H?O1 4|H?UH?%LcH?ڮVMA?*n@?SWIA?hA?@?o2@?Sq/D@?~/y@?&;@?;~0@?ۥI@?cd]@?s????b`D2??W?? \??$>?5;??>???X!>?JI6??*6A?evA?L0$-A?[֯A?maA?SD? ??6A`C>?H'W7p>?k}>?>?%RY>?V3>?h=?>=?L-r%>?$l=?aX@=?fj̹:?E&}:?:?y:?M%8?Xld8?G7?YC8?@:?/G49?.s:?,*C|9? ,b:?,9?B|:?H4<9?z99?v3(I9?8?VI9?w@l&9?F: a9?@p8?yx8?j;8?%>w8?h]?!a6?UluB?"r[:?*_0/?'?P3? wh+?)g?{:?w#?"} )??.?І?Њ ?4b??V?a?'w9?|S?~ѣ?H?m?f?ah?^YD?_QT?׃?i??7`Q?ԥ ?$9N?]s?XV?=X?sߥ?sܹ?x!jk?P4?ǟ??k?L\??rZr?׮?rt?.?m!H?t?Bz?fEss?Y~?<-w?xl?b6d??\o?켙}h?RJo]?@V?m.(N?XK?E(a?R?ƪY?NWL?4{H?WQޘ??G?i8O?N?֓ӭ??S&?H?{R?Bq?V!s?Qh?ᦄ?vnx?l??/#z?Qoy?er?|?Ԟ"v?B:8l?H/#^e?xo?Q~i?]b^?.P?eYW?YL?[1Kb?FS?I([?9^A?#:?r,E?F=?<}&4?挋-?6?[0?=&?J# ?sP'*?|7#?:XW?j ?}?L??j? oH?#k?|ω?v2?m?j{5?J.Iw?}?cV`t??:2|?:ީ?Vm?<?R ??k?ZJ5?&?;a?di??wS?4?uj?^%?-ZB?8?L? ?պ?)?k'3?t?}T?e>\?P?5W?sT| d?Uk?:`^?H~g?{f?SK?)0?|d;$?._??v?ls?Tc??s?R? ?.~?J? j?G0?n?mҍ?bu?׆?9J@???p?a-??lWp?n?:z?[͜?H)]ً?B?sDV?'qw6?gG?dL7j?,{?s[?lqk?*|w?ʞ?5?5?~ȿ?*w???R?Z?ƥ?m?fo??|*S?O~a?g{?4ЏK?XM\?w *j?۳̇?G^?(Kv? ?I?1?$?E+??~S ?FW?r?fi ?< ?Rَ?g\?^ƣ?sڈ?N"?$_C?"ZS??i"?'{^?V?B:?B?R?؆? ?(4?gaV?;[uQ?_܅F?([?BR?K(;?u".?0X G?U96:?sb"? ܹ?-?J ?Q<|?#Te?1I%q?DFF׈?aiR\?D{?נo?(7M?l?rgG?w}?d?ci??c?;S?=6? h,?+E9?]*?*BB?q#R6?G^?q?" ??O?{(?t6Sx??L}?Ra?Z{a??l?*Ws? ښ? 8G?..f?nb\L?2Y?`,@?\r? jR?xR_??0?)c?pM?>p;??}??? .?b[?,+?B?9!?P?1?k?9?#?83?WuC?xT?SΦ?Uq0?/"F@?_oQ?oW>?}wb?ӉQ?C? {'?rae??Km}!?X7B5?߻FW?測o?4TM?tc?c+?ib?ǧQ>?L&?bn?!? ?<? h? 5?Ј?M@G{???g?[Hg9?ih?S (?B0.?>%?+?a w5?N<?G2?A9?Ib?NZ?ߙe?E<_?}@S?RD?qͦK?L_@?YW?eG?BIVO?F="?)@?ަ?Ay?\ll?(KA?,Q? ;?]?TE ?Esض?E?Q*F?˻VM?~%?~ֵ?"?(?i??f?TUr ?]#?$ ?6|?sFo?2u?tPl?ժ?ϟr?m}y?/V?E_?л?K?Iy?ηn?_?u?.0H?oj?6d?>Ē? ?"*xq?gri?y>]v? n?pa?[ĄX?7f?gD]?p5O?^G?U[T?L?C2p??a7?yD??аV<?(?]p?&?v?"?},,?&i ?p?A!?{."?D0? 4?GC&?t^-?h!yG??s67?[/?8&<?Kk&5?_4:d?ٺB'? ?ʂ??-?eSn?ٌ$?c?#??t?-U?w?u.?R?WIN?ԋ? Dա?TP`?Թ?Zd?'?W? T? ?1? j?b?L[?f?d<`?DT?G?pN?C?.XY?=J?ιwQ?+m?+q?ZQ깁?bRy?:9n? ͅ?zt?L\|?rb ?ST?C?ڏ ?}?8??'?6)K?B?Q?H?Vؾ?`/2t?;F?+*#?0`?I7?JI)?W*?-?.`?;[?n)4?s? O?s?H&?vtf???p??c?ߍ?P?F?Q0|E?ij?+?+?͆ڤ?f_?F)s?P`x? y?uѺ?oo?@G?8ˀ?Ckj? z?'l?_y^?-*P?1?1p? IU]?_ҦE?үP? aAK?r+W?8>b?o@?J?H*P?V?Ώf?)m??S5[? d?dS;?U~3?RE?:9?\hD+?.F%?Ī1?*])?,?4pf?r?. ?ika#?K ?J)?[J??j?W ?'-?r ?XP?? dK?൧??l?t?~0e?-z]?eh?Ria?$U?h[F?FN?IB?&Y?TQ?3?ni?L8?ˮ?c?O`G?+NZ?b+O?"?]БP?C?V?wo?G*q?TG1?f??qR?p#S?8H*i? ??؍?wqhh?_sR?gT?Y3?-???x>?H%!??a?܇]?"?6F?J?~p[@?r?3ђ?3p?^?ekf?A??S?]J?B̚?͊?t?X=?|?:u?IԺ?U?x"?|"? ?>oo?7}\?֮x?qy[e?!\I?6?ʮR?, ??G#?Qc#?f1,?q?8g?1?I/E?c??Ȫ?y5u??iCs?-?^?dD޼?JDTT? ?s|?x|ԗ?g?JVj?mW?Adr?j^`?dE? 3?pN? d<?i ?RҶ?Z#$*?Y?) ?9y?=m?IJz?sj?*f?f?%yr?@m? y}?= t?-?f?5g~?|֋?r??$l? [?u?@c?Mײ)?x)?i)?OM)?~v{)?Ԇ^)?FN)?co)?>A)?vg$)?qR)?H2)?)?Pg-(?SUb)?}(?Af(?d(?w(? (?v"+&?.ȿ&?&?`&?:{C&?Yܨ'?6S='? 9Q0''?25(T'?n'?ӢJ%'? <'?Tpƚ(?h;kn(?Qr(?ӵ΂W(?Zw㷥(?Bo(?(?̠)w@(?R"(? X(?s2(?l(?LJ9'?6>L'?Id'?^(?Ko'?S2'?s'?3k'?ʥօ'?QufS'?4'?lx'?+]ߣ'?@ &?.Ʃ&?7SCT&?g&?&?{h|&?&?!&?EN&?[8&?H@&?ݢpc&?!j&?(^ 4&?D0?O5/?/?2J/?P"R/?L.?KY /?'Ȅ.?Tc<9/?D/?` @/?c.?!a5?WTe5?x_U5?H6O5?.5?Q74? Ye5?g"5?TH5?!u5?&L44?%Gp4?m&4? 4?51?;O64?J3?3`4?934?Ƞ3?v3?ӟ;h3?@O3?73?nug2?,O3?t3?F2?l~2?#`2?52?R1?dT1?'<<1?`$ u1?2!@2?3gt1?br&2?F[2?F1?1?Cu#2?6h? `U?Cq?jQ^?*B?t.?~K?Õ8? E8?f?I$?k'?_P?No2{?0H??6P?fO?C?Lw?"?I?*#L?=?д?Hn?N>?x?5v??c?!z?<?݁?c*?+~?a?ߡ?na?G?b=?z?Yh?7ł?gmXq?\?4/?iR? '?lvC?ޒXV?H;?L?Ji!?+/?!?eT!?#2!?Cr!?k1 F!?J9C[!?7 ?8g&!?:!?ݜ9!?a !? ?_2 ?G ?Z ?rI !?/ XF ?#d ?'ͪ ?I ?z{Ӵ ?B͡ ?a ?jk ? ?m&u ?e%KV ?HA ?H_ ?%K ? W- ?'! ?UV17 ?_# ?^4 ?B?$ ?ڙ;??-5??-?dF??澽?Y@ ?#ֆ?' r?uM?{?v]?YpI?v.bf?aOS?Nt5?%p ?A+N??/,?X ?J[?7|?J^?I ?v??;J?yG?? :"? D?mi3?oJ ?&i?[̰}?c0J_?}-Aǜ?XϽq?[\Ѕ?W"7O?%sN?JuO?MO?N?8M?v7܆M?"UH N?]QN?S0bM?: N?'ڳM?T0M?6w:N?8M?v'RL?71dM?dL?3M?+:mL?e{M?u~WT?=!U?{[>T?"S?HRU?uT?ݒ:T?!^S?',R?O;/S?xR?%cS?0S?~hNR?,RR?tᨓQ?qR?sQ?+QR?kQ?s"Q?k*Q?I'P?gdP?9:P?2F-P?&O? ZjQ?Q"P?A\/RP? ;P?d>~O? {RO?kP?,O?F܎I?SL?wǡ]/K?D;4{K?18FK?ai} L?CJ?4&L? l}K?EK?sL?]PI? WJ?pJ?FI?ԭDK?-J?$TEJ?XԃD?CeD?N>D?'FD?hfK5E?WqsE?LE?$4)aE?:hD?qj!H?0iG?mG?1+G?r=IH?σyG? XG?E?zF?NF?zE?U#G?o F?t < F?'I?*qH?n,kFH?#bI?qJG?)*H?VyH?5@? <@?kv@?"@? zI@?Z˖??uA?xv;@?Yh@? j̞@?vĮ??? S-@?8????jj0A?n+0A?}kAB?qA?KA?vHY@?q ݟA?7~Z,A?OC?6B?PC?%XB?D{$֤C?^/*+D?/+GB?.B?-t8=C?#7C? T 7?"QH7?j %8?G|7?*7? ?J=7?i7?Bt7?Qm5?c6?HV5?5?PHF6?wqR6?JO6? 'C.7?+ 6?}6?0e6?3C>?Go>?J>?F)N>?Aw9>?=?фE=?)ڲ=?Nv=?sY9?9?08?9?h:?<$V8?ξR9?*ϥ9?@ff&9?i4GF;?0L*;?i;;?oeXP;?N:?Kw:?% :?:?ClwW? ?`W?qV?>V?GV?}U?Bi@U?t|0T?XU?-nU? SM U?z?K?}))?3Dr?M&?hu)?:0ʾ?$6?J/? sB:? ;&3?n'?LR ?-{+?t#? Ct?P%?ӫ}F?$?MK ?:(?~W ?ػ?;?tI?0q ?p?X?Z?|@n??$?#?5?p?# ۔?(l?3[?Oi?g?L,?'g?96?մ_?cחM?v?!??o?a?%I3?u?JU?mÔ?H? '=?a&z?%?Z~?is?-M5l?Jw?o?d?ZV?xE]? S?Mh?Z?0Ra?-7?"QJ?hw?+s?3$`?r?m?vV?W ?[y?;mk?qj?5(m?N?^,???c?x ?Ec?y~?/L?"6?jDg?F"n?M??o?uQ6? ?V^?Ǘ?e?/ ?=h??1V?3O?&|H?@ qlS?M?J_VA?2W9?TE?>?(_2?'B#? i*?I~z?qĈ6? Z'? .?W؎@?dH?$&P?-c2D?1JL? ?k? db%?(? `˘??i?rv?g?2@r?/Dy?*ɾl?s?:r?@Cy?Kf?8˫W?nF_?#@S??l? EC\?ً-c?=<`o9?H(]-?e3?C&?R<?T%-?Ԑ-3?) ?bB:?Ax? ?Ie&?rh???w?D?90`{?]0~?rAL?j?XM???xK?%?: ?/! ?@d?#&L?B?^e?1AM ?k1?\?J3ą?u?Nڃ?AU?m?\<?讫?8?.2?.?0pv:? f?VY[?2t?b?_>?4p)Q?jIG?P}2?L(X?K=?IF?e'?mG?cbt?hW ?B1?֑Đ?EV~?R?{@??w??:h? A?RB ?U&?1A?(J?Izq?7? 5? p?=?L?TNA?a[G?,;?$ZS?fD? }2I?1y'4?8+?5v|=?@2?̇#???MG?)?7??; ?c|z?ud18?Es ?3>?.Z?/?D?~n̗?j?rs?/Ǽ?QΪ?b?x*|?^m?CO?x??{?OY? b?; `P?N[?8?+?uC?N?ND?q|?)?hʈ?vyM?B]?)m?@?Ȟ/6y?EK0US?Nr)c?ƼU?0|?%w???c-?6?*? Ш?Fd?Lb}?p#v?mmP?7?if?.'w?ty?0? ?Ϟ?W?}??80?Xn?!o?GV?"?.?A'A?!ZA?cè?ct?3d??k?$?qo?v?6uR?g{8? ߚE?S+?L(e?FWjP?ă/TC?m!'?[Ǝ ?'6?@l!?C~y?*b#?9?3n{?Hhc?Gw)?V?'[?pC? έ۲?w=?ܭ3?n?$!?Y?w?NhF?Qk?]?C1 1?<.??0 oX?1 l?vK(?C?R<_k?-9?oU˪?? ?4ʾ?Mf?}v???Z`?u ?b=?zR??? ?u2?KmƆ?!^Bv?NYƀ~?~p?x?0z?LN2?J ?mt??)A?D{?'s?}]? o{?_`%??H? ?/?i?= ?VsI ?SSj?Y? a?eLQ?,s?zX?a?I?H^A?wP?F?lF/=9?4K1?xj>?H4?QJ?ك#?D*?k@?n;C-?)vL?#?`@?F}9?Rs[G?^A?\2?Fz ?)??L̄:?E1I'?udp0??t??^=ˍ?+%? 2?pT?a]E?(?U?v??zU?KH?+?)g??ϭ۷?sIѾ?hj?@: d? HTq?j?@h]?^M?.U?TH?CO|gd?mHR?[pZ??f?1x?18?ߛq?E? p?' ؎{?0< ?P?%K ?%X ??8????^Цb?9~? ??>?l?0?rĘ?N?';z?E4`?N?n:?A?o`?s:D?tt?]l ?c-E(?|]?W8?z?1L?Vm |?/n?1׼?Ř??2?3?5ɚ?x?Ҩ?t?j?{?ٯp?ٜO?kXa?rX?heC?.;g?W?yO?8?"]'?1/?j?"%JC?mG)?b1?|??6ϫ ?8b?WCk ?%G7?l9?VAZ?xh?(??*Ӛ?XG?h-?L#?*3?x?^H?9%??/?F׉?R?<&֪??у?cS ?#$?s?A?(o?/?44Z?_?I?Wx? ?C?/Ge$?;!?F5/?"Y+?4??1s?5?;Ʉ ?|?B?0a?.~?;-^,(?A(h^?ct"?o%tL? >T? aOo\?JEKP?9{U5X?d?JNl?)g`?rh?n\{?nx?iR?ϼ?N?C_u?@_&?D?ןF5??Y ?t?Pu?>l}?A q?y?ԋ?J?s? Nf?RJ?D*?Ւ?isܞ??9 [???P/?w? ?ժcj?Q<??k? ?E{/ ?& ?d- ?(.+ ?_}" ?ڍ ?E ?=[ ?& ? ?" ? = ?(8 ?@ ?(^3 ?ԑ< ?TIeI ?LR ?H:E ?DM ?F' [ ?;Cc ?_V ?fX!v_ ?l ?hu ?Q=h ?\q ?܂;~ ?" ?:&y ?& ?ď ?%И ? ?d ?l7?0z>?D_xF?Y9G;?OB?8a}t?>W\l?H+e?'p?}çi?x £]?zN?AU?b^J?;b? Q?s Y?Bc?&?ê?W?w?ԥ?Szr?B?d?3C?,?P?H|?|9 ?+x?݌&?;'?c?S,v?K?Sw@?>W& ?%?I-sp?ts?#Z ?TfC?????Stb?h;t?E6C?g ?? eQ?l ?e1?[Vb??w/:?/?_M?XX?JF0??'N???)??@ ?u??C\حt?FS?^%JJ?/\\]?( ?P?IHiz?ƻ?"?׶"??P[?FH?߿\se?=nR?h?z4?%Y$?7I!?㐶t>?4?|?2'??Lb?^b~?oXQ?~*? %HK?hkb1?U.m?Ő:Ǡ?X\U?X?ߌ;? L{?i?ۑ`?mrr?~oW?B|E?{~W`?5N?0)f3?׺ !?2<?,*?bI?:+7?kh$R?P]?FJL?}2?}[!?r:?)? QB?1?@M?!? *?++?F,Ԛ?pF?5?iG?nn?[?Vc?>?'ֲ?Y%?6)? w?Y-N?x?_ya,)?y)?t^=)?՘)?}Ed)?(C)?G{)?W)?Yq#)?.)?OLw7)?] -)?s~(?z'(?Ž(?ݐ(?L9(? :(?Ki(?>a&?}]}&?zQ'?'?o&?QTў&?N:&?*{&?Y;'?rXu`'? '?ߜI'?Y1%q(?|esJ(?kƿ(?(ra(?v$(?Mf'?;(?#o^(?jv{'?^'?'?1mn'?]Wa'?o'?XP '?/x&?{H&?YS‘&?/4c&?k^&? .@%?373&?"T&?Y%?0ZR%?L(T%?K%?l,{#?H#?Pj#?$?~Q  $?ـ#$?FS$?= P#?zK$?140$?̹h$?tb$?E$?ϊYd$?#?|ƙfl#?7#?+zz#?+.#?;U#?CB#?I#?LzHc#?׼)*#?jH=#?9"?")B#?"?5R"?G#?"?"<"?[,"?8WA"?W"?l)"?.V"?/}$k"?ny ?"?DZT"?Y-!?Vq!?롽!?!?a!?\"?~H!?"M!?ZS"?ƨ"?cS"?Ӏ"?~h"?f{"?_"?[{!?ض!?`Zd!?$vy!?LI3!?"nC|!?|!?ڙ!?!V.?RP.?7.?к.?5.?v/V.?! .?7q-?-?0$.? -?76-?x-?"H<-?|U,?)--?z-? fU-?~,?,?I,?e{,?,?k,?@E,? w,?ʣ*?&i/W)?Y;)?6q*?a^)?ğ)?K]I)?-8*?}^*?_*?}ce;*?䊆=+?Ï܆+?s][+?G/+?.*? ̓J*?G:j*?f`*?Y+?*ɍ*?*?BF+?=z+?J+?03,? M+?~5w+?'+?0?0?1?E0?:sd0?<0?h60?~PA0?D/?-//?x/?U/?[/?S ՒZ/?Ya/?{=/?.?vߵ.?e9/?0.?yq<5?14?b75?Qe{"5?uh5?ZX4?n<4?!4?71&n4?z_1? 6&1?'0??H1?iG1?iLZ3?lL 3?!4?*3?ch3?52?>,3?t2?3?m2?L03?q)wv2?Z&1?bb1?52?>2?mm1?c=2?m1?ho2?X:2?#!U?ìA?5s^?оL?":.??J9?.l-#?+Ap?INR1?>ڞ? Q?2R?HK?pn?#i?}̡?qd?E?lc?Y1?9#?գH?ˊ? o?:H[?Bx?1g?6y?\ g ? #?}W?E~m?1y?(?!?(?U??Yվ?C??Gg?_.y?gV?Y ?bh?}y?.3?hU?yD?eg?*?n^D?G{U?qL!?3!?Sa!?ЃE!?*۾ ?j( ?rѫ ?+/ ?f<!?j} ?A ?7,!?3 ?y@f ?9x!?-BИ ? ? ?Ύ ?0i ?F A ?U ?ZY٭- ?hv ?A ?(U ?7V ?+C ?- ?X] ?,=?JG?Ɋ?]癬?@MQ?O??űǝ?s? V?g?k2dOo?r+I?\8\?(0x6?mKV{?OfI?綐s\?#?0 ?F̳6? ?3? ??G??\e?馆?%?8Vէ? A?'PA?LtB?JQBե@?־'XA?ĸA?.T)C?FbCHC? z:eB?U SC? Sk8? | 8?7?'t(I8?) 7?}Yle7?W7?ݞc7?{1W7?\&E5?iݧ6?ƥ76?]5? &6? ה% 6?x6?% [>?$z>?`W>?F=?*>?>{O >?v`>?8M=?"Y?0a?*?JT1?{ڮ?h?t2-?u8??EM@K? p0?⅘?bA ?Z$?Aw?,?HL?ZL?n? {?دs?y? ?yjy??*s ?@?*?ae??w~?{?-#q?S"Ʌ?Ղ-??K?)9 ??f?E {?i? ?nu?Djv? ? 3?P ?VCX? M?Yc?MڶWU?C?bSB9?xK? >?g/?q?ItC&?p_?3,4?N?Zt(?2KB?.?-8?1DzL?a)?kD?'.K:?Y?9?O??&#?h?Oc?-@?d?G?ټ?"?Ժ?O?gG*?nk?VG*W?^a?u?$L!N?a?k?+.?~?5\9Ή?)?tu?Ѵ?a?HJ???$s ?4?aQ?t+?5?t7?!,?i?`)K?9?s ??'!_c?0ZR?H*?G??Y?6?r}N?m?_? ?I;?a?{??m~?N?l!m?T]?$dw?Ѝh?sD?bDP?ӑ5I?!,\?zd?%-X??y_?l?uu?QZ g?%]Dq?6N}?#n?:?Ƴ?~_?7?;I?L?KX 1?gk?^+?>o?0:?$#~?dsr?ny?99?ǎ?I˖?&?ے?$?֍?!@AԞ?d.?h?@|?sw?yӪ??Ԍn4?՚S?l?)?HW ?X|?%=# ?g.58 ?`/ ?x& ?N4 ?`F!@+ ?>+ ?+9t ? ?q| ?N" ? L!+ ?^_ ?)^@ ?MI ?R< ?0E ?5O ?Bk, ? o ?="Y ?? ?Ќ ?އ; ?{Qf ?F ?hC^ ?:nj ? ?1 ?݇} ?I ?q ?Z ?&^ ?z ?K-M ?x ?Z ?Kݶ ?GoH ?*+q ?YF' ?3 ?r}QOR ?Dï[ ?ҊM ?6V ?c ?Fql ?t_ ?#ah ? pu ??~ ?"(q ?y ?F ?~ ?뮞 ?"< ?Cۘ ?7X ?Vx ?Gg ?wU ?H|7?lJF?T+??7N?T%3???qF? `t?m?r0|?fu?Sf?mHU?ё ^?7n? V5[? c?,ւ?nh?@Ţm?WG?[lR?gin?->!ތ?2w|?>.?PV?ǐ?s?؀? ??j7?kcY?i?i0?dk;?1p1?k@?o ;8?lQI(?qe?Q.?o&?\?yV?G 1?-?)?}7?<?H?-k??¢(?eRc?8ye?XJ}?|?˗? ?ta?}W ?~` ?S ?[\ ?@Fj ? s ?;e ?n ?U| ?W ?UjLx ?5 ?̻ ?1% ?la ?j ?i ?IH ?_ ?L< ?2) ?2 ?Ha$ ?P- ?9`; ?(E ?6 ?@ ?6tN ?+qW ?WYI ?3BZS ?)g? DpV??o?_c|:_?eE?bU5?}N?.ϛ=?x(y$?F?<,? ?MPV?xn?\Ax ?r|?U?>?.>?5?Dx? |?*i?"?ӿ?p?>,ƨ??J[??Dq? `?)X?.???i?!2?&&?*o ?oS?8P6?gL1 ??%?!?~A?{?1?W׳?qŞ?ClG?L7bl? 4?_Q-?F͒?1̕?TLN?|n޿? "?H"?mKe?TqH?a1?lS?M@?Wn?X ?w0*?h?tP?7 Y&*??t?r ?<?^? 힛?@j?/U?T?]^@?`G?B?j%{?ٕ?Rkς?-Bi?&W? p?`?NX&F?h4?.N?>&y??h6"?w5M?C,?XS?t<7?&?D\@? U/?U9L??e?9f ?1'[??ه?<)???Q?d?>,?C&?am?̻?=Ƃ? b[?<`?Q?ẁ(?,o?~?31?jI?b>l?9ҁZ?Ўu?a?40H?($8?΍O?D@? x ?|Q?N쐁?Ow?D?'?/}/´?b?{t?Xw?ZY ?+q?yne?T?&n?1]?cC?A:2?PVK?:?Z,!?~?-҅)?i?` ?:δ?c?w ?˧?0?ר??L?\ޖ?f?cײ?E?elS?Hd&'?O7?X x?,mh?)P?2q?)?zn)?#)? ]Ȍ)?^1K)?E#)?hi)?M9)?=|&?$(?r(?q)? by(?*h(?.w}(? b(?ɴb(?$S'?Pw&?w&?.'?B&?(&?Pd '?qOX'?-'?#3'?Rqh'?XQ(?('(?R`h(?}BA(??P'?*뫩'?W'?⑑'?\Q(?k\y&'?Su'?]ZN&??W&?J;_n&?7&?$Z%?~=8%?f &?RqC%?8N%?_qa%?uڠ%?own%?+i#?.Zs#??Y#?6믥#?'#? ?u#?'#?$6#?8%?E%?PEE%?B %?X $?.$?#$?*`4$?Kή$?ŗ$?$?F{!$?F@_$?EF@$?~i"$?Mjsmx$?)Rƀ+$?>1J$?Xq#?NK#?#?Hʨf#?XHc%#?V"?Ϩ@#? IF#?y#E"?x"?p"?q}6ͷ"?ae''"?iѶQ"?fAi<"?"?*d"?K%"?:"? !?0+A!?!?!?zUt"?\w!?+m!?>Xx"?"?xM"?Y?c"?w!?2!?}!?"Z!?!?tgw!? L!?ˢ!?Y \.?d.?`2.?Ct|<.?-?rr2-?sz-?l-?ht *?GB*?[!+?֧*?Q1K*?|:_+?Q{+w*?lD5*?)+? ؞+?;+?aG3D+?+?R0?>zg0?ۘH0?I❟0?laR0?;n/?ז#/?!b/?+M%W0? F/?vi/?|@/?.?Z/?]:?U?C_?PL?$p?*=Y?>< ?B!?7 b;? ?c:,?[?8?!??R?14?bEM?⵽?Cy?{W?`{/?]5’?lbHi?hM?7x? ^?|=+U?Ȉdq?N=yF?H_?oY7;>!?L !?Me[!?pL3!?75?uH ?6 ?4" ?ٮk; ?) ?2Ǜ!? ?I ?Є ?8b ?xz ?=x ?PA ?4h ?;! ?Vy_?? ZV ?z ?b 2 ?$?xP??J-?ʹ=a?Ctuh?|?`ɇx?TI?+?6~Y?o`=?0)-??n?ɠ?w??~? i{?9?ڭ?l?A~GN?a|M?Id5M?֗O?ۭwL?N?vWM??R?y=Q?H־PP?lS?" NO?֩Q?}$4P?{I?xjJ?bNI?5HJ?K?`/QM?J?K?dtE?pD?ghD?¸LF?=C?Hj}E?oD?z'G?jH?CbG?ùI? ^UF?,ahG?_ZyH??@?(%>??, ??X:;@? |>?l @?jf??c_>?C A?JB?/@?k%A?-mB~C?iԀD? B?ZC?2?8?p 7?ovq98?eP.7?̟9?3>v8?Iؐ(8?uoH7?D7BJ6?G6?z 5?نg7?nz7?N6?&ME6?A#>?4j?ZPU=?5>th?H?G?Eq?ۇ2?=ok? H?jH?LQr?Ͽ?7?k\6??^l?E?Y~?{]?p?5;-?#1F?)ם$?%?{c?a*?.##?1E?-?|?eӏb?TzǑ?Y^V?yE?xt$?TS5?[_?AvL?1V*?%:?r????5?(P? M?[[?lnV?22?_z~?OX?z+?{{?L/S?b?f?3U?͍ԉ}?5R|?!?Ɲ?]b{=5?1NI'?J?.?jZ?4c?m/?m?Tw ?-?ʾ?Zcw?pDw? pn?*ǁ?IOy?Ge?k(L?!MX?cF?<p?1)U?PLS}b?7?:j?Y?#r?]͊?,? %5?u?9L?}?hǡ??7?葕?Z?6?M?DZ?rM3?so?a)g`?wسz?j?)$?w5?]Ww? Y-?lR?{E?cP\?)j K?qE8?!?0-?T߭?>?\䅛$?R/?pF?hqcY?}>?9oR?(A?Y?Xp?%x?ˢ ?{!?6co$?,?t|,?H?``,/?cɢ?ol? ?z7|?'e?2:?x?6??~Ϻ? ؒ?2b ??[H?'x?%+?ំ?sY???<?@!n?ۻ?Or?%}4?w1Ѷ?o?su? ?p j?tX?$ ?Wp?? &d?weR?q?D`?`"(A?3\?I/?mx5X?N?x9?Ne'?S2?A?Ȥ?I?"[?j2???ys?X? -ӛ?i??}?4??zۜ?L#?z ?GYo?a?vm? QƐ?~?S˪A?X9?UP?ixJ?M ? r"? ?X?1?)B?|ʈ'?uÎ7?ۙI0T?% M?ێ[?tS?v`F?k=?YjL?EX B?tb?Tl?k5L[?yg?u?" ?q|wp?o6u{?!?~?8?m?v?h??O??7U? ?`L?` Q?K"?-1?zN?򥿄?,ɏ??Q%Z?n?? Z?uK?+-?GOת?-?k3??S?p? ?7 ?Z!u ?-߯ ?C@ ?7y8 ?A/ ?!,< ?> 4 ?& ?`i ? - ?cg$ ? , ?H'HR ?h" ?c}I ?3QR ?8>E ?&`_M ?FG ?˝ ? I ?i-" ?|<2 ?Ö7x ?K7 ?* ?p ?Fk ? ? ?~l ?*:j ?'+v ?0 ?Zl ?׆6 ? ?G ?/ ?@{ ?Cڷ ?@*[ ?E\d ?OS5V ?=?` ?l ?ru ?i ?%:q ?*~ ?&7 ?Sy ?Y0 ?@  ?K ?\& ?l'M ? ?v' ?~< ?z@ ?@c ?q ?` ??J0 ?| ?/VG?CT?EA?9ݯO?!u?*`?̍Q\k?#ه?B|y\?wl?Tmv?4 ?^>??ZR?O?{#?G?q?/r+?k?7t?ãb?c ??w4?_$?*,?3T:?䬙?Az|t)?<1?:u?.[??%?!i??No?e ?>E?}??t?3?躱 ?5 ?E[ ?Nv! ?V ?ȒB ?l,b( ?% ?V ?U| ?Mj ?-j ?>~ ?uᯁ ?r ?Ku ? ?% ?@ ?]N ?s=֝ ?U ?VF ? ?W,a ?iVj ?\ ?ve ? ʢs ?| ?Vn ?ZgZx ?F^ ?i ?Ʒ ?g ? ?| ?bڞ} ??/o ?_] ?$( ?  ?A# ?~(2 ?; ??7Y, ?$A6 ?giwE ?RaN ?3@ ?KMK ?9U0X ?q:a ?+lT ?u\ ?KnoL ?)# ?g ? ?8NJ ?{# ? ?4= ?ٙ ?eMW?D*_F? !w`?b@]O?y5?Jn$?=s>?b{ -?0V?^u?? ?Δ)?3I?#?p?Y\??H ?y&?*?o?]B>?-3x?ϰ?1`@?4?[?S?rD?Q?)?|_?7]O?, g?D)X?j??-\jP/?G?j7?0U>?Ӝ4?)5'?~T=?<3?/:?8?п6?r^I?Y`?>?ĸ??x?^m?M?z֟?h??ql??luU?ͺ-?oK?GXX?Y ?t ?wsl\?~Ъ?G3S?]?v}?f ?>0??)g?Z>?3?<}*?2j`?ջn?2NE?OV?T"?jɃ"?1?9?[#?>F?jp 4?9\?+8?rDz?}. ?*n?G͇?YS?8K ?_c?Ӹ ?\Xs?M[?7r?Wc?Ӕէ?F?`x? W?7Ҵg?YWvG?r9?,W?g?‰7?t.$?1`G?M 0?E\?d)?zs?#I?bс'?m}?//?M ?A+|?*?Nd?o? ?t?4C?}??PN|?pdV?*^?vng?rp?'(?3?>g?䥶?? %?Rp k?V?Es?%~W?׊87?r[G?6(?t?_?)+6?8fF?5O? >?Sԁ?W?Mܤ??Ӣ?:F?w)?,!t()?,S(?G)?W9)?$Fz&? &?MuOv&? hڷ&?Z`(?Sh~(?đU(?bW(?5(?~(?\ͤ(?ݝ'?ffy'?֩D'? '?<"&?z'x'?ёC'?z>0(?@I'?(?ydX(?{{i'?'?p(?h &?u_M{%?~di?&?&?p%?ky%?|{%?mpc%?mQ%?4o"%?td%?J,%?#?Z,\#?#?1#?A #?X"$? +#?n#?$?b$?9f$?.R$?Y$?%_D5$?%c$?GT($?.hjP$?Y;$?L2ki$?#?^[#?h~*#?9l#?j@#?-:57"?M6"?y #?˷"?]b"?(w"?*"? "?Zp#"?T!?p>D/!?j8"?9!?Ӽ!?kq "?N"?*?J<+?i+?oV+?*?>C+?H*?.20?S/? /0?4/?YF0?Я܎0?Nb0?Su8/?SY.?f.?.?x^煶/?#6.?.?lN5?,4?75? %4?,nk4?3?̏/ 5?u4?{ 4? u4? V1?D$3?& h1?* D2? 2?lQm0?6<3?[\1? e2?p2?jr5?X`ž1?F?lC?u*I&'?[???a?7i?/?WsS?Q萜?z( ?AT?7%j?љTAB?q? y Z?xskp??u?{jx?<?B"?>[?vT?R9n?B҈8?ʜ?GO>W?zq?U|j?fϊ?*J?jFq?F+E)!?eg!?EC!?w}p!?Fo ?][?@y?Y?#? / ? ?ϩ ?tߎ ?/ ?7ڠ ?xt ?ﯯk ?U$ ?b%@H ? ' ?m|Y ?Nql5 ?nX ??/n#?n?J?i?(#1?bM?O?x+?oo?H4?0P?vd?h¬?<-? ?ԓs?o7 ?? MN?KєP?siQeO?@M?<1Q?7\O?11M'N?>J?DX6L?r\9K?51I?=M?{K?;J?$X,E?1WF??I@?*>?g ??y29??ءG B?ߙ&D?@N C?\ E?v9A?^GB?o:C?GGe8? '7?R6?ixt6?\\9?̹Z8?#B7?t5?V*,o5?O7? wH6?X#ܖ?쭭 ?~ ?ۆJ ?_ ?8 ?\ ?+ ?o ?՗W  ?B?_ ?_:? u?4Y?B@(?A ?gο?Q+z??K?Uh?Q?B'? ?Қ? C?Ϊ~?e" h??G./~}?s+?qVj?@"??r?Yn?~R?'G?NEh?;FtY? ?)Sګ ?o> ?vL ?x& ?1R1 ?T ?tO+ ?; ?V-F ?ͱ5 ?tA ?

?-?q[?z?.I? yG ? ?jG?HS?1#A?8?)q?&\靰?ͳ?H꘹?Cެ>p?x?5C`?2].h?. R?/%?BaH? ? 8w?@+p??ht*x? QP?8yL@?t2SX?JPH?B#/?D?A8?(?b>??s?(t?+M?u p?/Ň?/nx?P`?O9Q?Kdh? -X?A?E1?k"?/?܈H?WI)?8?g?X?;f??_6*?SD?2#=?<:?f?Ξ?ZY??t>?[盏?U?s?y^??? ?Y<0?/nep?h?*U0??N?t7(F?Oz^?dp?~?ܶ??Sg?RDb?&y?5I ?꼀?i?WZ?Vq?D.b?JSK?8<?.WS?WC?2V?rA$?s?1҃M? (?t?i%???cc? ]?t?.T?ѼG ?1 ?4D?ǽz}"?0Fz"? ?@?Ҙ}??j&?4`w"?ݚ"?B]}?k`GFQ?K0?lT?2H?Ib)?Ѡ7l??? FJ?v$!?$e?)?<:?]?yTE?ZGo??'?n?CW?w??n? L?X_(? ?If5??$??Y,>?Z?r-M? L? ?'?R1?Xߗ?*j?I$??U ?؜??'p?Ǟ[?~ᄦ?0|#?g7??|?ԥ?h\ϋ?<h?A@8O?kt?l:\? >5? !?t-^C?}xO.???aZ?@??n.>e?>u?a~T?tM?ef?(e:v?C?KES1?cqyU?v<??Q??C$?3ă?a*?=T?K[y?f*x?Z4?^ ?Ћ?i`D?Cƙ??;d[?+g? T*?V?+}?`ߍ>l? ?Fw?ӽZ?y;H?Ze?fR?n&?]tE_&?o#&?~&?L>@&?.yrg)?h'-)?|ϓ)?IFK)?-~(?W(?Ǵ/)?0(?ZhM`&?%,'?%Ԋ&?sC '?az](?r1C(?_sٝ(?nt9g(?)`]x'?U(?@'?X4U'?H-2+(?yq'?7'?%?Xdb%? h&?L %?Psv%?7?%?_z%?yxO%?OF%? $?>?%?h8\$?Z8#?.$? w#?e!$?JN#?U~#?0#?:ݧ$?Km B$?D-zp$?5~ݧ$?` $?iA$?dp$?1Bz|#?eMP#?m=#?y&>o#?bh$#?S&"?qC#? #?"?+x"?Bˑ"?Y"?0"?ufs"?k"/"?rf)!?=1"?iڃ;"?հ!?T"?(!?2H4"?hB^!? ݁!?2!?j2 R!?=ƥ!?n!?D[u!?u!?_v-? ,?=j E-?^m,?9[a7.?#-?o-?-?6@,?>m}g~+?NaW,?>+?\&O)?hN*?!x)?BĦ)?BG@*?X%~$*?Ҟ)?y **?53T*?4ND+?0*?*?I2?Z4?L0?g5T2?#d3?rb4?oK5?383?օ5?և?il?9O;??QD??JM?/*H?6>ٗ?V_?\n{?bA?$ ?Zd?TU?FR?8w) ?nd? E`[?nr+?iʹQ?- ?W -?Ff??q?R?t(Z?K.?Qv?>0ZH?Qy~x?A\?6̀T?m/?ˤ!?> ?~&!?Ԙ/ ?L; ?u?9}?FDM$ ?Wr?L ?,S?z ?ӄE ?9fu ? ?G ?kQ ?(5 ?Q1?Kf??fa ?>Ĉm7?'2p?x?d%}?_Y?w??ܿ!?N?H |fgL?J?qO~զI?s4N?9dL?iJ?^}F?`}H?Э(AG?tOD?C4܄I?4G?+ubF?2KH@?(A?????U@?_@PC?SE?ZA?PC?)O8?jpt7?]V6?9?9U5?ϰ{8?~Y7?c ;?aA34>?r'?*)?pMo ?%! ?- ?ԁ: ?p ?# ? ?l ?,s ?3 ?ȭo ?= ?_ ?sj ?x ?E ??h $? ? ?l%V?2ɡ?!BU{?ɸ?Yx?N?.?ű?lk7??4b+?e?=? ?lDz?n??p<?UCv^??u< x?ob?%Ppn?TX?B2K:?%é\?˅j?#2y?apj??vG?<?hI?O ?R?Kx?F?Nv?a Ed?m@ ,?7kH?0p:?V?*?l?=p EK?X?<?; 8(?n8o?:?lRp-?N ?#$?B}7??k_k"1?AJ?W[?D?m"T?|)}??;_Kl?`k?Q<?9*~T?P zH?_?5?$I?E U?WBdk?oz?Ԭ`?+q?C ?,0?4?QO?u?k4?QڰM?_?o|B?JM/?j?m;?f(?|?YB?ia?EI?جw?ɲ+?f?nQ?쳃?zގ״?4?-q?z?/N? gR?t??G{?! Ug? N?gQ~?vji?|?H6? W?HD~?xz?@ؖ?Lo?(r?Y꼍??zp|?)5?,?Gg?Ӏ ?S?+q+?D?:?v[?A?]p?SQ?R>N?Qe?@oLD?a^??(?(Л?8?Yw?T(}?rC?̔v?k,?b?J?`?Y?|n-?O?! 9?y?eA??uR^?4~?-[?nk9?END?E?)M?NYW?Vtmz?es<?Ff?9?fmQ?b???To?PA.?}m? ? ?.!?T*?Ino`?,nH?b~?zl?Ke0?Ck\+?ͱS?4t5?qj?D^? B?Xr~qP?gz3?X d?xfH?hU?w?~B^?![q?m}?Sd?*`?X<?=??{\}?v?׌?) ?q" ?|i"???\|?DF?x*#?Pڗ?ڧ?u?5ӿ??)5? ?N ?\ ?? ?cUN ?mA ?2T,"( ?rM4 ?vf" ?21}H ?@8/ ?޲W< ?Wy[ ?Eh ?irU ?}Pub ?2L) ?|Q ?T ?m ?ځ5 ?A+ ?w, ?6Wl ?R ?3 ? ?ԗ" ?\G¿ ?]] ?'u ?= ?=qo ?5I} ?Vc ?&3 ?"d ?)# ?"p ?ķ ?童 ?̸ ?>" ?L ?0 ?&o ?^ ?M ?!] ?4 ?@> ?׳}l?y?Jxve?^t?>k?ܽ?\;??SI($?SН?>8?^&?0:q?b?vN??1X?T~Z?6?GO? ?n ?Z ?ͮ' ?sҡ ?f ?bx/ ?V=; ?L% ) ?I[5 ?=G ?4ͳT ?o_A ?G"N ?a ?o ?,ϼ[ ?He(i ?q+ ?4 ?\t' ?11 ?Mj> ?G ?=R; ?"[eC ?9P ?GxZ ?/L ?pWU ?J.d ?cRWn ?-6^ ?ti ?, ?ª ?֕ ?̼ ?:[ ?{[ ?0}в ?"& ?\ ?K ?Q\\ ?Njd ?8x?p ?~ ?2?ݢ?;? ?R7?$? A?[_.??6?(Ǎ?q?_|5?t?ҩl?>W?S̭#?qe=?o@?1/A? ?Dw}?8nب?Aa?p]h?}jQ?fI[?/3ߍ?Z=Tp?kP?O?^^vb?rp?jWq?۞A?YL0?ىuK?=::?\:= ?;v^?k:)??B?=???܎o?A_?w?=g?{O?u/?+??3#'?3W?'V5?a;.E?FD?"?i?ئ?RdM?n٬?M?m?*2m??K?W?Z_? o?=?>4^y?qq-?Qzd?4?7%?^`?0c?އ?w??Q?M1?[ު?b$v? m?G?>_ ?,jx? To?#?$="? j7?ߗ?1cx?Ұ?U?+:y?kxi?U.=?8COq?flZ?bIK?z?>7l?'?mּjs?rF]?gVN?k9d?aKV?H]@?1?O]G?NH8?H#?S&_?"o*??Pp~?zF?Rݱ?U?_C?и ?5"?FP?]g?dp?s B?h?i ?R?uHC?.H$?+?#p)??e?蕞?1[?|"?hl?@E?Di&?{K?kx?D?q4?#ׄ?Xc?P?_o?rB?]d?B*?eLW?MN?F? Ɗ'??>?L_?A ?D?z?!ym ??C?#FI ?J?[?oB?rrk?q ?dÿ?!`?"??,`?Y<?5Ŭ?$kќ?9a?\g??;P?D(?k(?DO^)?Aѽ(?h̅(?02'?ydOL{'?X '?#_\'?h&O(?~'? (?](?o'?a'?o2(?o%?ng%?™%?;D}%?mx$?Jŕ )%?Dv$?l`$?޷>%?خ$? j$?ɠ$? .#?`A$?TT $?j#?%nM$?U#?s1$?sb#?~j{%#? ~#?E#?$?"?f{z"? #?"? n"?l!?o5"?+f!?~"?Mg"?x>"?IF!?!q!?BK=!?5!?J!?)Y!?La!?+!?+-?-Qp\,?#O-?r-?_P|,?*/+?wz@+?:+? g+?HK)?)?w`%)??s(b)?,#*?T%PY*?9ѝ*?Ns饛*?t)?wZ')?91C*?O/?xĽ.? .?kP1?\Nh-?kS/?>.?Mݸ2?vP5?կ4?Edu5?zA81?@8?4?i42?JPZ.?a?]HF??[?hVY?Dh?a+ ?Ң J?oY?Z#r?yl՗?/d?dr ?&?|?0?bC`?ZD?2E,?QF?+F̗d?q?Q@?Ym6?V6?Χ?S?yu#?Z>F?>?6[?6j?\oZx?VS ? B ? ?ze} ?K%?.}z] ?$ ?γ?x ?9:?#& ?l{?pz.! ?zǷC?6?sTԵ?@1?0vi?_?:J?ᎥH?ŵ~F?:rK6E? K? 2+H??ĞF?-SW@?+םC?e>ޙ+B?m਴>?bK&E?/kB?v A?hW8?םO:?uEǁ7?Z"9?q#=?%1D??R-FZ;?c=?'b)U?TU?L2R?O?(Q?$ ->P?!L?zN?)I?IO?n]L?wgJ?R:??0.c??kg?#k?\?1P?=D?f? e'?*?S:?A ?o? ?>?|? ?dO*?8?An?up?Fg@?/B?uhmȫ/?DR+ ?*5 ??e& ?|0 ??? ?l6I ?l: ?D ?nœ ?. ?}· ?}œ ?L* ?Rs} ?os ? ͂ ?:Ux ?dh ?/[^ ?I:T ?Ɨ&O ?n ?,]eY ?/hc ?Xz! ?F ?tƎ+ ? Oʈ& ?# ?؜ ?slp ?  ?! ?! ?dn ?X ?{P' ?^! ?Ho\ ?" ?re?O"?4<?nZ?x?\s?ʬ)?-C??"5?,?#F?c\?7?Q ө?Oև?l̘?&~?n?9]+?"(??ja?oT*?Γm?"Y?*(u#?܅1 ?jpt?(u?Ja?x?^eu?b^M?p03?,q@?*.?J>wa?8N?A@?^??\+?!$+?sXi%? />?r^?-JN?dm?* 8?: ]?-M?Z.V?n5,?oNf?-~u?P~?,ٸr?i+U?xx?Jg?{?HN?Vv?'\e?wtE?S(??͐f??兎'?W:?MG?4?<^?\m~J?AST"?$5& ?@?7?k?tG?!~M?|?˷?KD?:Ж?'?!f6?ûY?VL?dq?k?kQ2?lr`-?䞲&L?x???& ?/,?c?C?ῶ?cԕ?=?O?e=$?z`?8t?Mc? n?Ģ~?'|?r?9?Am\?g 8??hk?K?~t1f?f2 &?7z?? LBS?N??\?]? Є?$?*P?݋}?$^e?Ky?l!9ֹ?nf\?*t[T?B:? Ğ?m ?t?SՠH?1?|b/?_H?)a}*?Nא`?o`҆8?Io? h?t)c?OK?4`!e ?y??g?" ;?9SQ?ұ?;??}??#5!?FK?2v?7b?,o& ?L DS?S$2}?,?b?+g?EO?uA?av??CFw?. );?_vBY??st?8q:f?9&d?ĩk?y\?B1x?'n?$lXM?i4:?Բ_?N?)Ą?^?N?Ա?VP{?XZ?Oh?Z;?ݵߪ?.D?^r?% ?ˈʖ ?B?S ?Q`?7?Iw?D<?" ?S* ?b ?7 & ?Hە\ ?4O ?pʝ7 ?/=C ?w)4 ?U ?M? ?TuK ?nIi ?}Rw ?I3&2b ?; to ?? ?z ?7c@ ?O^筽 ? ? ?1X\ ?~.g ?9! ?ȁ} ?VY ? ?pܫ ?7ض ?Cc ?J\W ?! ??y ?(_@ ?)x" ?.) ?ݚn. ?gn! ?*7 ?3 ?K ( ?Sc\ ? ? ?L! ?- ?4b)H}?Fa@?99m?)?Q?H?,?;u?D (?RҌ?抄<?(?Ld^?&?F{X?V(?x ?מL?M?p . ?8# ?Z ?&+ ?Ǐ ?+ ?dF  ?g5 ?v  ?lg ?': ?* ?} ?l ? Q ?\- ?(= ? $ ?奘 ?#i5 ? ?o,` ?3 ?%t} ?NC;\ ?,<w ?Gٟ ?N ?Wۦ ?H ?< ? nr ? ?ʛ, ?򹨖 ?l ; ?sVU ?OzRH ?c ?J7Q: ? ܬI ?$c?tp?TY5n? ul?s ?%?c?m?){? 3X?}=?J?z5e?T#?av?d? ?R?0 n?R?i??? c?(eqy?/?3?ʝi?JZ?X r? e`?2J?;?[V4FQ?rC?m-??IG4?[fP&?S?16?ڎ ??<~?>?!!?2C?^H?x??ȗ?im1?c?f`?*?2?`?9 ?{?Ӓibw?jJBi?hc~?o?:Yg4?uX?V?~?&_?b?$ ?G$?$Ǧ?5?u??? k?8KG]? ?s?e:xd?N?F:Z@?U?~G?I1?RB)#?K}8?޴a*?2CX?J? ?z ?<>T?gSk? q?>?@lHT??(?d'?Ci&?X&?W#%?\|&? p%?;$Mg&?P8%?t;&? !>(?b$'?N(?>5Oj(?r6S'?(?}IU'?g'? 4n(?j?Mj(?xK%?%,T%?0#~Y$?lS$?[$?>>7 %?[/$?[Ґi=%?lfQ$?$n,$?㕿+$?ur#?{lv#?dN$?t#?n8)#?R"?\D5R#?B6#? "?c"?MAS"?0n!?wtK"?mYȰ"?>^"?C[%!?s8u]!?H s ?m*-!?,ޕ!?!?2P I!?9͒!?Jb-?n,?ޜs,?xc,?Z+?lhq,?,+?n>M+?{*?}hq77)?c`)?A:)?SHA*?^(?p0Q*?#)?6|)?S)?:/?s43?u1?@c.?zF4?NEI>1?Q/?6-?c,?@h.? -?c?i|?ū?w"?=!,W?rݒ?V??Э'?G? ?>D? 1?{YE?/o?1?ApG@?YS?:7?Oj? GM?y;?Aɜ?,r?+?O`?΍!?߹ ?TB? &N ?TBB ?֪V ? p ??:cW??Yڮ9?!r1 ?32y?k??7?\>[?(y?IКF?T.C?t=tA?u.??SSMG?zC?tkA?f졝9?W=?LB;?5r7?{g}??mPK?כ(?{?Xy܅?ù?0j?y|菵?x?h\m?I&)?r;??@G?{R+?sDu?pN?Moa?'UR?U=?z^?iRmq?0Wh ?P4??. ?<1?؄G?UW;!? :?ݽ9]?6v?VnO?XHf?%Nn#P?ۭ? ?d?D?brx?Bf?i\̝? ? O ?hv?䓻?Taa?XN?TPu?>wr>?oh?(a?3?<}?a?|PifM?$3?\j?KLO? ^?X{??X{?y5?dk?(B?-0;?x?K$?)i#?.pZ?3p?ϑ5?RF?\T?)>?1gY?1?RU?&?x?Ua?\ ? Ԧ?0%?mu?j]7??H@?Om?"#j?h2=?"0bJ_??QW?I!f%?J^1>?:'?|Ax?Ÿ??B9?3R?xFiJ(?ZY?Ce?Y?λ?ʴ>? Ks? H?0Z ?T3?HIą?k?S?J?xx?h)?!mX?| ?9?l;kd??S8Dr?-_a?'Hɠ?ox?n۪P?<?ޫUg? C_S?#?ר?e?,yg?M?FZ?h?󍳴?E ?o ?0To ?鎃D ?AZ?K~?}'?A?'0 ?8{[ ?>G ?s; ? Q ?[Yh ?r, ?Q\L ?WjV ?e/A ?Jou ?p ?c ? 6~ ?o ?!Ǚ ?>& ?!cr ?V; ?LD ? ?E5 ?hgi ?wȘ1 ?n ?ChY ?= ?R ?I,H ? ?  ?lP(, ?t ?p ?TC! ?FF9 ?zH ?GQ. ?;A ?SV?rXK?ז??)3?VK?vQ?Po?wu(?I?=?MP??j?t˂?3g-?҇W= ?B`2 ?N' ?`8 ?X/ ?7A ?$q ?m$ ?*=j ? 0z ?0 ? ?fR ?si ?q+ ?h ?f'P ?yj7 ?_ ?Gs ?+e͋ ?1ՙ ?銃 ?A~ ? ?;M ? ?~4D ?/A. ?T ?sү ?t] ?*:[X ?:5i ?uP ?)a ?fWL{ ?OV ?\kr ?edM ?,MI ?:N!V ?lzTD ?zO ?yb ?zo ?~P\ ?(j ?b ?O/݃| ?D ?vrv ? ?`y ?wd ?R ?܁D ?l ? ? ?M ?U\ ?! ? ?^Э ?Գ] ?Ԣ ?%k ?W֠?Ƿ?ҥp$?ܸ\?m?L?!?oݰ?Q?;+Ra?LV?:o+?~6Z?ok ??ߦ?ʝK?ڲ?M3?P&?n-w?0=6?_?;C5?ËH?tӔV?D%Z5?0??4d?dw?R.{M?va[?f#!?Zqp??_,?Nô?ރ?j?*?jP?Xi?Txz?V^Z?^Il?x(,m?=~? 41??H(??xz?W?'$?M( ??kS?7+z?Nr쑩?Һ@?tٶ?K?g"?'U?Mdd?vҕ?+>z?q3i? R ? r?W?g|;?xɪI?5-? `?;?I?2?>T?R-?<f?u?=o?[.??!, ?AO?g$?A?6?PW?,?Pɧ?<%??n?67?1-f?Yv?d،?R}?G6h?!jZ?*o?C`?5f?oe?@Q?x?-l?I3j??S~֬? Sp??!ٝ?"k?}z?`k??+Us?\?c^? 1?uY?bVM*?)Iu?oC:D?E?޼D??kugG?EN?r?7邿?LYg?s?ѵ>??Y?3I$?R-?x]B?OQz]?\5?)2?һ5?f$p3?~M %'?7h&?'?`uP&?vHv&?@ܵ%?PV%&?%A_}%?'H&?rV?`%?&&??-(?$(?#}q'?'?ǎ&%?4$??u%?$?Y$I$?z#?#?aV+#?m$?sg#?jΖ#?1#¢"?= %"?n"?7!? #?Z_2"?šc"?; ?7F!?J| ?5= ?4 !?6S!?2}Z0!?4~!? +?_3+?<$,?]*?a?4*?e0P=)?&)?GHR(?h^D*?]^)?o(?0?k z[/.?2.,0?P#.?3^,? Nf0+?`^,?sSM+?^?l.?n?^4??\I:?-88?v7 C?z>?au:?Ľp_6?3?Ś*8?dZ4?&?~(?ٯ ?]+? ?fz?x\dR?͹'Q?PiEL?K$I?hqQ?ÇO?:I?nW>F?H.N?0BL?7M? 3H?R?TD?+z0?3,"?:6?j)?*l<?Z?F 3?BQ??:?H#/?US?QC ? ?JF ?Y ? ?J ?W"c ?^ ?uL ?q ? : ? ? ?a ?^ ?iC ?Zk ?Jkb ?e ?{] ?(kܬ ?W ?ƶ ?nW! ? ? ?Ψ_ ?p ?I/ ?=? @ ?'>?Ț&?=p?1+?ޯV?zkw?=xS7?yCU?5r?[#?|J_?P?7? *?c?}?.?i?$e?$$%?`,?\N?lU9??^*s?k?l.32??ix?ڞ;3Q?  ?qq-?&a?vw?x.?L7Q?&4?&7?V]?>??k? + ?b?2?R`?Ma9?Q|?Rٌ?>abI?Ьi?$ٰ?TR?{؉?1?-?9=A?|?GX?~kN?zˡ?}F?-;?ѽ}-? DB?ǐ?0wWё?(6?F)? |?N?0m?ĥM?y_=?Rټ~?/5Y2V?T>rj?%?3P.D? D/o?鏃?+Ʋ?[2k?n?h?h- ?ts' ?{ ?Y]?!j< ?S; ?hi* ?xI[?m~?l? ?U!?iQ ?K+l ?6? ?}o] ?ż ?/ ?̀x ?59 ?ld ?V ?Ѩ2 ?`] ?` ?8 ?ظ ?xM ?H~# ?ݓH ?ET5 ?+z,Y ?ѩ ?1[wI ?6 ?{??6;F?wM{ȴ??FS ?2s?5 ?!A2?g]?:"?+dN?J.^? ?`q6 ?hJ ?A ?߈- ? ! ?B38 ?y|F, ? ?I ?f ?&O ?OX ?@ 6 ?/+? ? j? ?"C ?MY ?Xwx ?E1 ?)d ?鿒 ?^N ?݉ ?>A ?)N ?q ?6 ?hp ?RA ?i ?2Q ?&z ?׵Z ?Lٚ ?> h ?y ?oOU ?[c~c ?L ?OD[ ?xZq ? ? bi ? 9lz ?R: ?@ ?  ? d ?Ŏ ?ϳ{ ?_ ?O ?LmH ?ʫڛ ?ue< ?.;v ?w& ?;dG ?>7 ?Ѡs ? ׶N ?- w ?Ao% ??0 ?Yw ?n+ ?c: ?]mhE ?N5 ?)c@ ?R~i?T$?!m?(29 ?ͳ;?܄i?x~F?[3 ?6^ ?>?(?t????;o?|?L??x6?cD?9 )!?(U)?&R?D(n? ]7?9PG?9` ?f?w+??ɵ? ?(.?3o?,3?_v?UA@?XkK?B(?n :?ǩ1^?Іt?{3?eeD??jq?nD?vգ?L"'W?{u?Tъ?%?i?Y_?3? rx?W?0XyQ?V?X?Ox?V 4Ѯ??{|?@|<?fD?:\i?ם*R?t?NUk`? [?Db;? B ?s7$?_I?/J?Ҏ"?6Ws.? Ab@?$?f?]f&?$ތ?a͸?T??Q?j- ?G!ɷ?4?K?X? \?+;?_ nv?q|g?;1p}?TBn?`FY?8/K?x3Z_?-iP?\?JX K?ڰ!?wA?gD?o?cc?ƫz?5?C<? ?sMm?X=\?S,z?X=d?,6/L?x271?@&>? ^#?ЋT?J>1?D??8?L?o*#?:??~p?uNs?GwF?.y?Nif?L8.?$?|%?c,P?!2?,h=??xV4?!??xHLn?ΈL?92? )X?;#?ϹNSP?U`?n?;>?m?3?&k?-.? #?nlh??k?f,0?s_?\a{??!(?pgHB?t?I1?7ؖ?O)9?ir?j? .?=:?NJ?5?sm?*?ړ?[j?Yf|??{? SG?Oإ?Kh?Ul9?>wϕ1?H/? 2?7/?Y0?W&? %?WI&?Xs'?03'?Y)%?*<'?w&?cR&?DS%?1 $?!#?Z2%?$??T#?&>"?~"?BwQ!?˔~#?_j"?u+"?i7 ?d.;'!?ۨD}!?mY9V ?{!?jF ?Bu!?N`"?gA *?6.%)?˻D(?t&*?2P'?m\(?p'?ُ-?p$(B*?^U+?/s-?i(?\~*? )?g\??qP?)?@N>?ha?+KW?a?>̭?R?GO%?,?7s?m?;dL ?Wt?K.?Y)G;?A;?W(7?rBۋ3?R$=?[-,1?W07?^3?3ȶF?TT??B?ki0D?8 {H69?z??f7?_9=?ث8?&*vR ?ҼUh ?r|Rw ?Aϑ ?],:A ?P: ?SSP ?G ?*QLj ?'w% ?L2 ?f4 ?Yx@ ?CD$ ?1 ??QK??9 ?D8?Z?zD|?O?+ĺ??yͶv?i)?*\3?[(? ?Co?¨;?)~?>\?ZsB'?G4?*fC?>Zd?هI l?g^E?@C?G)X_?ϐ:?0mXi?'S?a)3?(?~b????~?Ю4?QG??P?x?T?vӸ??m>?0͉UR?:?m{?!i?Ah?!?^&*|?3C?C?? ?:\?t]w?㪶?m~?p)ѪK?WeY?f?K {??i V?  ?#e~2?MQ?F5 ?? <?S?I kϭ?Šz? 5?b??`a?-&?؉?M[_- ?u ?|sK ?tK; ?y ? ?Qԉ+ ?s~Z ?~(i ?Sq& ?@,xY ?e9Kx ?9ä ?ļ ?(&̕ ? ?%.9 ?# ?\M ?Ǧn ?N[G ?nC. ?' ?zD" ?y+mJ ?i ?? ?&W ?Av ?#N?'%?6?a?1wv?dt??!Ȇ?Xd /?&ek?; ?StnT[?w?JC ?kBi7 ?7R ?b:G ?+ ?MJ ?: ?p( ?" ?B# ?X< ?, ?$ ?Q ?qK4 ?vo ?- ?HE ?اl ?]ˠ ?KJ ?j#(# ?Cw ?>f~ ?bJw ?Og ?Q ?("VA ? ?& ?mP ?J3[ ?Vk K ?U ?e ?sp ?}` ?snk ?\y0 ?.98$; ?2X(X+ ?C5 ?sOE ?b|ґP ?kt΋@ ?NK ?pY??"?;%?9f?S%?+ӈ???1?R5?6 ?-f??_?c?f"?Qx? ?=+?%?J;?;?uP?hU?E))?c?.e ?\lA? ?SN?,*?L?ʇb=?i[?\Iz?$ɜ ?t%&(?(*@?ox^?]?`;l?tl?#?G?9 ?*8?Կgk?z?qD\??vYW?"<?VcM?m?wm,hM?C X?X>& ?l?4;?P!? x;2??y6d{?%?o?+f??Aɹs?eK?`M?8m}?T%}?]?Dў?W߆?N2u?rՎ?Ƭ?g|?Ne?YV?pl?34&[?9aH?S ;? ;L?çE??vG?)?1?o/m?f?#?b[?q?FP?y2ݓ?pc?@)zy?uߦ`2?D?;?j)? e6 ??T?"+#f??骭?c>o7??J0 ?<#, ?݈?Z 4?@]Q?2> ?V0?@d? I|??fe?LK?(T?|??Zm6?>Ѱ?"{˳?7Z?b?D?5Ve??8$T?*v?+f?Y?SC*?%|mD?01?;?Z?c$'?v7p?5Ҽ?*Ƈ5?Ďg@?sI??V͙Z?\ ??TA?!^+?]"?0U?n?xS?P81?*]D-?ji&=].?uQ.?qS+?ܐ,?Whߖ+?e1d,?%?φ$?[#?0 #?yp|&?>$?3%o#?o"?M} ?uj!?hF"? ds"?$N ?$1"?+E\? S`? ?Bjw?•?5/???|Md!?N%?՞2?-Z"?*8"?)?PX?Z,B???mK ?K'Kf?yf?^f` ?e?3赟?Zan?nO}? p6p?z? v?+*d?{?Ę??U8& ?s={! ?gA0 ?`+ ?4 ?H} ? D& ?#u5 ?6& ?h ?jN ?v ?K/ ?Y ?] ?cި ? ?̑ ?1C ?핻 ?E& ? R ?vS& ?k ? ?ۺ7k ?a ?6"qN ?f@ ?tx ?j% ? ?Znw_ ?} ?n ?_OV ?ݖ ?_rRg ?nv ?# N ?R? ?Q1!^ ?khT ?H0 ?P% ?WF ?%q9 ?Ͷ??{8 ?&7U!??0$/?2d9?KJ?5?]?=-? ?T'K?s!p?]?XbF? U?|z?`ty?SM0?nT?c?z|˳? s?_N?P??'B]#?oQ?ḃ?F?N=?KX?  ? 3?)#|?k?}?Њǰ?MJ??'U?&?m(?^m?$=?ikf?nd?ٷ?z?ۺb?oؽ?1>?1#?2b?p|߀?t#? d ?G$r ?d ?t}?`)BI ?n C& ?4K7 ?Гg ?Ѳt ?~R ?,rV@ ? ?98 ?Sq ?Yf ?t ?2 ?  ?Fų ?!A< ?RmSJ ?2~g ?Ҁ3 ?$պ)e ?eL ?ϔ9~ ?߆ ?G ?pwRR` ?=0?]?]? ?,wJ?[X|?u-?"s?q4z??HP?씃?6J ?u2m8 ?³Z^ ?듩N ?i& ?f ?yӵ ?|sm ?('= ?, ?Z# ?jOp ?c% ?Oe ?| ? ?'\ ?q: ?[_ ?l ?W[Zy ?Jٰ ?= ?HI ?{ ?s. ?r ?L s ?jFш ?C ?JCH& ?{\c ?$ ?sj ?-m ?. ?7 ?} ? ?X= ?% ?jϣ{ ?/2I ?xRv ?15 ?l` ??G ?u ?n. ?P/T[ ?4)f ?%BV ?` ?ѣ+q ?WdP{ ?Hk ?@v ?+D; ?y"F ?E5 ? 16@ ?P ?Ox[ ?IuK ?S-V ?Vt??bc#??|{s?Ĉ?M?DҺ??:?\??e?_>?N>?M.D?F?3E?8?A?) ?YrOO?Zh?@?fB?jzo?ykG?Qr?:!yG?L>t??5[?X1U8??x4? Fc?pݴf?uuH\s?hzC?1鈬*?*geS?Z31?c?<?2?d?69u?JO?t±?둑?1ի??S?Kr (? l?^?3?X6Ks?W:a?$ {?Qwg?P?E-6?oC?a:%? t1V?:ũ3?M{@?zeE?q*2X?2?X9B?ߪΟ?i k?7P`?]N2?iU??O8r?=̓?v ?4?A?,?#0?@?^ƣ?v|?Hi?7PK?Um1?OP?5p?3J, ? ?W8 ?5kL?]?, ?8RM?#2x?6]g?ƒY?P?CL1h??Bj(?r>m?Gcn?~k?ڬ?{)?_!?W{M?VR?%X"?9`XU? >?_N}?!C ?UM?ţ?#?YĎkU?4n_?13]?cE@?~??.խ?=? X(?[C&?V쐥3&?iRW%??6%v$? N#?"s[!"?X?`g/??Q:w?ZKU|!?3h!?<2?ۚh?[Yb?\ &U?pXHi?lT[?[G?&4:?7+(EN?ji@?q ,?c? c3?>%?}?c?5ڒ?%A ?J02? \L?ר?H?vpn?ds? <?9} ?g?S?LC#?+hw ?E!?;I?)L?? t?(pA?z]$?Mo?|+?[}?ͷ?ɝ->?k-o?]ab?%v?h?˘?E?1d ?Iْ?/ ?]& ?>; ?u16 ?, ?JQ ?BǦ_ ?W& ?& ?Om ?o! ?gٍ ?q ?k ?% ?z͎ ?Ԑ^ ? ?X*h ?c ?8, ?' ?G[ ?3 ? ? ? $Dݪ ? ?. ? }00o ?V ?vie ? ?\~z ?ЏF ?[ ?PN ?OKp ?7Jrf ?@B ?Z. ?@P Y ?Y&H ?!?Ja?qaB`?Sq*?'?gU?6I?q?@ *?5V?ԁc?l?iW?! &?޽??&n?ƢX??6nh??h#?9?T[|?]ݕv?N.?@~?Y?GK?%F?K# ?vd?$y4?֌ ?[ ?³4 ? ?iuP ?LYg ?'v? ?5 ?p @ ?`P ?` ?Q4 ?H{- ?x ?] ?|[ ?+{|ƀ ?;UE ?rH l ?b *t?+y8wU?Vމ?[`=? ?M?PR?Г9 ?:#??Pr ?kGfx ?TS ?  ?1#5 ? ?6g ?O % ?k|;D ?lk ?-Y ? ?g[ ? T ?zz ? ?^^ ?Nw ?u` ?" ?_l ?% ?v8?5 ?l+d ?k3BL ?ēl ?7$8= ?yy ? ?ݎ ?d ? ? ?&.& ?23 ?G ?p" ?^2 ?J' ?I;$Ɇ ?uV ?B ?4 ? ?ԋ ?N> ?PZ ? ?É' ?< ?$r[ ?N.f ?+ Bq ?/` ?v>2k ?\| ?9 ? ?)S!?lm ?(W7?Ū?`6?$ya? Np?γD?Kxژ?}?o>)?nA6T!?)Yq?zW` ?-h[S?S?Y??$!?2??xcI?f!v?yya?Pqa?^U?B#c?TӞ??d?7u?T?6nG?7\[?儖&N?r:?癍,?s4@?U+3?{!?5?FF%?ci9?$ ~?A?|0 ?a?~2 ??c?Kt?R?%>?TQ?m?jk? X?mvZ!?u?}W?`Ҏ?!?^Q?NP??ߐR}?0Ño?ڵ?ؘlu?*a?vT?8`g?z![???(3}?h?X?hJ?DK?ŗQU< ?㌭5 ? 1L ?/QC ?/ ? 9" ?< ?»0 ?lMK ?; ?~(~# ?ٺ ?u ?>m: ?L ?] ?U ?M ?q( ?C ?ҽ ?ؠ ?WN ? ? ?U ?Tm { ?ޛy) ?SՏ ?{ ?`Aq ?g` ?so ?*FZ ?jmg?J?e?׌}?b 5?NU8?So?ywU?.A?\ٖ ?kF@?%]S?w?ݻܷ?4r ?k ?t ?0 ? U ?O ?R ?-K/ ?ѣ| ?kU ??ǟ ?'  ?&U ?}Lyd| ?Gj?K?ޠ@?qN?!z!9 ?ce ?C ?, ?| ?!TX ?vCآ ?gb{ ?Q}4 ?< ?t0 ?h < ?9X ?H7* ?"S  ?ZI* ?K ?'/ ?T ? ? ?Q=@ ?-i ?N ?hٸ ?G ?GT ?rWE&?!>r ?Fw ?3 ?% }һ ?wRi+ ?) ?= ? C߿ ?, ?v% ?n ۛ ?Ŏ ? i)5 ?`}3 ?@>} ?r ?h\ ?k ?p O ?N7p ?=u| ?JO&f ?K]v ?T ? ?Ǡ ?BWM ?ga\ ?*3S ?3l ?z3ome ?P-3 ?l ? ?  ?SȔ3 ?#]?g؜?u?( ?ȸ+?0U?<%?!,?47?$Y1?1S<?q?d%O?I?9?Ӻ[?_c?6퓰? =u?bOO?;d?-o?kQk?6I?|SI?ɮ ?<] ?L=?wm@?7&Zu{?խ?y? ??l?ˑ6?U:i6? ? iI?YrK?bצ?%JG ?-یS?S Ձ?+PGP?w?خlj?~B?mV?4-?5-3s?dG}??=iS?zO?tEa?S*?߅r?8>0?G f?mJlK?惁5?X>w?n)? mD?O{?HS??ؘ?В?5Ş?x"?NٱD?aY?> ?t\ ?m7 ?,eL ?ᆑ ?SyG ?;C ? ?%sd?p?O?37?>\? N?4?9?I:X?P{?R?;?9uD?2?6 ?jE?"x?U?f& ?#?Lo?B9#F?3l??˺?JO?xC?y|?V+?'l0?{eS?@?t?%!?){??%i$?$4?a~?oE? ?\?Mf<?E ?1?@?g??u?GK>?7 ?t!2?_lG?9?dsM?CKpA?X,?uI?v3?̧Y$?vS?$cE?-o ?ž ?l>??Mv?u"?r?+ȗ?fa&?$J8j?<?U4;?c+n¾?w?v?.+?⻿? ?:avm?1T?W<`?ٻ u?NbQG?H?S?p`?=}?0%? `ܛh? ~t?z|?bV?|?7[PJ ?͹= ?M\ ?=rP ?q1 ?&dM ?C ?l21 ?̦ ?H ?3o ? ? ~ ?v$f ?? ?aH ?yB> ?; ?rY ? ? ?BI ? { ?e*,z ?eMV ?S> ?d ?OB ?)˃ ?mx ?)c6?e3Ō?y }Q?_?Цx ?6 ?K?E ?+ | ? U7 ?5͐ ?c ?_,, ?-mN ?qM ? ?r~ ?}>$ ?ѧsPF ?k| ?f- ?P>{ ? ?PRM ?d ? ?O4 ?tv ?v]N ?K} ?St1 ?S ! ?!M ?5ʪ ?+U ? V ?N6 ?Nߵ" ?KZ6?R"1?JA?%-;?O ?f ?!df ? ?WAsI ?93 ա ? 苭 ?iIn ?Gq ?mh ?JM ?#Y ?{_ ?6T ?A ?lt0 ?߸s} ?U ?qy7v ?j҉ ? R1 ?\C ?1 ?,F| ?3\fn ?pb ?BX ?ۗe{ ? ?? ?Qڟ ?@i?w}?|c ?sa?H;?nN+?ٸ(6?>%?H0?'F?KQ?EtnB?HM?fG?rL?w$R?V+X?LC?W?o??y[?+?#Uv?hz=???E/%?%?sH6?/ۋ4?K0_T?9a?2?[k?'L U?lp?@o? x??R2s?{?E)\?Q)?j?}<?.F?R ?H%?lTJ?i?ebw#?Ӕr"??n>?s?5?=?2r?Nn?eDn:?n?i6 ?tb% ?]F?7?Zd#?sX-r ?^O ?ʨ, ? H` ?b` 6 ?k ?yIG ? ?^6U?+g??a??t?kV%?Wnn?aZݓ?"n?`?b3?Fbܹ?p9?'0?.=&Ͽ?$\?/a?=#?" ?*?,J?™!$?o?{o?`]?5?zp?v?Ǻ?5U?Dm?Yc?l%?؀?i1?A"?0р?L?K?Z%?͆u;?o-,?gG?T4?7??q?9Q~?5$?I=?E.u?(H?wދ?u? >?&EF?e?Jǡ?hW?q?)$,?0?r԰?Fr?{G?y?=w?n_S?7+7_?9@?CzVJ?k?Dt?Ko}V?`?8?9j"?` ?18?n7V ?ȆD ?1ko ?K^_ ?nc1 ?9 ?1&i ?Gt ?H L ?L/_ ?νFS, ? ws ? ?-8 ?_ ?%f ?Yj*ҡ ? ?p# ?*2gW ?'X ? tt ?V* ?\Y ?q ?Ie/ ?t ?.z ?It;U ?zw ? Ґ ? X ?9t ?wS ? ?7=~ ?# ?( ?U'[0\ ?Y ?rJ ?5< ? A?Δ;?8L?ie~E?HvU*?J ?! ?E ?PU?u ?  ? ?v ? 9 ?f:P ?YT ?!AH ?4m ?w¾m ? ?Y ?Wm ?x ?N^ ?׸ ?3 ?a/ ?e  ?%w ?#^0 ?}@ ?} ? ?a?\<?ID1 ?1?cS6?jE+?"@?`?]^*?=6??:]?b W?j@~P?9psb?F\?/էh?X???$7ZU?Fq?s;?v?7H?eS q?SGV?qA?k1Z??jW?߀(2?&/?)?řPZ?5O;?h2X?,' ?q=.B1?ll??Õ??#?,,?S=?s??:M?CH ?N?N& ?V>>?":?%tw?0h;? Xe?xo ?J ?S?h ?2? !?'?w+Y?5?A{?jS?!X?g?8?"?B&??~Y?Ҷ? P?(?E?ԟ?38C?ݥɗ?4JC?8p?J}?FW?t?Bg?fh|?!m?õ`?V[w?ś?"?3 ?W?N? ?C?|K? ! ??%?\V?ƕ/?n]B?>!q?,b?@ b?KQ?ǰT?{D ?C ?(0x ?py ?7. ?g1C ?RhB ?J ?wRx ?SJՌw ?LCS ? ?9 ?g|& ?وf ?'i ?A\O ? ?& ?J ? ?i# ?pY ?xR?Ք8K?{^?szEW?c?M~ ?`9 ?1=ͫ ?T} ?d#?}=?I? ?v0/ ?E&T ?8˅$ ?gG ?j} ? ?m *?Gu^7?}kC?ٙO?ܽ ?IGg7?aD?/T:?xA*?~?Ez?\OŊ?&nmx?|Bk?Jq?A)p?d?6}?w?YT?ay9?䗑?,‹?M?s#??}ۜ?/TrL?й?HÀ?*ތ?vsň?—+?qB?0^,'?g -?'#?? G?A?Hw? ??[ ?t!_2?F:??r ?uS?\?O?v℄?p ??XY?^)M?E{?ْf?: z?P?[Q?E,J?Bs??COx?*P?C?*u?Q;?,V?kt?Ǔc? y{? ő?3}H?4f?}?AO?K*Z?E l?x>D? zO?RDZ?rca?Qw?}h? : ? ?>?mL? d)S?"B?Ie=? ׁ+? '1?V?՛"?‹$?GГ?x?@J?ġ@=?%uB?U@1H?>5?>&;?i9*Z?}CM?Ȭ{(G?VM? R T?M8A?]-x ?. ?~o ?>` ?&7 ?Ջ ?d ?* ?Ze ?a! ?ӥ ? ?Cjh ?i@? %?w%?Κ ?BF?u6j#?=?s{?$I{?乃b ? ?,Ƚ"? \? һoh?_t?u&P?Nڀ?:_ e?Vxq???sY?aKD?6ܢp-?䵦q(?n'Y?kv-?J1?u(H?>?Ɯ??Ԓ??va?T ?G??9?3?ia ?jE?HSN??_(?x?y??+MG;? y m?W?a?l݌?N7t}?{—s?1?a`A?eF?j}#v^?k_?Ug n?OөL?*]?uƁ?0+d?Fv?e??^ʞ?Ƨd??7?xV?ƿ?w?D4?o' ?:(_??Ur?a6j? ?₮?UN~??%Bx??CB?SM+?'?v>г?IC?3}?k?ˬA? ??2wh?XJ{?Tߝ?_q?Ob"?:;?l]m?".Ϣ?T&?х}?A?c?A?'&?}`?[ɘ?/?:e׹?fe? 7?M?9I= i?.Џ?Ddo?с?>W?$,?z?bQu?=`?sj?sř\P?i??P?Z?Q3T/?V7?@?E ?xj@?M|)?Ы2? ?kS䞍??|?y?rp?G_?(P?l?:?mо&?ì? ?(F? ? ?T ?w?le?|"T ?=.?qpY?9(?Lh?ħ|?0? etY?/uD?0o?B-?[?{?w[i|? JU?ZuJq?6M?F}?as?(z?Hu~?9?<?e?ܗ?S?v?֏?m?X?>_?>O?d2a?v?L^?2er?qQ?'?\?wU?OQE]?}k,?A?^e?)t?}?L_A?fn?h:?"1?/?l6?t?0?{?D?Y3?`=?4C:?BHC.?M,b?iE[?sd]?ͦ?MHl ?1n? 50?w?K ?X6 ?!?4L>?b qQ?5A?q?k?< ?w8ǧu?Œ@?s[?0Ta?e ?t1E?Q;+?)68]?z=N?͒jU?VycE?M@?!}#? L1?ii?$;6?<?)?2N?i2?=?2?nk?7k?m9?-7?R~ ?Nî?P=`8 ?d?Xe?# ?'?7 ??硞?'-?E%?y? `[$?;]?QY? x?un*?Lc?֫?G4I?Po?S\?-?i|?{-?RE?I%??N?u?e??'0-?Lj^??0v?s#??U8?}=)????3? 叢?]?U/r?6׈?aӷ?}>? l?Ps"?V?}?`zG?S?ߵh??-M?R??s^??%??"?ڥɅ??+?Qt@?Re)??Ⱥ%?tpz?ƖV?]:?b6y;?s -P? 1?ݯ? 4.j? u?i?Ie3_?ͬ?bo}?F9?%G=R5?Eَ?aP?Pg?[m&?/?%?Fy?S??fn?ZT?5"% ?Nbg?WO?x`Z?:?.:?@ڠ ?\Ct?O% ?\S??"LQ,??(#?]l?/ʅ ?aly?Md?*?/[?V˧??8 ?;70??Oà??6B?5"{?N?}\fL?/?^rTZ?`?S?\1?]V2?y ?A¼??=U?j?-J?=?WI??.LM?g?sa? /??+Z@?Ͳ?2?Òڹ?o?]z9?u?!xe?m.J׽?=?NHH?uOĸ?dq?%?Hґ??*=?:QO?*?*v?5xf?A ?jFO?$?'+m!?#$?,F@?ކ/?2?*?3?:x?3# ?$)?+27)?f$?#m*?%g5?a.? x;?J3?$83?¥-?=?'x8?Y!(?u\!?d#H3?5 v-?a???!?NeL!?n\Gu'?uɔ?`?E?̓l?2O?D+?*y?9Q?eF}S?T)Js?sb?ǫ&?5$?l4??3?P)?+ܽ?x?Vc?WdY?Nܰ?-Xԋ?B'?ݥ?= ?|þ ?KY͔?K?:a?g ?p??Ԗ~?'?I`??״?{_\?d?}?u ?Y)G7?Qۜo?X,???o4?q~?|??=?kZԄ?I#?1e%?S}?T[?]e@?wM?&yF?ÌGp?KV?d?Ve]3?:??' >?,E?ZTΏL?FJ\?̜&Q?oga[?*(O?ѵH?UʍC?񖚾U?OO?26c>?8?m.J?sL^D?2'?+2?xj-?1 3?_8?Ԯ>?R]?@n?`??YVT?비?(ѿ?Sِ?s[?Ju?1 ??0"qe?`A?4z?N=r?N~?G5?ГYc?v?e}?Vb'?蝕?Vd!?ĐH?U?Mܛ?Pp?A?Q+?8qQ?h6? It@!?B޽?4!?1d ?'oą??Ky?\'n?UV?KE}?`Z? (?aD˦?*?R?6l?ek?Tr?y?MPW?_`?d=j?V\?Xx?e?Ato?)1k?:hb?}R\?_N9m? h?+/7U?%9P?ja?[?G>? 4;J?5aD?m5?b=0D? xECx?:n?tGe?ۈp?B| hQ? Te?[?UN]?PXh?o?]?X@c?Bdv?,|?0j?Owp? j?Is?f|?s?Pu3?v?}/?u ?t<%5 ?  ?3?YZ?V?@w?&?n?O?ː?"I?賗?$?`?;0a?n|?t?JK}?yv?aY?84?֋?{'?֐x?5 s?،?*h~?t~m?9 g??)&y?UXs?(RU?óa?2`[?a?Og?mm? c=?qbG?XCB.?'N5?Q?ãQ???F?ָtQ?4đW??jE?_{K?۰]?c?Q?`ҦW? v?Y(Bj?-d?t!9j?A jp?]]?--?;?B&?jZ?T?,?Xp? #l&? ?-?g?7*?qsC?+?ie?7?QSje?n?1?? ?YF?.K?=e?5A?x?s"?wӄ?L?e퉨?tnϊ?Bxm?iBy?6Us?6@3y??!?D?TR.?2@&4??g&?kR::?7֎??-?lM3?1E?MK?ΌK9?A\??8]?2գQ?mq~K?^Q?W?bAfE?u?y ??? # ?sx?}*?5J?}4?A!{?,+??-^L?!5?2?L%??k?:d?M㼴?ͬ"?]?ۇ?Xp??dD?d??`+͐?^Oǖ?'v?<K?.&?1?=w?a-?["'3? e !?[j.'?P`E?'%9?f3?59?J??.-? ?/ޤ?0b??k?Q\?R@?~.E?;?B4??c3w?J_G?.??r۴?b[Į?㻝P?حں? 9Ü?r^?Ѹ?ů?_?´?#9"??逕X ??=,?p ?d»?b ?Z'&?v_?ѷ?? O?Ka?ܛ$?? ?HR?ބc?n?3ɚ?/zN?ŷx?[j?R?0?Z?ng?e?D? ?h?B?Jj?t?WJg?*Mb?$Dc?n߽??Z|?]?(4?K??^??>27?nf4?aMY3 ??|p?6I?x)^k?+;?8T? 9?P ? ҍ?i?4O?1:r;?4%,? !?$P?N[ @a?2=X ?b ?%oZ?ԙe?wz???a? +"?m+)? U(C??%S ?!ܦGy5ՇpRFuq~9 @)t?:???a 0??^ ?:$?KR ?Q\b?d[??Q5c?a+?dB?Xn%(?ޅ?A? U7? ?GA?+04?%? ?^v?t??7\?G?,6?[V?jo?`Sw?roj?q?Gc?r?T?ls{?r ?5?`'p+ ?Uo?yj?5{X?-*"?GlU ?˜ ?P/?5!G?zu4?;?xoi ?g ?I?ָ!?Q3#?cV?AK ?>w ?JNd?s?6?cr?: ?U ?>Z?~?0?>E?)C7 ?ϼ ?_{X?ȟ?<?Cd?"1?/?zjs? ?*v?ZK?LJ?G?d?|_?_1?G?E?y:´?@j4?u&?c?9?+%?\qv?y`eQ?:+?t?F?7n!K?c?}?k,?/.R!?&P?Xn ?h"?7 h$?"?+y#? `?B???@?j~A? ڂ?? K=?Uy;?>)>?cM?uQ?3M_?|/k?;Y?W[c?i!z??u?5(?2*p?+[??k?ϔ_?xp?+c?KV?P?-@M?A=L?|8Y?LM?'$R??X?/}P?qx?? Gg_?g ?޻&?`?2s?Hel???Z?!?q??i?>?~U?%?2?,?\ƞ?D?@?1?m?V?X<?U?aP|?d?:U"?ÿ?'?ZH16"?y6"? ?q C?t (?Ƒ?uv0A?:??\$L??3z??3?01?BX?`-?g.h??AAʙ?\h?qS/&?|?nn?@V?2?U?{?ᛠ?$?p"?q{T???ߩ? ?`aI?!YpO???auݦ? v?J?MY?? ~?[?;J?6?.&?#03?p?\S?#Ӭ@?k$U?I?Y?3h?d3{? ?E ?k ?) ?:}C ?uZ ?X ? ?&??Bi?M,?eޣ\?V*?w<?^?)?z?:?e>e??A?~? :?d?c[?ij:?E[???3z??Wn? X?c&0?ܣ??5)?bck?4umO? de?a(?ʵ?Oz? ?5? BU???ɒx?S_?+?/S?$?OU?bQ8?O_?dZ!?kR?a??zbF?;?|;?S ??O5?L?b?v??v?ί?Τ?$`x? 3Y?POv?Rwvt?w1ٌw?1u?o"Aor?#1kp?Izs?sq?Pjn?ll?8qo?Com? 6rj?*zh?rrk?zi?˃f?ld?$Sg?ye?b?V`?"<%c?εa?H^?b\?a[?l'Z?}_?}|\?*]? O?T?gY?,uQ?ZV?<If?1^zi?ntan?%q?@l?O7 o??Vit??4x?IА=s?ȇv?)n{?({?j~?\%y?<)}?50?3α?cu?<}?x`6?W?R? Ή?ZTEJ?㣐ٙ???L?cl?ሹ?[#D9?nҔ?n?9?j??fڈ?u;?p+'?w{?f?\Ճ?I/?9?.õ?ג}? ?,DQ??鐷?U-?yw?`&??b0i?t3X??L?<?,֦??#A?:?h?íH?C1?˘?Ǔ?U?CaY?1?B?m?A?TQ?̀8 ?$<ܒ?];X? ?(a?^!?1D?vH?q?>?C:?w6?n?N u?Sy?/r?HO$w?,}?O?'vEm{?{Dz?GX>? >?L?T4`?A#?Q@&L?c?gk*?L?A?ƌ??&~?㿄?k?{ܢ?<{$`?$֭?PM?X⴫?ɶQ?ϭж?X-?8?V S?oۿ?"?? Pbf?d?g?}?~?y.???d?:?^L??@?1@g?t??:Ry?X'?|/?Z?`?SL?_?Ha?.C?dS?f(4?ܳ?8b??o???h09??Le?=?1?v?^?%?(R?/?R+e?LW?%??ԓp?XT1?C6? ??jai?'3Fr?x:?M?AW?,|,>??d#?=(?U#?Vh?0?v2?M?ɪ?Xl|?34?U?{Aq?;g?^M?Q_?}c?@g?̓??-mTl?z??J?{ ?awI?ar?WtD?OGF?AC?[E?xH?KCI?u0G?m8I?f@K?{6ɸM?fJ?;GL?˺zg?she?m/}h?ff?[c?Qa?fWd?>XJb?O?Q?>N?~ P?pdrS?xbU?Q |pR?.cT?VW?=+NY?&UV?RPX?[VI[? ,J_?7H]?\B`?y:IZ?q?D^?]C\?4P@>? ?w{x??n?@?PǤ?u?k?+?`\?̛+?\IS?Yޓ?Z>?⬒? ?L?$?hk?љ?*q?цQ?7'ߟ?I@?9?Y?fq?f?Te5?p'? 8?a?(?=T?T6u?V|?N Z?q'?#l?Fy?/?dT?zY?}p7?@?R+3c? sig?@/ i?Gk?hoh?HKj?2m?o?@H\l?n?6+5q?2cd)t?Tp?LE s?|^[v?XȽx?c:u?w?Ez?iz,?\[|?$Q;?ZIy?']~?{??⩛? s?[?b+?ǧ{?4?~N?ό? j#?9᠋?1[?c ?u*$?!Q?>?gѐ5?SEM?o?Ky?Fh?'??4{W?kT?4P?8^?>?hU?B?A?cE??h2 E?9[t?8?TW?m?̝?ԜC?; ?ח ?Y ?WI ?x?~~"?-?Je ? z?>)?KA?6*?l?0 ??$ɚ?[? ?9H ?: ??[??/ ?!+??S,%?rz?kn?gC?Ы1?]?+?K~??LF?TO?ֈ??@=?$#?Ss??H!?x!`$?`"?};p!%?ѵ| ?[#?5 "?sp ? [?JAIv??p?pD?4͚B?@?3'%C?sA? ) ???|A=?L??i>?e};?(#9?uX1?K2??a0? 2?dj04?d8?O6?Qg8?JÒ3?Px;'7?*mr5??U??Q?/?Z?䆘?$vl?-3?8?UXD?jkp?Y?E?,?\)?|?E?]V_?E@?v?"~:?me?,i7?s?#?Dz]?>?xYl?]?B>??Gc?]v?F?O?F?Fh^G?7Z?Pt ?i??,?}/>?ei?C?)#V?n??k?W*WC?>%?sRȔ?|f?:5?.ˠ?)?ě???PN3?uv??,? z?e?{5"?Ҍ5"??{ ?|? ?H?œē?#/?~XW? qU?=KKX?CsV?0zS?MeQ?pĝT?1R?_P?W>EN?.kP?9z4O?M#h~L?ںJ?6lM?ؗK?FH?o&=G?I?;C )H?RE?qC?Q mF? ~D?R '?|>%?$?d&?$?۞"?B!+!?La?|H`?Yt#?[ ?8P!?(?#*?'?|5sY)?V֪+?S3-?*?R\,?d.?Q/60?4B-?~ss/?1?O \3?1?2y2?sB?j@?B? HA?^>?=?Aؙ??o=?In;?%Vb9?G?)?G-?8?H#?DN?쒩?Rh?=?Ƅ?CjH?9e?b??n?޼?_??ЄD?b`??"Yz?ʵH?2??o?`ѿ??6U ?̧D?`?*.q?ҹ?/??Y?x?;?clf?[xH?7l??3?? ?xV ?XS)? =_J?z?x?8Jv?1y?1w?jeW?q>Y?G[?)[X?e˼0Z?&,t?}r?$:u??s?xp?b)un?yq?i>{o?tl? zj?ym?mvk?Яւh?>of?ջ}i?лg?M4d?;b?ܞe?`c?av`?I\?I^?D \?Ma?{?a]?18"_?D$? Q??tڹ?ps?I3??EQ$?Uݸ? ?b?% *?HC? $?(?3>?Em??ڰ?j|?21z?4?gK?[?../? 7Ҏ?l?I?́?RA?؆?4|?w?xcWk?Zz?C%!mr? o3Tm?Bh?@`h-c?4^?x[?|6k?`?;e?S'J?4%O?*)T? #L?Q?NA0Y?עYM^?V?/[?5'9?-6?혃:?&7?_n3?Q#0??4?uyϝ1?}/-?b?*??.?+?dR'?$ _$?(?U%?ĺp!?^]A?"?:?;?N??r7??a_??a?hKǭ?w|?“ ~?ܻ{?,O}?xA]P?8v ?$V?d?{ ?ֿ?*>6 ?@ ??(?("j?Q6o?Ua?"W?=?T?f?(*?\iGJ?U,ӆ?Wr?-#?rP?f|??]e?%lf?M?Td?? ?PNn?W?_ `?R{?r?t0%2?%=S?#.?'uH??Ѝ? {x?>?k??T?35?lid?!=?hg? ?M?_y???I]? b?7e?0i?}s?cZ?Z7?]"?"?ea\?c?>k?M\?h2?B?l%?gU?+?1ZC??u?'%?N??~Q?d2c?e ?J!?8K?9?7d? c?R8g?y;f?*{`?b jmB?^E?9A?BC?SH?K-rK?:F?ncI?Cػd?ma?{^?c?s`?Y+[?@E_X?J]?A׽TZ?4*U?M_N?@Q?|L?%LW?9{DP?fS?hRk?óNn?)xli?t6l?tiH? q?$t?6Do?4s?E/x?JW~{?(yv?Cy?^=î?,QE?n??=~?\j)?Q$-}?Ms?˧?6"S???ޠ?p??>6??n"?2ʛ?2T}?A8?+*ȏ?oU?V?yL[?'?h?{̓?gA;?k#>? ;?*?[?I͇W?ཝ]?Y?Yrѵ?=l?*?1"?@C?]q?o?7?L?aS?и=O?ӦHyU?޻U+Q?qK?huG?(*B?aG@?֍q M?RֺD?`H? B?w>?i:?.V@?C?|?w?˽?Tj??Z ?O?*ox?;?t?1?6?sT}-E?4V+@?|jG?y¾B?,;?/<6?t=?Ig8?,O1?Y;O,?PW3?2.?8"'?B%"?l0*? ̕%?1?i]? ?n)?q9"?(^? #V?ttb?g ?v ?o ? .t??T?1њ?k?P$~?i??9iI?6],?Oz?hSa?h?ոO?zs?4N ?2e$?ejA?F?%Z?4c?5o]?vʯS?u=>M? F?C?/V?0 I?J\fP?j5?8\?Eu?b?ҭ??"3?PAO?=D?F?(??:?ի?305?L\B??9?VQ?g?&i?*C24?zٻ?x?6Z?b4??H?Ti?0D?B{?*{?<٫1?G;X?;#?~8@?ֽ? ?a$g?:?"?<6V?Z؄?7Ɗ?8?vu2g?-N ?ì?4?BPv?x?9e?~PJ?!?{ 3?}d?}??=-??c??V?y?\A?ZG? Ip? ?|E?a(?Ѯ?0Y?$?tVc?J?ut?ج?ZN?7?s?+_?'J? ?xX8?+??gQ??h;?-ܳ??r?_a??OG?!)K'?8? I?v?JR??~]?KzIC[?z)/^?3OX?FF\?ͯLZ?7|?+o;-?zc?.]?0?`iA?^?#wl?@{?+ד?xP?oo?,6?rvU? ?Ihf?)9?ӟ?V@6i?+?Cn̙?p잡?-8?B=?rЪ?2w?K?a?ٜf?kV>?.? |?}o?`٭?o?sV?PM?S?$?Ir?y?/??c(?cש?U?ݜx?=/???_?n5?iŸ??|H??G^?̷?X%? 8?4㢳?I?_p?syII???p?qrZ!?S!#??r"?ޅ ?$@?&"?5?9?J0AF?>oD?ѧ/B?;XE?@C?[4W@???]A???Xi4=?hn;?+>?l-I6?4?{v7?V1?n5?83?=έ?ONx?7?>?46V?ߤ/?f?_nA?x ?*?;ܴ?#J?ѕ?]bH??a? c? q?uZX?,Oa?<(? ?F?n?T|?n?TK?/?P?{G?ކ=?LP??I?mI?+NrK?V[@H?}^K?P?-!mH?K?k Y?s?\d?u6{?{R?j?Rv]?"qO?V V?dI?rnL?0Ь?yx#?bb?j?D3Q?Oӂ?I_?k޽? 9?1?XaW?l?b?d ?]?lو+?i?%Ef?Da?Q?h\4?c ?UH?^?ff?HE?,%?#1T?$f?N-C?E{?MO ?u?I? K?n??Qk?(A?JT?La?Xn?E|y ?(?3?Ao??n ?<#q?\5"?^5"?Y}c?O?^o?}zD?/M"I?[G ?JZ?U?VٺS?lڂV?z;T?WQ?yE!P?[ R?zKQ?MZN?ML?zAO?BDM?5k~J?.I?}gK?0ƍJ?{X5XG?\CE?ǹNH?AF??C?tL(B?3D?0C?`*(?Ǽ:'?%?K (?yr&?&K$?n8GW!? "?%+ ?pH*%?v?E3"?y#?6=(*?\P+?)?k_*?B;%-? ;.?f,?-?Y5@0?虨1? u/?[1?3"n3?Zm5?#mӬ2?lH4?+v@?>?IRA?25??;!=?˩{;?6=?T ?ݓ ?sl ?zP ?uc ? ?TEB?k{?d?R!0?i?n4?(G?N;W??h?V ?$ ?6 ? ?n?ތ?\?r?ػ?WT?N(?7?gCI?I<?\g1??v?lG>?ci? ߈??ML?X?QfF ?lI?iA?e?g?r*?!=?zE(??˳R?٥o??Ļ?c ?hV֏?n?4??$>?bX?f(-?f/?5?ٲ0?e?O?F?ᾗ>?c?z?|?W7?!n?\>?2??]#'1?1A?p?v|?4pz?'x? {? 0y?0"v?]t?Pw?ٰu?|U? wW?h,LY?uV?dgX?#[?c{\?9=Z?M \??r?hmxp?T#s?[q?7I~n?+:zl?o?bm?amyj?܊h?r_`k?[ i?N'^f?:d?ͪg?&e?Pb?*^?\`?$S]?c?_?wبa? ?7Ǵ?b?c~?_QJ?8?/?lj?E?? c??AQȞ?0?_?a?8?5?z?V?r? C?&1?PR??+?+?CZj^?bU?[?.*?w?n ?*K?S?8l?$?P ??JsP?09???x>?;?g?]$?&X ?K?VS ?Q?Ar?b ?@I? :A?>Y?r6e?O2?;?%?;?cٙ?ƭI?"k?S?į?XD{??ۆ;?YcuL?6"A?(F?g<?) ?ι?jW֋?{.5?|a}?R??bqH? M?eN???qS;? ?(ͻ?:?ɧܾ?i8[?$4?\ ?O/?{?# ?Y`ܮ?.o?5i*D?F?лK?fо?乖?$?(Ǜy?(*?Y?'UB?̟?U?+.?G }?PQ2҄?A?3 x?`r?ӿz?!rku?=m?inc?h?Ͻ`?oٹp?BY?Q?ZV?z \^?l=c?,vv[?{$a?6?3?Wpѿ7?5h4?!0?y F-?i1?o.?,n*?\}'?Bѧ+?%I)?.>$?N!!?2Z&?}#?zI?̪?6 ??H?Z?b?8?~j?y?2g?w *p?w~?A ?f}?? ?I ?)? ?S7G??҄7 ?w0H?$?i?i?ny?ĕ?Ow? e?Ky?()?ZFo?]?:? ?3`?ٮ?Jo?*?S/??[v?~}"??q!?Em$?*? C?w?bB? \E?J?'vlN?!H?olL?J>d?f"b?5g?d?oez_? QD\?B;b?3^? Y?DQ?}%yU?5O?O[?PT?W?n?L5wq?0l? o?G> ֵ?<ڼ>?8Ү?g0ɳ?C ?Tt?[^/x? Er?dv?h?{?:~?z?%d)}?(!i???s4?p??Ϛ??`o?T? 6bt?;K?OHy?_~x?¿? ]@?}L#?V????:y??K??$6??FrJ?~D1?@|?ݑW?AS?uY?꾊U?q?75 5? >b?R3d?&" ?d?=*?Z+?d6~??E?ު?<%?;?,[?~Wq?چ??t?>K?-??4C?k??W=O?\o?sL? )?HT??*?D?1?fc]??V?)?^Q?Mf? XN? HF?اJ? KD?J?KE?%1EA?:?6?*1=?鹺8?v2?mJd.?3Q4?0?*?6&?jh-?:[)?1"??cR%?9 ??h?iϮ?.?B?K_??&?+){ ?ix?y?K[?d ?E?PY ?0T?5W?][?|`?tZ?{r^?@W d?o?h?2Yb?e?(3wl?cQp?4j?d_n?Lu?s2"y?rs?uw?'H}?lȐ?@#;{?2~?(݅?kb?E?u?j?tݤ?~?9sD?!?eM?gߕ?'k?.E?iU휥?CcI???e =?SC(X?2 ?݄8?f ?>.4S?L+q?*锻?JIz1?L? *?V?cP??ԞG?\V?y R?9?-?"??-? ?ӶP@?R-;?'GKC?=? ,6?I/A1?8?{(3?Y(x,? '?1].?e_]T*?2w#?I_??%?~!?^2!?>*?J9?5?S7?ޖ( ?3c?? ? ?[9?G?k?Z?ë?+PO? k?;v?;Z?^ Y?!?C?9?]=?}ʦ?=*?r(?٧a?ȥF?X2@?T9?45C?(?\A?(ue?s?j>?9_? L?k?>H?J?\}? k??G?ya`?#ן??.>?͈?VM?]b? =?_4?j??7?x=h?M?~?V4?e?,??+,?}?='?z1?A9?^dS?:[?p ?.?6?3K??ce?,??'͡?S?ty? :?#?K0L?m`q?rg?A??Zy?9k %? [o??/'?d?>z?Ұg??'H?,I?1R,G?Y2 I?M?K?ӏM?S7J?̞eL?RcO?dMQ?W5tN?ݛP?c?Y/a?d?L?a?mX} _?5]? _?-^?J[?J?N'?ʟ?'n1?+?vœ?A+,?r?OД??K@p??^-?8?ue?V?&'?o?}6?c?}G?YX?K?Tй? N[?l ?&i?6XC>?!G{?Ԝ??,f-2?i]?O?'u?.-?ʮ?<$?_,?2?ƌڭ?b?G0?rI?1?5p?U?Y?%?Wv?}h?k?z^?W?Ԛ|?i?ٗ4?Cc?+4?0[?!??qo%?#7q?~.?n??+z?fBm?eF^?95H?R ?`?|e&?12? ?}Ը?Wp?1 ?d3???>?k???k?` ]^?bp??)?Z?ҿ??#q?:V? b?e?\g?\c?"f?l6?m-?9xP}?M?v ?-p?16?>l,?Jխi?wm?,3͠k?o?jqh?Uzm?Yk?d:{q?Ds?ko?˜r?,v?2m{?kDx?Ug}?"_u?z?BR&x?Wڇ?}bn?b_V?1^O?v?m??58?ᢓ?ߕ?bQ? 0?֝@???%a?S5?Q3?{?Te?w?_p ??f?>E&?0͖?Uo?·Df?Y(?&pg? F?f~?SY6o?f?WF?to ?,B ?| ?]d ?q ?̣ ? ?#?+?D~?f2?`?(o:?<?>c ???b'?$?g)?J#?w?/?M?PD'?W$?z%?M"?:~9(?8%?!P$?J>|?}0??y?[:?ֻ&?׉4?_ ?hq2\!?n?h"?F{?%5Q ? ^?l?%,?(vY??͈AF?ԛB?rmD?`q@?sF?CD?<%7rB?Y_$??ƻ#=? @?c=? ڢ';?,g7?Ґ{9??Q6?o;?3p9?E7?*?l(-?Zg,?UVe/? *?Q-?!c,?45s0? 4?92?186?x`/?ٯ3? ?1?L+?8w?֪-?_Q?5 ?_ϳ?3ZO?+?Y?TY??]?P'?gq?kN?b?"^?w??j?ջR?5‚?\?^'6g?b??2?X^q?N?i)G?r?5F? G?$ yG?#fE?UL?b?eqU?>o?S1G??X?jM?9J?ZLP?6E?yG?h#??e?~x?)?ZN+?,v?Q?as?Їk? яC?1^p??-?\?2O?V?Fh??f?scV?^6??$t?{'?0$5d?f????*3?%)?qGV?p >?/*?; ?Ƣ?׽_??ѱ?|S?BY?-i? H??p?Oap?5K?ӟ ?=?ߍ?5?g{Y?m?aH?]?G?{?z} ?|љn?U ? ,Y?m^?q?x?Τ ?+Y?`lt??-?:}s?L^? n~!?y6`?Y?Ib?H??$ ?"H?" ?5?%&}?/??D ?f?>?#&b ?R ?!?"?WwE? ֹQ?%5"?4"?#C?I?#aLB?AB?FuB?߇^B?ЇB?"+"7?U7?$K6?(7?l,6?t$6?ah6?W(6?g0q6?EZE7?g+g7?^%17?/KWS7?Y7? V|7?[#u7? A7?\9[7?*9N7?ne7?=$$7?½V8?r98?O8?&8?t=??W=?(=?=?_Sd=?!r=?z^=?1~,.=?,p=??B8=?NTN=?.. J=?,$=?Z ;?1/;?MR;?W>;?lU;?u~W?3rLo?Cq?U?Aԥ? !?ES?lQ?T?0VR?i'P?&qN?4.P? OO?<`EL?]K?6M?8jL?$FFI?U)xG? ZJ?F{H?}쟭E?RC?kѷF?{LD?X.B?W@?i=B?qZA?s D*?X X(?Րt'?R)?g(?u &?Q#?yߋ$? r"? &?9#?t|%?~Y=+?R(-?+?'nB,?k.?TI0? -?W+v/?/1?k3?a1?V2?$5?Xh6?ι4?&F5?>?į-=???aR>?倇;?H8?9?b7?~vj?{X?EN?T{?nz??G2?g???RSU?~fD?K6?)?L ]?w1J??e+'?ݏ ?x? ?s%?D+ ?b&t ? E ?(? ? ?'I?a?_? -z?Di`?է]l?DX@c?.A{? 9p?妘d?H ??[f ?Mp?Vb?(?^2D?:R ?h??n2?ȋ N?@?B0h?Is?3g??<0?BT?K?S?; ?tT*?q_?9_?s?:?lh?b?iO?u?L ?R?,6?`??ĕ?Ɛ?R?v?e?@??uC?"F?? ]^?W+d?v?CA?rס?w?j?ɼ5?({]?b?c?[? ?8?]sJ?o?bg^??u8g?l?Nb?q~?Ė|?Zx?mʝz?f)v? }?s]x?)z?d9t?Yr?v?_zENt?9#U?9,W?T??M8W?%XY?kh ]?u/[?)8^?X?{b[?:=]?Hp?jn?TMr?Zho?Gl?h?Pij?WIf?ُA}m?탬h?7j?d?\`?9Nb?+ _?_f?w a?oc?n.?o}5*?HO&?,,?SN(?~l"?^Z?~j$?5 ?;4?i?xͬ?S)?O??r"?.?.?,N ??3|?0 Y ?짂 ?6?~?r4??M]*?F?d?RN?T?>?uj?*B?OR?(}B]??@'8?k%/3?h]_{;?$6?--?)"?E(?0B ?O0?Qv%?*?;w?o=q?z?<5t? nk?:f?Ưz`?8 w]?kn?搦$c?ݫ_h?. `?˂tZ? T?K)\?8W?ښHO?lgC?~I?}A?2&R?ȤF?AxL?T v?dENň?<|?/?1. 6?V'y?Y~?jh ?,B9???6[?W?+!?+?dn?/ ?,䢼?i:?Ѵ?j?_aֱ?Z_g??X?s?a ?}:W?6h?F:?צ??f櫖?KP?bS?gG?:̎?@w?ڇ??z9?}?ABx?Ѐ^?;|?vIs?̅1 i?EZn?UD|f?v?V)l?(yq?p4@?FF?'RO??ns6?N /?2?dh`+?09?A/?ا3?'?aLa#?9:+?J8%?y?g?t ?P? ?0!G?-?)? ?" ?S{?%? ?M??G5?d?O?e*㹻?jX?;`?YV|\?\c?~GwW?Bf\?#_?֓g?a\l?}c?ii?L*q?`.y?/-+u?T4|?Qn?1uu?,y?O?Im7?C0?8O1(?mbX9,?hc@$?J2?'lG](?cle,?HR ?ѪK?l$?|?sH?p??[P,?H9 ?@6-?P ?ض ? +r?ʱ?U 4?j&?%(?i ?m? 9?'?o{?N?\_?2?-\?$NL?!O'9F?_??ZI?iYB?ф9? 3m3?Z;?et6?]#q ?Z-?>S'?z_0?LC*?f ?܌#1?nz?$6?dS[$?C ?'V?9 G???9x2?;29?0h.?7C?o4?.K;?PY*?RAq$?޸0?(?Q??"?pgf?|K?}zI ?"c )?f ?@Xˠ?'к?]ll?2?H?y?(5?V?H*??7y?!!?݆?PM?A ??A?rO?n#?*? ?'@?V[#]??0qd? ??xII?L?r\??$?_) ??۹? l?>?XB:?0֋?3}?LEq*?>NH?zt?=5??DQS?K?鹀?1 z?~e??޲?7??0?u?d$? :??=jXY?z<2?EO??XQ?t?p?7 ?>>?zi?xZl?3? ?e>??Y?`%?Y{?6?2S8"??N?l9?s?p?E??k\K,?l6, ?q?ҝ?e??%rB?Nx?XV ?q?*?Yb?\?$߱?ܫ?R׸?KKr?f???6?zgx&?liq?:?c{?0?Ɩ?}K?|5Y???x?HI?N֡?A? 6I??R8T?5?}? ?E"s? I?vj?'b??n'?+?:?/}4?@{T?Y?i+Fj?J_?{fb?2d?@6Ia?_IVXc?6g?*Fj?ަe?g?J蹕|?z?&d?!xӄ??aB;~?vl?cG?M?]m?p?hGk?zn?ʮs?\y? nv?Cĺ{?3%q?1y?- ,u?ť&?| z?ɇ1?c6?514?\ ?FbW?R͒?63?ዃ?r ?Wp?n?TKD? 5z?b??Z?Qp?O)om?wަ?Ě͖ ?|?ej ?uK%f?{ˇ?PD?}S?y؎ ?@;?# ?I ?}?b?yL[? ?a`d?'?X??'1?x?w4#?ȯ^?/)?ͷ&?]l*?I"9(?6w?e? r??YH$?!?Ձ%?Lϫ"??G? /?@??Q@x?ӭ, ?~ն?X ?Z8f?GHB?M ??~ C?8%@??'A?vp?Vx?g?0Y?L?zi?P?z,?_b?"?'D+f?:ID?9vO?pG?BD?r7C?`uF?)P?E?F;B?z?oF?!?^o?D?(a?%a??8Z~T???BS???둻H?U?č?[ ?}u?Ӧ?W6?Wܗ?+?>v??JEp?\???.I?C?G^0?3~n(??+)?Ta?Ϯƴ?"u?-z?Z?|k?&?9?F:?V?׋t?fP?(:???4+?? #?l-?H?^?ZR?rp@?D{ ?y?U8?d?(??]pZ ?e?4"?N .4"??Q?~]Bw6?v0U6? "6?/d6?iU336?:J6?lB6?:m!6?Hʬv5?5?m.5?5? 5?&r5?$S5?2++75?h5?^/~G5?Fުx5?XV5?!̖"&5?[5?`55?:5?u4?74?4?i4?>y4? 4?>ð4?^̏4?Iaƛ_4?}>4?=n4?NPN4?i 4?c3?N>-4?kmF4 4?K3?xI3?a3? &b 3?n`ڛ3?Q${3?dT3?qCf3?-7[3?;3?7j3?lJ3?3??P2?ry*3?ld= 3?j2?I|2?h2?T2?ذ)#2?Xmd{2?|;y2?362?$B[2?>!<2?aj2?FxJ2?ti2?Ft,1?o>+2?1 2? 1?7*ӄ1?*p1? B1?`CYJ?G"J`,J?cJ?8%. @J?DXc;J?8GJ?)); mJ?DJ?rhJ? K?GaJ?5l3J?ozL?8GLL?-L?%_L?%ASE2L?܅)K?.;K?sJL?a[K?\K?ChK?9:K?Vo!K?`"QK?NK?{K?E?-ǹE?Yِ#E?`^xE?>ۡE?PTB?"~B?MհB?-B? (KC?_ICC?(`C?4l,C?kXdE?c:E?5/FwE?^LE?uE?ХkD?;I`"E? xAD?&3D?x+D?3JD?:D?gD? =D?V%zD?1jKPD?YU*D?P_C?4a&D?,]qC?n bC?{ C?5lC?܉3VC?gC?C?ƆC?wI?N-I?"+I?}κI?ҵ yI?!MI?3I??# aI?=)O I?`PH?lp84I?>cI? H?̡ܛH?~H?㪯H?oH?}CH?8H?WH?H?.G?Gf,H?ŋG?4$FF?(o4eF?l8:F?[%QF?E?tF?t F?ӥ]KF? =F?2G?SG?Q*G?>G?s%hG?./m=G?o8{G?NG?;lG?nѭF?9ToF? F?}"G?;ȠF?!F?+9'J?F)I?G I?L0pJ?I?O#B?>qA?Z6=6B?l B?jo_=A?dQA?SA?.9A?GDA?XA?KᅮA?}kA?~#0A?%2|A?3*'ZCA?_34WA?pg@?Ji@?m8@?@?L @?Wh@?{@?z@?z.@@?蚔_@?'[R@?G+@?@??e??A@?]?? ??({??*W??fTJ??T??zy-??5[f??JC???gt??]n>?5??A>?꫸>?>?`_>?J4m>?j9k>?{aD>??0 >?|>?Mߗ/>?0Wa#V>?/ B?HB?^sqB?#:2B??;WZB?_B? ˨B?¦B?oB?-?7?Y%7?L$6?SV *7?9l 7?} /d6?!>6?^6?շZ6?(ו6?Ҍ/t6?Jz6?X%C`6?i ^>?dw;?QR;?džXD;?,=c;?f.Va7?_7?K$P8L7?Gn7? ȥ5-;?k;?,wU>;?` ;?.:?;:?¶:?=H:?KI:?f9v:?:?y:?7Q:?r\-:?c:?;>:?R" :?k9? :?19?X9?89?9?;֜9?(y9?|i#2U9?\79?^6e9? {r19?gM 9?A9?1V9?18?[8?e8?^S88?m; B8?ߗ8?E\8?z V J8?^³8?Hm8?8?Jҧ7?o7?7?`c7?K17?`eq8?ޕa7?c68?iz78?VުZ8?%8?H8?uCKK=?y4=?>? X=?%Nx=?Z=??ƶD?A@?~_B?X*?")?>^+?xf*?'?$?;m&?C$_$?E0)?]%?Oz'?0,?W:x.?SD+?]t-?nB0?O2?G_'/?YD1?3?6?mU5?_EP8?3?<i5?P6?QN=?\9?\b(;? ??aw?C:?h?@?.@?@?mx'?_dN?cΉ?%7?4??Ob?f[P? ?sy?}R?ZX?w?v??~Z?C?G9 ? ?> ?rK ?a~?' ?_h ? % ?~0??o*?l?łh?U?@?:B?ms?9s?Ega?P7?qD<? ?\Zx?~?kfr?_͓?]T?b?r??F0a?S7z?j'?uE?_PS.??{i?j?'?r%?CT??#?`?$? ?Q?U ?@j?C)??~z{?L¥?~?$?~?΁9?%?k?+?s> ?}?P?٭\? H?4y?!S?O1?`3*?$?>?b 4?0( |?J ?VE~?P x?]v?( {?]w?7;zs?bCq?85eu?}r?XX?U[?AGW?Z?op]?f3`?i\?G^?n?ttk?Ψ|Hp?\Dm?cJh?Y[b?b>Ge?Tͥa?j?ed?sALg?5 2?$.?E*?T 0?@ G,?:h&?I &"?ti(?ݤ$?8 ?e*?FJ ? +?Ư?F{2?yw?L4C?Fd?u ?t? ?>÷?g/?,w ??\l?#ī?-U?v?Q ?/??@??BJ?@?9݆?f6?2o?|Q?[=A?i6ˑ? Gc? !t\?Rq(N?:LU?-J?Ĥ_?1DQ?BjX?!y?u4j?g_Lq?]|?: f?bعm?t?mQ?!? sa?`9?{s???ɉӵ?a[?ֶɖ?Fb?)o#?v?ѥ?l?xV?ƕ-?Jh?j6\??W?G 9?"$?i?GȘ?-˷5?:9?3?6F7?V=?1`A?w ;?r3h??5E?8vI?žC? G?n9qM?Q?DTK?R§O?b'?e?(?}s?4?kЮ?a??&{"?u?$kc?po4#?GD?+?M(?Hsd ?@3y?pq?^ ?k ?v?\ {?_?D<?Л?-O ???3?oÕ?y?;?-e??M(]??id ?SVI?h?FS)0?`k6?X ?u??,?s?o?T?!?^vC-?XWR?R?yHO??8?0{`A?$Ls?50g?/m?f[2_?._|Z?B=[d?@i;]?U?ZI?ϮUUO?G?*X?jѠWL?R?}مu? \{?Bo?6(u?nW?pT3?<0+z?$x|?E?s,?XZw?!4͙?s/???b%p|?vڮ~? =?I&J? ɇ?Hz?9Go?]t?l?e~?r?8fx? 9d?|:?JrA?!cH?N=?bsD?3ٳO?^?q~wV?&a?siL?HKT?[?j^j?Xaop?Zg?HJm?.y-?)?̺/? `+?L)%?p!?b(?ul#?Nl?׏?H?V?5?00r?Syq?e;? ?ĥd?fL~?Hs?~-]?ð?;?!p_?q>?]@ ?W$?F?-??޲?=?EQ;?Q?-.[?;??U ?Y_?cz?Ao?J>1?,U?#?_?.?RM?/"?S%?#?M?;?ZF? ?tE?q2L?#?fe?- n??y4?}8?j??SA?@?H?'+?}?TF`?%?A?;?r? ?\ Y? A?Н?-?㫴?ۣ??) ?E_Ϧ?h?Mp?m?H?fM?E?)K?gR?NW?&O?K:UU?P^;e?{[?.`?_,mj?3 Z?YP`?DKe?t?ny?&q?:c'w?ݼ ?h1ԩ?9?3?R옵~?փ?#5|?D?ʟ?}r?\Kv?Ŕ ??gh?T҆?^?Ϛ?aב?P?E'N#?y]|~?Xk? ?b`կ?jZ?TP?*HS?n2V?$mK?*W?sLN?&Q?0?x$?; ? #?PO?z? l?I+v?<=?BZ?1?{v#?Kx?lG?4-?UC??pT?? ? 2?=?G,?bM?E3?6;?#o5?L?!? $?_ M?v_??THB?.rF?DA?FJJ?ND?cJ;?Z$m5?p%f??B1)9?Ew/?W?A?&'&?)jr?xa_?Rbk?(e?RŒ[?n?8]b?h?R^x?g~?ytWu? !|?Є?`?8 ?CB?^? ?mk(?I?hg?egX?!ĕ?v?^u?5Vx?+ ?U?uQ?a8?yĬ?U`?3\q)?e?>}N??4?0?.J?cZQ?*7W? ?L9?E?Qk ?M-?yN?dθ?73?A(?H+5.?#?6?Z(?9w.?W}?>(?R#?HJB?|?5?Q ?8N?!s?Od?uUY?Bp ?: ?#?kT`?Tz?e? ?g`?p?P}L?yE?8* P?[ hH?{>?j3f3?}/8?iĨ-?gA?xb<3?@8?=?o?8C?i`?X'?_? ?-?{?>͐? Oj$?<4F?8>?HM?,]E?|P7?S\/?g0W<>?M5?.#\n'?a?2-?#?2\?n= ???Z?> ?UPd?A?(&,??%X?È?1Bn?T?z ?L'?Yi?=p?,H?B?ʟ?J??K?Iѹ?!kU?qcl?\~?j ?Gϥ?o6?f?;^l?G?˳7?M?*q?j?pE?Q?:f?Զ?\ t?&{?en??)t?J>*{?qi?mqZ? a?|1W?Gn?a^^?|>e?K?O S? 3[?ãP?;CW?T?j@?f?~᫪?8?V5?G?"]?SuA?ȸ? ?u, ?č0Զ?o{E?<?a?+?w3ǧ?>?d[?e寥?m|q?ӻ5M?U&?7?bU?V[Y?S?S=rW?ȶ]?L)a?a[?$d_?l+?PY??]?D9?^vЎ?|s?f ?G?,x?h2\?zT?cDa?A~?+z?bF?hE|?v?$5r?Ʈ0x? t?0/m?#e?Wi?;c?Po?g?Ywk?Xl?:D]??osJ?.,Z.?K2?,,?S0?y2i?l/d?Yϗ^`?bՂ4g?Tb?k[?0W?4&^?\܅Y?kIRR?hd N?dMT? cP?}I?D?}K? ?G?)eFh@?R';?~\7?<%5?AB?8[9?<&>?VEv.?DE)?z%?mZ,?x2'?,n ?w?auW#?c ?E?~Sx?"+?O#?#%?4} ?8H?C ?b??$S?>?4R`?<??q??qĆ?;?in?myO.?y.?x?J`?$j?Z:?5" ?[k?'?3?1?&>?]? Վ?s?B?X%?֡Lw?4|O?bSo?ˀ?{"|?‚?~?&{w?~r?|<5n?.,k?4ty? op?u??q?f?4rm?ڨ?K? ?TќU?z?Q*?>K?t]?19?1So?^Dj?)|f?ܲz ??~?254?k(f?B?)J?.U?=M?Q?e??F9??_-?ym?"Nm)?q?n?U?N?7?*L>?{2?j?|?S(!?;j|?ʆ?4 \ ??Lt ?SN?8?<@?鴧?Mv?%>?N?UX?4 '?/?f\?4??qZ?r?g?F?!N٣?|?UN? rD??c?" ?S?W3?sG??Ѽi?^2?W\?mq?Wf$7?i?_??])R?o? ?!?߾)?D?on?/?h?*܉??u١R?b{g`?]E?3ߙ?!?xHc?]u??ĿX?QQ(? |?N?|3 ??_?C܌? a?ș?^??I匑? ?oH? N? G?J?W{p?Qս?:?F*?e@?beG?yh?Xs9???:?q?aYG?Sy`?;?4I?qt0?e?T?4,v?Xih?kWW ?wn??r?bD?5?"?FШO??R1?n?08?7 :M?O?8rK?'M?MIS^R?FU?FXP?ژS?xBS]?/W?&X3Z?-]^?gV?5?x\?B﬷Y?XI?H%:G?K?4I?O1D?;A?YF?[C?@ ٟ?&.?qoC[?1*?)u?섟?8t?Q?ű&??4ʙ?.?oz?ʁ>??`?it?>?M??-?G?&$?TE?E>?0?6B?ZT?A{?p?qZy?a?Ƿ3?G? zh?|?Xt?G.?P?ex?9`y?uV-`? řJd?H:b?wf?A]?'o*c?[a?sh?el?>de?o#Ci?& }???Ϋ?^r? z?We?to?3IdM? C?z'.p?K7x?+,t?χm?_M|?)V? 09?q?|B?+W?? ?h'3"?J3"??t6.?`w.?u-?ޜG'.?3 T( .?>i-? -?eF-?9G-?}U-?`-?k-?q-?]m-?ȟ2P-? %[z-?]-?)4-?6-?oZ:yA-?[%-?2Tx,?o8,?'Q-?,?,?,?w],?Y,?W׊,?iin,?lB,?^l{,?7LlR,?W7,?>_,?C,?˅3,?"Nq+?8+',?Q ,??M1?|E*1?1?cQ1?_a1?hB1?p>8p1?)gQ1?uJ2#1?ZK\1?ٳ21?Rp1??0?Nj\0?$0?d_0?>K0?g‰0?!0?zA0?CMk0?tzL0?ҕey0?iR+4[0?^p.0?' b0?Ct<0?h0?9/?(#/?J^0?iG/?o /?7k//?O}/?9e/?hpPz/? 8\/?~~/?Ǟpj/?s|>/?g#!/?CL/?W //?߽/?\.? @o/?Af.?.?Y2F.?W~.?W.?m$.?Gp.?땘S.?MD.?Ii.?f Ta.?Z~.?ʚR6? 916?*a6?l%A6?L{66?d;5?Dι6?]5?.5?@{z5?5?rp05?_Vj5?[n{f5?<ȡ5?ru5?WD5?׬R#5??HXS5?:x25?YBB5? 4?5?V4?4?< g4?L4?(Q4?x&~4?H]4?Ͻm^4?&jl4?K =4?Ĭ4?i;K4?>vv,4?8na3?z>3?S# 4?3?)OP3?Kњ3? #3?J3? 6\fz3?XZ3?"R׉3?Pϰi3?^:3?_3?SI3?]H*3?gt2?-J2? 3?%8o2?_ ӹ2?2?*>2?02?Qy2?mӏY2? 0e2?ƅ7g2?Z>92?zq2?GH2?H0)2?[1?51?& 2?W1?Rļ1?1?-yt-1?g1?$L?GL?fXL?!놻L? M?b(2M?kjL?q M?>VX`M?K.4M? %FM?tM?܋;O?6]fN?+N?ꅍN?HN?jd{vN?5KWHN?MN?=\N?>N?CDTM?s /M?M?PO.N? RM?1)M?~K/T?lR?%RR?GYR? zR?LvmR?M)R?LaQ?f=R? R?b@!2O?aO?CO?2SFO?og"O?;O?OuO?'O?09cO?$P?O?]<P?RQ?[Q? Q??Q?`iQ?AҎQ:Q?uD<~Q?`]8OQ? T Q?G`'P?VxQ?KP?P??|P?ɴLP?Xy2P?qP?֡aP?>P?}SJ?+J?}e:J?pgJ?ye=L?cJ?!WuJ?SJ?l]J?K?i5K?J?<K?ꆄsL?ZyEL?]wL?PYL?KL?K?U+P,L?$K?3}K?N^QbK?UוK?'IK?ZyK?reuK?K?#%NJ?VE? oE? E?ASE?!?E?nv_E?`NZE?(rE? B?ComC?ffbB?C? ?C?X-T3iC?K*C?Au%SC?u 5E?[ E?̿GE?mw6E?'D?aD?,fD?D?ÇJD?-hcD?'}D?ywD?9D?UD?F >MD?Z"D?BC?䔒C?C?a|C?1C?uC?t]C?IijТI?.n%uI?@H?F&H?bTH?)H?c%G?lrG?1JG?ͭG?dF?7F?qq2F?ckO[F?(F?5@fF?>:/=F?fF?.E?4E?-`#F?nE?F^׎G?`G?\G?眊(uG?n~&3G?nwF?VWqG?:AF?ZSGG?F?yG?]!J?VƬI?7J?lJ?R3{I?\I?1QI?uI?NA?&.A?¿ B?>n!A?A>A?LO~A?EA?=A?ǷVA?Z.A?t)hA?pMAA?!XA?Ȟ@?qNA?@?F@?<@?0@?@?m0d@?=E"=@?E[v@?N@?а@?U7??I%&@?t́@?'??Ve~??ӏ--??߳??K&x??lrQ??g$??DEb??)??I??r;??u#??fR&>?f>? ~3>?v>?io6>?A>?ng>?zK#,>?bv>?me0R>?x>?`FwA? aB?9sDB?mHfB?ڲ /B?"JlB?PRB?`M3WB?=}B?ÿB?50B? nB?^HB?Y7?`m#77?7?0"p@7?#7?o6?6?\7?16?CX6?ʇ6?x86?U6?vp6?F4P6?&b}6?}d^`6?f@=>?">?(&=?;&)>?t>?xO;?ز*;?9Y`;?L;;?|7?w}7?Əb7?,g7?ģ;?Xh:?סB;?dHq:?d:?LA:?":?ʿ:?B$t:?P_P:?,}u:? hb:?‰J,:?N¾:?/J>:?H:?XG9?L`ľ9?M9?{-9?U9?._v9?B9?,9?s}R9?.9?Gb9?a?9?΄A 9?8?)99? +8?JF8?-}8?rr 8?sml8?a 8?1)18?EZ8?VV7?`7?x7?q7?kvz8?2O68?#B7?o?'8?9GZ8?=|8?J8?Bfj8?n=?ģ=?,̱=?n7ܲ=?x0/}=?.W=?h@=?h=??2=?ex =?9C=?' =?YX]\N?N>L?92T^P?M?<&J?hH?,K?: qI?SLE?/"jC?VQG??MB?}E@?CHt*?p'?(?K>,?:e&?;(?0G*?} .?v'0?pR,?:~/?%G2?GI4?X{1?{3?ͤr6?K B? ? %?{?˔?L??@]?@??[?f?"4??V}? z?o4?iz3|?]v?sOBq?kAft? +o?Ix?R5r?2?ɞe8?3Ri?vMc?2; o?g?XeP\??O?XU?r4fJ?Dja?v:pAR? Y?t?5 ?*z?w$߃?bm?jt?`cz?=?V>?Se?]??ɾ1?yb,?.Z7?IǗm0?!n?*j?s8t?p?`WM?tR?qJ?Q^?(UU?[? kt\e?A%l?U>b?'Xh?L {y?8 ?v?3a|?#2UJ?1ݤ?]?mN?xn?vD?p?}蕈?3x?%?*?o<?{p:?G?-׍?a?I?BǛ??[?2A??`nc?"^?AX7X?M?DtR?ܘ#hH?3]Y? 0eM?ЫyR?68s??:I? u?#?b?;J?i?`??u#?+A?>S?r_?Mp?"F??!? ??c?x?g?KH?Ol(??9? ?X~M??lC?:-O,?{g!?v~?"?d\?:?? X?x?.Fq?apkKd?j?_?_/|u?+Ef?r>m?Va?[ZP?_)?D?@?uK|?˚?ǹe?ˬВ?R?{&<&?CU?Kb?ǃ? ??O?38?:ұ?w+?ם?>t?;kP?M ?co??h9? a??,ž??K?Ң??)?g?K"v? ~'??EY?G?y-)??}!!?IVM-?k%?Xq ?E9 ?6E?Uy?nj?bMT ?>/L?b?/Y?2Ѯ? ?5k?2?Tn?5*?yTD?ȷ;?,RlH?e*r??A3?#*?67?و-?m?"?<>!?%?!z%?Mm ?K/?C?`C?<,E?uC?g,!%?x*?6#?oN(?O֫dS?&B?N?E%I?xP?ܪK?1VC? Y>?%5F?=sA?B9?,\4?1c/?)-?H,Y<?(32?FG7??oZ?vLs?81.?3A=ȿ?ᛋ?)?F`?,^?rɬ?W n?v}?p?s?0?O¤?<#l?n?6-?p?v̔?ӌ?:6 ? g?"4?6E?U6}?~?pѰ?qw?gr?ϳOpz?79u?SkPm?7h?nio?Zj?{b?N]?g+\X?U?_e?k#[?aL`?*6?GP>?i???!?d?|?8C?9^?r@?vr?޲?1 ?Q?)u?lgO?}[?<U?N?feX?^R?0HZH?KA?3K?CbE?!V5?-??U?PwX?$ ?#?5? }+?&?3Fk ?֬(?PI#?ֳ?o&?$?w7 ?ɧ[?K? nE?7<?7H!7?4m1?.?!߯??7F4?D׳9?.cS?ANY?.`Q?SV?؉_?Ϭce?Ѥ\?b?|Bk?L&q?"qh?0 rDn?l??k?tÛ?M?†?ULi?G?v7ڥ?mN??o?_? ߴ?Le?w?LM~?C4Ӳ?k&?ӧ?tEk?ˢ?(4?뻁?.Ig?L?C ?tj?陝??Y?D]?%W?W\?a?te?v'`?qc?VUG??pLҕ?pKC?&DH?dw?c?BD?J?*dI~?@*&?s^>H?Jz?eE+v?G|??ӎx?Rr?_i?m?I$/g?pt??k?no?kS[,??<?}*? zQ n?,22? h7?b-/0?%5?epi?]Fd?6A`k?A0|Gg?{f`?[?;%}b?@!#^?EW?rR?֒Y?+%KU?M [*N?I?~P?/K?UE?h;?Ur@?9?7iG?$>?ĭB?.3?a.?1l45*?90?,?!.%?+~a !?ds(?-l#?R^?}[z??Ԭ?z+k?t&?PW??ȱ?_?}?'N?s?Tz?y??ҍ?%Z5?gj??udX? h?u?e?b?2!z?$?PҘ?=%?BE?ޭ?@j? m{?qr? w?!x.o?Q}?1E/t? @x?s?U?[?aV?.?@?0K??qY/? ?7/?z|T?=X?0n\?P?V/?!?;?N?t\'?)E?4r?iJ?&tw?C?)?1ټ?j( ? NT?U?B7_?_d(?*?y͉?k ٭?g죲?G{?|?j ?/?L?G)?ڢ>.?0?U ?ã? & ?]?ҕ+?˶?i?-|?ͤ??}l?_t?aㅁ?ޭ?z:?alfC?/?ö?I~y?"~?M>?Z?10?< ?I9??;?a??#?3N?Yb?cC?=?n?6*?۔?$?_jͽ?r??x?|O?@??J|?Q:?Ӹ]?HQV?'e? ,?!q?Ƥ??IMF?/?K?4?fu?ؙ(?Lx ??䀍WN?0Q?rbK?m=N?=T?e5[?iٝFX?ES_?3MBR?g)W?!Z?wH?RA?U,E?>?K(K?CB?bF?0?Γ?Ro?Vy?Ha?Ӓ?K/?"k? ?T?_K?h?8?;]M?w(?|?mw?{?^F c?a$k?{=g?o?%̲^?zi?>mre?G܀?,Ct?pdz??m?x? ?9?7?Er?U?噅? ?z^?,cQ?݇_?}Q??"?6ȷp ?Y?)? ?3 ?C?"?K2?!;? ' ?rR?,pP#?b?ie ??N.?M?[D"??g?5?wZ$?5S?OB\ ?d?@?%?Im(?LS!?ı&?*W&:?B/+?1*55?g[m1?L<.?}K>?f)?E6?"6O2?77t/?:???Pz Z?ps?{C?'f?S?9l?*c?dqr:?YVB?nj???L6? kH?%u?;bx?ۗ??@?h:?+N?)\ ?Wh?B ?M?yf?ef D??Ɯ? j?j?5r?KO??ˬ#d?+}?547?->??nC?o ? )?W?zS?1S?rn?Վ??j?&??Y?h0?[5?Ɉ?`$?Z?Z?l*?I?.*$?bbB.?<%.?1-?S)-?&-.?a+.-?vZ-?a~&-?Yj-?*-?[-? n+k-?#3-?) 1x-?>N-?]2-?h_Q\-?|?-?-?:,?zb#-?#-?07H,?,?*,?C7,?T,?)%S,?5,?.0+m,?+??+?+? +?7Ɉ+?p+?H+?0XF+?$u+?@*Z+?熂+?WLg+? >+?e0?;zi0?:90?/lw0?y !K0?| -0?Q Y0?+,C;0?(0?Ny/?B70?=/?BZ/?nSδ/?X/? [Ր/?Zׯ/?p2Vx/?_j/? Ꮖ/?6,Z/?AEl.?o.?2/.? _.?9K.??v|.?n[.?7/6?'6?ά?6?ȋ!6?AZG5?D5?AE~6?A5?nȩ5?bt5?S5?z+-5?k 6c5?ϗbA5?ds5?N5?¾g5?K4?2B,5?c5?4?:wƽ4?-4?Yg4?=4?-ݜ{4?t(14?oO}4?֍0Z4?^E;4?a g4?] I4?4?_3?;BE*4?xQ 4?3?u3?!3?E3?gK3?l% y3?Ҙҩ3?4f3?iY3?Y%j:3?n9Df3?HiI3?\q3?22?v*3?(ߞ 3?:N2? 2?~.2?Ň2?o1?W|2?g\ w2?)VW2?'ƒ2?0CV2?m72?_c2?F2?:2?rf 1?l=>'2?W52?Z1?VP1?B1?,Q1?wu1?)\e1?~ 1?Q+O?z L?o_yL?Xe5L?OJbL?;+M?ZM?M? AM?4KM?0yM?m^*oM?n.VM? N?yDN?9AWO?N?ŦN?BpN?+`N??5N? DBN?0M?RѧN?c^M? AVN?7M?9'N?!dT?ڧT?FT?@'fT?NVV?3%V?ҎhV?V7V?࣫U?U?IYKV?l_U?ZU?0G!`U?dG 0U?RHU?MYU?-ձBU? sU?["T?T?=f%U?=9mT?5U?[lT?Y-P?(Q?~cQ?s+C?:gC?/ƾC?PTC?}zC?lE?4C4D?s9!E?@D?;ȲD?WˉD?>wZD?(ʝD?$`D?6D? tD?6=KD?wD D? {XC?sBCC? C?!D?ԃC?̜{C?bfrI?/CI?.ЋI?XI?(&I?H?Nq))I?\H?<#H?nH?RH?.eH?OhH?ϵX=H?{H?َTH?4H?ذG?p 0)H?|G?iXG?Y^E?7kJnF?jsA?hA?n3'@?=Y@?@??@? @?Ls`@?&)a\@?! Po@?mZ8@?˓@?>0G@?yR S#@?q??w_???? ??`l%??$~t?? I??s0#??eL??~&??j\??[6%8??/S??q*>?/9??e9s>?:>?nOc>?*c>?sN>?K>?-!]r>?b6x>? A?RA??~~>?=]>?l 7>?'=?+q=?1>?N=?7(;?o0;?a9;? ,;? 7?&,7?x7?]7? `:?r:?nj_:? \:?nYe:?dPs:?!d:?0:?0 OP:?N]&,:?'a:?BL@:?:?p.9?\xy:?}9?29?1㊗9?9?"$$9?7r9?O9?ŧ9d9?_9?,9?k9?<9?ֆ9?aK8?u8?Qw8?d8?^N8?]Ǭ8?38?yɠ7?b8?u7?Npf8?4Q;8?qz8?FG[8?Y8?rc+8?hkZ8?FOLz8?S=?{sT=?w=?ﭡ0=?o4=?tzR=?u=?t =?$ ?ǐO9?7Z2?DB?? ?/؝?ş ?9m? ?5O??5]yB?_};?T@?pF?7,M?spJ? xQ?,7E?YJ?N?7|UU?aY?BQ?#W?.,?\?ƨ?Qc??7F#?}R?g*?]!?$?R?ʱ?r, ?_?Ӑ ??c?H? 9k ?{FH?O(?c?ǡ?PR?FX?M?yI?7?(?( ?~?[(?~\ ?yzk?gR?J7?Dv?cl-?Vp=?-Yv?N?Y??,܂?*⍿?G>y?3P$?jZM?3?PW?ǎ0Z?Hϕ?O?M?mC4? ??ZdG?]?6?G?#?;k?AE??~?['?6.{?&??R' ?h?Sgb?N5p?Z2+i?~2?zi,@?ӯQ9?HF?>?_`&?#??rN?9r?Rg?~f?Lq ?X??OP?‹???`+ɍ?׎&?k?ѫ#?A?te?Q?~@?}?M; ? Rj?n@@?4?r ^|? ݺ?T(?b?Ϭ?FMO?{b?tG?hq)B?|L?AG?5?A 7e?3yWk?_q?Z?~c?!` j?I?z?݄{?d5?%? V??۷p1?B@8? +?'j6E?H>9?2?%?!p1?Lw?/:Q?K,?.AE?!?>?~X4?9?8P2?yA?KYH7?9Z<?e2k?ߪ??[0?9?B6??]?8u?T2O?~ެ?|X<?m? q?qW?N%?dz?Ü?!v?ؠ"]?&o-?%,?Ȑ-?e:?⎏?(?-X?VD?Y9? }?l*Sw??6Ƞz?/|8r?ʽlm?Qju?@#=1p? -h?]?Eb?G+ [?jj?}xF`?ze?9?P?t0??^?o^J?2$? ??eJ?ܾ.?@?~Z?K Y?y? ?%b?I[?&ZU?RO^?=kX?Q*O?a H?&=R?"'L?|;?_3R5?h??j8?tk/?e;(?}R2?+?Yd"?\b?J!%?\I?͌?'[?3? ?*jB?G4E?)<???R;?<|?K.?=?q ?@?<[?< ?oIUu1?c+?&6%&?V+.?cHa)?E ?֔C?M?b?i3`#???y(w?j|?$Z*t?rH z?{?6 ߈??k?{׎?dҔ?<?I*q?hw?~ܦ?vՠ?JҚ??p?6?8b?fT?(N?.UH?u1Q?~z,K?B?L7?U-<? qX4?Z[E?9?/??3Y?p<_?HFW?]?e?|qk?ab?W9ah?SGq?1(w?jn?m0t?%N ?^?Ỳ ?K?M?o4?/?? jc?rGz/?z?Yb?1??S?0??ԥ?/~?f?!P?B#[?ڦ;?ϫ?uΊ?H0[ ?P ?c?gL?4 ?m?,?IPA??+ V|??2K? d?ᓉ?jm?u?}?Z?i$?-Q?Wӈ?Up?ۘ<?yVv?үǰ?Ҝ?;˳?&Q7?C5?@Z?fk?|+?Qn?(y@?rd?#]?v͓?Cz?L?TYj^?$ e?Kb?Wi?b#\?L b?}e?lW@?.?u?=Eߌ?M?XxF~?? z?ST1?ta~?^/?C#v?궙um?2#r?mki?z?o?JHt?20(?Mqx?Lt?_?Pm?6i?Ɓq?jgl?\7?.;?j=5?H9'H9?ڶe?H~`?bNh? °b?`[?P]W?:w^?55Y?lCR? UN?nM U?ĒQ? I?6e@?E?`'W=? L?!B?G?xN3?n'/?N(7?>3?V0+?'&?;{=F/?7-)?v!!?ڤK?&$?C$>?8?w??$X+ ?)o7?@"?OV? :?E?h / ?9 ?AcS??4?5Vl'?~|p?O/H? e?}8?Os?բT?Ƞ?ՆoW? ????T -? 1i??ғ?S+0?t"z?>F?ЎC7?0ȃ?5Dtz?~?2p[?/W0?S ?Lc?Bu?zp?ھy?p.t?Qɦ?mm?_?~?{?Dk?綆?M?o??8??gL?5T?Po{?fʤ?ο_?c?*ܱ?6?'?ހ&?6?2?{?@g?׾?c)?Sc? ?A@T?a 9?W1?0?q6?I?[?x|ӽ?.ƒ ?2>̶?;? ?{?/( ?rrnr?{?D?g?Q9? ʞ?[!Z?X?5Q?$L?uh?MP???kM?5I?0C?еa?܍F}?o?x?P?Vw"?2{??vk0?og?L_^?iPp????_;???^N??Ь}?Tq?m?> ?g?My?]2?hw?Q? ?Dq|?߿R?3$"?H,?]?֜+)?/! ? $?6?CV?0??ՙ?[?Tߤ`?w?J/? ?/~?lF{? $՛?`PO?`Z?zT?°I?`wa?[,W?Q?|C?v`V;?WK? B?+?F?iă??h?F ?㧧?FI?45~ذ?%O?/C?-g?[%Pdr?7]?'i?"cQ}?0-?g ?OUF?j^s?nƂ?lϤ?._?B?S??ii?ZR?=`?l ?鈏?XY?;6 ?r?s9?^b'?<-"?~-??H!? &?\23?u5:?AYA,?3?I'?s?KD?@?,L??\d?U?+M??5?7?_?OfA?=?n.? v?_?)%J?Zv?<z? l2? @¤?2?pƚ?ڙ?? S?JT?Js?:?ռۨ?[#?ӰW?bWl?CW?:??p?]v?"8?'f?t*I?? ??2**?vq?YI?xF?}?Ue?nZ:X?4?^ ?-ńo?S?S?9[?FPe?F?n?I0? OA?x"?#?mbi?d?LP??`Z?o?aw1"?1}0"?Z5 ?f)?5o)?FA'w)?.)?Lc )?4\)??`\B)?Hi)?GO)?0&?lL&?b &?%&?uz&?l&?wq&?wLb&?@I&?:q9k&?`~S&?bT1&?-&?A/%;&?y"&?L&?@ɣO%?ݚh &?]?3%?%?Y%?%?f %?R9͟%?;U%?uK%?H%?TuFm.?H)سP.?ʵ3.?r]/^.?<"B.?:C,?.?}-?*e%.?͸.?/"p8-?'H-?)/-?8-?k-?8C-?YE-?-?i-? HM-?K 'v-?8M\-?X0-?,?ˢF-?p:^,?@@-?@-? # -?8J,?X [,?,?ņ(,?6P/,? k,?Mw~a,?c|,?:Uf*?K*?j/?`(/?E/?\4/?cev/?-vv/?/=tX/?|5/?|a}d/?:/?oO/? yF/?=+/?ؠ/??.? T/?tQ.?T-.?.?S.?z.?0.?Z0.?k>.?"g+6?VC5?R 36?I 6?q5?A5? |5?mkݾ5? 5?ٱ^5? P5?Гn5?85?˄4?st5? j 4?LH5?`4?״5?kաͿ4?*4?]4?*9U4?jt4?84?"V4?7|24?9Y4?FH54?S4?7z3?s3?j4?(Xy(3?Ap\3?23?1W3?I;3?5s3?r93?.V3?sOX3?03?v̢93?sXsV3?O3?G2?c%3?ׁoX2?݄n62?2? }2?x]"2?s1?w$1?Djd1?^~1?3p2?w(?52?gR2?lM_2?42?qvcQ42?alQ2?yM1?&'\}1?F1?ߟ1? ^/2?&~1?`71?SO?nu$O?TnN?j5O?X O?L?F%M?LA'9L?q M?VM?|M?`:M?oۨnM?aM? 3kUM?mIM?IM?ZMN?gN?dKN?-hN?FhjN?|Z N?D< ;Q? ʂO? :1O? dO?< O?ѩO?XQP?;p^O?,BO?gBP?wpP? })P?IWP?1x^Q?]o.Q?ӟsQ?2FQ?P?a>P?YVCP?O>P?33Q?įP?ɈbP?S P/L?{LmJ?XJ?|#uJ?YJ?_=¸L?CgL?62(L?qNcL?֋L?NK?KpVK?,,K?K?A2J?G %K?,PK?緌L?ͨK?ydK?cK`C8L?QЛnyK?sK?K?MJ?~XJ?LYJ?+l#OJ?Af~E?S*E?oTE?stXD?\JE?'E?t 8QE?d5BC?hC?ݛgC?׳C?#=1C?hcC?QC?D?2ӈD?ߛXD?WD_D?jsD?ŌD??3ID?7D?aTC?xD?_$C?ߔcD?t-|C?)d(%D?{ >I?F| I?,YI?!xI?%H?ZH?׻iH?ITgH?D#}H?kJH?H?Ҷ`@H?ŢH?/\bH?)H?G??yG?l%YG?hJ wG? G?^[G?%G?rq3rG?lE?E?E?E?wLE? E?e3+F??0F?UaF?֠\F?wq}%F?^_F?%l}F?3|/G?"b F?te:G?CEG?BMdF?NoF?G?ȈI?I?ȿJ?iI?N tI?#j8I?ݘšI?4/;cSI?^^A?Sg sPA?b uA?0,A?+?A? NA?{rA?ҋ A?^@?. 2g*A?@?@?S@?]?@?O@?nV@?LS@?# $2@?Y??=)h@?V7 @?;PD0@???d??ċ??_Q]?? ,l??$_c#??2!G??Q>?C ??J.i!??D2^E??>?l>?~>?[Ye[>?>?#o•>?\dU>?A?BBA? əB?XJA?A? n@B?\}B?IB?>McB?e-yB?ٺB?+\#B?B?K C?_= RC?jo C?(A >C?m7?n*|w7?AX7?_7?Wz/7?y6?y,N7?6?U O7??J6?E<R6?|6?ɢ(6?>E6?Z:T6?ck6?o>?v5>?ް0=?HR>?,Z>?=?޻=?%] =?/xZ=?;?ȃy:? (;?U):?G7?+f7?P|7?m7?O1f:?ir:?],:?prQ:?v B:?ç3o:?5:?7n1:? :?euO:? :? 9?$Չʸ9?=9?0Ai9?ҏ9?;M9?"u2bn9?W!9+9?9̢9?*kL9?#w/m9?s Ń 9?f8?=C8?t8?ٙ*9?R8?[8?328?NJ8?(8?$l78?My8?(48?f8?B8?3P=?1=?Dm=?*=? "S?8:L?xB?|V<?!)F?4WxB??vf55?j.?njes8?,1?@'? ?:I*? }$$?0v?[4_?Xa?H:'?U ?j?96??!?dσ?H: ?PzLֈ?%I:v?0Q|?j-˅?R?@u?;h?ۂo?9ne?լ2y?r a!l?r?'?lvk? u?aN??ݲ;6?B;?ձA.?HB(?f0?Τ:9,?Cl#?"?X5&?π*!?'s?I`?S?? Q?EX. ?Y??KH?W?^s^?c ? b?g?̋`?8?#~?+_s?rD??M ?7?u%?a? lz?z9 a?Om??Ԩ\Z?kqg?>1Rat?^?ٔP?P0|?-?~77?J?䝘՟?NX5?ԲP?jDݾ?1+?W{? Z"?Y? !?O?pFC?,0H?Юk@?͑F?OFN?]T?t&"L?mQ?]6Y?r_?$9W? ovX\?ncZ1?(?nc7?lVg.?Nk??FVr?rZ???'f?1?)v ?"t?X%?e8?7 ?11?߄g?b{?fC ?Q4 ?o,??X?*??TjW?X#P?~'?h( ?`4?e??$:? ?F?ZKY??%j&?i?^?8?}t}?,Z?og?E?d@H?[???H?d!Xk?\?=NG,?l?|?-k? ?b0t4??CET?"ҋI?N7?Z?mEBC?lZM?)y~?@?OVex?U?\W ?/?d1?m ? %?a?-2?^"?T-?z*?|ׄ?ӏ?7?O]?P?X?`7?V?\C|?HQ<"?ę?;V??dH?Y?L??O ?MB{?z~??V)Ρ?t?Oڞ?vZ?Ml??'^6?`S'?x!?,'?1C*?K(?j3Ŀ? ?o%?[.?]s?dB?RTG?ߊ@?-O?&MG?ب9?h{1?'r @?\7?җv)?1J?֞u/?'Y}'?D x?W]p?M?"40zy?*GV?4f_?isRO?Y?/h?(q? b?]k?S?ǹ??D??u1?4?}$?N?"lb? &?V0?YN?3?NF\?Er(?;:?]Y?0=.? #?7z[?p?B?="?xć?^t?bev?TJ?aP|?l?[Wb?r0s?`'!k?K;X?*UM?+J`?CU?h? ?0m?9\D?n~?|#i?s?T ?`?aF?Ł??L?q\8?`A?zG?=ҽ?Y?w?h?D>?+?#R`C?Y0nK?Y?r??2寧?~)?U ?-&?jy?1? -?i?/?;?;$?nG3?uT?FH?7`?fS?21?塊!? ل?m?zj&?Ev/.;?t3??qY(?^?ܝD?$Q?1?͡E?`A%=?!0?H?Ǟv:?gB$?i ? ?pX?-?)<?)???._c?ȟ?q:?2??>@?u?W???7|?֨O?`?_*?D?3PQ? =?4r?p?BGh?v4/?|x?jp?Cc_?L*S?o>o?c?3F?% ?b?DL?:%?,*?q#??'9(?/?o4??-?`2?Ô]?kcX?.ZS??Z?{U?UN?k.I?/P?=^L? D?| 9?Z>?zX7?eF?[<?x7A?j?a ?F?s?P3@?{??Òg?? )??s{?Soz?٬?uf?`$ӯ?qy?޸a?('Ɯ?4@?ԪU?C?fD\C?N%?+X?֕?^i??* _?!,}Q?|&:}?U?y?%x?TPr?}z?>g v?um?Nb?Fh?_?;_p?ͮe?6Ak?3}?E?J??eU ??'A+?灙g?Zsr?t]?^?_O?lu?\ ?X?K*?h?QAb?%7[?}aue? mC^?zuU?1q^O?2Y;X?R?JI?uHyB?mn0vL?= F?05?l ?e??Р?gb?NiQ ?l%? G1?+?O[\4?L /? @&?Jw? = ?Y6?Eb)?%?LC#?_}?K?z?]?=??&2 ?@NT?x(?f#?DS_?B(f?C?Ad'?%f,!?p"?|b?I?3?<6?49Z?F;T?3N?׼W?a1n5Q? 0H?<?TjB?9?0K?e ??M:HD?nw<`?^f?]?Yc?J+k?`oq?+i? lԳn?Iw?d}}?@z\t?Dy?FUI?t ?L?\?$?9fD?7?ُ:!?߂?цjb?T4A?N?^?A0<$?8?t??Q^\?l'??2I?G?Dl[?B-d??g?l&??>?Yt??\c3?6/?F?I?bGZ?Y?#\??nm?? ?kж?W~:?D?g7?? Vל?-H?ߓ?(?AB?ݫj?R?;? op?z0?I3 ?nde?&l?,)Vb?^%h?ǖ?V{?<ݍ?<? }~?Hxr? xx?׵=o?+?u?rX{?R?}H6?+?Xm?k?]Be?__o? 2>h?c3;?~/@?vG7?I=?i<C`?dW?S[?B\S?Ycb?3W?[?WBVO?`!.E?@J?\B?&~S?= -H?]AM?P9?]3?jEB-?9+6?J;h1?>?e+'?[?$tCA!?5N+?Vd8??K#?i'?c#?nE? ??D&?^Ğ?AA?Ix?f}z?L, ??9??  -??L;?$Gr?lU?1D̦?3(!y?O;???.8?W[^?,Ѷ??̡?2?I?xο?ǻ?*$?HK???I4zŽ? ?-ڐ ?! ? I5?6J?N?`Ͽ ?3?hu?d?(?U?/?f?xWW?+?{T?Q??&h?ȗ??|u?,X?m??=?!&?&g?4k?YZ?9?Q?_e?д!?҉?I?Nn?~p?$_`?V?{?xF_?ޯ*??*S?v?UL?J?9n?f ?I?2?Oc?0?q?[! ?=?.r7?b^??T?G uA?MJ?/ _?:?P?RWG?IG??ISL?Lo?7?3??t}j?_y?@R?]S[?rxM?f>}?Hdn?? ?1*?9%?G"?lY?.%?,?C﩯 ?D?xk=!?q4?@? -)?6?gt ?e?h?r ?1{U?1?TB/? v?aI?4?.$|?5V%?U1?Q?1?LRe?dM?aש?g?]?A_?B ?٢?M@E? ?WiC?i&t?S?G-?y?E(?+4 ?A?Z?1?&/"?N{."?{n?٨ )?©)?()?ƞ$)?!u)?@v)?+#\)?Tw)?ջi)?/A)? ')?QJO)?u3)? +k )?(?H)?r(?8&?& '?-&'?NWf'?ƫ.'?7%(?B)(?fnc(?BH(?U$ޣ(?e(?|g(?ɵ(?p(?5q~W(?@t|(? d(?M!E>(?'j$(?+J(?o0(?` (?WU'?ZA(?f@Z'?'?X'?o?'?'?Y+'?؍̋'?r~'?:җ'? {r'?3y9@'?RY'?hl3'?,{~'?UK'?Te'?&?T+&?Ɠ&?m\&?n_&?靗&?]&?`&?l(q,&?5iu&?ND&?L]r]&? &?n6&?'M&? f&?l^%?:;&?.zC%?A%?c3&?:%%?J%?=|&?(qvo%?$W%?Vujy%?Ppa%?]?%?7(%?p,I%?[¿1%?u~%?X%?qǧ%?ݤ%?3ZhA%?΍,k%?Y%?4u%?&Q%?,˚$?%?^%?$?X$?V$?6{$?9<$?ٵ%$? $?0$?r$?ھ|#?r#?@VFT$?vh#?lj α$?Q$?F H$?\%r$?P$?ok$?}3T$?cXVG$?S.$?]$?QNu$?w#?و#?sf#?Բ@#? eh#?}N҄#?SY#?m#??Ed n#?sZLW#? w#?f`#?K@#? e)#?-?Mbؖ,?NC,?]+H,?,?V{o,?%}Q,?j],?gxc,?~J*?L#*.*?{W*?:sQ;*?hK*?S])?RxM)?9p)?L *?w4)?(*?dFȩ+?&a+?/:+?%!+?s+?X+?+?㲶d+?6C=+?X!+?j`HI+?,;0+?5^<+?If*?$Py+? *? Pl*?v0>*?*?׍*?Kn*?>e*? g*?U…|*?88e*?ѧI*?_ 3t*?X*?ɵ;p3,?G|,?3maE,?~F`O%,? ]5+?L.+?ߧ+?˥LO+?o ,?ICh+?+?*@J1?Ml(1?Nd1?6Q (>1?1?'L=n0?PZ1?p0?y)0?@0?=0?6|0?(p0?-vG0?'اc0?^)0?6IM0?eyH0?ud0?( 0?D/?zx*0?L4!0?0E/?co}/?xS3?h/%3?2?ea2? ^2?~2?Oq2?=b2?$$E#2?9?M~2?ٸ~1?Rj1?ށcX1?!}1?B32? G1?2?{JOO2?8Ӥ1?Bv1?#$y2??]g? i?6?/?㔿?[ ?-?kcm?WѦ?{?~8+?Sl¹?-Q[?#qF/? ?OS%?Dj!?RL`!?J 1 ?| !?q5 ?̌N ?i ?4J9 ?r$ ?q ?3?( ?*R,? 0EZ?`?iON?۶?DZ?gl??I<?{t`?۵s?i?}?b.$_?AJ?<'i?֩T?+6?sS!?!@?nɯ+?- ??vq=?%?Ags?&?'^?f?3???}?U=?E_?XL?y%?BIk?J=W?nQ?4Q?NO?żpO?DcO?'+hO?5$P?cPlP?f>P?$~WP?EO?wօ=P?X$WkP?L.Q?ŶZP?# P?TWQ?}P?OP?\T;Q?=O?C L?1~EL?4L? *L?[SJ?8OnK?cIJ?`6}J?S_L?a yL?YzL?k8L?3+JK?vK?*m K?h K?~XK?gK?LK?XPJ?}NJ?*J?ҝsMJ?ɳ# %E?x^D?GE?-E?y-C?<C?LHypC?&C?JD?VGD?3QD?D?0q;C?a};D?CEzD?̌tH?JH?d!bI?HH?[H?bBKH?,H?:`H?IH?SG?>G'H?--G?6G?&[`\G?fy%G?2,3G?VG?6]G?˥߄G?PA$E?"iE?E?БVE?C֑E?<F?kE?%"eJE?XUF?E?uОw/F?; F?7qЏF?E G?glF?UO3G?ʃiF? eF?C)F?rI?WJ}yI?RmJ? ΢I?=R2I?8DH?v[I? .I?KA?A?zJiA?4A?2|\@?{(@?]@?}@?Sl{@?:IB@?m.?Y>?EYC>? H>??k>?| p??qΆA?WA??TJRA?1A?I*MA?tI@B?%A?oB?iنB?ޚWB?GB?%k$)C?cR/bB?h/iPB?d_B?$e[C?8ZbC?'C?C?jn7?7?.#7?7?+:7?WE7?;7?6Z7?w,7?A7?\,6? 6?I }36?ƾ6??7yp>?1q9>?r>?A7Z>?CQД>?=?ѰC#>? =? =?RG=?΢ =?CJe=?S$%:?ӧ:?b;?WB:?Jtw7?xк#8?|7?~24 8?Um:?1w>:? l:?WW:?"Ut:?ѽ9?#b(:?g9?Lɵ9?^D 9?%]9?'i!"9? K9?ʛ8?EN9?"X8?t)h9?|^8?ڭ{-9?9T8?2r8?z| 18?'U=8? 8?< {8?xg8?j}K9=? #(;?2%;?TNV;?2BV?g: V?4;cV?_8V?V?To V? U?_'EV?:]LV?( |!V?ôW?̧W?QW?6CgW?X;W?9fjV?7V?oY???el7?GW!?s w?< S???| ?>?Q&(?7\?N?A? k?MA!?JѺ?~?6ݥ?l!?j#??_?n;?36?aq?@?>_?R?&? ?nɃ??2?Ts?Il??8U??  ?)? ?ƃ3G?V@?<9?RD?`=?:)1?c*?a5?}6].?%#?,G?c?1m ?$ '?7i]?"??O~? ?})?v-?ؽ?Õy?#6;?֝TE}?rr?q$l?-fv?7o?*sMe?p^^?h?9) b?TrW?SwP?I"[?DS?2I? B?L?a0E? ;?l-4?C;>?ؐ 8?5V#.?Mnc'?Y[ZD1?V*?C ?!l?8X#?y ?,+?|\?B} ?5WB?i`? w+?:<?b? ?M?;Qd?.Ɇ?|?lo?)6v?&wl?5d?Ԙs?J&z?[?5? &?p?IA?cp?{#?Y0? *?r? S?rw? 9?a? 3?rɰ?PY?c ?h? ߮?#m?eȼ?IQ?W˿?/? ܯ?A@?Ź? ? Ƨ?q?&??P'Q?GLo?hق?NOe?PD?`??_nG?>bB?&2?Z ;;?#Q6?;O8/?*>?ip4?wy8?J'J?~j `L?v7E?CMI?rl]?.+R? .X?>9BP?"Hb?c]U?Z?\N?EK?uHS?ީM?A\$$?KV1(?{Y ?8V$?@>kT,?tfGz1?)Zd(?R'-?hy?TC?i;Z ?C?X~{?"g?my??? ?-mM[?"%?Y ??mNC?=m?!?\U?BS?>L?Tn?iw?w^\?ӡb?ڰq?d?܍`?>r?? m?$,?;{?H?z?}apm?*?s?"?W{-:?bo?ci?Yss?ӑz?_?SC?3?+8?J.?XJ2?7=?r B?pC7?F<?3QX1*?֐$?M<.?Iq(?z?7?!#?Cxq?{ ?y9?e՟ ??\?,Th ?)?TP?]/?'n$?6$?-.?ؽ?Fz?|?Ч?Du?H[?^?'?@=m?یy?.c`?)ԓm? M?m?3y?+'?y9?Q?kn#?e*?-]|6?/-s?2?o?Է??Z7Ƽ?KmI?8$HO?Y5"T?yiY?F@DH?MO?5|T?5^?#>ie?øY?YOa?q+?t?bw2?Zje ?za ?t?AnH2?P]X?E)?R$?*U?+??!E? ɳ?M?B ?S?u9? 7m?t ?h?Q?HP?xL?SlK?ʝ?? c? B?Y?|$?c?TO? ? ?ѫ!?{??]~?od^?9ƈC?]9?{\ H?^+?~\1>?ڜV?h e? t?+?WL?Uy`?gno?6y?%Yk+?'2v?OVK?_0?gl??8?x0ת?]?qG5?E?pZ?Ȕ?E{?w\r?Ci?3{?q?Rc_?ZG?dS?ɘ??ӵg?NM?`{Y??cA?y?8?c"?<`H?? ?#Y?\4???__?Ȱ!?S3?r,?qb?(I?ǜ_?1D X?? l?lh"?e?J0~?@.?=[? ?t-?D-#?(?8u`?|)/?F6?Ŝpĺ?$:u?v*Z?yp?4pk?"3?;d??BR?.pLG?v75?Ʈ>?6Y=x-?@YL?Ň8?aEA?J؄%?p|? =t0?g#?~z?v-^t?SW?#{?T\?*d?/wDm?8;%W?,t?MGa?0i?†?c?-?kXX???*2?khF?Rv?ܢ?*?z'?&%?u ?[?YB?^R5?PPJ?3K=?MR?آ~?D?|?׬?B??[w"?ܮ(?ޑV?>" 1?1{?^"?!wJ?[?C?=>?N?|-5?d|3y?j/?^-V?JI7?"bO?"B7?$? nD?1?7?֓?yQ?Pl?,iA?Y?4?'J?r?2?MR?1Ź?,L?em?yģ?N{5?k?f?0ir?QI_?%?H?O8?$uw?f2!? -&?#f?C$? #L+?4.4?0?^9?V*])?1x0?-!F5?lb?@:\?A3US?-X?mN?O_?BycS?9) X?h]I?rd>?`oD??I:?dvN?Y;TA?\'G??ҋu?o"u?R{?O2ݩ??d?&}ɐ?:3?&Cո?ID?g뗼?]Ͳ?ө? ?B~?z?w?f-?-]?h]?l1Ŝ?s?@?D+ ?W?:X?l?[78}?kZ?Дx?_K?mu}?^R?s?OSh?8n?}e?!nx?wqk?̌Mq?B-??J ?b&?=?Ü,?7?9?{c?{n?j?1?]#y?@?s?&dp?4yGi?a6"b?^j}m?Fhye? [?O?+,QU?O#J?V^?LO?g'lU?|D?ÿ=?8 ?J?A )B?Vr/?T?^?7L X?0N?qIA? XG? <?mQ?>cD?J?5Ezg?(q?Ol?av?ӻ8e?;ܖl?1q?yq&|?ճnނ?v?n ?Ѝ ?p?m4?? ^?Lr?)WC??7{?z?r`?/DD?ØZ?딎Z?v?&)?m?2(Е?v?Z=?݋Q?rྒ?Qa ?FL? ?ԓO?T?<??L2??Hk?jF?$(?rz?}?:gJf?զ#?'tƄ?Kz?)?*?֑?略?R?Q?d$?z??1m? =?z?B?!?A`?QJl?NWr?F"h?bo?#M?^y?QXt2?eg?\#vv?|?]ǂ?x ?.-? 2?>cO?ize?g^?;i?]{a?W??0E?= =?\3kB?}OW?١,K?HhQ?zDZ?VH?aX* N?vIT?efe?\:?QY4?0'$@?:?B@t/?Z(?l1Z5?9T-?{?v??>r?( ?9W&?5?"X ?Me ??`?uk?n?=?J5?IK:??pp?bH|?W.?\L?@.ɜ?8Y?T A?P+?v W?%5T?k?4a?7???F}?.*}?m?,}u?1sj?L洃?'Ks?%d@{?ߐT?5)S??T?o?5?^:?US?h%?g??ݥ?q?.?qB?ϊ^?T ?q?>p???ǖ? q?JI ?Fh-?}/?Y ?R?H>1A ?u?K?!?]?'zr?[?A?ؽ3E?ʎ?ׯ ?e?c]?U?3a?IOKY?~$xDN?hwF?$)R?ԜsJ?,8M?7?x?{`,?NpZ'?x?җ|?sM u?]Dm?L^i?(릨?>q?Dx?{?5 ?,F?1XX ?|Q?i?Thh?ck?q?C`??~?9?aQ=m??T?%E?9??Hm?0I?dX?~ҹ?r??[?ƅ?H)? ?=?Ϯvx?Qk?R0?&?u?"_?1˄m?M3?&4?/?N?68&'? ?'?i'?Ew2'?OLD(?!"(?V(??AȪ(? (?z o(?dm(?l{(?W(?k[=(? c(? L(?"#(?u (?!ӖW2(?Xd (?<>'?1h'?'?,,'?wӽ'?aGe!'?'?\s'?~'?F:W'? q'?tJ'?sgQ'?a'?+B{'?wLW&?ӊ&?dvo&?fm&?Q`&?C&? a&?ϥmװ&?-(&?/^o?&?p&?U5T%&?[?V&?#l&?c<&? S&?F%?-qD%?ܲ%?es`%?ߤc%?D߻ &?>T%?F$%?kT,#?p|%?6 %?i'S%?#%?07Y;%?\(]%?4y%?L|u,%?9D%?8GB%?--g%?pr~%??%?7N%?gAd%?(|%?$?jS$?pq6$?zM$?͞a$?$?BT$?$?>Q$? ~:$?/ #$?IC$?F.$?. $?5W#?b<#?1#? u7$?26#?9n*!$? L$?LӾg$?cf~$?H_$?PmpZ$?r3n$?OM$?#?I#?NE+#?x_#?Af;#?y7#?,z+R#?dSIi#? #?=TD#?yQY#? qq#?"?$#?"?pj#?b-#?Gt"?D*#?v#?uP"?*ev"?Iɕ"?('"?|)`"?#I"?̱AGi"?1S"?\3"?% Ӿ"? M ="?;B&"?e"?Bս!?"?ҮP!? "?Rs]X"?>"?g"?9-x"?5Z"?f"?ς"?!?w!?h\!?{!?; !?F >!?_!?;!?\r3.?Vck.?`nE.?%~.?_Z.?Aİ.?-?2|4.?/.?iK,?A ,?4gY-?,?lJȺ,?oF:-?- -?Nc-?Ǜ2L-?-?z--?VaW-?<-?-??-?-i-?^e,?K0YW,?}!wv,?;7,?q m,?QF[,?ez,?L",?/_-*?N9m *?+<*?o *?F{ )?]q)?~R*? w)?ʾSB0*?,~+?XjiV+?kr+??=+?fy쇧+?0"V+?K$r+?p$+?|QV+?E=+?+?Ny*?Sc*?*?0›*?ls]*?v*? lx*?%ރ*?@+K*?g*?E@*?(oM*? 4Y*?2u*?$3,?+?';,?,?ɜ+?|+?U9+?wFE+? x21?H'- 1?V1?'.#1?UF0?Ѡa|0?E0?Tx80?|+=Μ0?gl@s0?8Wv0?\O 80?I0?\M"0?ž]0?270?I`ݕ/?+@/?/?ad/?P0?d /?uo/?g @/?3s/?F/?/R/?Ib/?%"/?lc+.?.?-©.? ~~6/?Bd<.?B/?jQ5?ZP]5?e6?S5?m5?5S@5?qW4?M4?ۢ#4?cd( 4?:k4?;84?i!4?0Q4?C\z4?W3?"3?A3?34? n3?3?"|l3??3?v3?qA!R3?dĨ3?\82?a2? P2?$3?~2?Z2?oG1?._k2?3542? 2?-V2?zJ{1?J1?= 1?Zf1?2?WQh1? 1?:}?5Yj? 5Ԇ? Fes?RV?R$C?__?L?{ʪ/?o.DM?>9?Q%??=K?NFV??Y;u?+cC??%f?e?UZ?Ks?PF?v;?S{?/? +?ۖW?쏻?]?Y?nQ?V?أ?tM???`E|?wp<?W…?lJ0??+?F@S?1/?SZC?5/?&?h9?Oa%!?n!?UJ!?Qw!?"t'Y!?-#C!?Q.!?<>!!?fa!?6!?jL!?*!?i !?&s!?Lq!?E !?!8 ?)_ ? ?$' ?0 ?QW{ ?^Σ ?<³ ?q ?*-R ?em_ ?j ?&>m ?(wu2X ?Onw ??-b ?~0C ?1. ?&M ?8 ?F; ?%: ?$f# ?RJW ?tD? &z?X \?6OB??~v? ~?b ??~s?hʇ?,?]?,s?لD^?|?}?"h?ټ2J?ƻ5?CT?X@?9rO!? S ?\I+?jw?K?/T?UBt?ǭ?H?O3Q?0 Y?}Q??"c?3?dE??~?W?cj?M??R`?(Xnt?sO?g/O?6aO?'VO?R;N?HN? O?/z´N?QSM?M?y1M?5oM?%>W&M?Ҧ[N?@N?w+zN?̖mRM?o"S M?^y{2N?DNM?[rM?$5L?L,$M?]L?"vET?}PqT?s4T?d<T?yT?O*NT? FrzT?7;U?U?XxHU?QU?x2T?Z]3YU?U?vS? mbS?5S?)'9S?f.T?qS?^NS?'NS?')RR?*|ϿHS?x)R?R?SR?bR?pvR?Kt R?9Q?:I0R?BQ?#Q?l8Q?]R/1Q?٘iUQ?_$O?p)P?đFO?;,/( P?f`8jP?P?P?W_Q?bIP? eOP?3&P?%#O?0*UvO?cTO?DF&O?vL?&UTL?kڲL?ouL?J?9P4K?D_.J?{ K?LL? i,K?ڗK? 4L3L?YZK?񍊦K?gK? yeI?E+JJ?Q% J?yJ?)NJ?ƎD?Cs8C?&#cD?A*s'D?"D?/E? C?uAx*tD?rD? 7D?R BD?H?$? ??0<>?Yc=??;>?k6??v8,A?-cDwA?-A?]wA? >aA? D?Ҝ=B?w阘B?>HB?A!0lB?wB?}C?wՄOC?C?a]B?fc"C?~C?.p7?xg 7?i:7?(VEf7?- 7??̟7?*',7?֌7?TE5?6^7?jl87?jw\7?P#6?ԀVp7?i:7?[H*7?#6?`6?tZ6?л|X5?Q6?{76?u6?;phʝ>?5ڴC>?rp>?6++>?x0>? {Y>?aw҆>?,=?6܎=?S&>?@/ =?KA=?MGo6:?BҴU;?(:[:?_ښW?yw{vW?ֱ.W?2V?e_V?i5V?D7|V?ELjɫU?X V?P#V? U?6J?V?مu ?ٮ"#?T$?e6B?H>?&E&7?%}B?N ;?'%x/?xu\'?R[3?.+?O% ?0?I3$? Np?=?xC ?`,?!7Y9 ? ?Go|? ,?2c?`wK?rzv?]??Tc??2%?ښ?/&U??{{??S?fOؽ?:%?-??;`?ﶤ?.Pf"?`q>?jQzz?&G ?rf>?̇%У?Q?4S:?-c?~V3?ߢՉ?vs?d?+?{?Us?Z~?rw?^l?e?g p?\@h?Lró]?ҽbV?CdO?d.KK?Jla?hbR?F)Z?𻡍?Ԭꉣ??F?Kx?d??Sq*?uN?٣?ȸ?zf3?C]?L?0F<?4m.??=1?`;?%?-?$I?ws&?7??v_??>?;?}F?AP?ɏo?1A ?S?lx ?Gz?`O?]$H?`@?kL?SD?F i9?$2?q=?U 6?*?Ͼr?Mky3#?W?#.?>?} '??I?;?K?#/?>@H?rŒ?i^??ɋ?rY?y? v!s?^|?mcv?~xl?~e?_ o?yQi?!)^?nP?W?L?!Mb?AU?a¨? d?.Y?=S?LS?9{?'?d??/"a?TX?{,?-H?P?}V?&|?ȿN8?Ud䗢? ʺ?jJ?؊G2?w:?vg??q#?C?{U X?YڈL?䷟8R?:_?LWNxE?4ST?xN?r'$?4/?)??6?%?qy+?ߙ?{?9<-?3JL ???G?O%q??Qo?1R?j ?a??s̃?y7?r?F?A ?=b?᠈?KaE)?-?K/?8?,z?O'?\p?u~?EM?F?/`TA?ħI?6ND?XJ2?n"<? W47?pT,?`??WaJ3?˱+58?&]'? ?,/-?cC%?h? ?~F?ϻ<?{?h?? }?@m ?0?G?+)?&?&?2? ?ӧ?A=۔?W~S?؝b?،?u}ٗ?wFT?m?zpy?C?j>_??^p?TM3i|?~Y?^7?R?7tX?5٠T?b\?,qP?5PYW?-d?wk?61J_?" h?ZZ{#?$q?GQ0?b$??_??=zΈ??/X?F?}f ?^??oܝ? )]??ˬ?hj5(??zo?ye?5a"?VC?!C[?촍?b?αa?kFz?I? ?PB??mV?L6?b$H?zaj?W{?a[?k??0W?<?i?4?MI?P0?u/:?%H+?᪑? ?=o?aS? nHa?>b{?dVK? k\?KgIj?5?/?۫jv? !cŇ?3h?)aΪ?2E?( ?k ? ?Da~?y: ?V?Hǎ?Ӕ?d?eLj?\(?5n? :|I?d{?"?S??!&,?}?{?qb?7Q??ݬ'?ӥ??x"?׍t5?FW?!9o?ԔM?BDc?,?[ ?>?Խ '?1@???ޏR?n?:?B?j-|{?>?^?϶?Q\m?h?j:(?8K.?u%? R,?/P5?|g<?Ly2?aQA9?`"{b?LIZ?3[f??m_?qqS?ĠDD?RLK? @?ahW?G?q*O?U0V?k?e? ^??t??e?eBO?b=?H8?x"?Q;1? ?\1??V՜?(4?(ʇ:??\j:?dž>?A^P?>H?|?taQo?av?fl??Lr?y?Շ?:? ?|?s1y?!pa?lk?s?|?!|?Z? p?C  ?Ka2q?K{i?“]v?7Yn?$a?(VX?Uf?7]?7O?!G?:'ԖT?R2=L?g??X8?|D?5 <?)cP(?X?RH4?qH?9A"?77R\5?s|?'?VLxB?M,?]u-?e]?|.Q$?e s?8{[?Ņ?]:6Í?5 ?Ȱ?ef?k72?b?Ü?m\ ?;? ??_?B?@?tok"?=(Ͷ?lSj?b?|\?]f?r`?{b2U?rkEG?8N?: D?,Y?TJ?T6Q?x?`ɶq?Y_?O/y?-I=n?@X?#u?7"}?A ?pٔ?w?|$ɜ?m??>s?^ZA?'7z?͐߆?^po?1m?gx?ڞ?%´z?B?3oV?w?Ev?/p?G]?FE?qHP?]kK?JUW?iib?tH@?-/J?h5UP?kYV?Ug?m?+ 6`[?>Id?U E;?13?d|E?G<9?o,?%?䁚'2?$)?+?!+?E?L ? p#?SF?SX?r?dB?A4??eu$?[?6U&?JVx?H??OV?8˗?͡W?O?$?+?Dze?8&?)ZD?FǩWy? Ɂ?v?t??8?m7a?+?d????I??\"?j?Ã?w?xI)R?F?7?8 O?/?b?x٤W? H?ҳ{~?@?O\)#?u3?c90`?lt)?(A $?D? ?5? ??~琝??ٛnS?Ηq??qT?{be?#j\?X?4e`?Kݡ?m?52u?3oi?!̙mq?E:}?]?[y?,2 ?&f?Bh, ?GӰ?l]?LOX?~l@?j ?? B>?ݵe1m?ye?#]?n ;i?Ba?]V?i)F?XN?,[B?jY?J? :R?x?*dz?&?y-?X?e`?&?c{x?WC,H?e=>˟?qv?a?V1ד?4'?K?H ?歋z?t?ߘ|? Wp?Dx_?pѾx?V?1?e2 ?O0v?rB n?n?^H(?ib?a?fhL?Pe=D?/yP?YBH?ǁ<?13?5q@?SqӞ7?+?gj#??*?>~/?+3 ?UQ"'?3?t?L?;?Ƹ??2(?lP)?, ?+.?=)w?L ?#~?N*?ޟ$?lP?M@?m?n'?H?sʙ??˻?&?>8?R? ).?0!S?fϊ?ԠiR?F)?yh?ת>?zm?D?h?LQ?D ?Ǔ>?;r,?=3?>? ?_J?1?tu?|?%?,K?P ? Sz?}x?3?0,!?/?`m?!SW[?UEv?pY>_d?߉c)?M)?D )?"WŒ)?8i|)? ,_)?vڍ)?\YBQp)?gB)?)$)?]S)?ٌX3)?g )?#(?o)?Q I(?L6(?t(??HT}(?Q&(?xŴ&?H&?-[D&?h&?,=&?ҍ 2'?M>'?::''?&U'?Qӌ'?&'?zW='?)Q(?6+%o(?K6(?t X(?B(?ݘjp(?O{(?!A(?"5r#(?1SY(?'q2(?ѦP(?K'?al'?d'?i$y(?d'?iav'?.qP''? l'?}'?S'?kQ'?!y'?MM-'?"t&?ZO&?Qܕ&?K^h&?aT@&?gm }&?"nq&?!{"&?הXO&?8&?٣;\ &?Uc&?<0&?34&?F`%?jM%? %?%?.A&?1g%?j-+%?k#?ا#?#?U #?ڰ#?s%?Ry%?&f%?Gvw%?52]%?$Q%?\/Z$?_p%?@R5%?_K%?5!b%?!c`%?6a%?k1%?MV H%?z$?Y$?!$?חg$?g$?-p$?*1@$?#$?''M$?I/8$?a$?}OF$?1D#$?##?7& $?~;#?f\1$?p ]#?.q$?+;Z9v$?~$?@Z$?rZF"?RL\"?m{"?9"?N"?pd"?JNK!?ss"?!?X"?^;g#"?-Q!?4F۬!?: "?!"?98{"?sGn"?Clx"?"?$"?!>ؗ"?(昬"?!?B2!?g!?p!?O!?9!?5!?Jش!?ƥ.?+$f.?-½I.?Pn.? (.?f..?8 MM.?TKq.?92}.?Xj-?H+.?G{-?tu7,?LF,??t-?2K0+-?R ,?:[,?-?Fh-?- R-?Ds#-?^5\-?/-V)-?^e-?Iœ-?,?۴b4_,?2~,?Tߜ,?,,?x&,?WT,?]Xs,?7*?l)?I$*? *?${)?WJE)?k )?c)?c4*?/FN*?*? 7*?kQCU+??.+?FGx+?I+?M}~+?>]*?"+?ͥ*?,4e*?fCh*?ȥ*?P*?&H*?Eu*?J*?Q駻+?]GB+?\u",?n +?)+?l+?C0+?\L+?!.N1?ʟ-0?*i31?PJ0?70?Oq0?@/0?УJ0?ddB0?oXk0?޹E0?g$0?`vz/?rE/?ֽ/?LΓI0?by/?ED0?J/?0/?1٨/?DR/?\VW.? /?|D.? hˊ/?e/?sA/?Eb@.?M5?495?cU5?v5?10l/5?_4?U#5?{n\"5?#}I5?`v5?$˪4?[p4?m4?\Ov4?V1?.74?"C63?`4?<(4?(u3?Ichw3?R\3? 4R3? $2?5@i?PU?ATr? m_?$B?/?L?8?~o>?j?9Q4%?6휣?S,?u?`?{?a?I?P"L?~A,?d3s?uj?jKgDZ?X!厞?_k?69Ro?A\?cy?\Am?0 ?J%?p-W?FC?5?bѧ?|2?S?oP\?kގ?Kë?Q?^j{?\h?~B?rq??a0?]?v(?oZC?'V?>0<?<M?j)j!?b?!?jtT!?,[3!?Cs!?F!?MD[!? j ?: '!? 0!?_z4:!? !?= !?Ց ? ?u ?b !?͸ ? ?N ?*r ?ӞT ?HN ?cKC ?]Y7 ? V$ ?gw ? X?% ?]?4C?t?En?|vp?uư?$?͊o?]⾅?tU? [r?X^ ͒?I,{?ў]?I?믅f?S?^5?F6dC!???)4-? ?X?6ct?Oa? ?ʶc?fТ?. ?w?o٠?%{?S?~/:?:j? ~?9O',`?l^wE?;r?7qN?8O?ZN?IH]vO?eB(O?tEN?gM??~/M? N?RN?d bM?e%N?M?*..M?Jb,;N? 69M?7L?;a M?Y3ٮL?[YM?PL?]#M?jWT?|#L"U?YZT?Q?.hdR?vntQ?KZR?\pQ?[Q?ǟ*Q?) S(P?[zqeP?sfP?tP?VPO?%kQ?P?4$RP?P?O~(O?wMSO?P?m3O?4I?(ItTL?0K?{K?K?x%L?a BJ?%͕L?í~K?K?%L?Z)I? aWJ?/GJ?FYI?}kْEK?WJ? FJ?3wD?D?(s]>D?YO:D?b5E?"TE?C2E?HaE?3hD?(V"H?:SjG?͚&G?ɫG?QhJH?(zG?OG?E? 2F?OF?YE?ѭd$G?z!F?nĐF?P'I?`rH?b H?NbI?G?YЂH?~\,9H?,k@? @?av@??Q@?RJ@?9j??)"OA?Y[<@?Ah@?m@?Tc??"*??c_??b!>?M@?G-m9??J@??}A?њA?3P!BB? }A?:Y*LA?j@?+}A?Ñ,A?ζC?ؚB?pώQC?B?ZixC?+D?'hGB?kB?P=C?'uC?A7?\87?qu}8?$7?I;7?=7?aQ7?/u7?.5?|vf6?*S5?зo5?6? S6?Xh96?.7? 6?h }6?d6?2>?h,o>?2AEv>?*?>?ue:>?%=?'G/F=?Q=?ښw=?g(4]78?^8?%S9?!>9?9?T %8?7ko9?γǏ:?v8?t{S9?Tj9?N'9?_95L!;?VQ;?'c:?"x:?.:?bÐ:?xW?™`W?pV?AV?JHGV?+U?(U?лET?`U?ZroU?؅ U?+z?w? ?Dr?ܶ&?v$)?F.???7?J /?6/;?n3?'?CP ?f+?E$$??Ut%?m]?_4?I ?2:?&+2 ?K?;?Žf?{uR?p^?̤?[?M?5?3?z8.U?:ǣ{?$f??0^?B? (?Si?r?9?I1-?Q%?iN??7գ?ߗg?d#&?bh?{mZ?Eבx?o8?O2?UZ#?w*?) ?ߝ6?37'?xB/?xI8A?@H?(!fP?4W,rD?lL?( ߜ?RD[?Ff?SR.?! ُ?!??y?e]?Dr?lhy?1Dl?*Wӄ?mr?@y?K@g?Y X?2ކ_?-T?[l?ԾB\?[d?]b9?wj-?3?Ʀ3'?@W<?e-?Xm3?_ ?ֺy?DO!?" ?4&?p?xQ?p??Z?y8ˈ?9W?0m~?|?H?eO?Vwe?ZB??<?ɘ^?bzK?>3?w?uu?Lg?E"^?0?YP?.m?,2?5K/?d?ec?5??HSu??p?)?w?*f?B[?ypt?Ab?>?DQ?#6]G?*{s2?[1X?_=?AF?&?)5n?'?)9?vˊ1?\o?ȗ[????9[?j?Q=?4V? ?<,?lg}?u ?5 F?^*?rn#?bp?BH|?1QL?mZB?CG?*;?@X~S?D?={I? ]J4?A+?T_=?X?l?i?8"?w?XO%:?J?l? K?z?s -?RG?CЃ??ZD֠? ?+}?)vF?7.?@[i? kc??/p?g'i?/?M5i6?<?j;D?Ar*?=p5?G;?7fa\?gK?.S?^Dc? ?o\3?}ى? _?X ?~??Y>Д?Qَ?attv?N2~?4aNp?vAƌ?&!{?l[d?sy?s ?/?s1v?3H{?=s?͎?:C{? /Z?ak?  ?G?Ϋ'$?hA?,t~ ?[<k?#,?UY? 'b?#"Q?Fhs?GX?Ha? 3I?o?A? Q?GF?-,x9? &82?Hǥ>?N{s4?c{?}n#?*?^=8{?2c~-?!?#?X+@?|9?cG?f A? O72?w ?L)?Gfi+?к:?᩼~'?ʓ0?w?/(?wH?w=?j??'h}?i5a?͘,;?FWx?|d?G??2/ ?L4?f ?'gj?Wd?8Aq?Yk k? ]?O+N?V?eTH?[d?R?Z?%Q?s?<Vx?bn4?Utq?D|?:?.{?;Uv ?'P?gSZ?sW ?\X?r?d?XV?OF?ꮟ?.D? ?=?1O?a?;#+?@F?2f?<?b?>;?Ok?Ckk?W+?3?8O?C ?Pl^??ރq?10|?h7?މ???69?io]?'?C1kt?0IKj?BT|?FKp?7X2O?\a?`X?C?HJfg?X?hh ;O?A8?˙'?GD/?K1?itC?ۭp)?T1?s? ? ?)ъ?7 ?_?b?K4?㾷??A뷫?=:?M?Z?…??1Џ?|Yu?b^R?Y?ؽC?k,??9?ѣL??${;?_X?`??LW3?+L?u`?Ӎ?ȃ?Qx?V/$?(o?JE$?\cM!?86/?*d,?]?Cu4?s?p?"C ?G ??g?7?S\(?V>?c"?IvRL?nT?΍\?_WP?X?ydd?C9ODm?`?)mi?pȯ?60?䟫?ALJ ?(?: ?s??Y)?W?.Y?늶?Tu?cv$}?WrZq?Ƣz?aT?1?~a?ӳ?)+?Ex?ߖ?u)?)&?+??6L?Qp}?j?L??B[?+?II?n!??G~?`T1/ ?֑!' ?U| ?$?)?O?^ 0I?Cô?au?č5E?q|?52i?rx?do?'$?Ac?+Tc?o?Z?_g?dq ?# ?*?Xp?Υ ?>JD?;?l`H?M5. @?N(3? $p"?'*? ?)7? :%?nR-?]ڳ?ǧ? >?,?_ׇ?']w?(B;?x?d?<+?^dk?;?:Z?;y ?)(?Љt?SNj?7z??o6 ?M4o ?) ?Ǜ ?Q ?<7% ?b2 ?w5< ?B @. ?:|7 ?rE ?8f1N ?;@ ?<.$J ?>|?h?%aU?P?oGb?I?P8b??$AWa?. ?* 3?O!?/?0L? ?PN?_z4?ٶ](?Ϲ?go??+k?T?ų?!Z?W ?@?Ύ?]?N|?/g|?i9j?! ?*r?NoX?`(E?R`?JYO? )3?#!?c:>=?9+?[I?$8?rR?A?.y&??}?gl/?Yi ?|??(%?Qp< ?XC?d6U?r?7?R)??zA??߼?~l?k?*?Y]\c?L5?ކ,?'q?}&?M"-?Am?p4S?!u? v`[?I?ٳA d?RR? r,?Ua? ~?-J???b׫?.p`?/?(w?A@!?-F?kӯ?Fbw?d}Nf?]?"o?QU?4KD?]?@ L?[[2?w+!?+e;?'B@*??c?4V"??O!D?oB?k~??A?M%?h0Ƽ??G4?Fت?b$?KנK?;e?>.)?s_x?XEÑ?q0?Pu)?f$)?Uɵ)?%a)?EGգd)?nD)?Ҏ{)?A.X)?.N$)?@-)?28)?wx)?u7 (?36(?v(?vph(?U(?^C(? C(?\&?r&?On)'?a}#'?L5&?3eZ&?=&?BK&?{);'?l`'?t!'?zj\J'?qq(?)HK(?LJ(?a(?%(?4'?;(?X(?n'?;'?=䍭'?o'?: '?BfA5'?3O'?ٱx&?R)I&?J&?fc&?V&?%?Kk]4&?&?+|Y%?9@ٌ%?w%?Uӣ%?:z#?Eg#?Wmc#?\.#?gz}#?uw#? v#?Ǣ#?A"t%?@ ^%?Gl$?G.%?%?˳qE%?$?_K%?$?s(%?'%?s+$?V=$?)z$?`vi0$?F{$?"$?[p$?y?$?j $?!`$$?eW\T$?}#?$?D7ι0$?ȻJi$?)$?⧔E$?Ljd$?"#?U]l#? +#?z#?iu/#?U#?:B#?Ħ#?ܗ3c#?+*#?o =#?'A "?Ka#?;1="?:6}"?^S#?B"?n;;"?A?,"?M*B"?S["?5D*"?W"?k"?ô?"?XT"?e٠!?ͬ!? Vz$!?u0uy!?@3GT!?]z"?B!?!?zK?"?ہJ"?"?S>a"?0i"?;0|"?8"?`|!?L!?%#xd!?|y!?\!?6!?MaW!?J!?.?_P.?UɄ.? .?l.?@ |V.?E.?{c-?L<-?sb%.?7-4[-? *-?b4y-?:<-?atf,?92-?o -?rl8V-?},?X-,?KJ,?'%|,?d,?+,?~x1aF,?$3x,?p'7*?Jou)?S)?D"U*?zDo)?B,)?)?]C9*?{^*?I*?';*?4`>+?+?TV\+? /+?C*?6׃*?n{*?Ra*?n?+?*?ZuI*?x9+?z+?sDbج+?,?v N+?>f+?=RlC+?z7U0?Q0?N1?>t0?Y߳e0?L0?P%Ɋ0?fB0?0T/?j0/?my/?NRm/?go/?$[/?c/? >/?%.?>R.?2/?og.?Y =5?y4?΂5?|#5?Wh5?5K4?I=4?Y4?2*n4?h_1?x &1?Z0?^VI1?_ K1?3?ƶ3?1!4?3?K@i3?%N2?&-3?22 2? Þ13?*l2?3?ko w2?H 1?N1?Ļp2? ?2?>S1?.ҥ2?1?'2?ʸ6;2??ݝU?{$B?4as^?;M?2.? ?_k9?#? L?[?<??D@?6p?·!?OF?s3?˺ߧ??k?*?О2?Ü?l.F?to?]>\?wx?g?1?j ?$N?/V?2@}? h?|D?{F@?=o?-??qR? ㏩?ң#?dFCh?fy?jV?=?hRi?2lz?Y4?m08IV?U+E?Sh? 7+?;&D?U?IgM!? 4!?Svb!?.sF!?\ ?uX ?馐R ?tof ?9ӽ!?d1 ?VZU!?*y,!?s^ ?@ ?M!?mFQ ?z ? " ?O ?+i ?C@A ?^U ?FI.. ?w ?A ?*OU ?LG ?r_ ?xS/. ?5  ?!?ël?vg?Z,?mC?&?,r?=cG?"F?i9?D.?o?@I?v\?C6?K7{?<I?\?fxM$?S ?27?[z?Y ?t?n?]0_?!T??45??}?0LS?gz? EV?,h?nH ?EwK?_F@?mN?~IgN?(fXlJO?lxN?p-wM?/j/L?YM?>MQL?w;JN?eM?rtM?NT?lRS?`R?U`FR?G[T?K6ojS?u|R?:zQ?RQ?>y}P?u`QxP?0)AO?u,O?F1R?+_P?;gP?!E?}o_2E?%'D,D?'[E?2}E?B%&E?(g]D?fI|C?/D?R-]cD?QG?+Ӳ{bF?$F?[:H?2}E?`F?ļXG?]H?Md1I?$ВG?[̩H?좖Z@?.??@?R !M@?Te&b??GZ??%??ГpP??o)A? A?"%A?B?Pu@?{XA?FYA?P1*C?^C?ҶOeB?TC?Ik8?5 8?[7?*J8?hۥ7? f7?-7?nA37?'aW7?15?O@v6?>86?~cY5?6?=h 6?jy6?hG>?{T>?XX>?Q['=?c\=>? >?\,a>? M=?i8?id?Uk?>j?^?ky ?挻!?u??Mb?dpp?ev?x4B ?'Z?B?$<̧?buJ?;?yy v?N˘?`O?e$?@?Չ?t.Y?EB?gPE?(HO{?&is?hk? x?Έ l?oj^?.ULe?GZ?p?gRa?%h?i`?ba??GU?e1??#?e\?th$?cM8?c?Lm?^<?;?ZA?2?D˫`?G?Oߚ?G?w?J?b@{?^?? ?0l$??x]=3?\ݏj!?e?cp ?a28?JP>?Dl ?%T^\W?^=;Q?]?{W?]J?_QB?ol8Q?k.G?hJG:?I+?3Qk3?v T(?}C??fL7/?{}K7?ݑ/?!6?[ @? {P6H?:<?Q,D?|wPP?rX?DL?9T?{?\ש~??ܣ?#?Nʕ?`(C~?lL?䟅?K#r?`? Wi?J-e\?]Pz?2V(nf?lo?--?e?|o~"??ʳ2?ۚ?r1&?K!w??ą?,\{e?dWZk?tݪ ?2?ݙn?(?0?dc? ?4?K?#?kIh??+Jf?`?J?8?G?u*:??q\?ݍ?|^?=?Q@_?DC6?/.9N?}?|?AT?H(?Yhj&?Ä?Ǭe?*x?~ư?l?w?Ue?"Q?l5u՛? ?HR?I";?T?~?^Y?>k!Ro?uH?1Ś?H˕b?KLx?P??h?0g?rJ?Z?+Bh?Փ:?FLEVH?5?3r??[75?Ҕ?Zj?M)?H? ?e A"?ͦxV?C~?5?x?b)?p/?ÄR?T%?,#~?w?0~R?ö5?ن;p?WT?(C%?۳D?p ??(?)7Td?O?T0G?Po? @n?qQ8|?}7?$?S?@D?xʺ? Ì?X?Dk?@? U?RP?Z?\ܩ?4G?e"t?+j?M-_?p?\4g?#6:?ʻU?LG?6?jD]?Z ^C?1P?4?1 ?]t?T?4s&?¥Š?Ǫ5?k???9'?"?N?x]A?Ɨ?[h?Q/?m{?fǣ?">?_?sM?X;E?|=?x?=ĆS?WB{?7j?Ղ?vu?̝?e# ?#h?'A?~X?*&N?nKdd?2;U?ܣKC?݇B9?B?%s0?H?j{~&?7?M_g4?V?e#)?B?LR.?c8? ,L?bG)?D?)1:? ?&r?9?=? }[?)w?w@?%y?N?؀?`6%? ??˸?2Sb?RqTk?`W?VSa?C ?u?y O?Fda?ۗk?E?~6?$?l ?"u?=Å?P?"ؙ?8? ?v@ ???d?k?P4%?jP???W)?*XZ?9菮?WF?y?<?M,?}@?e?'?钠?͋?>yԸ?ᯚ?,???S ?V?*?Lm? ]?r,w?h?N?f<?<}Y?gH?c[+?s ?U?W?{O6?KsN??u??T?9?x?7.??gM?Ƞ?-5?D?1?`?'Z?ҍ3?:wh?/hH?.P??^ʊ?ˠ?9ǘ?#? r?fm?&c?3?Y-?ɨ??ذv:?K?o?. ?+?9?U?Ԍ ?*)'?^4?fe?E,?jڌT?DtL?FRLD?P?UI?2y\?Wd?-zX?_?Uym?l4u?h*h?N2q?VM?C?l~?rD?cUm0?#?*?,~?Ffm?Py?$c?o)-)?o~?̿?r?Ax?-RT'?,|?ǰw?+9?LP??J,?QsG ?$4????y64?w1;?wD2?D+A?`Rچ8?Д(?K?.?[&?ॸ?O?z?w?OY?zf*??0!? 2?|ŵH?f^??9`?^G?[zI?_D??b?W ?Ha ?8iS ?\ ?Mj ?s ?Xe ?7ptGo ?gJ} ? ?x ?u ?ڍ ?hy ?19` ?པ ?a ; ?] ? ?J؎ ?`) ?2 ? $ ?/:- ?$< ?{E ?]F7 ?_@ ?dN ?sX ?PJ ?n1BS ?Ȇܝg?!`V?]@jp?_??s4F??5?SN?t$>?E$?p?W?l-?MG}?F#?D? ?2?s?YV? ?u-K?&9?)ۊ?+?F3 ?o̺2?j?LI9?Z?\k?]?.2?;n?֍@??~=?{7?[?Jp%?Na ?j?Te5??aW??_??cy?c?ܯsh?[]?3oG?ik?Nӵ?ʲأ?iŕ?? ?I?ȭ?V?l?qZ?(v?b?lJxFI?噂8?`t_P?*I@??qWlȽ?V? ?o?A|?)8?]?WR?-vxw?ҁ?`?7Mq=f?sU?ۑn?7&]? C?2?-YL?ʦ;?!??D8o)?#X?ق?{?]B?oP?ӅÓ???u ?? ?0$?L?^^?6Dlj?Q؛?[~?k2t9y?Syh??p Tq? )?~Wo)??ů)?`cT)?K)?:e$)?]Gi)?Z:)?ˌV}&?'-(?(?)?í(?1(?M}(? (?K(?l}]'?_&?jm&?./'?D~&? &?Ƃ '?#X'?&s'?|4'?hUri'?s#@PR(?5((?Nh(?A(?;'?|5'?s'?('?s(?׳y'?d'?[GN&?qD&?bn&?w*8&?%?]㿻%?<|&?c%?T)֋%?v]b%?/b%?n%?3#?a#?qމ#?4#?_#?#?(.ZA#?٘I#?\9%? l%?`.E%?f%%?"$?0u$?UMD$?o$$?a_U$?=L$?;&m$?r"$? 9:u`$?z.A$?h$?_lx$?l,$?;K$?q#?;K#?An##?-g#?"IJ%#?[$C"?G^-A#?6#?I"?Gw"?*>"? Q"?X'"?G&:R"?$<"?KZ"?(&^e"?r%"?fQ;"?QR!?._"L!?~I!?Hd!?1r"?_!?ʖ!?\x"?L4"?׉(N"?c"?Lw!?cH!?Ǩ!?,[!?R !?ӛ\x!?OΎ!?!qM!?\.?oj&>.?VÌ.? =.?B`-?DXY3-?@z-?4-?-?kW-?T -?a'ܵ%-?-,?kwB,?6#,?T+?=%,?UF,? ,?>x)?8T_*?eW )?)?h e>*?l,Hs*?m *?RB*? !+?JQc*?'=9*?<\`+? w*?o*?)+?y^f+?7+?0D+?d,+?i0? h0?0?$#10?$0? /?q/?;Gc/?_IW0?_o/?/?_s@/? s.??/?h!?Q!? 5\[!?h&@4!??(ʼ ?a ?J2 ?A ?Gz ?֜q!? ? $z ? wQ ?bc ?) ?7x ? 2A ?G ?K0" ??J9V ?(( ?1|3 ?+2? ??r??kkh?& ?g?y?3 J?tZ,?9'Z?`0=?b?X0C?# ?v\?J?A(2?P?sZ|?_?>,?D ?>N?2cTM?ƺ5M?/CYEO?vxL?&DKN?M?HR?,hQ?aoiQP?``S?ѳNO?(3WQ?އP?'sP"I?^J?COOI?VzTJ?PK?SM?5CJ?XnmK?BuE?.D?DhD?Q pMF?GTpC?6~E?R D?'G?f)5H?/G?2NI?QDAVF?j G?DQzH?Ν?@?wl>??iL??@?>?uYJ* @???Yzx>?䁶A?cB?Z=@?x`A?I~C?zwD?$cB?#ߞC?yWه8?&iĤ7?] :8? PȚ7?'I9?LQv8?*)8?dI7?j5J6?D6?be5?27?tz7?)6?YE6?~γ>?@ǖ?EU=?О??z{"?Q?8]?8wl?U?eD_?c9?&?/x? ?k??^?Z?Z:Я?~?lܜ?P{?Ǖ?Sʂ?$ʼn?ޒt?"d? l?Y,^?ʹq{?ygi?؁/)q?l?y˼?v{?L?J?;?8y?SV]?.q?ٗ ?`/m?6?0?4T?^q?yQ?"]8%?&3T?휝b?%?q t?A,?[&?3B2? ?gu?o?!y ??N?.eξW?W4N?i]?`?(S?5D?i3?@o%<?wC-?uI?B8?P@?~X$?W00?\;?*?D `5?-V}+?8?:H?i<2(@?l7P?-5?+WH?Dy@?kW? .a?8vTP?RE\?=?:T?M?p檫?Lw ? ?YQY?!?#?!I9k?0v?6Mf?ߓ?9Ar?41'}?`EO9?d#&?T.)?? ?Rs?5Z??~ى?q|???YL?"?r;?n5{?F? fq??VW?{م??YG?4Q-?mft?еȩ?;?o?擒?A?~ ? F?[#?m?{Nc?|?w#?bE?N?)~?`Db?ť?pɺV? F?z$?gu5?j(D?L?3t3*?:?þ??@#9 ?#4?5{4!?Ƹ? ?ƼI&?K?F ?VFWr?p?Xg;??/p g?1v?/5]?ܵo?zLy?IW4N?A~?ٮ?L7??SYJ5?>ÙQ?!?s7??҆?^??w?e(?k6>?[M;k?Ǎ?9?8Q?h|?9%|?U?6?(Ԃ?|ê?ȁu??_G}?R|@?\?-bq?lO&?4&?]^h?/*?M9[?Y5x?bF?3-{??3+?M?HH?*-??%?O~?'? ?Z 6?LP?f?؃t?b"V?T2?Gc&?j.8Y?hw+?{?BbS?! H?~sN8?gU?۾}?<?'X?Ųd6?yx5?P]?% ?g???KBd?!;?\#? Ja?F?w?Cvw?պ4n?0?.y?_&ye?lLL?]ZcX?TcG?Lp?Gs/V?šb?W~?F?yi ??\?{!)?g??{ݲ?ޢ?$K?ʬ' ?gՓ0?%?t?o=??=?h?Ho?"$a?E2{?ƥwk?]$?"b5?^?w'.?[DR?I#PE?m- \?NdK?ݚ8?d |"?Rk-?|?J>?!$?3?%40?~dF? !Y?(R??.~R?r?JE?;??ƑF?sZ?]?U?;֒d?jz֖?1%zg?Z?Ԧl?`T?n|?Ke?Ir?ڰ_x?ֈ?D!??LM?踑9?Ga?95??R ?{,?F:!?;|??+Ƶ? `?E?7?B?'ݲ?Д?蚧?֭8?}1?;?%{ ?.?>?Qd?5R?Hq?b4o`?0YRA??TXs/?'?RN? ;9?/'?Ôoa?\!?5??!?d?̱T=?$ >??#n?l?Eb?-?+5i?Ŋ P? $?f.?կ?-n??̬~?ZA?Y9?W=P?Ӣ9AJ?|*>;? ߡ"?i~7 ?==H?> &2?BGZB?'?97?=j|T?ClM?[?#T:T?9_F?'Ʒ=?ؒp*M?aFC?^6=c?-l?ؿ[?vD^g?& v?ȌP?"p?U{??Fl?h?Ӆ?ۇ?d ?m?"?*jP??Z1&?!Oz ?Ꝉ?6>?A*?U~ў?x ??*h?>??{h?v?{?Y_{?nZ$?nLf? ?=&?T?{g?G ?A ?I ?X ? PIA ?8 ?n0 ?Z = ?O5 ?$E' ?γ ? | ?P-s ? Y, ?* ?g" ?0gI ?@fR ?[E ? M ?:G  ? ?pH ?t ?F ? ? Y ?0 ? ?h ?!& ?2eI ?̣ ?Y9g ?eG ?qk#0 ?qR ?p ?_ѳ ?'Ǘ ?S0 ?-@]B ?.+ ?fz[ ?ySd ?V_V ??Ϗ` ?"2m ?Vu ?guuli ?S'q ?f{~ ?Do ?sM.z ? ?<[h ?"T ?^Ew ?F! ?(E ?YP ?k) ?}? ? ?{* ?GI ?hy ?g/ ?UG?媛bT?"TA?$O?TY v?iَ/a?k?p0Ѐ?W\?u~l?LT ?a] ? :ԡ ?Q ?& ? ?l) ?X*2 ?6a$ ? \j. ?~< ?jBF ?&8 ?ZAA ?Z P ?Y ?GK ?/U ?ꗬc ?Bm ?t[M_ ?@h ?s]w ?VU< ?v[sr ?| ?\ ?O" ?XƼ ?̄F ?9s ?β ?[Aܨ ?߷ ? 3 ?> ?hq ? ܆ ?NHz ? ?ۇH ?<0 ?W?Fh:F?_`?aO?5?B$??>?_-?WX ?0 R??1 ?N?\i2?Tx?vx?-??q}???krR`p? ?N8/x?B?D(?pHS?W?Ɛ?P쇷?#TĘ?d?"+`?8P?mh?oYvX???)/?-OH?!8?~P?Fpz?WH@ (?*A?4?)ҫ?ө?()P???\'H\?-9*?\?u?F?29c?\G???i?t?Tr?lTn?m?~V?_"?. "?_m?畓|9?Z$?֤G?Ч 5? \*?~5?`?OR?=F?H ?쏎?q ?1R?l??l?T+ռ??S݋?RO?GB_?&Qx?x\W?L 0h?{zG?,W?W?XtFh?֞W8?䌧$?H?0?W'?#?sY?<?H*'??0?D!?O?0?EbD? u8?p?],a?vs??OM? Y??`?J/?&?a?tRo? f??Us?ء?,k?H?`t?UVyW?k48?4#G?)?`)?*N`?@7?YKF?u[?16?_~? >j?=8?ə }?ȼ/J?R?v?A{e?cin~?[^l0n?aT?ϝC?h*]?JCL?Mi2?PH!?)n;?P)?91?Gi?DA?5?$:?Ր?T?T? ?iF??ahe ?ڪ?tɚ?3I?_O?=?=gz?|?aj?sAj?#X?H~t?Cb?R X&?u$)?k7X)?A)?.w)?k()?(?]fvH)?b:)? &?6 &?ڴ_w&?5Ac&?^t(?vV~(?̯(??X(?Vb(?>m(?X(?}'?ǎz'? D'?A勥'?_&?{y'?D'?>R1(?qb2'?5((?kX(?u?d'?^'?_L(?IT!&?$1%?"@&?3&?Fn%?C{%?A %?l%?>R%?$_"%?d%?r-%?|#?_#?k#?c_Q#?c#?~d$?hu#?a#?4ZS$?)$?N$?)ֆ$?i%$?X 6$? ֫c$?VJ$?m֘$? +N<$?M=i$?6㇉#??5\#?W+#?1ڽl#?Ls@#?j"?"?M#?5U"?=v"?5|ax"?̯r"?"?+/#"?!?S%!?縢w9"? !?/w"!?d&G "?GO"?l!d"?,""?xNE"? (y!?/ŇЍ!?LFaQ!?a|k!?23!?pE!?n}!?e!?1.?E{-?{n-?B@-?R'N.?x-?K>S?-?|))-?ק,?^]-?qӕ,?4J,?Q7v+?۬v,?:ΥC(,?SW)? N*?~m2)?c)?=QDG*?V:Ř*?+*?+g3D*?3*?n=+?)T+?l+?F*?++D+?]*?cŏ0? :/?uh/0?i*y/?.J0?J!0?z)b0?aXi59/?Ҟ>.?Y!\.?C.?rW/?%U#.?ԟt.?G|5?4?~1q885?h4?pl4?G ;3?%5? 4?ZU 4?ju4?‘W1?2>$3?’1?wE2?Ǘ2?{0?|Aқ3?6#1?2?$2?uJ5?G2? x?aC?Z'?lǵ?j?`?~a??2b?n?w?w?(T?k?>B? ?p,Z?Vlp?6?TS ?P8?CB"?sQ???!!2?:?d?w??~??*?f?MT?<n?/9?G?ૺW?~q?բ~j?NM?@K?q?z)!?׌ !?-&D!?B6!? ?,??w?Z?/- ?r ?{C ?` ?HI ?$t! ?w ?z0l ?H?o% ?&+H ?nyV ?RVو ?t5 ?H!KY ?8bY,?tM?{6?A+?Q4j?"91?{b9M?|?%c?V4?QpQ?l?H+?9R ? ?7yx??ʃ{?NN?B,8P?-.O?iCAM?+{1Q?2]O?L'N?3?J?C6L?u:K?ٮ1I?EM?>K?pJ?%$E?F?oMD?x!E?}R9&H?{I?ʵG?K {RH???oH%??r>?˴X@?i>?2d??)s:??l" B?}D?[ C?hw~ E?'{A?$+^B?})XC?]e8?=;7?S6?c~u6?`]9?-[8?ϖܡ7?>x5?=p5?K 7?.I6?y?;] ?“ ??` ?kI ?l@# ?>b4 ? 1 ?B: ?9Td ?k?&NS?+:?i?/#?o?5 ??]? P?U?)A??m?C`?M???[Ļ?;L? ?į?X׫ĥ?%G?)@ͬ?Z?k7ێ???4ނ? dm?H+x?ފhh??X $s?1}?Kd?:*??pV?2?,a?ij?oi???qy˭?S?lmc?ndX?&&n?(ݮc?tz'?E5^?V ?}!;2?gE?B\ ? mr%*?SN?G<?AE?pY?caz4?jB?K?he??6|%?'{0?=G?@M$?͓;?RjI?K*/?'m[C?Aꟑv?ݼ*3?u=? &?b7?WH? >T?;B?1vN?`?Ml?SZ?;/f?*?Z"F?~٩Z?D?8?x?i ?d;#r?p?NC5?pᤍ?X%x+?hC?ThI?$?&{?̱?`Y࿆?@[q?p'"? S?0r?o?2^p?f?&?,?`je?R?"Gi?G?^_?t???D?xAn?Os՞?3?x#?Z5i?C?te?mS?gu/?4XA?(?r&k]?$03?E?!~ ?:<:?}?_T0??i4?ea4?2kx?U?d ?+?io?hq?B?96?w?"sKa?~ܓ?zh?M?Þ?pvb?<ʂα?]?~:f? ͣF?'P?E#?z?!q䙥?8$9?K?秺f?bͦ?Vy?=Y?L1? ͵?Le?/??Go???$?,?,]x?t, ?Χ08?r'j?֖ ?R[?7^ -?P?/#Xg?? ?^?A\?j8?].?օT?Z9Ƞ?1?c?E?? ?7 ?M?-{?+ _?t~m?Q&&?46GY?@o o?ۗ|?O?KBK<?~??o\͌?M?7J?]n??d%? ?rɓ?L?LK ?[D?.uvf?X!U?|]*r?e`?_{7?R-JK?C*?wC?{5%D?J'?(D6??ZrGP?lR8(?K6?+zS_??r?h: W?FJn?Yw?ޢ?؀??Iì?aW?X3?$?϶Z??ن\?G7?D?٘?6o ?צ??d?i?MS?þ?M ?c(팶??SB?LJ?u_1?9(?ߧY?~ ?P?aD?k͏\?71?d*G?.g m?/-&?D? Z? >?^?,??|?Ad?>j?̈?@Bа?yL?xsQ??SV?mB}?bj?7Aj? s|O?<?%SH?EVۯR?zG?1wh?cY??ZY?Uc\=?\sJ-?Ԅr ?wN?S'?/7?mB0_?DS?v-@?/ J?9c7?HU+Y?A?NɍK?Zk?.zv?1d?almq?S{??ek|?7:?$?i?E?1?F?/:?1V?I1+"?]?I?oI??v#?״?ʓ?w?T%?: ??'?v,?)u: ?9?!P?7M?r. ?9F< ?f0Z ? S?bS ?"rE ?e OA ?~\9 ?EWnI ?|2XA ?j!?=( ?a8?&?2̐)? 1W??GMD?j?O?]=?u?Ze?2ѿ?#Ox?'?-/*?=?5(w?*??v ? ?thO ?=O! ? ?2f ?>j ?a ?n_K ?(n ?~E ?Uϓ ?qa ?R ?hŭ ? ?? ?S' ?M ?V ?9I\o ?rx ? ?, ?yj ?ʖs ?&#f ?|n ?f} ?ˆ ?L(x ?k'ǂ ?ɢ6 ?Z:b ?/ ?l ?w ?o. ?, ?~" ?"E' ?V{ä1 ?+ ?F+ ? < ?/HF ?n6 ?VB ?xP ?a ?zQY ?~6Ij ?heL ?2Y ?ma ?iU ?* ?vl ?{ & ?h0? Z  ?499?a(?\?`S?.?OVT?'?q?M5?Yox?HSa?ZpQ? h?A7X?WB?tEn2?"??"GH?{y)?;i9?Ru[?o?,?A?91??P?)i?0׮???ʵ?LY?6De?qo?Ɩ??a?OS?E2 ?6 ?1?t?AO?D5?%?Z|??Yv?Ҟa?f?}D?!ן?ш?y?$T?J +?9aj?]95[?lq?b?%L?`<?3?D.b?˗R ?!?P?@"?K"?ւ?7쒒@?>T}??f9%?!?"?I}?}3P?0?!|,~?QH?)?(P?F??9?rM?U?|?t?J8ׇ??`o?8?!%?:!z?8߼W?AA@?9Sn?5GRM?Ȏ(?f ?_5?g?yqw?m??,$?~Bs?X ? ?+l(?Y٨?"y?D? ??\?>?GP?J?[? ? %A? ?3,z?AH?mL?G?x&i?04ЯO?G:u?B]?L6?A!?C??.?U{?\3?3Y?i?\.?B{e?u?IT?@ď?4lvf?W0v?ruD?a2?[U?7\=?ώ?hu?X?1-?+?)?k_??ox1N?Ϛ??n<?2:?ZJ?%?Xa? g?RY?$~?l?ef?L!w?W[?$SpI? Zf?oS?Q.&?W_&?P\ P$&?T&?s=A&?^g)?*.)?e[)?"sjL)?>(?{(?j})?;(?X&?M`"-'? &?a@ '?{(?inC(? !d(? rg(?Bix'?qY3(?CCK('?BU'?µ+(?Y'?A'?)%?%?&?%?7Uv%?t2?%?PM%?Ѩ0P%?%?;Z$?,,%?$? 0#?eb$?B1#?_e!$?YPә#?"U#??׵#?u/.$?r\B$?CBq$?pc$? @zy $?_:B$?p$?K$|#?g"Q#?=36©#?.o#?q%#?v"?C#?M&#?"?La:Fy"?"?dZ"?rJ`"?_Vs"?߲"?I!?C"?Ě;"?~m_d!?6 U"?M!?"?ݗ^!?u4`!?^bE3!?`.?Vw4?A`ˬ1?Ύ2?}4?薨0?T2?Gpae3?4?5?93?N:6}5?vq-?-?.ypg?n?'?:D7??K?Zܗ?"?5N?hL?4T77J?]{I?N?DeL?MJ?:y! F?#t~H?OAG?UD?^^+I?DG?ɑcF?3]I@?ɥA?#7??"U@?EPPC?KE? AA?ۖC?&{GP8? u7?]T"6?`9?H5?)C]|8?-u7?(;?i4>??M%)?T ?M}! ?a ? ?HK ?F~1 ?cL ?bz< ?6d ? ?xl ? ?QO ? ?G; ?a ?w3?3k?y)?`L ?}??\(??K?`.^??6N?54~??\hr?*?vP5?? ` ?aW?+"?3?Q?|(*?Dx?<$?n?ٝ?IU?ꡍ??XWɻ?*Ǭ? d?fFV?(Z~?BM?L- ?=?O#?|?Jv?[ad?4εc,?‘I?+:?V?7?_*?W(m?ϻ>K?&QBY?'*=?[(?0?fU$;? f'-?sn?be$?}7?$p?pT?OغH?j%-`? Z%6?]I? `U?k?!ѯz?M`?-r?#O?uq?s0ʉ?}Ӑ?ULL??(}v?ӎ?`?4B?*9/?H??;?8)?59к?3,?mQȠ?!Շ?0׀4?Xi?8?c Ö?&\?#?7/?!hj?tlh?lґ?QАgR??s?v?;O9yg?@O?~?*8i?F*?qM6?-}?6O4?{Q?5?-xE?f62??O"7÷??>Ɔ?X?_8?߲.I?°??W$`?{B'?o+?ԁK?bK?f z? &?o?E?e?P?5?GȲ+?!(~Xr?kr=/??$Y?75|O?4r?[T+?;l?%1?_{?t0?s? t>?9Qv?ٻ?ӛ?K?a?@??lC?'lɦ? ?_@??ҿ?=:?_?_s9?6!?S?+u? W?U)z?A<?f?_?0?m?;?4?m\?i?cP:?,5?-?I?S`?ZϞH?~?`Gl?HB0?1Z?fC#T?Z6?z,j?hp_^?K'C?%P?3?y)e?\eH? U?ة\w??`hTq?X5~?p ?߭?5?IU? F?C?%?,?m [?fV ?ͮp?o?%c? V?o?{?RK??e?*} ???~]\ ?U6 ?A ?^ ?8N ?^aA ?=Cq( ? z4 ?j" ?rdH ?j-0 ?gz< ?B[ ?b:h ?'V ?0b ? { ?h1 ?~ ?f. ?p ? } ? ?  ?Q ?ań ?ƦU ?6 ?! ?2I ? v ?ڃ ?~o ?H} ?ֳ ?у ?W( ?q{t ?] ? ?LokJ ?+SB ?K# ?ٞ ?Vɂ ?/e! ?ĈZ ?͏p ?^ ?)B ?B5L ?rDl?R€?t;e?%)u?þՔ?S8?6b/?Ж*6?5s$? ?tj8?&?/! ? ?Bg ?* ?: ?@- ?\ ?E? ?* ? ?= ?9 ?Z ?d ?=V ?tC ?2A ?. ?ϵ ?Jƿ ?$.7> ?F ?l8 ? ?r ?.} ?zj ?7Yx ?) ?// ?Tl ? ?J ?h ?Ph ? ?}={ ?vp& ?0 ?Yw0 ?31< ?Оr) ?5 ?w H ?U ?(A ?;5N ?1b ?Bo ?\ ?E{i ?3+ ?oHA5 ?' ?=*2 ?72> ?)G ?x; ?ȅC ?WQ ? Z ??@L ?XlU ?ld ?#ɭn ? _ ?AK?ѧgb?&R?{<?(3-?vr`C?5?Щ?wɤ?(%?M@>? ?ׁP-?tU?}?UW?]ԓ?k ?Y^_Ů?gxŘ?MZo?J-?f<?rQ{?sl? ?s?v]?y_O?~-e?:V?zs@?To;2?2G?Ŝbf9?#?.*w6?BD*?$p?~?Z~F?%?"E?K!?E?:?W?Rf?9Y^? ?f?j[?q+?Y?d4?ZY?O˯?1y??j]? v?v"?0}?F?Ec'?<??;k`o?Ӿ?oMQ? d??GI(p?zBB?d7?6.?=zGQ1?JH|-?(/?N)m.?Ær2?[5Q5?=4?:[5?O91?@4?Xk2?#%[.?=?v??ֳ?Գ?K6^i?6W?>WfJ?ִ?[c s?(ĩP?X??LB ?Hn?>? [1?C v`?M?Y,?T/?Be?w`?^?b67?l ?: S?0M$?(M?=WJb?> \?r?ᰂx? 3M ?*Tw ?m ? ?D?q;] ?<#Y% ?N?]y ?9_?C\' ?`_{?;# ?WD?ٯ ?l+T?f]D2?Zli?Z?E_J?o\H?Lg#F?*6E?K?=ѮH?CF?Dq!@?n@C?;,B? NS>?y)>'E?*6 B?NA?!88?:? `7?S"9?h*$=?iuD??~cZ;?5d=?׶U?V}UU?˨R?eԯQ?p >P?cQʻL?#O{N?{jПI?{^O?yL?ؒJ?j:??Q@c??$7?n)?F1#?>o?@ =D?[f?3F'?L:d?,*h?MwA ?X?P  ?K҈)???1*?/[-9?3d?,;S?@?tB?sc/?N+ ?5=5 ?XP& ?2i0 ?z@ ? ;RJ ?: ; ?@E ? ?Ce ?P6( ?g ? ] ?%(} ?C8ws ?@& ?Ʈx ?M`&i ?^ ? ]T ?_O ?yt[n ?Y ?d ?#o! ?( ?/s+ ?!h& ? v ? ?V ?}E ?+Jy ?z ?#C ? ? ?XR6" ?X6ٴ ?zۥg ?i?{zbi??!`?K?X?\p?a??u(?'?b ?uZ?/}?(?y?? |+~?XT?xp? m?"Z\??'ml?%[?Ƥ ?#?'VW ??Tfu?39a?B?-u?^k=N?s?t3?tL@?Mۏn.?2@̻a?Jv[N?zIA?}|?*%9?+?"xr?Q%? w>?; ^?qN?n?6sS8?5^? M?GL#?Gh?g?',ȱ? ?I?iQEV?x?bn]Tg?X?tDN?cdv?膜e?#?8qX?EME[?#?֬B?{%i?T9|?z>G? )5?e}^?ZTWJ?("? e ?W] 8??[Q[?-?@&? ?i ?Qؚ?_"?ԯ6?{>b?Ak?E?k?YB?U-?JL?h?o2X?`?6 -?TF$c?C?Y?8Ľ?>ua3?'j?l ?yJ?^mt?yc?:/>:?ƌ׵~?z?9?7$\?+÷8?x ?nt&? O_K?ma\f?n%;&?|4?+.?_~S? ֑a?~ƕ??G͋?k3?Aт?̰?ař??n ?I?aT?6HD:?WJ? ??(H?\cf?1/?wI?*??`?Z8?wJo?`?]`c?|U?J ?lG?а?(?Qs????n?Ux?F"?K?|^v?V?@ ?jnS?$~?77[?43?? N*? Un???w?fLZ;?GsY??>?8f?G?l=k?P\?8~x?2/Co?ϤM?7;?!`?.>O?!t?&?ؒ?&l"?{?\b:??¢?&?~<?}?A'8?ʺht ?DP ?6c4?H ??+?J?)?u}c ?v* ??f ?2' ?\ ?sG;P ?7 ?ÆD ?v3y4 ?oU ?.]? ?K ?jݙi ?㥢w ?b ?!o ?'W ?} ?& ?\ ?PQ> ?Ҍ= ?J ?: ?Nr ?6} ?σ ?Ь8 ?J- ?<6) ?L ? ?WU ?rP ? ?B`" ?,{ ?r/ ?! ?c ?) ?9 ? ? 7V ?Mc) ?`I.# ?ű- ?#}?p?N_m?}r?>'d?撾?Xu?E?ML'(?R?lX<?S(?(H? ?f7?P?v]?^+?:?Pq_. ?3$ ?6W ?rs+ ?\e ?z܀ ?tb ?ѬΊ ?> K' ? J ?N ?j ?/ ?o( ?П ?]M ?7 ?0PN ?+g# ?P ?(M& ?j ?qk ?HIn} ?T ?B Yw ?y ?!p ?/ ?:Ww ?Iz6 ?Ǵ ?lK ? ?, ?w ]; ?*U ?,YH ?I]lc ?e[: ?LI ?}RW ?>%p ?}~ ?'(d ?>Ev ?–8 ? H ?@ ?68Q ?F5 ?:+A ?]֧-I ?{Y ?~Nd ?5Q ? x[^ ?)_o ?juBz ?BŸVi ?`v ?*) ?nz ?Ѝ ?fp ?C ?V ?k ?E' ?T ?n ? ?M; ?ᴆ+ ?' ?, ?`A ?8h ?$#R ?oއ ?޽g# ?o ?u|\ ??z4?5^r -?l#?y'?ۯ?'t?-v+?&?A ?6rgR1???1N ? ?6?iP3?4D?V?<?[?=Ӷ?m?C?hU?/c?pD?XO?㮙q?wq~?)|]?jk?DM3?L!?Ɯ[>?*???F??W'B?aZ?3l?s?nzq`?τ-M?aoi?Z?GdU;?U.*?cyG?Ąg6?3l?Z4ݹ??O?7?D?6?<5?Tr?cP(׍?ޚ?k3s?ׅc?G ?jn??#w?S&?5?au_p?UO??`?'k?}n-?Ò?a?hF?ү@X?q2T?͆ݾ?q?8?z=??M҉?Fy?G0? %i?_i?wZ?#zr? a?"K?K<?ǴQ?C?BG-?TL?܇+4?3&?ƿ?P?B ?"?L?ǒߊ??QM?V=3?]!=?3RT?Վ ?v?$ ]?6˷?1ĕ?^@%?_P?B(Z??;w?Ui?6J~?Bgp?"?N?n?':?f?w?X+3b?yd?X5?wq? h?Yy?b B?{ {?ɐ?-V?Q̵_l?8g]?s?d?"k#O?ˆ@?%o=V?!G?F2?x#?lZ9?\*?Bq-?K?eJ!b?s ?W?1h=k?N&q?Nmʕ>?*[3?S?ǐ?'j?c ?\B??mnB?M?@ޗ?%&v?T+?g? CT?k2/?tT?2%ƀ?u??4[?24?/f?!;=?m ?Gd?'?b ?XW?v? ?+p{?݀v?c?[??٦V?<ð?pv?H?s2?W= ?`G?@ַ?;t.?*?I?ݽv?q?;F?uO?e^/?çl?GhuF?g?`?;k&?V=? ه?f6T?:ܠ8n?3I<?W??ͺW?lq?f#? ? x ?ԧ?K,??H/?cޠ?hW?;B??;]i?y3`=?4vN?Ub6?_4?د<7?%5?n#7'?}2&?>X&?֫Y'?ܣ&?pX&??1%?C&?G</%?Ug&?%?&?JYɿ(?Ʈ'?ZɅ(?j(?'?G(?OV'?BFM'?(?-j(?+xҔ%?*T%? Z$?CI$? $?غ# %?$?1=%?ljeCR$?$?\$?V#?;v#?$?u#?T~w*#?|M@F"?5R#?#?At"?B"?T"?VQ!?"jϺ"?Mc3"?OK]_"?v%!?y[]!?r ?7w!?0-a!?f1!?brJ!?z P!?\6b-? k,?б$,?U#Vw,?@X[+?'r,?)k+?)?v`/?k53?? ?v1?,.?"$y)G4?ҝ1?G4Z/?To-?$C',?j.?/8C-?R>?o$|?G@??ØW?^X?̜?} ?l+(? ?l?_KD??C ?*Vp?X-q?@?}?`?O{b?pM?܏?}G?k?&?!Caa?* ?zGJ ?ONB?ϔ ?h&B ?: ?Up ?V ?mθ X?@? .:?8$ ?bQpy?y%?l?}:q?[?NQJ?uF?^'C?(tA?'΅??G?3hC?zإkA?sWa=9?򫐤=?ߙ;?2gs7?~??ޚKO?v M?b4I?1I{K?Xo:4E?K 5L?X'I?pBF?:B??oz?j?(@Gf?r!$?+?M?iRj ?{D?@?c ?Q^? la ?z]?|f=E?"G?Fz0?t@ ?5?_YI?X>m<$?u[?#M?RKb?DT?%<{?? Hz1?AQF??.8?$#?QBӏ? 1*?\s?C ?of ?- ?U ? >Z ?C ?WS ? ?QG ?5 ?cǶ ?" ?g ?a< ?DZ ?8X ?^ ?0| ?[ ?U^ ? ?B.16 ?|4@ ?h~0 ?1; ?lJ ?(T ?E7gE ?;ZO ?sc@f ?X&W ?r ?Kcg ?: ?=~ ?D& ?T ?gs ?k^ ? É;i ?ƇY ?wx ?Wd ?tWWn ?x~c+ ?Dg ' ?PA (6 ?HQ|0 ?_ ?YqG ?B ?G ?r ?eP" ?<՛ ?h%Ǫ+ ?63 ?7VY ? " ?W ?ӳ"=?K+)? h?BjT?杏Ȗ??:K?P!???GG?jյ?oy?7?Ƴj)?n<?O&]`??̕+?Nu?7ĴN?b?&7I?63>?*A^?:@0r? ?k%??psJ ?V12?~PG?L[!?4a:?#.]?H\v?1ȹP?:g?/^P?5?_5I?DŒ?Ok?Nx? N g?w: ?/?M ?.??_]?{[?ҘEu?Y? F?Mkha??b ?~? P?Q`M?]?4?pWVj?O??ï?K~"?? 6?c?9?20q?;??~%?iT#?Z?+?d5?k?Xx9?U>??&2?O?#pL?L8y?la?mn ?9%?IH??a]7??\f?.?OGj?ix7?|[n_?Q?dW?9%?7g>?J?Nx?Ҵ?? :?aS?!(?u?m?e?]a?>?Ks??E ?s?yCL?"?_?GkJ?x?CW?DC?@D?b?3Kd?U/?@Kːr? a?d?/ygx?٥P?I<? eg?eS?-q?p?T;?5/?>?Ѩ? rK?='?+Jk ?11! ? ?Ȍs ?Ĩ?K- ?wn ?M ?! ?/9 ?d\FI ?m. ?gA ?#X?Kר?t!?OW ?z.}?J?F?Ɨ?(?ٗ?;f&?_O'??/J?&?o$?-?d<)> ?i2 ?' ?549 ?.WJ0 ?EB ?zB>/ ?9% ?a ?` ?-|3A ?( [ ?cd ?H ?0ߟ ?]Z ?ɢG ? \ ?K=( ?XX ?~J! ?~) ?fރ ? Q ?U< ?0 ?_ ?f鸘 ?ɔ ?Da1 ?¯) ?Z, ?MX ?Tj ?GP ?GJia ?\۟{ ? ?+Wr ? ?Ց4I ?e3PuV ?=D ?SO ?t/Oc ?ߎp ?\ ?+j ?0 ?| ?T ?<Ew ? ?x ?V ?+ ?^Qo ?k< ?7 ?m+ ? ?3 ?)x ?(< ?ױ0( ?G ?[7 ?n ??3a?қC%??? ? ?2?8?Q ?+?b;?x~?[?4T??M?)?(]?C?w?`?/2'[?w/?lI?^:W? C5?!mW@?~~/d?Ux?"]M?~\?(8"?RU?[,?t?]?^GXD?C?Hˮk??UR?UA ?.?`S?3B?ʹ^?|O?z1??>?=`CX-?x5? l?o ?&? ?\^i?!@{?-Z?skc?8m??m A??uI?W?.?fZ?z=?y?vc?7v?z?O+??NH?{j?:>ב?ċ?ө?„ A?ѐ{?懽i?Φx?gVwr?l-NX?AH;?MJ?rb-?Ca?M\!<?9OJ?]d? ?(&.?L)?@G?_O?θњ?e?9/v?85?5?H6?C9?j°?j?)?L?j,?-??/Eх?BRfw?qC?S~?v\i?_Z?ύo?$QEa?0[??ҳ?qN?Œٵ?_tצ?)fP?8#D?\uݗ? g?QF?Uh?!z?+/l?u?@ 1Yt?zl]?uTN?GEe?GPU?6:'@?g1?7PF?j8?K#?Y@?hk*?A-?m?;I?gs??߾?ˀS!?&k?i&?WR?Q ?wy)?q?{?A&?%H4??W,N?62??жn?iY4?Dr?9OH?P"?R?3A,?[4Y?n?r5?14)?lY|?r?t?V?&%?<3?dw?T?Y?i{?˓=?M3c?%`?QЫ?WJ@?pCf? ,?v???[?8zmtZ?MK*?Au?iD?CU?[Wv?B@ ??ï?y?pD?ܞ?R't? >?,"yY?r1& %?JN?aC?]?% B]5?@2?]T5? p3?(gC%'?&?q'?h&?ow&?YS%?!0%&? }%?C$&?%?e#Y&?(?(?K1r'?R!'?W >'%?ѻG$?u%?8T$?TaJ$?J{#?.^D#? +#?bY6n$?1h#?&[1#?=&"?&"?YIu"?? !?Ԇ#?q2"?]~"? ?VmG!?n ?¾ ?z|@!?L;d!?{0!?ge!?1Ɂ+?hn3+?$,?C*?ʒ*? )?" )?R^S(?׈D*?M^)?:-(?,^0?/.?0'0?.?58C_,?Sv1+?,?eFM+?Sa٩? ]?mo?7z,?IK?͊W+?{?߬_?%?LsU?s)j?\Ш?X`$?\f?&U?E^k?3C?H?L ? s?b?`.Z?=FH ?^MR ?Nj?b)?'n?7;z? ?tzbA?ۭ>?@=:?y8?o{B C?f۔>?4TS:?w `6?/J*3?Z;Ŧ8?msP4?NS?HPS?LdxCO?:W&M?o 1#J?fD?|G?M,۴??̆o¨H?D?' A?,w?lf&?6¨*?R/?R?Rcm??Ԏ?AF I? юCJ?4n6?4hG;?C4'?g?q-?9ƛI ?Ą+? ?O?R?>;??-S?&.E?i0?L"#?&"SJ7?^)?DGQ??O'??g?&^? ?gKϽ?X  ?=C ?I~z ?+ ?آ%- ?8; ?e g ?_u ?a ?@N ?[| ? < ?b. ?ᦍ ?L ?w ?H6{ ?-ؼ ?R ?` _ ?l6 ? ?R'! ?J| ? 3=P ?^~h ?X ?t ? ?rc@ ?CJ ?i: ?w%iF ?,T ? A _ ?cǕP ?nz!Z ?͓ ? ?j; ?}vGَ ?a)~ ?ni ?{s ?Hd ? ?Tm ?kĉ?>w?Ɣ?7k?U2?t0Y?zZz?Ҙ9?hU?D?0T?9,?1?[mxR? ?h-?(V`A?;k|?E~?N?`{?9YQ?6B;?mly-?.wz?~a5?bl+ ?L"Y6?p:|)?(?Jq?ɭ0n?i.?I=?~~?S~V?R!,j?6 ?7Y ?i ?4]I ?ӥ7 ?wVŦ??Ћ?WO?$gF?ܳ ?/?HU?5̌2?Z]? #? zIO?F? ?Jn ?Jf^ ?ϯ ?? ?? ?o& ?( ?q ?, ?bLA ? ?i ?QW ?U ?t ?#G ?ohܱ ?ڲ ? ?'wb(j ? ?eSz ?ClZ ?- ?WkĻ ?ty ?u[~V ?Tc ?pp(M ?E[ ?q ?2Rb ?wvi ?x z ?h ?zH ?Gl ?<> ? ?e,}w ?g٧ ?%7 ?C9 ?1 ?4Γ ? ?!~ ?RC ?K ?Ja ?O ? | ?E% ?0 ? ?G2<`+ ?P; ?:; F ?u6 ?q@ ?uj??;?Α. ?2l?<?v??? 3 ?+?eo)?f? ?BSN??YPo?9Q??ɥr?wE7?چLSE?r!?D)?n|gS?糿&o?7?;{G?S? ?2C?l[?y ?̡'?ӳ~?/wt?B?;il?D?Y?lK?C9w6)?^:?H^?Ȋ?,3?"ZD?$?L`rq?G?wF?W?:7Cu?OB?j?C ?,??H)h??M?O?Ļ?ls?P@?b)?A|?e)?uHD?i?S?It?g`?2 ?{W<?ݏ ?au$?@C J?p?--?n.?8#?[XN?E8e?,?#d?Y6$?&8?8m?_bW?7?7'5?p H? ?ĖÅ?wfN?W=S?v?%,h?Sd~?ln?mۈY?+zK?d_?4(Q?@? i?NZ?5?O^?1?@Ж?+T{? ?Щ??IQm?%]?s {?d?DGL?*1?p??l#?p(oT?s82???/?؈?``e_$?NM?kTb ?H??nJ??\/?O?KQ?@%?č6Q?2?Wm?F:q?l5?gv?}Qn?g?.0>3?>1?5#]?P?uAY?U}?9?ctn??B?mX??Xw$?jjh?{oy?|g?q,?_?#s{?'?B?=4iD?'QH?cO?/1:?kg?:?.?N6v?OJ?IH?>3?o?b?j??M^??Me?5'G?s?M2i?Ps:?kb&?8?y?5 ?m?&@M ?W3t? ?>;?+r;?(7?r3?a?-%%=?,1?]607?tTW3?oF?U???| B?_1D?& k69?yw e{???zhY:=?Yu8?8C?P6?f"?]k? ~ )?g???l&?h8?W?#}?@;?p`?.д??v{?Dͭ?]R ?I ?E& ?@&! ?`k ?]ejG ?~j ?vb ?u4 ?ճ* ?[ ?J ?NK ?W ?  ?V> ?L ?+ ?%= ?. ?zF _ ?fw ?E ? ) ?O ?' ?I ?0D ?P猪 ?#iE ?4ϩ ?xY ?:pL ?Y} _ ?sżU ?" h ?l"G ?SQV ?o_ ? ?1Qr ?n<~ ?d'? ?Ni ?+x ? A ?(A ?G*l: ?mP ?G ?S ?L& ?aG3 ?  ? @ ?$ ?O"2 ?S%??9F?O?6R~?9w Z?y|?l5P?O ??#v?H3?l2z?EH%o?C6 ?Ґˠ?J ;?r~?]?s#'?߉?BC? e?: Rl?IE?t?z_?(F:;?lXi?,?+%4?ͷ??S}?HH???B܉?\D^?3?YJ ?V-j ?Rg? ?ѯX ? |j?h?GN?? ?p??6?uY/?8l?UX?"[?jtڍ?[+D ?-7 ? R!R ?=\G ?3Z+ ?:b ?: ?2) ?V ?L5 ? ?J ?5 ?G z ?PtT/ ?tމ ?nВê ?~ ?CB ?NnB ?}<4 ?' ?Jw ?h ?'҉ ?ݝw ?"P ?B Ȑ ?| ?Աa ?Er ?b'$V ?j ?$ ? ?{ ?k ?3Z ? ?x2 ?_t` ?a#N ?\2 ?룃 ? u ?/; ?:; ?K ~ ?P ?9%[ ?M|K ?-#0F ?EP ? @ ?eK ?eh?EF?Ҭ*C#?ζ?Ef7?ť?/P?7#?Jiy?ŘѨ?6Lu ?&X?+?wc?/&?_ x?c Q?6,?gt?+3?#<?1zQ?HM?EN*? ?;?ϲ?~?<4?~?-K?)L=?\?☩z? !??n@?.^?6?Ln?db*<?Nʈ?(h?@?0A?k?c?9ˁ?6?>W?&<?m?KM?J?Z ?7m???s!?ө2?דu??a?z?w?SD?Zo{?Tl?\?ߕ? ?9?l?_<?7?=u?t'@? |?4f?2bW?Gl?[~ϐ[?4H?5 a <?(L?U??G?*?fp? ? $g?7]?hD\?GsHr?oQ?EJ?9c?."y?2?ڰ? uM<?B^)?kp ?&n?] ?/ ? F??\\"1 ?us, ?la?o=K4?<?@ ?2}? =?sյ??d?%P?!@?u?L(G7?3K?wQ,?Y ?I6Zc?[?/f??1_#??^qw?^;+f?b?|*?$;YD?)1?:ꏿ?m}kk?AW(?bq?|@?m?R(?),?A$+.?o7?w(?`C%?A2?~ ?U,?w?U(?2@w?{qL??5{/?dF?I5]"?/ ? 3?a? "?th?g?'?Tx?AQ?I~8u ?,?M+?DXr?΋? ?FW?ҏ 3~?p?K~?kQAw??ͦ?*Q?-??n& ?! ?M1 ?}v]+ ? ?r- ?k튟& ?[ِ ?U ?v# ?$p ?x + ?N*n ?U%j ?)Zbq ?Ӈ* ?5 ?5 ?{`s ?= ?e s ?$ ?3x ? ?d? ?ƛHť ?; ?[ ? ?=M ?ԕ'y ?}> ?_ ?ڢB~ ?*#n ?:}W ?O ?sЫg ?v ?E8dN ?pr? ?f^ ?'1U ?S0 ?SĠ& ?6VtF ?9 ?w?8N?a`f?1?h?8Q<?l/?>I~?d?gk|?10?@w?S?Y5hK?~jp?HB?n폠?s'V?6 z?7Yy?Է0?Dv8%U?ok%?;b?=Ps?_N?s`-B?8Q?#?ƵQ?7F?v?tЍ=?0?O?p??*vk?u,?<~ ? ~?]?i]??/(?)]?gw?f?VLd?$?@ ?3#c??N/?S]?!?;T?67I?p+  ?[J[?%Pc ?|?dI ?Ւ& ?8 ?rEh ?` ?.IR ?LA ?4 ?H9a ?q ?n ? ?q" ?=l ?  ?AP ?Q ?EZT ?5#4 ?|e ?%L ?o'~ ?B: ?.G ?܅` ?.?_E?s?iS? K?Z|}?-?IJ[s?^ǯ??J ?O?alJ ? 8 ?^ ?5KO ?-2 ' ?&d# ?3  ?~ ?I}= ?Z/ ?ݬ ?؜Ĺ ??ߎ ? ?[l@ ?i ? ?y@ ?W ?# ?#-y ?. ?!N:8 ?i ?4 ?ۅ. ?2R6 ?Š.ds ?\ߙ ?p봚 ?0} ?jpc ?0S{ ?2y ?* i ?:/ ?< ?LtY ?Z'`` ?jMT ?=Ms ?M7| ?(Cۆ ?_v ?ғ= ?u ?j ?m¤p ?M ?[ ?9bf ?CjV ?` a ?N?w_q ?'?| ?I8k ?[ w ?@y; ?_F ?m5 ?XA ? %Q ? [ ?Rr[L ?+^V ?fb?bH=\?#?K?s??mJ?}A??7t?gj? ? Ff?6??P?H5E?`$?O?6?uN?}?e??ȋ㱜?GcC?)o??K[?ȱG?_vt?/&#?:T??&"???rŴc?`՘?%s?YC?+?ֹS?v1?΍?a?\?@?d????Nu@?*?Q?'?Pu?ϒ ??Us?HJ/gb?&o0|?6g?$Q?ْ6?\N_C?d/&?DV?|4?NNUA?E?~ўX?y)T3?ŵ C?û-<?~xk?`1ͅ?+?8DU?Ɔr?2E?Q. ?6?)??F20?*#?#?%9?ZO?5%???z?0Eq?΁ ?9K ? ?+y?{?Ť"- ? x?M?0g?0y Z? ?ʧi?%? ?gzܵm?՝9n?^ ?%?c ?qy?{M?8 ?iK#?[_U?UO??%?mÙ?J+$?uU?_?Pz? #@?<?v}u?ܸ{!?J>?lit?CP?t~?`?-*?4v)?˕#*?j'?/y'?Jn:'?c&?N2Uz?7#?,P "?'1 ?2nd#?ԧ?.r2!?z} ?UR>$?Fv%?+\$?v$?"?W#?c"?d-G?y?j \?Ʌ8ʤ?uF?5Cq?ow[?+?[?(?C&? /4&?F%?k w$? #?Yr!"?~iY?O ?`M? ?u|!?OKh!?E?-i?c?iqU?Jui?-\?H?Q :? }N??k?Ǎ ?,?J@}?fc?+?(Qp?vb?ow?SHi?4??h?t?#2nB?t(0 ?}' ?; ?k6 ?H0V- ? ?Ƈ ?u& ?=2 ?w ?*+ ? ?Rm ?;*h ?tt ?wx ?wr ?o% ?I ?vjĽ ? ?|7 ?ztZ ? j ?͕ ?i ?n6f7 ?,HI ?\ ?'o ?( ?e ?A ?tpSqz ?C\ ?^\ ?7IO ?Qop ?Sxf ?B ?λ. ? hZ Z ?a/FI ?R8?6\ҫ?|L`?ކ'???\??g?&+?#zڟ?% d?l?!W?c'?a?Xa?Bn?e?#C!i?6?7[#?"V?w[=|?v?1-В.?|???Bf?5Қ8?d?0:5?QTN ?P1\ ?$h4 ?p: ?u'" ?kg ? ? ?K ?1 ??kj ? ? ?< - ?n" ?f ?[ ?} ?RE ?t_l ?>+`?E2nU?cg?ޏ=?)?R4?OZB ?mO9 ? o?Ae?W~N ?Yx ? T ?Q, ?Ey5 ? : ?Od4h ?_& ?@,|D ? ?Spg ? ?cӯ ?@'/ ?823 ?dJ. ?ز ?Rpˑ ?F ? Oa ?ShZ ?~ ?{ 5 ?.B ?N ? ?H ?-+U ?< ?]K ?_ ?x ?5{ ?N ?] ? ?$K' ?'ď ?Ϣ ? ˫% ? ?R ?' ?5F ?@ ?"[w ?( ?|0| ?92 ?W' ??% ?{|f ?Vq ?Ol?Y?T?qF?* ?t'S!?oaW ?ҪN8??b?8Fa?p?3-E?KV?z?Zq<? _UT!? qr?,?m9̲?30?7?1U?e$?VR|?S?ּ?I?0KJ?j?N';?3$??哭?`n-? }? co?عy?%alu?H!Ab?vR\U?`h?LBl[?VQ?vʏ?Ut}?:х?^YG? d?uP?q < ?6 6 ?L ?aC ?^3c/ ?X" ?Q= ?EV`0 ?9^ ?* ?4# ?;0 ?(e ? ? ?rNr ?: ?Wk ? =_ ?R ?Ы9- ?R ? l ? ?|WY^ ?ꐉ ?+z{ ?׃ ?=uu ?tZթ ?Q.q ?rG` ?W㗉 ? ?)O ?8i5 ?Lo ?iZ ?gXg?rdb?Ze?Uè?1?:%9?x?NzU?k#0?N.!?X΍?M|?  ?](2U ?F | ?A k??A@?? p9 ?,^3 ?{fC ?PC ?5-n| ? X ?0d/ ? R| ?N%5 ? ?R ?/ ?[AX ??* ?zsKh ?~ ?)ԟ ?( ?A_ ?  ? ?81@ ?KU ?r4 ? ?I ?MRl ??ގ&?!z ?ڢ{ ?p ?U/ ?GT ?ԣy ?_蚵 ?+g< ??E ?z ?' 7 ?fA^q ? X ?h2; ?$ڣ ?C; ?- ?]qv ?K ?z虓p ?N6?} ? f ?DMw ?܋ ?M ?H ? ?uv\ ?X%S ?Quv9m ?+e ?m ?p ?~ ?1sz ?$ ?vd(?|.?S6?Q ?db+?qob?J&?X^,?/7?]y1?ʚ<?%OAT?Ț??~?O?؜?1p?]?ӫ?_J?Ā}?%2K ?zӮ?@?]V={?\B?!? ?]&? k7?N.?!xi ?sI?Xܸ?Jm? ?rp?C???{?"j?4 B?+V?x<-?ӝs???j:S?N ??X0*??0?JEg?|SK??2w?")?$E?g?j?UC???\? ??r?ƒ? DY?K6?9?e ? ? ?h5_ ?5^"M ? ?(V ?xC ? ?We??m_h?zt?1z\?t? ?Y:K:?bN`Y?5te|?v!T?E?Z?ŔK?}} ?dE?也0?f?i?}G$?xo?lFF?kt=m?.? D?ʺ?qC? ?z+?S!0?kS?T-? "?G??)Ai?K s?|~?$?"'?5M<?ȟ?ܼs?{{MF?=R, ?{r?4? ?p????G?XgF:?6N?&4A?{,?:?CN4?T %?25F??vL?R ?Ǹr?4me?)7?&?+ۦ?k?N?'>ӝ?̥?æ֤?o+?Ak?})?>? t`?ht?ypm?(T?HzBa?_!v?w8H?@ 1T? 3`?QS~?IŽ?ni?Xt?茗?F-??1J ?Bz> ?Hid\ ?HhP ?]1 ?~Ө ?!ZFD ?=1 ?  ?R ? ?YM ? @ ? ?/ ? ?xW ?Ă@A ?`i ?[d ? W?g ?ߣ ?<ԏ ?Fƅz ?t# ?܌RA ?+Me ?4L=C ? ݎ ?\>xx ?M?@?GQ?4?x ?r77 ?Ai?Ao ?t_)r| ? >8 ?T ?Zݰ ? ?.qN ?`f\bM ?+- ?,e ?t ?x_F ?o ?T- ?~{5| ?ⱔ ?rM ?hF ?A ?wC ?c@, ?ZNO ? R} ?C1 ?y|f! ?Pä ? ?[IV ?t, ?aR ?W" ?~7?v^1?j,B?Hu;<?m ? ?Ł ? ?ͅ ?71 ? ?[˞ ?ƴ ?iŷ ?; ?if ?y!n ? ? ?MS?Aa‰X??0Ɩ?oc?Ԗv*?~mM\?|?e v?|cc=?Q4]?nj?wW%?=i ?mb7?O?qT?c?pB?9 ?kvU?GQq?#6C?`?F??'g|?\? aKP?M1{j?bt<?⏰?? ??J?8:?u#?0#?:a?>?2<?U?P?ξ??ٚ?XI:?s?X ? ?78?~?xU$?r ?bO ?4- ? ?Axd6 ?-ȱ ?I ?eZ ?*JV?!Wh?W?%]b?6E?A?%?tn?S7R?I?|?~~w4?Q?Qg?0?Sc3F?cъ?p ?K#? )r ?e ?K?6$?`>_?ה?qa???CNp?ٖK,?J_?XaL?H?aK3?sz]?j?Ay?A?>?-0"?'?3?Hô;?ϖ!,?gG?Q֩|4?oiV?8,xc??5?!29%?f?jk?E^o?8??)K9?K?euΔ?g\0?"?uAT?/?6?y ?#?̐ ?:x?Q?;S?_?sk@?SK?{_}k?t?OV?Ô8a?l?.?XS?N f?v@W ?:][wD ?A}o ?_ ?~1 ?P< ?ٶ ? ??L ? ?sڮ, ?s ?8@ ?GF ? ?u ?!;, ?\b ?<} ?moW ?/ ?Fκ ?g ? ?^ ?jw/ ?8 ?&ξ ?Tg ?6w ?k% ?Y ?k2 ? ?G? ?< ?R$ ? ?\ ?bT ?oHf ?B= ?fA?T <?XܪdL?N6E?3+?= ?t ?3 ?Y ?D ?OR$> ?L ?Ŗ ?h ?< ? ?@9# ?RR ?ux@ ?,R[ ?hR ?rѿR ?ݻb ?r ?, ?׌ ?Rk ?:wKx ?ڌ ? ?= p ?~ ?W?њ?R7h?[)5 ?k6?ӝp+??@?uD?P[+?YT6?]?!?D6=?VZ??65X?oG ?y1?hm? ?1t"?FP9?lu?rw?L? ? /N?+=q?XD?⛨H?t?E/5?V i?T= ?^ i ?$:׸ ?  ?Qq?T ?r ?b?%?nVz?5-?'B:??0$R8??]h? ?+????$T1?~?mC?| ?P?5a?eb??)y?c.? ?"P ?A4?h"?֦[*??F?*;-?{K?٤R7?|"?sj?}?-"?MO?v_s?,L_??$?R?:6?AC?dl? cC?7}?c?^?fdj??/m?mYP$i?c:t?`B?{L?[^V?K-?ݛU?8?'B?{?Dٍn?19z?`t?79{?<#?~P<?ft?\g8h ?u' ?OG ?0g ?*̻ ?IMI ?Aiji ?u ?V ?9 ?Ƌ; ? ; ?nU) ?TW ?`CW ?J ?$u ?g ? ?#d ?E ?E̩ ? ?S ?ryc ?׭ ?!Q} ?b- ?" ?U ?VC ?IOg ??#| ?8F ?6|TJ?k@?>U?LN? s?3ަN ??9I?( ? ?H:"> ?ٴ ?` ?dk ?`e  ?sϼ ?pԳ ?ʻ| ?" ?"ݪ ?$A` ? ?֠+ ?78 ?^1 ?{ ?wS?C<i(??t"?2D6?[D?0?r/j=?*aQpt?bAn?%g?y?~ps?ba?h!Z?=m?ef?Uj?&o?2?{?\Eu?^z?K?f+$?#F?IԔ?ަW??T?@?MG?R7 ?LJ0?U?è?zkQ?b??z?P?l?,N?0s?)N?P' ?Ũ>?\R?F,w?U;?Lf?ao ?NQ ?%i?V84u?rPCh?>i|?MKm?@`?b<?mx?P#?%gP ?:?W&?4;r?WH?`?:^r?g~/?C+?yL?ƒ?O-?Vq?b?ψb?ywQ?x{T?`}.?`A?B?B?=!?1Ng4?qU? oEZ[?ؠa?o|O? dT?ut?Vf)g?;a?0og?A.n?D [?غj ?W ?7R ?`A`8 ?Z E ?gtKD ?Fy ?˯(y ?H ?GC ? ?p~`v ?s y ?"gIw ? S ?x> ?< ?״' ?gg1f ?Ax{i ?zO ?n| ?> ?fG ?B2= ? ?Ps ?R?_1K?gvK>_?X77W?d?N ?CA ?uܐ ? P ?}?S?Sr? @_ ?x ? ?T* ?3 ?d ?& ?Y)S2+?;7?#dND?CXP?Ħ !?7?l|D? l ?ju?7*?T?$?$x?h k?Y]5r?+'np?n Ä?) ~?hvw?yb`h?(?G 7?{!?c?&MՂ?JW ;?dL?o\?z?HMI?0?Е?HB?6"?=t-? Ѭ?:x?3#?NzA? ?^s?z?ĭG: ?E2?gB?4](?2& ?UjlS?^uO?9zJ??"E!8 ?'<?vY? ?Kg={?.\g?] 5{?0o?ȆQ?;J?? ?$ߠ?8 ?6 ?Wܕ?⡃?Vt?u?6%?d{?tZ?;@I? f?u+O?jD[?)]m?D?O?cQyW[?J?3C.?o?xі ?2'?BcB?|z?.ӑS?bȊB? ;=?+?@1?ZO?t#?vT?'f?Q9?N?1A>?B?hHH?=6?";?2hZ?M?G?-jTN?sqT?%jA?^x ?w ? w ?5 ?  ?Xd ?!A ?^L ?e¬ ?& ? ?W?! ?o EA?p%?āe?3 ?)"?|a#?+A ?BF|?o`?iv ?X~?*#?Xsg\?}h?t $?Ϝ?p*?YN??*<#?M)?_J/?Am?t"?@?B3?2=Y .?S4? j:?(?e ?5>?=R G*?eA?$`y`?|Í/?g?S?k?>?jFD?q;?=Wz?VH? 5? >?iǥ;?fi n?/}%X?ĺ!b?\<?3Z}?sSӚ?8? #LB??GXG?J^?.]E`?Ptn?LeL?3Rf]?@{%?01e?"w?5f?b)?݊Ĵ?n? ?o?ORh?\f? ,?.k?b3۾??Ug?E(??p?{?w#?%dXz?Į:?Fy?|W?PT?b?T60?΢?l?~˿?5r?ݪ+?l?/h?bz?ZU?c?3?8'^?ˏm?K]1?k?v}???VW?qx'?At_?Fb?SQ?>?ظ̽?Kž? - ?qi?N??ߣno?D?:??+z%gz?Fv?X`?Sk? P?"\i?6P?M[?ͺ/?R8?Ho@?W ?@?H)?3w2?z2? ??y6P,z?s?m)X<???f?nM*M?1$'?QwG]?Pp?D?M3!?O}N?Qr??%x? ą?䢺l?kr? ,?Cֈ??Uȱ?me?#k?@Y?a?u?Z ?d[?~|{? |??У?G?D~??E)ڊ?}t~?ω?yY ?C.N?}<?slr[?U?H??&*|D?2?Ph?.?c'?IX?{?ɹ0v?،7?:?V\?g?N'??Xݨ ?R?6I$t?W?]?a|O?U?֮?oq??K?S?x ?xHb4?x?[ :?œ?Ӕƫ?^ Y[??h? ?|Bx ?|Xд?/0?!`Y?$ ? Yq?9?9?&ն?GP? T?|?5t. ?Ev?-@?yPn[?Jb?(C ?}AF?Hsz+? x]?%[HO?=V?{ E?³@?! 4 $?!Z2?5?g;!;7?MK?ɏG*?|&N?kj2?ئ)>?3?•M?A?? ?=q??n6ݝ ?@G?"Z?e/`?w ~?zq?"z?Kc?RO@?i,?a?يż$?0^? ?Kx)?Ƥ^*?+SNd?1} ?jW?ee??D}?:??2K?h?{3<?< &?͝??˛:$?6? G?jtg?E?R,?ͻ{?s٘?3a#?Or??8P?ך 7?Gd??"4B?ȣ ??)??7}?$?ʚV?\.?[լ?#D%?%z?1w9?}?MuuT?s ?8?s?\$vh?&9?j?F?<?Y~?6EI??K??w??l?M ?OJI?n9?fsd?=?iz)??Ro-??? ?t?}60"?"?S?NxH?7&? ??__aR?9s5? ?UyK?v)M?jG?\`??N6??_;?}ߊ??bR?`ms? V<?Vڰ?9m1?ek?wŏj?6י?{^~?/y_?AZz?dKD߅?%_?YC5?J?^3?Љ?8zʆ?!W0?ȵ?@?"`?wZ?(p?}]?h& ?i?+?bк?^??Uf?W"?d/?`Gm?r/??? ?o@?W??h ?3?Ǥ&?hL?!<?X?yg?)?aD+֬?|?zj7?܄%?o?[U?JU?S?N?9p?[??}T?7 z?N?[el?x?xP?TK??(ǒ?ET?@5?8RMI?.G7?f?]{R?CM%?P?W<1"?$?Gr@?y/?3?u?0=???l ?H`)?j)?R$?k*?b%5?E/?;?v3?^3?=ʪ.?fZ>?C=9?nt(?B&]"?ݐ3?]-?ES?_?1L?F?%~!?;'?H.?FE? X`m?1?>B+?Dy?lQ?y&B?ױ?KǷ?4b?$F?i]?A)J?`??k"?{Z?*Ⱥ?Q?\AA?hf8?1Y?̌A ?"? 3q?*~@?<{?Ɛ?gz??է?&uN?8?_L{??ā;?k?%?Aɴ?l9F?Dh?7?g4o? ?܆@?^(?6w?HF?&}-? ?'6?BW?k?N-?V'[?z@?P:N?=GF?zp?YKV?Ivvd?b^3?ilT@?V- m>?-6E?_L?U]?m,R?|UF[?0DP? 0 I?䨮D?V?kIO?v>?&9?/J?0οD?0ے'?;3?-P~-?!'k3?Gc)9?n??^?b6N7o?i??ŋ'T?0?l8$?=?)?,a?BzP?i?,e?}}? z?JR#s?-?'A?^NJ?;b/bw?Y~?Z}?޾K?(?\֬? i?@?}?  ?ӻc?tŵ?(x6?Sţ!?1?Lt!?tP ?Y>&?x?hy?AsА?`?%?@?Y?bJe-?Z'i?MT?|:m?;k?w:R?z?*iW?a?%Ԡj?F]?`x?kNf?o?D/l?%%c?-f\?‹ n?'Ch?fBV?3xoP?jb?b&(\? $>?؜J?D?״J?W8.yP?ڶSV?bcK?1)ҟX?iTI6?N`D?mex?Co?ģ;e?ip?vQ?Ȋee? \?ǘm]? Q5i?G'p? Jf]?ғDc?^~w?|>}?j?ѕZp?$`Ώ?Gc?1ˮ1}? *d?2?_v? /?ZF!??C ?W5k ?\y?6LH?nk?E9?ߣ?n?-屲?n-?]?̣*?.(?dK?A?;ކ?Vw?c?,?2򘂒?Gp?P?UI ?  ?pyj? ?V<5?+ld?gPm ?C1?{m?XSy?/ls?Fyy??m _?ax.?M:4?r<,?x[b'?ڝ:?$B@?@|q-? 4?*BE?GK?.9??տ??&R^?tR?BIK?XR? )X?\XE?SH? ?G?Qt7 ?;m?z`???6?B?wDc?®?񷗮?8/?߾u?TF;?sͧ?@Y?_4"??ڄ?-^?y ?H?6?o/ t?LI?ǏP?<.?r&A)?Tw?LdN ?%&?a^5? +?Y}-?3?\o!?g'? E?᪈9?MVv3?[9?0??0/r-?LM" ? ?Q"?w[?e?M?dK'?*?]?w?|2g?|ٻ?Cq?wGR?Y.E?y=?$'?$?<?<.9%?|?y???)$?Ni?_,]?}j ?N\?:SHU-?. *!?=+?˭ S!?g!S'?ON??)J?~?{?Y?V.?W?N?O)?6? q?4?;^?x?x=?(&?dV?^_?q?O?R ?B+?`?8?Z?D???mXg ?`u?f?1c?0av?mW,&?,`r?a|??ah7?2f4?aNm4 ?b:Z}p?>I?C^k?VVW?X?yo??G/?C<?#D-?}?1R?La?^?{qe?kH?AƤ?_?E?b?)s?o™?(c?Ĥj?;??#\{?w| ?w,?'ّ+ ?ީz?ʀ vj?긽X?"?{ ?b? ?N<)/?G?]\4?$;?i ?}2 ?4I?Ų!?sԪ?1oV?K ?? ?[d?sX?^?qr?: ?.Q ?y'?_F?ǘʟ?7 ?C7 ?ե ?r?E?"o?W9s?KD?? ?7? Gp?l?9jQ?䅋?Y?,?c?% ?+3)?ii?P? ?q?7h?y%*u?d?^?*?3f?c-?]*hu?j9\??kc?†??$??m7CE?22B?%@?.,C?=I^?[?hW?ϗ\?pY?|T?KQ?TauV?]GS?R,N?XoK?3WH?gF?&P?"mI?#M??=?QOb?-9?͛?m?'M?jV?~?G{?J?k#?-?` >5??D?+j ??sc?ppG?LM?8Cd?)s?>K^?ݿi]?j׈?j?u?]3?fr?,?U?护 ?3?Jo?o?tM??+j?J˕?F9?D3?u-?*M?a?'=?ld?+z?5Ֆ?L5?83?M?@V?-z?u?A?g"?|t? Q?<?JXy?r])?>*?qq?r?R/?d,?~?&M?d ?s?/p?k/8?I?Lz?{S??Ǎ?5\?C >?r/?A޺?ޑ?A?sG|??݃u?.B?Kf ?G D?qك??uѨ??-?6{?'R?S~j?h(z?I}1+?~ ?[Z? >?J?-?+%?|?W?8O?Xi?lj??D?s??;?)e?8cZ?`?C?R?0#O? I?>`p?V)?؎a?υ?$a?:??d?[,?6?S???f|k?qv?? @0?vA??NL?j?Ʝ?Ȼ ?Й??ӆ?zY?V{?a?dӕ?ܙ:?Ԩi?t?6?1??np{?s" ?L'? ?k$7? j?x?r?AVa?.?"?6?k-? W?lq?֍o?ܗ? w?;?Uq>?jd- ?t| ?t ?9 u ?N?)Of# ?j ?*?i?5UJ?aа?JS=?^G?]R?~9?CM!?3??q?Ю?ZS-?&?_f?J?4!??dl ?`矽"?!|J$?䃣!?_e#?'?6#jB?n>?mcM@?=A?d??_+=?p?j;?J~P >?M{D?f5?Y:j?1?ݾ6??P?? w?_?imc?y2x;?xRi?tpB?c*?BHo?c]?*(?` ?s??g?9S]?;?׿8?Ñ? ?:V?3?Q?4N ? ?,?Z? ??6I?#??f۞?o?->?C*YD?M?r??a6?a?? DkN?N??L'?rw???S&?{? b?3?Л*H?W6??K[?ĩs?K) ? x ?_ ?[ ?7 ?1? ?H ?49;??'&]? !?ԐP?/?}3?Yն??-V??Y?Tޘ?hH_r?Ԍ.?=?N?V|F.?6?2?֫/???n?L?ib"?r1?J3?a?A?dW?J{?4 ?QTl?^?3w'?eWG?J?on?p#j?܏??w?^? ?Ǐ)?}ʮP?ך?AD?XԬ}?+qΣ?^x?C?\?/ ?u?&?܊=?jz?xf?'S?:G?[?o׭?Mx?_+Y?Y$czv?d3ot?XPw?O|u?Ņhr?Dadp?mss?'lq?Amcn?eel?__jo?P!hm?tkj?өsh?%kk?Qsi?qf?hd?I*}g?Me?Ib?CA`?cӛc?ha?n^?-\?D( [?AZ?khP_?_[?]?FO?5T? Y?MqQ?쫩V?!%e???U ?AG?3g?W46?52?\??ļ?%C?mT?UR?|7Ժ?~D[?}?J?3r?O?=W?$?\2?G?b#?pl?d Ǯ?Aza?NUd?]_?c?+1??s?ιv?%ĵ?ł{?|~?u7y?'*}? 3?ﳧ?˴?N; ?m8??s?xы?)L?vaۙ??d'? n?a?a# ;?|Ӕ?&>'?.$%??:0kL?6y@?>?q:?~6?zB$k8?t2?.?*)4?tN0?+í*?o}X&?%.,?) Ͼ(? "?C/?5$?| ???{??KV^?T???B+ ?dK? `. ?2AF ?2~o?N?C?e?Ch?!?s?zR_?вUh?ըDd?+ b?^8f?=&l?(p?P]qj?]f=n?!$u?c*Yy?j[Lr?^+w?Hi}??ws{?ø??bD?d蚊?He ?f??2R?¾?d41?3?_C?bi?v ?R??s?NԳ?Zg?)ޭ?}T?%#?(Y?0 ض?)75? ?8lL[?A?<7*?ƣ?n?J̪??C=??E'7?3?+1?U?U2:?xa?@?iq???q:?Xq?N/??[Fc?{" ?:g?ۮ?`~?&?(-?YZ:?A?O?f?#?%"?s?kP?o?Cw?݂?o?5'?N?Bo?^+?7C?L?dE?"o?-`?i.S?'?l?C?W??p?n?ە? ?%]t?q:?n?j=??{v?wT?QI?t?8Mr?ĺ?A?(DtH? G$?#ev?J.X?H?*??L=?#?\Κ?d?KM ?w5?ϗ?X҂??p?W8q?aa? ?y?yA~V?L?o?}V-?O:H?YM?*)??@&hQ?x_?+?HP?44g?Ih?:MUD?R J(F?J]kC?e4Ȳ?XO?Ӹ?~e?˺t?Rm?=?L???#%4?hY?PF?rS?xy6 ?W:+/?F ]?$Ht?ϛ?\5A?(JiHg?S+`i?yk?MSNh?q"jj?6m?B}o?l?bn?5q?t?p?4L:r?e9v?xmx?/u?_Gcw?z? ?|?]?Nőy?4}?{?Cx{?u?ޤQ?'?( ?'YY?{І?*|,?L?.u?~?}~׍?4?K?s?g|?o"?4#1?% ??,L?r?9 ??j`?,3?΅hA??Ț??"?)?w?*)?!(~X?q?S?~x?ꏆ?&? ? ? ?yp ?\?:?!???w ?%?c?;P?5?Rz?.?>)?V>y ?T, ? ?w ?? ?U[?E/֑?f%?RMLb? r?nҧ?GM? @?m?n*&?I?d(? F5?;k??@s?}A?=8VU??*!?B$?="?7G%?f+^ ?wGy#?!?\??!%>?}X?$(?]QD?B?D"@?KhC?RIA?>?Xx."=?N??=?t,^;?y9?~?O9?. =???+%w=?gɐe;?ʸ79?{>?׮?W?S?*?ws?,?^?(›[? )8SX?)Z?5t?fK>wr?nu?8s?9*rp?ObFnn?dBq?eto?ml?sj?Crm?8ok?I{h?0;f?{vi?Òg?nd?ߨb?e?c?`?c\?[^?>\?dra?o]]?do_?Hv0?:F?¹T?뗂?|K?I??E?Zw0?Y&^?j{?T+n?]L?}XMO?OP/?bA??A?]?:u? .?0@? ^V?(?/ ?#ݎ?n?rׁ??K?&|?>&w?cv?gez?dwr?^m?,Gu?$p?AIh? 7c?)^?<[? k?4`?re?1J?q/O?13T? L?㹮Q?m!\:Y?NW^?V?[?)&9?#6?-:?>7?{3?~0#0?Rt4? 1?I.-? >*?z5.?+? TQ'?J^$?(?%_%?Tܑo!?T?"?U??ai??k~6?C??_?E?70|?6a~?Ai{?D}?[N?8}t ?cT?W= ?x ?b?d4 ?O(&? ?u?&?q;h?Zs?}_??61?Yh??tL'?dH?ӆ?Ep?9?b? ?E#?Tc?c??ѩ?):B?na?Hk?O?F ?C??X,?eM?! (?*NzB?rC?u_ʍ?ɝr? /?Lle?X?I?qu?Ha?7=:?Y?D&?Jj?Wv?̺?*?(?`#_?~c?+??KW?+ 4??i?/X?u?k8ޘ?S6?=fo?UzQ ?!c?F/?ߢ?pu/?"՗?*<#?f?y<?zD?(>?Q?k҉?~e5۠?xQ?=f?Pr-?a?oa?P?7?/>??I!r? %!?Q?_J?k?N[`?ݕ?#?=?O?k? d*?%??fy?ϊ7?ȴ??:h?:G]?.?)?M?wB?l^Ԯ?/?F=9?,d?ME c?Hg?i?mB?^E?9A?C?}'iSH?3rK?F?d0GI?4Kd?BHna?w^? c?ct`?I[?jO_X?IZ]? UZ?E*U?WcN?YQ?itL?hW?DP?S? k?:On?xxmi?Nl?J?Òq?t?y o?Wt5s?<0x?d{?vv?Byy?gNŮ?G??B?n~?t*?Wp.}?OZ8u?Lͧ?@0U?~p#?;b!?@ ?r?ª?p8?N[?^?f"̛??J:?Cɏ? ??C\??ި?8σ?&??z 1??:?4 \@?H[?_?!"d?B]?!]b?ijRh?l?2f?zgj?;mp?=u?0an? Xr?Cy?PF}}?c9%w?H{?n΁?0Q*?-6?Ve؃?0?~?5%6?fk?Un?z?%0?7<˕?9?`?q[Ϡ?/XD?՞?څB?cG?F?qZ?FE ?5 ?>?KN???$´?J?G ?;?Dӽ?q?"(c&?n?#?t?*~?*/Dw?-Km?0g?fq? Tj?Ңd`?Xc6Z?Ld?r_]?S?BOM?fF?*C?W?9YJ?l^wP?]?L?d?z?o?U?ܚ?/7??4?;?7?@W?1&?:.&?E2?]~?f!z?[d,?[?D?*0 ?,?n??\'T??5??/E?, ?`y?2?AV?Y?gV??p6??s?Ґz7?Xn?;+ ?iQ?f:?zs?3O_?k?p<? ?8'E?I\?w/?xO?d^?VCH?;m?QZ ?Ņ!?H??<^Q?O?Le/??W_-?%??KM??8o?O(&?;`?n??W1D?X )?5?g??FN?ߡh?W?S ?[?NP?j+]?ݚ?`E-h?K(R#?,H?Bڶ8?X?'W?B??ѱ?^k?/?Ϗ?8r? ?G`O ?ܔX? #r!?g ?G"?X?|(?? !F?9 OD?_夀B?n’8E?0eC?K@?9>>?$A?'??) M=?oN;? >?1C(?(*?Ι(?)?];8,?X7-?z8+?̑,?g/?~O1?.?=0?K2?o*6?͏6s4?~6?[jI1?օ#a5?V3?/{J?JGk?P?(2|?˞@??0FQ??,?`E?#?Hw???(?J+?QR?KO?<]?OD?a?T?,j?I[ P?^̟?5&?0D3?Q?mL?ˌ1?am?Ы?l_?a)?.PS ??|?z?d?սl?pK?;"?"??-?M? #D?/eI?)Ѱ ?%QZ?U?}ݲS?zV?IT?6GQ?P?UR?|4Q?ppRN?6NL?%w8O?M?%mJ?3I?kK?J$J? OG?ڦE?w(B?$(?`0'?d%?v(??*Q&?|@$?RL!?_["?񡸤 ?i %?Y("?ii0#?vJ*?q+? ،z)?.w*?0p-?Z.?\],?-?ݒ60?F1?Z!ek/?- 1?bd3?p4?O2?N?4?ERm@?h2>?GIA?Y R??[9=?r;?Ӵ=?J?u?S ?ji?B1?f?>?@}?aI?h?S+6!??&? ?m?{7?yx?r"/???e?Ȝm? ?Ә?4/? ?QW?~ ?$?tW?S??8?z?5?:?M? by#?|la??`|?z?f$@x?va{?y?nv?Vt? }w?>u?XU?O$pW?GbmDY?ߝV?6`X?Mg[?e\?!6Z?Ol\?)>>r?jp?\[ts?aަq?`gwn?PCsl? ™o? [m?3brj?h?~]Yk?|i?t+f?@d?g?v re?jb?H\^?%c`?]?c?Ko_?Ba?m6?:ܴ? w?i-dϩ?ZK_?G4??Ī?i?]=Xy?'?b?ΩE?mƸ??5??A{̆?ْ?jD ?N?=?(t?N?"U?N?L&j?,a?\Q?Y+ֹ?.F?!|?n *?TΖ?r9g? ?t4?/ ?a[?R?l?'5?l ?a[? .Q?FL9$?f5u? 2B???+?.\??Ud?H?i_?{?Z>z?仧??Hwn?qg?Aώ?b?h=e?zg?JW?i՟?Ubo?͝y{?Ix?՟L???D6r?R-tӣ?V\?xՔ?,m??]\8?3?~-?25?ud0?{'?7R"?lxi?s4? R*?dD?ڳD%?Z?xVU?ֲ`O?R W?4R?{oǰI?[D?&]>?tG;? L?G/A?:YF?$? ?3Q ?ǡ?1C?qo}?e; ?j?/?d?NvvZ?nK?`G?%2"?; ٻ?ik ?_K?_ߓ?]???M:?]?S?WL?0gz?]O?me?DG*?ɞ?Ė??u?N5?d?֢$M?.??-8?&}?f܄?X?(x?%r?B/z?Ju?fem?,xc?h?<`?YQp?Gf?,atk?Y{`E?"kJ?@ KO?]H?I_L?.T?.lHY?,Q?yeV?Bu;f^??c?]1[?X.a?& 6?R3?ҹ?7?}jg4?C 0?Pk1E-?Eh1?N.?ZAm*?}|'?GT+?ڗH)?}+$?2!? *Y&?l#?gr?|? ?m?}??aAg??h?/ ??]n?=~?Ҍ?}??2`f ? ?~M?:& ?kj??g ?~HF?"?*f?g?xi?h?G5?96A?9w?K'?Ym?|S?RV?m`??8?wl?z?AFu?9?XQt?~* ?m?%?!?$?=?`6?q?x?ϼ?b??^? ?p݆??e /??Tt???G|?v X?[ˊf?Y?δ?CZ?0Sg?Y??$?kk??B?\E?66J?xlN?!H?plL?d?jݕ"b?։g?HNd?:Jz_?%D\?G??]E? 'JA?:?@:6?m=?޿8?;2?ދW.?b4?0?+?9g&?R -?t`)? "?Y֝?W%? ?.?o?g?9?ӡ3G?6c?D$?]?Ⱥ ?|?~?:_?E ?Fٕ?𬏙 ?. W?[W?\-\? `?\zZ? ^?s\Md?&Eh?@Fb?q|e? *Q}l?p? j?Pn?2u?O)y?$9s?xw?_N}?iH?A{?W b?]?Hi?K?!??fx?m??Ѯ@?0 ? H?Ƣo ?%?%YB?8?Ht?b? O?%?*p?ԅ ?b?a?zU?,?jRA?'?V?<3?^\??F?l]'C@?D9? FC?*?R*#?U-?`B?H?ia?@?}&9?5ㄮ2? +?(?SX?C ?p"??@J?\[{? U?VDC?סL??#? T?Ck?~D ?x?s?E?C$Y??X$$L?rY?}p}x?wZ??P?xX?x7>?+?F;K?2r?Jzz?؄?2u<~?qamt?荑m? @w?zeZq?~lg? `?XBj?EɌVd?PZ?(d0/M?'QS?vI?xl]?rP?IW?R:W?M$? ?=?%?܃2?пSW? \?OD?>?: ?D?%`)?V?#|?ࠅ?;?\`h?(m? &m?Lc?Հ? *?uBr?/s*p?!f?w>? <+?D?/e?p?@u?^]???u>? ^OP?8?B?`:?h?W?e?=?B? ץ?պ?*?{;?ci?s?NN?|C?t?ڙ}?d=?-0?3T?H:??r?FT?CW?fMX ?Ml?9??'ԓ?u7?Qj???FX? ?@O?\}V?xm?r,?w?g?|?ʻ+?+"??[^v?N(?YV??ޗ?"?ؒ? yY?G?9??#?H?u?g\?%΍&?٠?$ڹ?V?wI?g?X?\?DO?Ov?%l?.:??!?6?~1??{_??R.??l̨?XM?! ?c?{?%+?L?u\9?i#?sg9 ?n?Q ??kpi ?ϒ? .?-L?} ?P`?? ?S ?@\?n?q?o8?EK?C?5e8?_?4?ffi?dG}?̨đ?' 1?+b?)d?:G;g?c?I<f?lL??+.}?+?i?M??̃?zi?um?ؗk?>fo?{Ph?Ym?yD'ck?}{Zq?3s? Io?LLwr? bv?kK{?Wjx?E}?t?>zz?\Kx?L?0L?54? ވ?ߪ!?dK?)?B?戇s?.??ڤ?B啼?e?c?Xp?㞭??оI?L[?Yc8? D?y?g ?y?-;R?iHI?s ?YaK?I*?b?zTYS?,}J?OV*?> ?0s ?} ?GzG ?nW ?2=ޮ ?ds ?|?>7?[)#b?k?D???KF ?j#5z?:uw?QԒ ?? (?9dҝ?c?.?j?]`&'?z9$?m|%?{B"?-(?%?2$? ɿ^?4?R?g?cȂ?na ?Iȣ?1?T];>!?|?Aʲ"?&^?~L3 ?ht?%=?,'??W?[K"F?>]I|B?܂eMD?N@?ĸF?z#D?FRB?i??(o=?e@?ѱ =?rm;?W7?Xj9?26?v0;?JQ9?7?}?*?10-?mI,?VF/?c0)?a-?@D,?0?G 4?G2?X6?XA/?!3?3x1?b-c+?RCb?Yc??Hn?"H?*KS?5?`$n?,iS?\?|S?g~?Bl?2?3?#T@3?o,1?27?%rN?E@?a[Z?j2?bC? !9?&6?9?P?t~??ڃ@?뿘?/C?5/^??L?O?? ?B?? 1?Ԥ??&?N۸?k!?C?FI??=??4C?R?B\1?G&?M#? T?O?Y$?7(?x?S?BqC?:?K2?ü?-C?;ڝ?4+ ?GwX?5?q@?;RE?W?IO?ljƩ?i@?g[?N?]c?7Z?M?F??T?Yk?T?O{?}Z?/?/?U?s.z?Ov?Z?PB?$?ۄ?Yj?3G ?j— ?Ή?} ?ڿ? mR+?i"?$a"?q?P/I?LB?M9vB?zuB?\"_B?B?h" #7?Ї7?$6?,7? 6?Ի6?HE=6?.6?J26?yҌE7?.h7??#?r%?_+?-?M*? 8,?z.?W2@0?h-?H~l/?ڢ1?n}3?N 1?8zo2?BH5?c6?y4?N5? >?خ$=?:??[\ >?k~;??8?9?<<7?qala B?_?߷[??Z?"?@?iG??1z4?'"?."dO?KRJ?? <2?q?]'h?w?&?+x?h?2?R??9n?uU?AcW?gT?0W??zPY?6]?'[?X&^?M{-X?[[?p5]?, %p?E}n?3' Gr?Do?vAl?h?#bj?rf?(Uvm?fh?dۀj?ȼTd?`?b? _?k6f?{*a?KJGc?(.?@*?/G[&?-8,? Z(?,2x"??1u$?ko ?^??? k?O?CV?-?HQ?-9?2*Y ?]J,?>od ?G ?SN?eH?޼?+?&@?L2?$J$?Sc?s,?'Y;?0"?V@ ?g?"r?thA?1?&}Ɉ?b?zh׋?+e]?P:V?O?;&G?5'C? `Y?K?:R??XY?z?F? qS}?+s?Tek?Jud?`?#v? }g?5n?.i?BW(? ŵ?^a?n=?0?CHJH?%?9ͱ?Dd??+ ;?T?۔??@%?{|?XF?U1>?L1?"hcn?62?~6?1ia!0?=b4?`9?.=?ǩt7?;?KLA?*dE?$??@C?CI?MduM?_G?ܺK?H ?j??@O?F?/g(?-&?d?&~??}?%/?~#??n2?V??%9?ö ?^=?`? ?t?V_? ?Oc?I)~?w0?4??s?t|??x?#?@j ?v-u?hae?%??ns5??CV?mQ ???Fw??.?-$ٸ?=_?pR?'k?G??@X?t˾?$̾ʾ?Wat? ?x۸?ۄ??S'?-?}G??6?I3?EN?LB;?#%?H??bm?e>?s8?)<3?ʈ;? }6?*=-?ʠ<"?:((?L# ?0А0?7n%? +?G9w?Ffq?%Hz?$nCt?\ l?2Hf?뜈`?]?{yn?+2c?jh?B1-`?N[Z?ufT?D\? W?7LVO??'D??X?wvs?gE?ܤ?1?:¡?G?O?DTR?n׎??bE?8]ʼn?ݽwD?}?2Ex?5i?h6e|?̶s?,i?|dn?Lf?Prw?Ѽ3l?t8q?@?PF?u\O?&<J?S?C?ķK?X*O?Xq?X??G^?.+T?_[?e[c? i?= a?j/g?S2?PmQ-?/? {x*?iz>4?h-?k}0?)0q$(?^$?'#*?Dd&?r!?b"g?T#?,8?9???m?՟?t?f??8t?+ U?$?f?H?x!M?Zt;?6?\9 ?'?Lg ?B ?"C?^?9?N;?>.C_?sro?V-?c@?_T!?Ը??%o?$:>#?֊??G:r?>&4?'C}?&t+e? C?}?V?+w#?M:F?O?Uֺ?DkU?Ά?l?`??K F?‰?nΔ?=f? ?c?YЋ?<" ?&?Ha?A?u=?9q'?Ĥ=?rl?"!?ɪi? ?14?I?|??=?6?X\/?j2?dJe+?`59?+F/? 3?U'?a#?+?%?e~?.?'K?ֹ?(-!??`/(?F!$?L?2 ??S?M)  ?I(DR?L?8?K?8|Q?v?BX?`?tp\?5c?*}W?l\?2`?#ݙg?;bl?rc?<+i? 0q?V5y?$=t1u?|?tyn?ɻu?y? Ǵ?d?Y|?T^ł?W?N܎?Rw?]?夓?0z? S#?A1? mU?u?zP ?pg?GKl?y)?Xs?W\?צ?鰵?8A??Oh?t?0a?U&?XRD?#|?I? ?+6T? ?1?ev?5??#,?n\Y??: ?S:?2u5?@V>?nv7?rM0?2:(?JSB,?|I$?.U2?Kf(?in,?[ ?KT?bu$??HyQ?O?8>?ng5? ?r5?k?wƔ& ? $?԰V?'f=?/?^?@?dv? P?*?"n?V?g?J<;??EL?; JF?=\??ڃkI?asjB?9?}3?ת|? )x?}r?m?at?:o?i?Je?K)Ca?_?&k?QO?p??u!n?@K}?Zx? ?cO?_!q6?nX?'?b`?Up)?6??'t?23? ?9?D??$?d;?@-N?Q߾?M-p? ? >?5?#?9,?0!??;?mQI?eM?$K?O?ikH?n?M?yK?HaP? qR? GN?uQ?갋`?]?i^?/S[?Utka?#^?x']?OCHU?4Y?LNW?S?z_[?HX?SXbV?s PJ? G?ÚD?A,H?\F?5 ?s?tܡ?l?_?<?)=?d?>8? Lv? c? Hu?! ??ֶ?Pi?l?>?N?0ۮ? ,?`?x~z?^?ӛf?U?`?q?H{?4?s?g]h?y? ˩?,}?o4_?hq$??? C?x?6?z?\n?Gdfv?c[%?T)n?nt?Vf?h?[??@?Xݞ?l ?&{?b?%?imp?;?A?.()?&?5]N*?s(?m?F?AU?q0=?:~*$?\!?Q%?ʻƍ"?;X?l)?I?H&D?H^?˳Z?C ???b?DI?a-)B?7b??>EvjC?kՆ|@?c{hI? J??nE=?L?Yd?>b?)?! 2?ӭ>?FOv?eI?wn`??N ?"?^R?+?z?Y?_2^??&pp?8/?*?E? ?Jo?^H?a?[? a?kBB??R?5??"??d\?r?TQƑ?Ni?Uz?Pp? ?e?n?7?n?e:?\(?,U ?0S?9?>?(?|[?1g4 ?? "?q "?j*?Xwtw6?bcbU6?9ڼ6?Me6?@2e36?|6?xC6?!6?R;5?95?.5?495?vK<5?11P5?C)5?bsh5? B i5?t5 G5?VMx5?zdV5?S&5?c[ 5?9z55?AK5?:T4? 4?4?AԪ 4?q4?8˱4? H4?4?v_4?:>4?}?o4?$$3N4?x>4?3? HQ-4?pPe 4?o3?tz3?@Db3??Ai??1u>?|߸>?>?謓>?j>?֪mk>?tD>?՘Q>?yd >?Y|>?n'/>?RWV>?*7?wI 7?V6?t~ŷ6?*6?d}6?`26?=`t6?*,<Ȥ6?v6?@x>?]R;w;?4GR;?[w;?[pc;?W"a7?~\7?v>jL7?H?n7? h-;?X;?Mh>;?;?dž:? F:?| :?{:?:?RAv:?:?ф:?}nQ:?l-:?9^Kc:?)Mp*?:?T :?N/9?>:?pF=d9?9? 9? KJ9?gbϭ9?di8y9?wdU9?މ9?׵e9?+[H19?p 9?)B9?o9?#u d8?b8? Y8?j8?!_Rt8?8? \8?t=J8?8?Lzm8?yǐ8?77?~D7?t$$7?v7?ǝJ7?c8?w7?h8?}D78?eZ8?N8%8?dH8?Ǔ~=?= =?l#R>?=?I=?i\T=?v%=?\=?Sͅ[=?75=?rl=?Ƥ-G=?_=?0?tD?KCk@?/{VB?yN*?)?+Z+?2:\*?Z'?$?gc&?T$?(&)?҄%?ho'?F,?.?o?< ?9-? W ??u?U w ? ? ?g?vj?)?B?׿?SVU?I8?*^??e?{#?+?Pe?$'U?5ߑ?lc?3\??=8?wmA? ?2?QE??֐?8]??|֖?A ??m?d?/?,zm?ʦ?n~? ?6*?lۦ?ґ??QO?6Nj?n? ??z끽?"?-n?d)~?Z!a?unm?0Ʋ?CSg?+?vq?ڮhlA?tQ=?1E?74CA?3:?GtP1?'6?*E6.?7ᦔ=?OM1? 5?C:l?[h?'p?&m?+H?M?j{E?(K?ihR?`/ W?O?UU?!_;e?Vpn[?jzY`?j?Z?,ǚ`?yo|Le?[|t?Ky?Aq?f(w?i?_֩?|;?q?ȶ~?4׃??U|?[?sQ?e?4kx?=?r?)zj?S]Ԇ??Vњ?#Vّ?LhR?L2%?Ds?#am??ίׯ?._Z?!P?#S? V?bsK?2W?jaN?yQ?l.?D #?䠾6?(?7.?*?/?'`[#?HL?̧/?UZ ?~#W?&d?'/?b?\I ?|)?C.,? ???w?#i??ͽL?ŊE?*P? yH?ĭ>?"v3?x8?6VY-?j~xA?M3?No8?EM?{4?cVS?L?N'?%T?}E ?j-?/<?^9/?^$?+sHF?>?\M?E?U'd7?o/?P>?'5?ف'?8?-?ˆ#?o?e ?X ? ?L-?Lh ?mVw?'G?Dd??<?5|?$d?P? C,?7?Z,?y|?_?hv[?-? [?~H1?gX?pd?V8?3h`h?~~?_I^?3U;? ?|oH??䤎~?U^Y?I? S_?Kҗ?X|??1 W?D??0Y?9N?[~t?4{?΂n?)?t?;{?Bi?ߒZ?/Aa?JBW?0Fn?ԇ^?:e?]L?S?zD[?["P?fRTW?<4?U?is?? ?B? ?j?!4N?Κո?۝???~R? ??3*7?Ѻӧ?л?si?vg?"~?Y??.?"U?[%Y?,S?r7W?]?a?s[?_?{7? ?i?yE?2ݎ??V>A?mnj?݊4?C `h?됛?Fm?~M~?7z?sDR?E!Q|?0#v?P r?W?vI$^?dY?O\R?eN?߀\T?X>qP?܋I?D?A7K?MG?W(v@?;?4:Mj7?$T35?B?.9?;4>? .?V| *?~%?_#h,? k'?%7 !?g?te#?p?bP?p?IN9???t3?[ ?WFU?O ?^fo?^L ??GL??J?d$?ge~?ޜ??y"?[?u;?3J?>?z"?w?y8?.*?x?u?J?>?L?HL?\? ??,3?wÅ?^?2}?&ڀ?d0|?3%т?!s\*~? +#w?Rr?Cn?B?ٮ?x?ij0?.?]f7? ?#?x] ? >?/)?0??_ ?N:?!͡?+MH?c?V?K?.I/?ޚzJ?& ?? ??el?EY?E3?c??s?fu?"?ё??@V? "?_x?]?b#?R߸?O?k?l>? W?(?o?/?\o?ג*\?|?| ?̧ ?u?CA?$9O?(햸??'? Q?-?"?۽ ??dxj?ud^}?H7c?mc?RM?lHz?DW?>?@L?@x?U"?3?5?9??7?HV?),?8Oj?0??c}?LN???ӥ?õ?0M?RbF?Be?$?>?~?B?[? M?U?|T?pR1?Ap?^x)?y>܆??34?(z?Cx?\Qg?4W?YM?UǨO?.RK?瞨M?e>R?tCT?8P?18K?6hD??C?Z?U"#??e?N?V ?+?[?;?v `??j)d?pb?Vf?h]?wCc?Na?\h?nDl?ie?,i?t*}?i?L훁?5f?僑?e]Iz?6#?dM?4f+?0!? p?9 x? I t?Gbm?{a|?Fv?r?U ?c?9:mD?a?#E?~a?@(?|?6s?6uw?(0N?R#j?@n?jB?&?b[ ??t`?F6?ۦ ?҄~ ? ?7u ?Z%?i2m?I.4F??tF?'E?_ ??U?b?T (? ?:m7?tn?8m?*?5?r$U?v?12m?|%'?.nW$?'?3$?)? ?- ?D>{??W ?m!?>?ce?p?bAq%?>?[9?ptR?,?1?,?AoA???)?')?C.?8G??ФP'?͸??;d?#h?? )@?_E?ѝ?`?z2 ?`??|S_??5C.??9?HqD?ۉu?)? Y?c??ey?=uN?x?D?9)?_??*=?VW?M^?6?}?3? H?u?{?? B?D h?X%??ƾ!?h(X?&C??5?WT?Y ?!:F?`?%O?@N<?jY?^|??C?l?!?8DK?|ԭ?y?G?`s?̃ۖ??}.?o?Gn?2q{?$*?/k?Ϥ1?N ? "?Z "? _?t6.?0T.?Ȼ-?1v'.?W .?/-? 7:-? nv-?//?N,S!/?L/?3;//?E/?p>.?у/?#.?3.?Au.?hҭ.?3.?N-.?]p.?S.?f|D.?~.?׃a.?g~.?OuR6?sj16?a6?pAA6?^6?ͩl5?k6?pdT5?CE5?5?A15?޿3b5?ɛ5?8٬f5?nI5?Afu5?=JD5?#5?/T5?_O25?I5?%X<4? 5?4?8B4?,C4?CmA4?74?X~4?Li]4?f4?Kl4?A <=4??y4?yL4?9̧,4?ƒ3?™:3? ^T 4?,83?B3?j3?3?A{3?sL?bzFL?iL?BF ZL?\L?إK?',L?ZK?%K?bK?yȁK?/]IK?DK?uK?-@K?a[NJ?i7'E?/ E?, r E?[E?z.E?K_E?}E?rHrE?d>B?reC?l. B?^C?N@C?NX-hiC? Q*C?zSC?>5E? E?GE?vxkE?LCD?19D?3SD?)D?D?1cD?Y=D?HwD?-9D?6RD?sMD?!#D?BC?C2ɒC?҂TC?}C?**6C?d C?rM=C?éI?JDuI?ڸI?@[I?HI?QI? K]I?5/I?7U(H?(ENH?+AI?bH?WdH?kH?9H?9=H?|gt@H?'\H?nTH?DӈR)H?ZG?G?~HG?45p6G?嗣F?IF? w2F?CZ[F?,Ad^F?zF? >F?-1fF?іE?(YjE?i#F?1E?+ G?ksA(aG?G?%\A^uG?M '\3G?n F?RG??RwF??WO>?dg>?C^>?7Fj>?lfHA>?g>?˴,>?Yl>?ÉqdR>?rx>? A?[2ZB? EB?ԚB?`YU/B?W3+mB?8ĆB?o%gWB?0r}B?B?eB?-RԦB?=B? Y7?gVU77?7?@7?$7?gGN6?@~6?l7? 6?F6?=L6?)j6?46?*"q6?zsfP6?0~6?Y͏`6?=>?ۙ(>?GZ=?\F)>?b>?JĚO;?D*;? 7 `;?p>/<;?N|7?}7?3c7?AgB7?[I4;?A3:?)u;?q:?g:?Y ߘ:?:?_ө:?Wt:?IeP:?AVX:?(b:?6},:?5]f:?E}>:?g8:?Lz9?2-9?_ӆ9? F9?[jd9?1v9??׷B?<@?iZj*?}o&?\(?4,?[&?)(?7[~*?[.?T0?hkI,?.? =2?Sߑ4?տ1?f3?%6?a9t?-e`?qqF?Tl?*W?ܠ?tn?{?-2 ?; ?J: ?sT ?E?6 ?19 ?-{ ? ?8Y'?lH?I?Z?X ?讁??? a?z{???Q$?*1?<{?ꐁ?%??d??вs?_?z@? wߑ?׫?i?k?~??kXU?2)?~}?v?|.?R)?_?:?}oYT?y?1D??&?BR"?b?;?u_?q?h8? ҆?o?5ц????+b?;h?.? ݂?!gP}?~z?N;.?,|?Q?v?q?0_t?$o?-gpx?[.r?t?0+m\[? ]?&.`?b?'كY?`e]?|_?2vl?l(e?;i?b&zo? J,b?#cg?c,k?ق5?1?y6.??"? ?R?$??JF?ҝ7?A^? ?\G ?'/\???v?+c??9? ^??,??HH ?5?I?=]??.ſ?? Ǽ?PO ??F*???2K9?bv?By?3L?@o?˜?̶?߄{?_?2~ $?dz?tu?&v4?rϺ?A t?x,rz?v?"?L?xi?[㢿?&W?-?C?Y?^9?dĶ?ws?,?g??F4 ?B?aV?1}h?WxI¤? w?D?<ָ?I%?j+?Yv?}?>0s??ZJ]z?\9?f˟e?T|E_?Jk?rxZAg?Qr]1?19?q@?r 6?d?L@r?{@?h?:+@?\n?静?g?1#? Ǜ??2 D?zf?,=?Z?^?6 O?>Q?ê!u?kem? 8o?s`tZ?Q0??>?4 ? ]???|A?զU?ς?b>?8c$?Xݨ?*?,?Gm)W?-??[D?Cef?z"v? X^?(uR?釷?`?9,е?7?/?2'?}Vc2G?dA?~e?z9?GRD?^>?"K1?~b,?r,Z7?wl0?ko?Pu*j?Ʊ9t?؉p?YWM?R?yb qJ?WCO?pϭFX?_N^?+ U?>[?E ]e?!l?@>b?9Yh?)|y? j ? v?$b|?}ZL?Bߤ?'?mQ?*C¨?0Ϸ??VS?]z?V7'?B??8IjM?~R?v?z?;+?w?K?/=e?"YG?N?Ǫ8?T?Ae'??la??+w?4w?r?K?H,?$m?h=?ׄ ? !Q?.w?C?e?,?Z\?{h?Ys?* F?V?x\@?jbٱ?<_?\?5ʸ{??1?'4G?z/?Θ_i?̾?R?p?bj??A?7p?,T~?sN/??6}?8{?96)?+Z!?7-?\%??{ ?9$6N?ɶH?V@?z= ?AM?A??SG?g?Я?}?t/?-?*?UeD?ǿ;?2}H?Q@??9#3?e4*?p`G7?>.?,J-?=V'?LO!?L6?&%?iy} ?)l??p(T?E;C?@E???3?G?/)?jՐp? Nf?wl_?/I/?0&d?=?{ )?Y%??ͪW?Hbl?`~-?t?bab?k?`W^?ky?Gtf?9po?{L?VZ?eWS?0H?ɸ~b?}R?O>Y?-?G?? ?≌?m< ?SZ ?M?ߙ%?A*?=!#?,(?RtS?,FPON?l)-I?RP?CK?WPD?6>?4F?A?89?i4?ϳ/?W9-?iBi<?#C2?'W7? ??#k?P??? ٿ?yo?9?bq?-?Oڬ?c~?OB?W-?D&?z М?bىӤ?|?G~? /? )?,{ݔ?n?x?n3?a[E?YTV?{9}?'~?:=?Cw?lr?ŗz? BJu?T`m?nP+h?p?j?b?Ly]?}X?#.V?4e?I/[?\`?G?bC?a`??b2?D|?H?{e?9π*?1&??_? fh1?Dv>?R[??%[?u-U?sN?'xX?ڃ#R?nH?% B?yK?suE?XtF?ҁ?sq0??i? ?2wH?VG?U!+?M $&?p| ?6)0)??Z#?]?67?t?Si ?+a?5fw?l?,N?}.gH?nᜦB?4PK?aE?<?(R27?l1? .???W4?]o :?KS?Y?CQ?zAV?ԛ_?[ue?f\?=b?Tk? 18q? .h?3Vn??,??㧨?(?H?{v??KѢ?Z?Ĉ"?5.?F [»??yڃ?zt?߲??x?CKx?xW?'M?P?̾s?o?ܑu? w?X?'?\Y?]?MܝW?'(\?+a?f\e?"v3`?Tc?DT??ޕ?eP?ʼn??Vv8?P?(W?·U~?W#?fT?w3Vz?/"7v?S|?|x?P7r?zQi?~ޭm?g?Y|t?)<5k?q@o?QN9?T?Ks?6?in?s2?P'v7?[0?cF35?z~i?1xd?Ȁnk?Ug?ˣt`?u[?>1b?TD1^? LSW? R?Y?ØZU?Ix[8N?zI?P? * L?{AE?;?k8@?~`9?wG?2>?:B?3?v.?B*?[Q0?-?_%?!?~3(?nGy#?`k?S;?0T?Y9?Zx?J3?RL?ƶQ?-| ? ?K$ ? ?'@)?-?wK?a?wV??[?=?o?l?_F?dz ?,2 ?`\'?M?Ĝ?='?lB? ԁ?N,?sg?[v?!z?$?- ?`?SȄ?NR?N?4??>?Ix?o{{?yr?qw?w p?> \`}?>t?9x?}^? ?x ˟?e? ???Ts!?ѕ>??=k>?c?G?k?K>?{^?y?.?wì?:7?C`T?Qt?Y?x{?z?"?þ˹?o?>^8c?*A?5n?57?"?L4?>?q?²?̛ ??]Tm?fS??Gů?T?k=? !@?sH ?`:?5 ? ?C)?? ?8? ?jc??Dj?!x>?!9?]w;?s?6Qx=?`??A?=D?[^"??}/"?Э?ԟ_?k[??Vک?`?-f?A/??j?2?Xr?,ý?m%?z??S@Є?q[??So?|1?Ej'?a1???گ??8-?7"?/?2?Ά?n\5?e%?fO?Q&?U4?]YI?A*?I?p?3?9?O?AU?X?[??p?|5?=)t??s?f*?ENC?h;?&_K? ?P?ܜǚ?+r+??'S?,o??#v ?窒?4?47N?jabQ?GCK?+N?D?T?|[?a*&X?#2_?%"R?7%W?FZ?HWH?A?E E?=?K?B?5E? ?THc?7L?fd?٭?kn?+ ?U\u?3?6>?Z`'?Xį?N(?e(?Sg?|? R? ?͵*b?2k?e5f?Xo?G^?Yi?YNuQe??Lx"t?'_z?9]?m?Cx?wG!~?$1?v?Aʑ??i?q{?On;?VH6?u@C?+{?j0?..g?~T ?Ic?P?]>?^6 ?zP?ď?z'?:?%Z@ ?4?I?7 U?SH ?ػ?9(?pV|0?a\9"?n?u"??醹<$?6?W> ?)G?Qsv?C%?u(?T!?>y&?,:?_+?z>5?{N1?xw.?>?΁)?6?eh02? V/?L0?Y\??wE?^?S`/?o?S??tW?@.O?&?;.?JV?*?"?vf4?)`?t?Sq?s|?,0̯?j%?$?r? AS?@ڑ?t?׾ʺ?D.?|?)??(? E?:N܄?x?sM?~?!!?s?EC?\?g?B?)?P?T]?=?zX?Oc)?&9??/k??Ԉ?.?? ?A?-i?*y}?(Q?Y3 ?(?fj?;?U'?*|?8?]2?nb?-c?O?ρ??"g?B? "?b "?d+?3O&R.?Nj)5.?0=.?RC.?$&.?MzR-?4=U-?g.?^'-?p|-?_U-?*-?B-?Pˇ-?uZk-?'-?C?ՓB? +C?ogC?C?TC?ۨ[SzC?[0QE?Z^ED?LWE?KD?qD?D?@D?LD?4aD?6D?uD?Ҍ(+LD?1cy D?fC?>7xC?NߢC?8ߨ!D?sC?rC?sI?,DI?#I?XI?\I?kH?W;*I?H?H?`H?H?yH?֠hH?]^=H?{H?)TH? 9H? 4zG?e)H?NG?}G?W݉G?0G?W*G?cV. E?F?XvF?/*xF?J;'F? HIF?zE?9}IF?E?WMnF?ֽA?;A?[@?G@?y@? P@?P؈@?+y`@?񛐜@?h?pv?? I>?Sx>?c>?)>?%N>?mE>?ڐr>?1>?2A?u:A?Tv֫AB?YB?˩gB?_A?kB?ȲRAB?kB?!YB?XNgB?B?EDB?:%JC?JB?\^C?Lq7?I7?^7?vY-7?j_6?i%KQ7?8 7? (7?'N6?՟6?$86?C`6?G.6?I P6?TY?E#>?Y]>?8>?~c*-=?FPL=?wd>?1-8=?(;?';?Nw9;?'_;?87?&=<7?;4x7?97?.:?SϺ:?]:?2:? ":?Ujs:?r]:?4c:?s,P:?33,:?DYa:?&A:?':?5$9?#:?\9?uc|e9?4k9?'`G89?pw09?k{*s9?^O9?9?u,`9?&Nr,9?: 9?/=9?%-B9?}O8?fӧ8?h8?I=Ō8?8?ʩ8?eJ8?>T#7?AR8?^,7?8?<8?uz8?(z[8?P8?/+8?M[8?~z8?f8[=?mT=?VIx=?{S%1=?g=?.fR=?v=?[ =?f%Dn;?*w W?=seV?qV?V?L^ڽV?Hb{V?ߎJV?'V? w^V?9W?+k#W?=W?ؗ\idW?>}W?#9uW?mJW?zvW?}yW?`uW?%Ǒ?3^v?K?,|?~?`?ۄ9?')? [{? ?u?C?x?3n?Rabh?9a?^?k@r?4Se?k?ޓ?[?b>?*??ftu?TP?<? H?E?{GN??t?(?" ?8y?{ Ke?I?s?P?/?F@??w3?sT ? ?<b?s#?l?pn?M?N ?'?Bu?W^??v?U&L?[#H?]J?QF?rfN?H?(J?SD???B?7L=?xF?>B;@?|C?qJ_*?`<-?( J)?!,?e/?=3q2?DC.?,~)1?*aI4?f-7?3?|=6?ri;?Z>?( F9?{-Q*?ho^%??Gg?xQ?r ?!?XE?e4?y??L$ ?#'?"?Cw?}Bb?bzk?˄C?6& ?W?{Db?=S?Z?Ի?o? àh?AWBL?,6u?ѢlZ?sSa?-h?I}?BO?eG?֬?Pި?Eb?KL.?f ʢ?<"#{?C?ҷ5?q}?YBb?e\?9Os?8??c?ףeT? >?baB?c\ވ;?JZ@?E!F?wN?|J?.Q?lv%E?s,J? W)N?YaU?TY?Q?~W?,?O?H0?ۻ?]?ۿZ#?LkP?t*?]j!?`Q1??.+?Ħ?5$ul?7J ?g ?j?Zi?y'4 ?)&U?F4? so?h?^?z҆?W?NM]?S+JC?7?]?ӑ?ťS"? .?<?٠Na??I ?=?JM?U?E(>?OJi?ځ?R????O3?A]?AC????i??eB??a?RMR?Ȍ-?p~?E5?=U?ntgE?f6?LJ>?d5M?Q4?Xh??>rG?Jf?U?q]?am? JO?hc?[?@m=?F7u?[U4~?3j?e~t?r+?O?%?Li?r8?$z?%?,>?. ?<ث?")m?N?C?z?n3?n?(>?hv?jP?L?T~?2?_19{?B1?򲲃??sLNh?}ob??p?7 6i?2?5@?}K[9?̇F?³/?Y6??LϷ8?5];M?T?E\?+3b?yuKF?P?QZIX?w?_? Jp?|K{?!&?y!?*?ׁ#?<?6?Rқ?\?qXq?|f?Y ?Ko ??HW??{???'?AKo?HA+č?7?Bᤃ?P[?1;?Ks[c??j>?ƾ? ?Pg?Kԯ=?pk?_?H?jÌW?Jy?w?oi?"{?AE?X%?o?ߪ?n?ڬ?XK?_?"ɶ?G?qM?? ?)]Ξ? U?B ?t]?<?W(w?ZՏ?k}??Xxx?Ftٺ? $?0Đ?w{?A5K?Im?wbG?XH)B?wuL?cƟG?7-?/s1?>eE8?`+?:;E?^]oC9?2?o%?_5?~|?oU?М,?NAJ?o4!?|??#Bd?K?tBK?c?NNy?Dh?q?ݖI?E?[?Q?pUQ??j]?`SP?E"?۸? Y'?vX?A?(y?G? 䈔?цt?C?sx ?T,?5?Ց$?}@.?S?ڊm;?l12?E@?P6?ts?Om)?dz ? ?Z?h)!?k-?(^?S {?sn]C?-2"?fuD?~N?8T4;?D?MtE? 9?M?lVA?V-?h7"?C5?1)(??腿?y5 ?s?o?7?6X? sש?߳?9Q|?T??~?h'?c⑾?H'p??UQ?7/??Y?\K?tXm?M?E?KLo?t?lq?>Ւ?EL?o}?\7 j?s? Ta?)FR?;[n?zTx?7X?4N?e?_?t \?b?7?d??/' ?]%??%C#?*? W/?P)Q(?tV-?X?l4pS?6PN?߹U? oP?2I?p D?pK?&F?$x>? 4?9?2`2?A?y:X7?$j<?֊|????&?TG?hҷ?_.?kmO?%C`?o?L?>2?Á?te)?5?қxĤ?B=IԜ?!?am?] >?&=?&?t?Ol?[s?ih?ӑT?H?v,}? Jw? ?*z?r? |m?jzu?Ap?^R=h?G]?Зb?Q[?i^\k?y!W`?Ҕe??'a?O?G\H?gQR??;L??;?e5?+z??=8?{/?k}(?:f2?6)+?="x"?[.?K_%?'l\? \?Wav?i]??SB}B?NE?^@<?J??ޏ?F?gN??폗?_K % ?rh?v%_m? ?ä1?s+?މ7&?e.?)? ?sU?s?G,?7q#?/)?5? ML w?y }?py?SǕ?вX?^G?u`?1?mB?.9?F3???G?+;*?`r}?TH?'ڙ?4Ӱ?" ?i׳?VC?A?2Ͱ?/Ox? ?g{?? ?/v^?e?'b?vi?` 3/\?룸,b?ee?L?Ü?>%?Z6?h?!;R~? ?Ë%z?A=?mm~?[;?Dv?Upm?N9/r?P?]i?ڳz?~p? t?g,5?? l?`?Y^m?ZEi?q?|jul?Xj7?O;?PfK5?U9?P-e?ۮ`?Ź\h?9b?~[?qkW?;^?$OY?xSNR?cN?`.U?T'Q?$I?Xs@?'E? 3=?L? xB?G?i-3? 4/?d67?wIL3?{>+?`e5&?`fS/?;)?w/!?&?x3$?upK? \u!?\+?g%?v8 ?!D?(/?l)?,H?k_S?Ւ_= ?u?a?oQ%?#B?4?D#?*OjU?kNr?E?l?Fa?I~ԭ?d?FF8?k&?[Y?LK?-;?0?BH?T%?#?n?^?ΓE?\փ?(;z?Z(~?Qi?>?U.?r?7Vu?iҦp? Iy?XB=t?fצ?O4??٘K??&z?? %?w&?m(?p ?{<?}&\?cc?ţ)?1?^n?5?4?>]?e ?Q2?e{E?)*?mz?u`?%8?a?sY?q/?uc?G?̭?{?" ?*?\?L??A?ĸG?g/1 ?J?1}8 ?g:? f? ?(G?;?.&͎?wJ?{-? A?^?8e?h?4{?2???$?P?ql??e?w?B6Y??D?&?KMv?K??a?.c? K*?0+??U{?Y?3?w:?n",?o33?.x?]_? ?q¶?.8?\?$.P?s?S9? ?"?]J?Xc-?y3 )?0?4a?TӢ?T5?0a?Z=T??GC?̍\?Q4??2"l?z?K?l)=??d1^?%ڋ??<9 ?@?Xhp?1a@?`?Є?*@v?1? !?\c?啂?Y'|?⤝?{m?`?.0?!e.?⾦?#A ????h?mW?Xk?( y;?aC??U?@?)?@,D?/s?t?ID?ִk?n*?v%?L#?m?r "?_ "?3 ?_)?e֩)?hLUw)?Rcϝ)?K;)?ƻ])?B)?5)?9)?Fg'?n_b(?\(? v|)?(?!0e(?{(?(?5(?᠌(?$r(? U(?yw~(?4Y(?e?(? e(?8aOK(?Ei%(?;/@2 (?2ð1(?LQ`(?ʵ'?*:'?j'?.^'? Կ'? %N~'?v'?dP'? 7'?Os'?[fF'?U_'?Z'?A'?('?*J'?(f'?:I4'?M'?0R&?2&?]yW'?M&?&?0]&?y&?Z&?¬&?`Hb {&? 5&?ggu&?Ioyb&?/I&?l&?`S&?1&?P\&?sŠ0;&?c"&?d&?f{%? &?ٞ_%?z)B%?`%?2^ %?%?X%? d%?潎ѩ%?g#谑%?um.?D)P.?63.?5F^^.?TjpC.?r,?ʼ*.?ޏ&-?)&.?o-.?@g-?WRw-?3F`-?W^-?1-?SɅ-?b׬-?Tɶ-?G j-?zA wM-?2v-?+P\-?_IM0-?,?)?%*?')?ر)?v +?1+??z+?2Kķ+?8,+?i-nt+?ќ+?%p+?Xbd ,?Y~ ,?-r+?}5,?lma1?BdC1?Eop1?V4V1?,%1?1?1a71?-1?Y:0?0? 0?"&}50?9,۾0?ч&0?˚< 0?Q+0?^)g0?2qYI0?)pcs0?_qW0?A+0? 0?ۭ|90?MT0?&^m/?CBY/?LN/?un/?< YX/?cu/?wd/?"/?~ۥv/?EX/?>ͅ/?E d/?Ϣ:/? /?F/?Nm+/?^*/?a.?/?n!.?\.?ta.?Ъ.?[>z.?^`.?a".?.?]6?5?'EK36?W 6?5?J5?K5?5?.ʄ5?\D^5?"r5?f?n5?H895?h4?5?Q4?7H5?1'4?~QEM5?!4?(@4?ڣ4?kά4?Bt4?84?ưV4?B94?v4?^y54?PS4?]^Ы3?\3?SQz4?}Y3?0;e3?}3?rQ3?+H3?s3?MN?BkT?CT?@CgT?G&rzT?Ӫ܎T?j}V?9JU?+-V?SIU?TYU?UU?NCU?z7U?\U?=d'gU?{ڗU?]T?ZeT?䑩T?wMT?-NU?f"IU?pCRRT?:&U?Nͷ7T?G1wT?\-JT?(T?BppS?eڥS?ƿS?lxS?|`TtS?sJS?C* #CS?4R?)S?@H%S? eVS?>|S?pR?ɣ"R? &R?=2R?q{R?.KR?SЏR?`;bR?&R?Q?`!2R?KhQ?!Q?;Q?Q?SQ? O?؅iO?G dO?Ta*O?ɗ4O?7P?ЕO?yO?BP?+,qP?)P?WP?_Q?8)%/Q?LsQ?WFQ?;P?bw˟P?70{P?>uP?qNQ?PP?4P?H"fL?ラJ?,)J?7LIZuJ?ݬJ?.L?`cgL?^L?CXjK?K?Mg#NJ?ÎJ?x(J?ЉYOJ? M~E?$+E?;aTE?ݧD?ZșE?Ʒ&(E?Q}QE?8jBC?$L:C? wgC?ߋ C?Z*r1C?CcC? MC?""D?!MD?kཌྷD?vU`D?D?D? D?G0E7D?ɵC? D?/C?dD?w3C?]%D?_ >I?R I?TIYI?-I?|'H?*H?H?G 4gH?)H?+<܉H?#H?z@H?&H?FbH?C=)H?G]3G?G?G?լG?pCG?=<[G?Zϵ9G?6*irG?P[%mE?lE?:IE??3>??? X!??KE??.>?P>?F(>?[>?hc1>?ë2>?w2>?">C?9+7?i'w7?6EX7?FQ>-7?.A/7?gΐ@6? N7?6?2Y7?4>|6?IR6?P|6?]E(6?-W46?cU6?Yz6?Oo>?5>?"d=?=&S>?+2>? qM=?˗@=?l=?4=? ;?TF:?ԞE(;?4 /:?X@7?PA7?Q7?Yʅ7?:?*5r:?/^:?Q:?Mou:?@,p:?5:?͕1:? :?S.O:?lB :?p?M9?9?x9?m9?nK9?B5M9?6n9?UOl+9?h9?|L9?}m9?) 9?\M8?Hu8?|Yᦚ8?5*9?܄8?.y8?528?=$J8?}MZ8?B78?mbz8?Eԭ8?1JOg8?W8?2/P=?Dd=?K(Fm=?n+=?|EZ?үP?_I? T? 3M?B?a<?0>F?Y]W??=J5? 9.?.@8?LB1?'?Έ ?RĻ*?O:9$?%2?s?`v?F4Ѹ?P ?و?K?MN?YA%?[?v N ? #?:?|?=߅?Yڲ?a=u?:Mh?62/o?<ȁe?OFy? 5l?r?le<?E??o.?4@?<?ݗ??s#?,?صU? >?b)-?ر?!To?t9?bk? K}? ?I)-?տ,?rY?Fx̯?I1?$?0B?j?#?p?3?WM?7o?@?3cw?9a?5?߬[H?^`A??E?}??zNK?N1C?u΋F?bϖ-?6oe2?/?G04?+?p4A2?7/?7?:?ɤ=?A?_4?~X9?G]c?K$G6?sFnN;?D(M.?=L(?0?SD,?*x#?]?P &?瘼5!???b? ?V'?‘ii?d ???}k?U?˓?ro#?;Y?)??X?>h?3v?U{?s a? n?J`Ղ?iZ?|Jg??.]8 ?-e?e%?->E?F? >?__?$Ä?3&?,?%8??|?.o??S?N_?;6?5)?DYC?jƣ?*c ?ƻ??qY?h?q$?g6?$0(?+?'?)?$??t?W?>Й?E`?t?KZz?>x?u:?Z#|?Xy?&K?`m4?]I?ݕň`?]T?c=?[C?0Si?;?wk4[?wO?SKJ?6zr?Q}?}d?qs?q?Y?6?ۯ?+"??HC9?g&?Y\?po?,Ol?I]?VϜ?!?>6?ă?!֣?L!?݋L>?d7t?7i?8^??n?舓d?x>?kk!OT?+I?W7?!Z?X LC?lIM?1)~?YdK?~x?h_;?* ?O,y?/?"l ? %?э?I3?l ?A?)?݂?uΏ??W?g⟕?™\?/!?%???^3?wZS?3?y/????I??1>?]Yx?D{?IsŇ?t'ɡ?P4^?Ԟ?G?ʯ? $?`q|?Ց"??<_#?ҷ%?̢#?/?$?7;?O)?uo?>?׾,G?4@?-O?b&G?P}9?Qz1?S~@?lp7?u)?i˗I?t/?6p|'?Ø x?]p?+N?u2A{y?Z˼V?C%_?+}RO?\4=Y?eh?Qq?΅b?~Ik?uz[??À?,A??}7?\V? ?R?W?#v?lN?mC? ??Z?X;?T@K? ??9R?=>wF?X?0??K2?*g?-?nP?|?&h4?(m7?$@??m9O?vx?A"?=f?QE)? 5?ߟ?'3?h`?h(?s?d|?i%?Yˇ?^?> lv?B?iϺ|?l?Hb?Sns?@'k?NX?'ZM?Ys3a?QU?c?Q?B,s?*K? Ħ?Mp?{d?;?)3?f}?9j(?G?A D?."R?1?4E?/ =?F0?شH?R:?1$?]M ?I?jP?hL?4D?@09?>?7\h7?F?@E(<?tGA?U?|S?W?_?7?Ej?Vk?ZU?*~?9?{_?V?w???w??H©?; ?"{֜?yRQ?Bf?򗨗?S?eA6?Mh?c?>?3]?R?> a?ÍJ}?ʸ?D?] 6x?r?z?,v?_Fm?{,b?!WWh?x_?9p?te?;*k?C?_?cU?0?.?W\,?ʨ`<?lx?\??g?K`?_?ӝ?N?eS;?Iki? Ub?^[?%e?ٴ^? U?SqO?NX?cR?y]I?ѦC?扪L?{ G?p5?O/?>9?2?& ?S(?"?j7,?F`%? aA??rv?x ?f?ƺ?ʎ#? ;<<?-@?4#$6?;9?-7?󝃶? 5O ?[?V?o?t5s?-Dc ?Y?1? N$+?8n4?JRQ/?8R&?d?Jͦ ?mvH?oGt)??|T#?z }?ѫ!?%z?WM!?&?W.?(H$?4g?W;?rz5?f q?'x?.bV?:?@3?#4?t?3~ \?? F?SI?EKZ? MT?hEN?ޫW?bRGQ?bBH?Y<?h|B?Z9?=jAK?0'??k=D?Z#N`? f?']?.c?m,w?Sr%}?̙nt?'y?ӭ\\?ZAr?XFY?,o?,?S8?;ӫ?m34?c?hJu?_QT?L?p?,7?!?Q?KPto?P?.?2[?|}Z?R?v?\,5?jfz?9?ɼ?7^?f?1(?O@@?~+?ŽSS?F?5"g?Cct?)ڣi?(>?_z?d?,TZݶ?G?P?ٶ??hY?"?? ?+ɛ?R^O?塢? _?u?FÏ?s4 ? 1v$?Le?O2l?ab?h?D? ?V?( ?@~?@Xr?µx?Io??u?({??IZC?﯊8?z?VFk?9ve?h:!o?swh?YA;?I`=@?U7?B=?@Q`?rW?'[?jS?Pb?@ W?o{>\?wEdO?[_#?${?? <?(op%?Px,? ?Y-F?/?F?ft#?? ?5?V)i?>t?hH?:1?Ҥ?(?Q$(? mJ(? 1(?ֈA (?'?9n(?Ie'? .'?f'?=['?'?9X'?q'?4'?F'?Or'?c_f@'?RY'?3'?~'?59L'?$A;e'?r`#&?&?8&?3 D&?܋&?aʗ&?cA%&?'&?,&?_uu&?2D&?zV4]&?C68&?]6&?DM&? L=f&?E%?Og&?%?,%?%_&?G71%?r"Iw%?&?ؿo%? BW%?蚫y%?{wa%?Nv@%?;GC(%? JI%?+1%?;7%?2%%?IԽ%? %?!m%?D Yk%?!%?M`u%?ѵ}%?m$? %?a_0%?$?n$?;$?i$?!<=$?VU^%$?$? ŐG0$?$?|T#?Qj#??$?u#?$?*'}$? --$?$?@$?0Wk$?8_T$?VRG$?x+$?#^$?Oxzu$?#?L&S#?W#?0l#?YOқ#?Mh#?K#?#?@R4n#?wW#?mw#?QLC`#?Rz+@#?:$ *#?PcI#?P{2#?KI#?v"?{F#?q9#?wr"?t"?dzN"?N"?AI3"?T-"?S "?LM"?rYk.?VP.? .?'k.?^5.?u.?ZqP.?&*.?/,?w>a`,?kh,?(,?-?`D-?> .?u-?QW-?>؃-?_-?.i-?>-?ˑ-?.-?!'HO-?=-?a•/-?dn,?)eh-?*n-?v߿>-?ť,?,?Xw,?-͝,?Q0o,?Q,?G΂,?Fc,?cFJ*?.X.*?X*?E;*?Hy*?%)?moS{)?#d)?5 *?Jb)? V*?0+?i+?*+?cO+?*@7s+?d1?~EX>1?X 1?X]0?C1?}1?[GP32?1?Ԉ2?zO2?`1?1?CD2?ɉ?@F?sݑ? ?\? [?DI?֧V?$?D?ڊ? ?h?n?%o/?X?jW%?=Ȯ!?δ;!?+| ?Hk !?/ ?!x ?( ?|l ?n+ ? ? ?"U ?@ ?N xz ?%Vn ?7 ?ox ?hs?’?|}?oM_?MϿJ?Pi?^iT?+<6?j!?YK@?H+?ݾW ?Vv?:f?ܝ? eŜ?խO?!0?.+?G ?Z֧?oI?>̦?Pu?ɮ?ǹu?%O??hrk?qfW?eC?9?֢3u?RM?jHXa?3@zO?nFO?'N?<7O?BN?A]O?\}N?a_O?F>M?ԂSM?R^fL?V#9M?YcoM?ɷjM?`dM?B oN?FwmM?M$M?snM?nN?U/N?㠯dN?MͯN?dN?ߊiEN?zN?|M?5^C^T?r{PxT?$3T?:{QT?yT?yYT?1lT?9ňT?T U?COxU?u\U?QLhVU?)oU?WU??7U?lɶT?s9!4U?-ז U?!H9_L?\L?g{L?gl8L?-ybJK?RK?YCK?}^GK?lLK?o}gK? VϭK?1PJ?mkJ?=VJ?B~bMJ?`>%E?챋D?SVFGE?dE?\bC?M/OC?pC?gZC?gD?;Y|D?K.RD?*ѸD?ipC? 9;D?AҤzzD?痪H?7H? 3I?L0H?CM)H?*zxKH?q#"H?[uaH?H?#G?}'H? bG?1G?-_\G?A[G?a3G?5BsG?kR]G?LG?c$E?zWiE?:7E?{W5VE? E?M(F?:E?2E?UF??tE?/F?I?ڣyI?0J?PI? V2I?FNH?:^[I?!>*I?gLA?#uA?Yd~iA?D 5A?@D@?i߮@?Z.A?| @?∠{@?&qB@?Ax}@? `@?'fO @?M!?? '@?{KE??֚"??nH[??x؆/??z??'???P>?0>?xw>?u{>??E>?d4ND??[X)C?cbB?/B?}B?x\C?QFC? (C?C?Hn7?$%7?\'U7?H7?U9l7?%E7?c.7?Z7?p,7?A7?PQ6?)@6?[e6?ʞ6?*W6?2̺6?hrx6?U#a:6?젆>?Ep>?<9>?15S>?jZ>?s>?J9=?Ց\w#>?=?/߉=?+G=?b@=?,ne=?{X:?n:?AI#;?;u:?> 7?#8?l.7?Z 8?bm:?,>:?~C79:?>OҲW:?|":?eB9?1(:?,K 9?et*9?(ǎ9?89?bT9?L9?4F8?d9?A/8?W{[h9??'8?Y-9?iQ3T8?88?boc8?sN=8?R8?L"M-|8?挶Ϩ8?l=?ŒeV?=TB?Ӏ?Gy?W~P?Z}?U.s?:l?#'b{v?o?ɏbe?4s^? h?@b?DW?+QP?&c1[?GT?&I?GB? M?E?;?C4?6Ө>?gk 8?\"8.?0x'?r8+Y1?::l*?'N ?8I?M$?#2?X@???o ?Η?^u?& ?*۾?hXv?P4??~m-x?N݆?~HQ|?wo?xHIv?ll?js?6Os?$h:z?M?DxJ??i/?nU??7?]?yy>?T_??8?M?MOu?9&?J?Em??? |??W?`ܼ?Bee?u?[??dT?s2?h?ChĻ?t? :?f?*e?[Ǔ?*{?ufHe?qD???eG?çB?;2?+2;?;6?./?۟!>?xg4?'%G8?D`J?oWL?E?xI?U޹]?(|%R?+'X?c%P?CcAb?‚UU? Z?#bN?BQ=K?v@S?kM?*$?{K'(? "O ?K$?J,?up1?=SZ(?Mg-?xOW??8?\ ?b?R?Ѩ?n?4?b; ?^O?! ?s ?,?}7?驁a?3?5qI?OG?ϳ?OL??O?ִT?d? X?$=S?@ ?2Ɂ?Y G]?DB?x2?Ӓ?h"-?dH? ?MI?oU?#?XC?;[Q?AH8z?im?琏s?Z?)4?Պ?Yi?s?2z?3<?XC?+B3?\颔8? Z.?q2?=?cB?tT7?<?9<*?QՕ$?H.?V(?(?D?1:-#??|?x+?tuD?ު ??\}?FUs ?ﰴ?8^F?NE?j#9?_I:?UU?? ?I^?at?Չ?1$p?6?ʩ^y?> `?m?:a?_&?y?X;??rV?r e?t?S:?!-L?s5C`?o?=?c7??yX*W? ;*?`kx?Wά?F ?1?]?qt@?W+(?>,f?x>'??ܭr?]Mi?'ט{?nq?g_?cG?9kS?5*??L(g?M?'CY?9R? :?(z?|B?|] ?F?3??z@ ?HX?~?՝?Px~?RZ??Ϯ.?8ɠ?v?C?Y?xjTR?3AO?]i?B?c?8Wz?E+?sX?&w?(?#?Ĭ ?K[?~^?b2??&hw-?QSL?ې:8?A?zy%?]?C|s0?#?]?t?ާg?6%R?QF?Dh\?9$O?Y?$?(j%D?-:?#N?B0dA?^'G?wB$?iz?Q?N?<Ǻ?/?K`?Ÿš?]? c?/? ɨ?8,J޲?z?f?*b~?E/?EŜ?Rٮ??M!n?՜?gl?bM)??w?0i?-F?H}?+?M/x?^f\?Xf"}??Ϡ2t?oh?In?e?x?k?q?OH?0$??@ۅ7?5HN?\=? T?Qׄ?Pu?=?v9?vb?\?5NQ?I^?0rlxp?[i?}6b?lm?dBKe?8[?_O?$fdU?!7J?/Hj^?MQ O??0U?֘D?l&=?RJ?NqG?w%?#?v&?qwi?)=6?ďV;?T/?6I3?q"97?]j1?5Se<?[7?D|( ?T?K5?sb??ؔ@?w?z,?fW ? u&?12?4)?`-$?(N*?l#?-Uc?Mp'?lg?&?!?ઌ?f"m? ?zq?t?y=?4$̹??́Y?MnJj?}?xζ?s?y#?wAa?hZ?*ݛT?Sz_?!v<X?KoBN?A?G?<?0pQ?huD?DUJ?Ag?)q?bl?v?3Je?l?BLq?ږ8|?g?v? ? ?! ?F8?(?3?3V?-}R?Ph0?l?Ô?+?24W?}m?Qdm?`?g<?^}?6? >?+?9Kd?v#o?j?wl^_?m&?(Jb?YX\?^1?ۖ?B ?X?7x?S?8Ž? D'?W*$?N,s?/?TY?H?J ?؍?cp?i?^?rlz]?-1?9,??n?D]I?c|O?mcÖ?0l?Al?f^r?#h?wco?Y?ڷ(y?u>?7n2t?S4v?H6|?21ӂ??I?+?\?e?A^?fxi?Za?j??E?(=?ZSB?/dW?X:K?jvQ?t`Z?-H?x*N?q,WT?Je?i:?h"4?Qg2@?h_:?ƽ/?k(?FVh5?a$-?y$?/U?r?)?f. ?yd&?'B?k% ?Ѹr ?x?6&?F!Iy??[j?q?VmG?&Y;?}??F?=Ŗ?؜?F!Ñ?)uO?g?? b?3!'?Č?J`?fM?Wʋ?SƔ8}?)m? u?oj?2ZÃ? @s?BO{?0c'?p>b?X?R?϶c?5?{% ?WJ?Yb?i-??'? ?\e?[=?Q?̘n?\??\??hܒ˻?h?dU˸?g!/?X<?J>?S ?!kb?jP ?~ ?S?Q2 "?Al?7?dm]? ?)T?hH?= ?ke?F]?dV?a?lY?Fj&\N?=F?;AR?jJ?e?> <?>b?X[??f㐈?-r|?,$u?w2\m?vi??n0q?x??};l??\%?+? ?~?|̃?x?׹?5 ?_??6? Y]?]?D?ru4?||?t?t3[[??:F?TuӦ?x2?h?d?y"?-? ?So?>^?##?G?[?V\D?~?:?s?M?$_?B?O?> N?l$:s?rn%?xE? Ib?P?qeiy?g?{ul?M0r2?J(?_N?8+?!9?ZE?J?E%?2?. ?%?cZ?V?b?6/???u ? ?8?T\F?f7$?+f?&h?S5? ?A?u???\?o/D?cvY?.q?N?&?B?6W?s+?Bl"??"?:?)?zZ/)?IAs)?MI#)?{)?]H/Yw)?u)?=>)?< ])?kSA)?ڕl)?ę!O)?&)?/ )?I4)?jx)?U(?(?*(?y꒷(?<\&?9KB&? '?2&?ȵN'?T]&'?? J?'?\q'?|2'?"9r(?"P(?G(?a(?Ee;(?Wo(?qnܑ(?{(?s@BW(?(+=(?u}Ic(?6L(?##(? (?Є2(?Q8(?6/_'?0'?'?7I'?m'?!o{'?Dۈ&?(..&?>o&?>&?x&?&?̮&?&?#Z(&?N;ݛ?&?_D&?QI%&?ϬV&?yp@l&?9<&?H7S&?)%?Zp%?< /%??Ì%?P%?2& &?Op%?\ą%?W#?¾%?? %?`"SS%?#%?8O;%?GU]%?U,'%?,%?%eD%?ԃn%?^9WYg%?~%?iǓ%?kcN%?ykd%?,U|%?ͬ$?:E$?loZb$?t@$?ɻa$? $? A$?rb$?CQ$?@@:$?%Tq#$?<̅C$?v /$?E:Z $?v_#?[g#?#?Qc$?N$b#?8L$?="H$?Cg$?۔~$?^$?h,Z$?OR'o$?Ӆ$?,X:#?lG#?v#?#?Yﮪ;#?w!b#?VR#?6i#?.#?p2D#?: Z#?Zq#?"?@ %#? ,"?a8#?6-#?%"?U~U#?t#? Oٌ"?Đv"?"?J!"?hT`"?g$J"?1ri"?~;\S"?4"?y"?K*4="?f8 '"? *"?_z!?"?'o!?FL̈"?&w"?E"?E"?J"?w\)"?V㑧"?PȽ"?$0!? ! !? 8!?EI@ !?84!?fh!?.!?8!?b.?wk.?E.?' .?嶸Z.?.?#-?W4.?ϛ_.?k8z,?6,?4XO-?]J,?*Щ,?ri-?T'ǫ-?-?Y{-?#&(K-?zo--?.W-?IذI-?0-?[@-?i-?VIו,?[އW,?٥v,?hJj7,?|,?gu[,?s0z,?7;P,?}-*?^ Q *?8<*? [*!*?.S;)?OT)?]*?xx)?Dp0*?G+?4V+?mAr+?=+?<^+?QV+?_rRr+?;$+?mH+?s=+?SG+?a]F5*?H.*?'-*?*?*?픺*?G*?d3 *?ӷ%$L*? h*?s@*?-Kc˙*?e(Z*?<v*?+b,?+?{XV;,?z# ,? E+? N+? ;+? ?s+?ȰC21?YN 1?-V1?.v[^#1?@v0?w0?ǟv0?ܓh0?,H0?ȩps0?'50??h0?|J0?Q13,#0? 1]0?XK70?Vl /?Tp/?Dϸ/?bS1/?I0?<:/?ݶ/?eo/?acs/?+(G/?A蜂/?sJ c/?/?yZ.?~".?0Q.?,6/?k.?ŌH/?U25?.yՎ5? 6?"O5?ێu4?ٕ„5?LZ+5?*X5?,qs5? W5?om5?פF@5?4?MM4?T4?сi>4?.Ak4?W 94?AJ4?{HQ4?D4?KՈ3?93?-+3?H-4?ܟ3?L3?\l3?֯xO?3?WF3?RR3?: 3?:?i2?B2?2?~f$3?\k 2? ?F2?9G1?Uk2?{e42?OL;2?MKV2?.Lz{1?J1?k,91?jg1?2?M1?JH91?x}? -j?+?Cs?lV?;C? `?G L?W/?u?!>9?k%? # ??~?L':?}Y?Dk???|KD?~'?F`?&*n?I?k?W?iIS?`D??P?1?dvy?K&Ƿ?PQ?;eIv?O$?XG?ۧ|?1e??&??$?@<|?:/?7C?5h&??w9?!?^n!?='u!? |w!?CkQY!?۔C!?-.!?&"!?,a!? 7!?_ }L!?{c*!?f"!?mJ<!?!? k* !?lb ? ? KK ?Om ?kC& ?$ ?rH ?競 ? ?E| ?T ?ZG ?hm ?c~\X ?7:w ?sWb ?ZC ? [. ? PM ?g8 ?&e ?ţd ?Z|# ?2ׁ ?,)Nn??o?$l?1I?;? ا?!*h?ԙ?@N}? Ŧ? ?"#Vs?^?7i}?V2h?J\J?cK5?|?4ќ? 1~?R'AW?ށ%k?YM?(?ls`?2t?04sO?@U/O?"O?&^VO?;}IrN?qKN?%O?7N?g!ĈSM?\M?o\1M?]'pM?|X]M?>Q[N?N?>kNzN? iM?ZBM?꿍2N?QpVNM?vOM?ڳlL?$M?VL?idVET?qEqT?\lT?ic:T?IT?dNT?ȈzT?ktU?YU?SUHU?Nݔ,U?]8jT?ՇkYU?U?cS?.{cS?mS?G.9S?<_T?)rS?S?NS?F9R?;HS? aR?.ϙR?HySR?R?;rRvR?^CR?v+Q?)0R?sQ{@Q?H?+"A? @?YJA?&lA?#@?"a@?I9E@?qkcz@?I7m@?21@?CB@?3"8^@?zG??7??g ??;??:]]??K~>???TZp>?ecq??>?#7??`A?~kxwA?;-A?OA?ZaA?Ś+D?q=B?Q͘B?B?F;dlB?q;B?n?Qi2D>? q>?It_>?Pd>?qh$Z>?<>?t.=?u=?-E&>?X==?=A=?+7;?~R=7?JB?.u";?$/?1'?S[s3?+?q]d= ?~)P?a$??LB?YXJ[ ?Z?DP ?U?T*?Yf ? ?݃? ?7t?Ds8?H"{?|?gG=??2G7l?d/?Ǒ*?1޹?`mj?$C?q.?&?%w??MU9?n#Ȳ?oP?l#?AAU??ƶ?d Q?|z?~ ?,Q?:mp?}Oʤ?5oB?R+{?s?B~?^w?56ul?vKe?\-p? h?]>7]?KyV?*O?K?%Ga?OR?"a?Z? ? ^?Qv4???즱?!r?q*?1?t?E4?,cH??=?MQ?n~D?#-?0G?`Q?Y;??_?<?ͱ???5=?P?Q?'\?f?W?G ?Hi?y# ?'$?*vO?D;H?J@?T+L?|D?f69?`:2?c=?ׯ -6?BH*?4N?QAI#?(?5.?}ʗ?#'?TI?\?xǕ?ZuɎ?o]?#ے?[·?%׀?gދ?.?y?6s?}?^kxv?Fl?ee?574o?>si?༱^?ŃP?W?3x|L?Vزb?lXQT?}[?)B?$gP;?DE?lr=?%z4?w-?7?t̞1?G'?Tw ?6+ |*?7$?0?m?> ??m ?0~F??!?@Y?? ??ߪ?S w? ~?+#t?Ak?H|? ?{?H5܏?L ? YQ? a??A!?Vg??F?|R?r?+Hyx?Pΰ?i?0Rg?`#?&;?M2?h?+>u?W)? @?]?ݙ?ߞϼ?'?AL?mJ⫢?"Ε?e?uJ??ff?$U_?IPp?H_f?>rA?$6?;?)D?G?5J?И2?@fZ:?'??5}m6C?X?L?0R?W=u3_?oE?5nT?ٯN?}$?>*/?)?w?6?U%?˕*?}?x?v? ?# ?6? Dy?88e?E?@'??8G ?L3U??'0t?ϡԩ?W??Td?|?à?[??Δ?4?8z?Q?9p?V6~?TM?'F?_A?F{JI?RYD?U2?-<?zh @7?x .,?Pl=%??@U3?O_@8?.i'?^U ?W*-?N%??| ? .Q?cG?[/!?a>w?p-?x ?`N?bҊ?rI>?c\?M?pJ2?42?0?R\?uFh?$? ᡶ?A4?ˋi?c4n?e݄y?c?Ö_?{%?Zp?Ϟ}|?tEn?9}??rƘm?IT?,~n\?6s%P?GeW?Yp9d?bl?"*_?h?0?^~?^0?ppo$?ܐ?R.?70!?)?x?L? ղ? , ???/?k?\?b:Ŕ?.7?nñ?T~?'??f?9?S]*?dB?`^B6?(]??< ?*?VC'(??*h"? ? ?^p? #??#ps?>M?a`?Ef?zRrL?xIY?49@?uPs?:R?i_?0:Hʘ?M?v???}U?HС?*u?l?a?ǴLL?7z?wL?܃e??3?BW?k? m?$?-3?sjC?9kFT?2Ý?0?l@?y!Q?:>?rb?-Q?,?*&a'?,??*"?_<5?/W?So? ژM?[Uc?%,??=>?8/'?S?=?#?쵛e??vL?hHѥ?*d{? Ϋ?KI?:J氳?~?h?bJ(?l.?Yǩ%?),?.5?!ک=?R2?6Q9?aWb?[?z 8'f?;~_?bĉS?vJTD?K?Wv@?FW?!H?JƗO?Ag??O?l?A??`?T$?g`? /N??2L3?A?ѐ?l#?s?c?dD?q2K?S*??O?|a?X?{0|?ao?K,v?l?:p0?r?ay? ?Zr?LP?aA?y?Gť?ھ.??-?ް??7 ? ?q?j۟i?v?smn?4%a?2X?fk;if?̓]?O?G?[T?L?zv??"&8?I'D?!<?LEd(?*}?-wG?qm?.ErT"?uz,?, ?A))?o?E|"?,00?h$5?7a&?;n-?[??7?a/?yn<?n5?`? (?3T?v?Zc-?6?Rb$??]m?Eׅ?8&Ս?C2?Tp¡?"_ y?kD?Fxr?v4֜?_>?@?/?.ʬ?sr?T6?=Խ?4?q߶?Oej?} c?yP#\?}f?2`?MDU?VG?7IN?982D?@Y?oJ?dQ?gC?q?I?#Xy?19_On? ?Cu?4}?( ?Wf#?X!? ?2?j ;?"'?:8?L*˜?/?QF?_:?y4 ?tD?LZ}d?To??YdJ?u?Ni ? y<?]?(Ac?$? tD(?ƚ?=7?&\6Z?yڙ?Ss?Z(?2.?L ?ќ?S?A? w?>?_?-M֜?E ?e?ӹs?&M?tQz?Y?aqo?vy? ?Saٛ?bz?~Z???k_?,N=p?.j]?A$E?2OP?yK?cW?xb?+@?Z(J?:cP?rmV?Opg? Mm?Sn[?nWd?+R;?3??RE?Ũ9?,?i@%?c*^52?% )?N9?1Ɲ?Ӻ?tq+ ?]#?Β?u?a?JY ?gB?37 ?1?I? 3?v ?^v?T(?de?눢ٗ?v?&f^?ƴ?ϧ?ft?5?R?<fy?O{l؁?ˇgv?l'??~?&>̵?y:?"7?z?,?"V?j?h1?z?? ?f_a?D7?U?V? ? 9?0f?=pW?~? ?y{9#? ?;o?'n)? 1$?v??g? ??A?š?9rc? ?0?T?3he? f\?bX?mf`?cXm?SKu?y0i?^q?^}?vL(?zy? sZ%?I?v"?Hʖ?ݞv?`q?kY?F?F$1 ???)N;Im?e?Hi]? Si?/ a?'V?޳F?-]oN?B?'Z?k+J?QR?J1Hǻ?@߳?I>?E?o?z?(>?΃?&T`?PS?U?d?y7?#1??R8V+?k%?ٚ~?Kau?;|?0` q?%pw?Nx?)\?(? ??z?< ?]?f?a?#OL?oCVD?0P?[[H?2/<? 4? 2@?{բ7?dԙ+?z!#?5[??u/?"? ;'?0pj?W??+?R=??ȯ@?XA?6?|0? ?S?;??S`=??S<? ??G?e?"-?:4ܵ?+מ?*&??sF?S_9?yp?_IR?@-Ȁ?h?Q>?b\K?=,g?2•Q?O?eB!?^ ,??E=?x ?U? }?V ?&j?.4?I|1??L+/??O{? #?;[`?B?_;s??3 ?nI>?H?Wezs?z؇?C7?NC?w7+?,*?~+"?~"?ӎ$?m\]p?6 ]?Ry?f=f?69J?ϻ]7?%QS?cƩ??yxZ$?:?p,?W?Q ?)X?v?|?|}?:?!6?3?BJA?,_???EJ?oyU?U$}?u?gn?ʯj?HEUX?0vs?oua?˿F?J3? O?Z=?Je!?W?:I*?=p=?f2?2O(?ŗV?M?p ?х??.?XZ ?-?"?sl3?6?lZ?vqH?kD? m?p[?qmv?k\d?)?ؗ)?rN)?҃)?=K0|)? v1Z_)?[)?&~p)?#'?w`s''?؏SU'?;'?l&'?!a7E='?R~(?m({Ro(?VQc(?x:X(?f5Gp(?Hp(?^(?.A(?i#(?#yY(?J+3(?uz#(?1'?yA'?U'?,T(?) '?'?VT'? 8l'?<'?T'?ٟ'?6Ny'?LZ'?{X&?3|&?/ &?fڊh&?m&?8}&?M &?T"&?-O&?LO9&?إ &?%d&?b\&?.<4&?Ԯ%?Uiy%?%?[!%?HA&?Oѓ%? :%?>#?#>#?F##?7ՠ#?&8#?~!%?y%?#Lk%?1Тw%?Sz%?0}%?$?}b%?]~5%?IIg#?91$?Ժ#?p$?$ev$?)̃؋$?Z$? o$?%#?Zd}#?#?z#?n6#?t@L#? ې#? &3#?,a#?s#?pH#?{>E[#?"?"?"?1N"?@G#?c #?t-"?v#?A=0"?r"?} hiF"?ww\"?f{"?9"?Ds O"?\re"?R'!?A"?%1!?!"?妒#"?7uY|!?c՚!? "?D"?ᔦ"?Xfrn"?g"?"?2<"?B"?ì"?*~D!?*!?eB!?qS0!?k2z!?#Sd!? i!?!?Ag.?&.?I.?&e/n.?DI(.?M1ӥ.?td_|M.?@q.?T.?D-?"+.?)-?yhf,?b,?0-?Ћ_+-?UW8,?_",?)-?Fg-?:R-?ER-?Va-?")-? e-?W_-?,?Tc_,?a0~,?,?| -,?,?}ET,?ps,?a*?})?f$*?f *?N)?Ωs)?7)?6)?&V4*?,tN*?}*?p97*?,n V+?+.+?~ y+?q$J+?"ѹ+?Xj܋*? v"+?' *?Q*?*H/h*?qӋ*?7P*?o*?v*?aƙ*?u8+?(p+?1",?'&+?Qe$+?e:m+?6+?Epz+?z~1?t]0?At031?|{0?5g0?,q0?0?v*K0?r0?G5?wt/5? 4?A.5?4Q/#5?c I5? v5?a4?Cq4?x4?DҚ4?R)1?_74?RMg3?LI`4?¦4?M3?Hw3?+]/3?!3?oF)73? -2?:P3?d,3?n׾2?6G2?b&2?2?R1?*>݌1?$E<1?t`5u1?^t@2?ۂ91?862?yN \2?Ո 1?td1?Cfe:$2?Nii?)V?[9}r?rMV_? B?;?/?m\8L?GM8?L?>D=?ݝ\%??T?T:?qNJ?s?ݿ?{ û?N%t?}?.???|;+?\)?"ngzo?ژ?UP*y?ɖ?A6?0 ?:J ?J,?Ƹ'?lWж?|n[?ɔ(=?'?K???6{?Pŧh?Lk?A q??&Պ0?T¼?荟(?e2D?oCD'W?4]@-<?fFM?DSj!??!?P~U!?=a3!?`[ns!?F!?a|[!?Q ?05'!?Ό!?>^:!?Ҙ !!? s5!?F0 ?L ?ݟ ? !?$ ?@1- ?g.y ? ? ?y ?8X_ˁ ?l ?衍 ?Wu ?HW ?FB ?O` ?ڷ-L ?p. ?ǵ ?n7 ?w#$ ?NJ ??[O ?Q;B?۾nm?J)?ʮ)?;?6n?=4q2?M?!x?B?ųr?W?\ѹ{?4^?^J?ٯ! g?p0S?6?]l!?܃=??,H-? ?xk?c|۝?s?gQJ?=?I?)g?8~;?AOʦ?y?A۱?8=hc?N7;j? I~?HU`?~n?{dr?w?78O?b\N?]BvO?ڄkO?H|N? =njM?fM?p*( N?g8=RN?cM? ZN?M?j\eM?Q|c;N?yl9M? 1L?`s>CM?L?QM?wb%LL?ݖZM?ε+WT?9"U?#T?TtS?uSU?~T?3;T?y'BS?5R?B^ 0S?gR?~IHS?F1S?5R2R?FRR?: avQ?<R?+tQ?1̸R? IʨQ?2}ےQ?]*Q?,)(P?kIeP?leP??P?}ZO?kQ?^[P?B SP?wP?6`O?DŽSO?#eP?WkO? l&kI?^/TL?M9;0K?|K? I$K?Ћ[L?xJ?L?'J~K?4K?-L?_I?WJ?$߾J?ɖI?aEK?jJ?=FJ?isϬD?m,>D?5>o&?D?^qdD?ܩ#6E?~#NLE?:hE?YbE?|iD? sx"H?蠉jG?i\G?tVG?Z ˞JH?qV^zG?!2G??ٵ@?9??3C?? A?ƑA?^VBB?A?‘^LA?B-@?7^pA?ow/-A?,C?o; B?>QC?p^/B?A[C?4,D? HB?gB?ˡ>C?TdؑC?Z7?%7? 8?yV7?ڙPm7?">7?-7?3Ou7?B65?O6?nn5?2`5?6?Q;S6?k6?/7?O 6? }6?OJ6?c>?p>?y>?C !>?_g+:>?' =ء=?bF=?=?Xcw=?,g{?ܖB?a\~?{s?l?#w? UHp?w =e?/rV?w]?hS?wh?|ZiZ?Ba?~Ύ?V?AAA?~Zʦ?4?h=ʸ?Fޭ??3Z?P0?¼?':P? ?B?RZB?Ǡ#?0?X?_ ?@B?Ld?s??p?yv??>#1?xw8?7\|??A*2?p#?A+?@ ?6?*Bb'?X/?ġ1MA?3H?{P?=D? dL?^w?Zip?>|?DD?k7?RR ?r?9Ǒ?'?sts?Gy?km?? s?syy?g?eX?U_? BT?um?IR\?9d?9?.6-?-ZT3?KH'?9<?&iy-?3?l ?q]?86?A7 ?mMm'?I㓼?tef?ڧrS?5bn? ވ?sl ̘?~?5?3?F0!d??}?xP?:#!s?e_?=R?T12?Ir??_mr?ҽ'E?ۣ?Aũ?6G?C?1??I? ?oB?<?0,ҥ?򵋰?Mf?Hs[? PYjt?rs4b?ᙔ>?w<-Q?J۟G? Ni2?-gX?+g=?Jk F? &?߂Tc?=|?mnd?fE=1?H=;e?9|P?x?ۿ? ?\?Q ?X//? ?Ks ?d?p?2?%8?(Yڂ?7?kp?v?L?-B?lG?\6;?0]S?ZOD?LJ?%U4?6s+?ub=?Vn2?{4#?3 ?d?r4s?B)?B?)? ?' ?]d?W ??U???K?ELs? o[?̏"?b?m@}?!?!@o? y9O?/?e;?fZ?c?[9P?Y8D[?6~k?v?_md??aq?C*?G?ȣ=?;R??"PD?3?EQ?A9?3:(l?,CR?_?]O/??+!?5AdC?Y?n?70?4?S?5li?z["?#?z9:?|?q:? ?.?4@?ʣ?ſ?DRƽ?l?S? ?ăW?<`$??ޝi?{c?}"p?jj?B 0?$y6?l<?% JD?P*?D5?;?q\?K?$ T?qQGTc?R9PC?₅jP?vX?;S?#.H?c*?6?({?̻?2N?"f?]6c?-?/?5٬?uݞ? D?ɠ?o??yH? n?*/V?y ?'Jv?"~? l^p?֌?Q2{?t?4j?]SW?"_?u? {?lQs?Q?=`{?5ۈk?Q?z& ?lb?a{5?R?ݏ ?8k?YhY?o;b?`l{Q?t`|s?X?9a?7`I? A?ʚ0Q?VF?ቋ9?FwK2?sc,>?4?M?!#?+7C+?'[?ݵJ-?!? $?A?89 :? G?emA?! 3? ?J)?<?:?67Y'?WI@0?S?L:?k?7O?%}?ȧ ?.Џ?ës?M?V?v젳?$:A??h?^&?x?&vj?id?Y\q?{k?z(^?=N?s^V?R:fH??Gad?ܲR?wZ?Bt4d?-?6hx?\F? q?,?̹?O[{?ul ?HGZ?}?%j ??t?}}b?k|ki?&?|?ۤ{W?sR?1? ?\?=?T$?Y-?f?En?QH?{vl?UTx?-8?-@?S[?t,?j?֫?n}?!Q<|?C?9'?w1͗?WvD?v?,Hv ?YH?6҄yt?k?Ù$|?Op?6O?-Ya?_xX?_D?tg?'q%X?IO?pO8?U'?/?oɺ?RC??S~)?`1?b?s?^ ?l?*$ ?Mm?o?C?n?fzϲ?Dƫ?'w?̇?qh?ͤcх?(?`vߏ?v? Ca?t'?R?ƻ?ڐ?{?V\?i?jJ?_ ?K?z#?PB? \?>?|T?qzփ?Bx?)2?7V~?) $?]!?| /?y/,?'6+??Zϱ?u=?M ?Y빻?PgZ?a5+?E?Ol(? ૝?ba"?W^kL?T?Ή\?DP?{X?Cj e?^^]m?g`?wi?F%?'hI?,=?H#?j?&?Sid?%%??&Ex?r?Y@?u?G~?dsq?z?[m?&?AUz?+͊?B_?\?B(?aB?u?jn«?2[?,ze? ?XW?cY?0?{Y?1??X?O/?1"/ ?~;' ?{ ?NS4+ ?e" ?O ?[ ?A ?1y ?vsD ?Ṏ ?|r ?ӑ8 ?P)DA ? B4 ?B< ?I ?5sR ?ʣE ?qxYN ?Iv[ ?3Q;d ?}1W ?_ ?m ?~[ u ?1h ?~oq ?R~ ?>} ?1?z ?G ?TdZ ?Y; ?XN ?cϔ ?t7?*7??6F?3&;?`˯C?>t?[@m?&me?6q?@j?'l^?h}N??V?־J?~b?J 1R?6Y?Ų??U%?}?{ZxH?\6?gPԭ?M6h?5a?=̤? ?d2]?fn|?O,?kvx? @?f<?g?lk|?>s??Ne ?!?IQ??k ?(7D?Թ;?:yH?F$@?.A3?و"?*?x6?.7?%?m-?7̹?X+?5V?*E?[?.y׏?S?d ??f?5Ҭ?US?i?p8?'A?oN??'4?]k&?n$?Ru ?a) ?Tϔ ?:ڙ ?)% ?io3 ? 3P< ?0;[. ?7 ?E׍E ?'N[N ?Q;@ ?]@J ?l?q?C?k6u?IR?;?3Q??MQ? d?#? IO?B?̡? ?.TP?? 1?%a?B$"?Ȓ4:?l?f?v?J? ?Td4??6}?-N?ڠ??KCs?T$t?e?I?.\?l^ ?Kh?ҧFy? ?#/!?d!? ?1k\?%#H?vif?BSR?9Ӽ?s5??|!?ޠs?? F$?f^{\?p(?]?I? ?(?U{??t8?C7?h?<???ar|?젔aj?%8? s?H>X?C7F?k`?sJO?@4?=o!?e=?Ja+?J?K8?h R?4CA?+&?p?8c͓/?pD?FUff?+?+ ?y.?}}?a;?lv? HP?F?͞ ?E?5CA?? 8?0(?c?*]?@S?(?״?IiOT?hm??ejIv?[?X2J?x`1d?_yR?HS?}.??r?1f?q?F׆?rN>Ѵ?z?0G?7m?֑?rOw?Nf??ln-o?)xU?DD? "U]?:L?~3?m!?䧋;?f*?׿$?u?BE4I?\HhB??#?Tm6?J>?V?_?w5D?R5Z?Jq?e0"?Juq??_O?偅x?_a?ƄV?&3)?R)?q4R)?l`)?Vd)?pAGD)?b\|)?4/)\X)?|$)?JL)?08)?)?Ͳ7(?c(?3]G(?:Ε(?_H(?A(?ߎA"(?;$&?M2&?P'?͔P'?//b&?&?Mj&?|YD&?A <'?+a'?C!'?J'?`q(?HRuK(? x(?+*b(?!-%(?i'?;(?b(?A2'?M^h'?'?"vo'?,'?2Db'?`Ŀ'?Gx&?@fUI&?w&?]c&?5&?X9%?4&?CS &? %?%?@%?>%?j췜#?/#?L#?dZ#?#?]f#?,#?#?Tu%?5^%?2n$? '/.%?n^%?<+F%?7Y$?bK%?$?ԭ1%?+'%?OW$?kl$?? $?8:\$?wp$? ON$?*@$?Z4?$?IW2 $? $$?ăT$?"#?$?p}0$?vi$?90XU$?*_E$?ӢM e$?ON#?m#?(41#?sf*{#?`D/#?)U#?HB#?B#?jc#?BS|,?7,?WZ,?ݏF,?nbx,?~7 e*?6D)?wƲ)?Xh*?ODK)?[Y)?))?"99*?Co^*?Ig*? { <*?!yB>+?B+?#\+?0+?1yq*?V*?г%*?eW>a*?+?ZI*?Cw*?KRh+?Giz+?+? ),?;N+?i3+?Xq+?2;[0?Qb0?1?0?К6e0?vS00?0?EB0?@O/?0/?y/? /?@B/?JfT[/?4/?(=>/?1.?.?-/?C.?:=5?W-B4?y5?[|D#5? vh5?f4?{=4?K4?=n4?_1?y&1?+0?"I1?1?o3?]3?eK!4? 3?qi3?O2?ܠW-3?l92?5b3?<*32?3? =w2?g1?@'1?72?@Q?2?c1?t2?!^-N1?q2?FkEg;2?8}U?&?nMB?_?ncM?pB.?Q+~I?ӱ9?:/m#?}}ƾ?z?8BC?(?9ҧ?F? ?A?VE?"?v?Z #?kՔ?jG?0?Ukn?.o?Bf\?x?%g?N4 ?gb ?)=?u-?2.?v?ȧm?cL0i?}}?iV?vG?g{??7D? kh?Y{2y? V?kc?o ,i?2z?"f?4?TrV?TE?|h?j@G+?;E?`4"V?2?4L>?kX>?Z=?q>?_v!>?`a>?v+M=?_)┘T?DU?6,(S?mY0U?zT?gS?GZ? m?Vyx?|,?bMu?%D?GVLel? e47,?WS4/?re^7?x /?{(?ӈ3?y+?6>x ?P?3<#?[T?^e? ]G! ?Gc???ݤ?YT2?ԓ?Όn?C?NKv?)?@<?=S?E{? u?8P?f?$?[8?݌?" ?re???"7?I??` ?ABa?[ԧ?d݌?I?4e? ? _Ӕ???(T=Y?c9\?v f{?"t?) ?V5x?Jl?ݖ^?)be?'Z?>kp?azha?h?[C?1HԱ?;%̣?dHj?\ĥ??ᅿ1?=@?r:? M?'.?V?C?l?DV?HG?Lv?yG?UӰ?)?Bd????+?l?I$?p?hOI?!??~Ս ?.N?G_T?݄ ?rW?_Q?B ^?ZW?8eJ?QRB?hNQ?pG? ;?+?3?C(?v??m/?Ea7?Pe/?6?A5@?=BKH?@1<?AD?veP?|X?JYL?w˺$T?QE.??>?HY?n?,?hX~?R?9.? Ls?w#a?-y j?ҷz\?4ez?:@Ff?ށo?.PB-?rr?3+"?e(?oз2?RL? F&?XΏ?c?J=Z؅?.ey?:5?w ? ?;s?A=?l?y_ex?XW?q?]_?=8?س|?,Q?z??H٥?l{JL?h[?N?KU?}*p? a?3&?o?KW9_?l B?1@?c?2?)?H-?R?[%?mh??H ? \d?p?c G??5;?z|5R?>F?40?mC?x%?$?vFtQ;?Q ?Ș*?r!?,h` ?n?g0?wA?K?;\?i???*?"I ?T?ZZwl? "?T}?Dǥ?Dp]?gj?Q?XBb?O&v?E>u?,n?}'~?i4?(Dw&?4F?eY6?Z?m??t#)?(?2?+U?5s?B6?j(?aC"?;?0t?v' a?/??;La?\kJ? B?.etlY?KD`o?:HEH?&Ӛ?B£b?b`H??r?Q͐?IX|? ?$s}?N%?E?(?Bm[G?O?4f??M?R8?Q$?_r?1i ?&T?j\??&*?ęp?4ӊy?_ܮ?&T?( ?7֙??j`/?^~?ʰfV?h?:iF"?^~V?1~??i )?Ie8?ƎR?+,? y??#x)R?Ua5?Op?ABVT?%?|^D? ?(?xed?. ?%G?= p?Z?1?6,7?ӡc?8?W4?kܺ?|{Ռ?D?{?q ?FDf?Iu?Bk? ?e?zu?x<?x0?$?Ӻ&?/W?,{4?X7?qg)?=BB?RNd.?2u8?U L?x)?XD?R:?o?&t?.ʘ?$UP?m?e!?]׮?+_?^?s?`7?Sm?G?Ѫݸ?t?(fk? rW?9Vea?Qu?P(rO?ݢ b?l?,Z?U"I?!?63?u?#zՅ?Mf?11?oK?\?#X1 ?L$?՝?Bw?^?KL?@?e?tp?#?c6? M?@?K?\~x?aTI?%9??&'?U 4? `?%ً?֞?J?Nȩ8?L?#+?v?(?N-[m?`/^?MY;w?xXh? &N?H=? VY?[H?eh+?" ?X!?&Y?H]6?u[??1$?~`J?V3l?5(?*k?G?U-?i=?L+?mk\??+? ?t@?CЙ??>?(w?!W??⫖? Aي?_ڠ?2՘?t&?[lr?5V? Lr?Q̇(3?Ih-???:?{???*J ?ճ]?w,I?"e?` ?\'?Hއ4?R%u?;,?ḀT?([L?6eD?~uP?oI?ץ\?d?$X?(_?2m?1dNu?!LCh?Fq?/_of? ?,?Ƽ?rI? ?S0{8?_?у?/`?%?$B?;~?j؆?P9Uz?0?-?C1?S7?B?hx܋?잡?>:?6?ՆH? \|?nޢ?:? w?w?sg?BuT?!/?e@ ?#?4 ?Aݞ8 ?/ ?\A' ?4k4 ?-+ ?ԓ ?SU ?G՛ ?)v ?%" ?e ?Z2 ?;MA ?$J ?= ?%E ?Qe ?HE ?P ?' ?(r) ?D ? N ?Z ?l ?' ?y ?65n ?s ?s ?Qc ?a ? ?ܓ ?rRa ?3o` ?Kv ? ? " ? ?֜i ?0աp?s_?/dZF?-&5?t O?@5>?v%?}}?Ho-?ec?7v?$j?t߷ ?1W?/?\Ҵ{?k?p?˛?v?/\??%5LX?" ?P_?P ?m?S?PL#?'^?y?3??a'?X(??9%?= ?d Q?f5?S?.?&N?4?!?FtC!?+ҿ?t'I?&|2?{T?aKR[A?ϛ? ?>)6U? k?>c?*?X?b? ,?+Nmc??/44? y_?]H>?B?# w?c~?z?_df?S[-U?Ftn?]?#\C?!c2?l|L?7 #F;?p'!?@S?!*?##?4?F;? ?Ԧ;?< ?c;3?KD?14?n)? 1? K?~r?Yp ?Ԇ ?E?x?~_y? Yh?h!?^q?:)?$o)?ݐݿ)?;)?*K)?>$)?{i)?s1:)?b}&?[(?B~+(?^%@)?-P+2(?-* (? }(?HR(?(?I'?O-&?)B&? /'?uꪝ&?'&?Q '?Y'?᠁'?<[F4'?2Hi'? }R(?@@((?7h(?6A(?R '?b'?g;'?B;H'?=(?ݽ'?,'?_O&?p&?l6Mo&?ک@8&? %?1%?7s&?{Y]%?"e%?.b%?cY%?A*o%?ܨ#?$$#?7B #? r`#?~B#?V&#?l#?Y#?2ק9%?x,%? OE%?盛Q%?$?(QF$?mMp$?2Q$?P7^$?Ux$?$?5,"$?`$?(ZA$?$?b[y$?-2,$?yfK$?- r#?DK#?]O#?Xg#?&#?TTn"?֬XA#?x"#?O"?f\"?tQi"? {)|"?AV'"?"eR"?="?Zw&"?e"?*%"?û/:;"?N}!?v!?H|Yt!?F!?K=E"?$!?!?!Ux"?4K_"?]SN"?;*xc"?Zֻw!?|孤!?]a.!?9F[!?ķ/8!?&x!?jz!?x!?YE\.?im.?.?AX_<=.?:D-?&S3-?Sz-?*?U8vs*?e *?~C*?a!+?Wo*?sl*?`+?”w*? ż*?(W+?̱Ӕ+?`+?嬇D+? Ryۗ+?ajհ0?=h0?i0?lt5a0?$ 0?0/?HC/?iwc/?uEW0?td6B/?m+/?@/?}.?o/?c=/?L>D.?@m.?o|..?n̞.?B5?` 5? nED5?͒^5?4?0:5?.W4?;5+5? `>S4?h)3?XO4?{v*4?'l1?W1?{V91?^naε1?10?a1?0/1?*[3?[73?h3?!_3?C 2?0b1?Si2?-1?#2?%Ǻ"2?oTN2?IE?`.? +tW?ڡ;?-?f%0?Rx?:[?l%?ذ?[?xF?H2º?#?1-K?1?2T ??x.p?a?X݁?6U?*_?4z,L?Ip?k6eZ?њ ?Q"?<?F-?ے-?dڍC?l?,ܦ?&?//?.>ڳ??4?^A? ?Pը?<h?i?՗ N? wNy?_?E+U?  r?xLQG?7B`?'>!?zd!?0\!?œj4!?F?M O ?w4 ?r]. ?մ ?f ?G!?G ?7m ?{ ?󲹌c ?ܓ:% ?W x ?nA ?g ?Y>Z" ?O{ ?DW ?gR ?y⁦3 ?B\?(??[4׶?s ?Woi? Ԭ?^>0y?7^JJ?Z\,?AB_QZ?X>?z?!l? M ?5?? ;`[?2/?ԣ|?ξ(?{TU?J#5?,uN?3uM?-5M?|O?"oxL?vN?٫7M?ff"R?}7) Q?+QP?bKnS?u*NO?Q?Z#P?;XI?%J?G@OI?u͊J?AEK? o0M?)uyJ?<^$K?LGxuE?D?ghD?.\4MF?C_C?Ɂbk~E?uSD?j<'G?;kH?X=G?*I?vVF?ACG?zH??@?c>?? ga?? @?\zO>?w"t^ @?>??(e>? ;A? !B?{(@?OA?<C?RD?+TUB?.C?8 8?1U7?=:8?b7?[{9?X w8?m\)8?I7?.C K6?6?:T5?B37?&nE7?X26?ZF6?۱g>?6 ʥ?H!V=?W'?DK/c?ͤO ?~m?>&+?4* ?n ?V ?Mi?\M?n? v?0'T?/ž?d?8i?7?)??Q??<?W? ?!? t?j?E{l?pov?9V;P?}=?R?#?66?亿?}?kj?QƐ?Â?Kȉ?Ϫ{?Kޕ?2?`U܉?u?7d?*3l?FC^?1k{?i?$ܽ?q?~ϲ??{???m*??"s?{C?Z??C'?qN?8?X?xf?%;?i?=xb?:Ƭ%?*?zM,?G!&?)I$?m ?T܋?R,g?@ ?/)5?NXc?:W?{zJN?kݫ]? >S?D?:ȶ3?`;<?`&-? qI?w08?1@?w$?H0? /;?^^*?B5?F+?.8? yOH?*.=@?5P?ɰ5?|H?z,@?+xW?wEa?;tiP?\HZ\? AS?Um?A~c?f?Pdm?p׷?n?la?kg?_k?3fv?W&cf?/?Vr?/Op<}?wN??C)?m?&?b?\n??*?%|? ޟS?0`??y<?U?M???Jכ??Sõ?zJx'?!^A?'?l?z)?8 ]k?-u`???x F?#?E~?c?Y? 6."?4"E?cK?py?d7b?,?}V?Nr,F?:%?go5?et?L?6>*?SB:?/"?hm?"D ?X?r!??, ?ې;?8`??vkr?YmL?p(P???\g?=v?A]?4_o?Z? Z?-B~?#?$A7?Tg?FSB?F~Q?`.?54(7???%V?Fʭ?qt?8?s=M?eRk?֍?@Q?Vȋ?4|?id?]A=?%ގ?ڮΪ?=k?l)9?@}?9@?t$?Eq?r$?4&?e?!H)?lW:[?:0z?PF?1P{??뢨/?}0Q?8 H?0?ݭ??`?Z~?`? 4?\6?P?B ?x|?tV?[733?:?_{LY?nj +?J{? sS?SzZ?-H?xU?Yk}?q¼?kTj?D-I?X5?|o?{?M{?\Z"??au?p%?$:?ŪMr?2W? ↼?6mw?)n?( ?y?Wae?L\L?1X?Td"G?<\p?M#V?_پb?|o?&}wϷ? `-?O5?̅jΨ?9?Ux? ?`Sò?)? ?x8&9 ?A?=[ ?U?"EN?$?Q?y?cko?c7a?"F{?!&k?$R$?5?F?~9.?v<ɻR?E?\?@ K?'8?""?~-?ߏA?v>?^$?!/tG0?iaF?~H Y?L,??~S?̙?6Ҥ?y?1=ð?3Y?_hm?کo?zGm?pv?/?^y?R?l?f?k|?E f?,x?‡ y? ?2@??K|~?HYL?"[?s?BT?!p?q??9E?6???iC?OL?[k?ZN?(?c>?V?\?av?@?2 ???[_d?;>AR?@r?|}`?>`A?t8?[S/??$VN?%9?Ɲ'?Dip?!0?23&?Ys"??5D?5LL?YL?fԱ?Ͳ?p?y~?Ay?yq?Gn<?q^?GĔ^?-2?ý?FB?$tn?>&?37~?vPA? :??QP?@QJ?J?"?G ??X?"52???jB?4'?7? ]T?>M?r>[?،ST?,!wF?M=?#[ZCM? I^C?:Vc?5xl?i[?ӗMwg?:"v?\i?tp?>{?t=(?…?'B?? ?&?&#5?B ?+Ci?6?x??O#?L?(xW?Vc??*%?NS/?0l??{?,?M??ϔ?x>?\?Ó?e??p?c?D ?V[ ?' ?L ?5=cA ?:R8 ?\0 ?%= ?#`F55 ? _' ?Yy ?qn ?2 ?Zr, ? ?#" ?I ?R ?E(E ?1M ?"( ?x ? ? ?t ? ?s ?[tK ?1fL ? ?f@ ?dN>d ?ī ? ?vb ?`J ?(ؼ ?鯃 ?[r ?Q= ?s˓J ? \ ?F ?J([ ?$nd ?7%V ?h` ?c/Lm ?u ?#gi ?Gbq ?!b~ ?f$ ?sHz ?uA ?M ?/o ? ќ ?P. ?=G)` ?u ?ѕ ?YL ?, ?G0E ?@. ?L薝 ?J ?WG?RRzT?#A?]:P?:8v?UGa?׼k??F\?wTl?Y/Tw?im?ş?`? `2d? H?Po?jGG?Ӣe?4 ?Ex?[.?vW?^H?4?.5? $?|-?bP\:?t1?+?#sa?Q`c?9kf?:˷?x|??\?5?s?#k?=k?a0)? ?3l ? ? ?` ?Xq/ ?L ?jW) ?p{ ? ? y ?w ?mo ?" ?n ?i@D ?ru%F ? ?Gw ?F ?E ?ź ?鵧 ?KN, ?rN}a ?3j ?\ ] ?8f ?t ?l} ?;co ?Kx ?UO͆ ?( ?A& ?g" ?܈ ? ?xu ?N ?x ? k?) ?Uz ?o# ?2 ?2< ?f:, ?'T7 ?]E ?S~?O ?A ?3}K ?ӽX ?ݨa ?TT ? 1] ? @˽ ?m ?X; ?[o ?iw") ?s>2 ? g$ ?l. ?7< ?=_F ?:iB8 ?dA ?J(P ?PSY ?X%K ?!4LU ?'c ?~m ?_ ?җ h ?!|>zw ?cX ?sr ?zO| ?g ?< ?< ?55 ?k. ?bV ?% ?4i ?k ?W ?i ?: ?󯖆 ?%@0 ?[e ?N8M ?}W?f,F?aa?XO??`I7?鬸? Ϳ?fy3n?/?/iV?,4!?Bl!?rIe?Χ9?|$?BG?.H5?gzR?ןw]??=?An?oP* ?~? ?,"?Bӧ?z?=??'g?n?=w?Y?5y?ęW?Wh?H?J?%W?nh?9$8?$?#e.H?0?Lâ+?3+? h?9|c? (??:<0?ak!?/z ?\W?iszk?U]_?l???>)?Dxt?u#?3Mc?9⇷?(?cA->? ??? jE?"??lEPk?Z}?~:t?M2W?W[8?3G?b)?v`?g7?Z[G??D]t]?-I?F?BA?Qȣ?;p?/-?w?"f? ~?rWn?U?BQC?P]?KL?<{2?ٯVo!?;?<)?5=W?n?hk!?FA??[<?\g5?:?u?j{Ի?T?ڞF??C?8yco?=?V?.z?ڢ?A?\$H=j?Y?;t?b?72X&?Kʇ)?/1dX)? aB)?w)? S-))?c (?h H)?Y)?FY/&?ԡ9&?$tw&?D"&?)(?0 (?[ (?u?X(?Q(??(?!Y(?'?>z'?-D'?8 ︥'?)&?רy'?@D'?11(?`|_'?`U(?LۻX(?un '?k@8'? &(?i!&?/%? m9@&?d%`&?#%?R%?g6%?3%?4jR%?Xr"%?1d%?y-%?{#?D #?\#?ǰ#?*!#?ƫ>$?0#?r#?FaS<$?U$?F$?HƲ$?L$?U96$?\c$?J$?A֌$?x/y<$?cj$?pP#?-\#?ܛZ.+#?.;l#?w2A#?P"?n-"?o#?"?0с"?1vx"?ӝ"?v"?$"?"B!?m!?eR9"?Xl6!?^0M!?Qr "?A/1O"?p^Ld"?""?ȁyE"?ߎRy!?@!?H迋Q!?]ql!?ѭ!?r!?X!?e!?z]|.?|-?I-?EA-?O.?-?un-?PX-?,??ᅪ]-?Bo,?IbJ,?z+?bF+?GwbՕ*?=JZD+? *?%r0? ֦j/?Y/0?稄/?[{0?jwQ0?R,c0?e9/?ln.?.?,s.?S&H/?S.?fX.?)5?SP4?i85?|4?+6l4?Lxl3?}5?[=4?| 4?gAu4?(W1? $3?ׁ,1?MnE2?:v|ȴ2?ݑ"10?;3?E!1?vhE*2?߉2?p`|5?BrC2??^KC??ʉ"?n(J2? -F?Bč?Hz?dܨ?6?ht?؋7??ۜU?sn?y-9?fip? PW?Aq?Sj?~v?t ,K?+q?ib)!?7!?PD!?w2!?^C ?*?"?98?em:?*aڲ ?ʜ ?: ? ?֛s ? 0L ? ?mZl ?4% ?RH ?Sg ?T ?]6 ? .uY ?eV?=̊?CRH`?T?Q]j?2ؾ1? N? ?MՀ?)4?/1Q?Y;?fd[T?Զ 6?;=??U?U ?!NN?oP?gFO?FzAM?:2Q?s]O?gu-(N?ew?J?V 6L??l @?w>?t??h:?? B?D?T@; C?ɳ E?A?O,B?1C?f8?Bm7?6?I]HCu6?yM]9?5`[8?7?]5?Lemp5? 7?_8I6?Y嬗X:?u;?+=?|;)R9?3:?ȸO? TR?Qj2nQ?$P?x>_+?)?lLbX?-?ѧ9'?&?f?"ˏб??rR~?x'cq?TTwA ?i̵M6?(C9?u!?6M ?J- ?\ ?? ?ga ?k7 ?c ?A@ ?Ȇ/ ?M ?qW ?H ?B?j?`?hH?Ā:??^cg ?ž*?tf?m,?l?+\X??l?1gw?3V??ϖۻ?RU?!?ŧư?3Dۥ?u|?? ]c?\B?5??bGX?*{m?Z5x?Vh?l"y?=;s?-C}?Wyz?bM@?1ѵ?6?o?7?f?l5?O?*?.?i?)?c?aY?=n?`+d?'?xt?46?FX[Q2?r[?r ?Sm;*?VN?[`<?E?Y?o4?B?K?QOU?e%?10?d?;%?+ʀ;?`I?x0?D[sC?[v??eX&?> 8?H?/CT?XsB?rN?`?w7l?daZ?>Df?-? r[?zAp?]Z?n?x?GL"?~j8r?Y?=VJ?7?@+?+UX?x5]?O$?kH? Ţ?Pӆ?z[Ŕ?G56?5f?F冥?J҃?̈́?􆙼??.?g?#?2}?@)C?C[?i}?v?KD?F=:n?!О?+z3?*?M.i?92`?Q$e?hCyS?&x/?"@cA?3#?yͿw]?;3?7)E?֙?!O??iс?a? I?`J?tgIwx?+6? IC)?b7?o?U}?LO?5{6?P?=*a?יd?{w?B[&?k"?Dքb?feݱ?VA?ǜ?j7F?g?h#?-?,?U29?*R?f?!/?%ڽ?s Y?W1?u?[e?]?bw?!o?A?A$?(?9-x?K ?r;?-j?2`.?I[?l-?.[e?lg?+?[3?LB?\?R3~8?iI@?og?m? *?܉t? ?~v?$?U)D?.m?_b={?xQ_??6m?]6?hEWY?P0o?X(N|?-ļ?L?{?ױ?j݌?|?G:Z?^D#? ?}u%??P? u}"?uZ] ?1 ?f?8U?]>r?!l`?m>7?'g\K?1U*?.C?)E?'?(X6??O+P? K(?-6?Zwe_?Qr? W? K]\n?n9%?F?V8?+?ey,?v??Tn?աl?]?Hn?|Ɯ?aV?~ ?]' ?۹??S,?Z(?f?<?k$? d?=?t?7??Ө5?PSg??=]??\? i2?|iW8G?m? '?LݸD?!Z?mEN?v2?NO? ?|s?S[? ?߰?\?P?ζ?GFe?_}?4a?ڴj?]^?)0?V?R?H?rh?Y?U+h?k=?jZ-? ?+N?̍('?Ȟ-7?Y0_?bJT?-F@?wT(J?|7?OMDY?%hA?yK?hk?Jv?zye?*;q?Д#??||?o+k׈?N2?m?K???nUT?lo?3ܺ;?m?|a?Ԃ?,V^?le?s(Σ?z?1?j#??Vu7&?ad?lE ?Q? "? PS?)i?:eg?MH ?DGV ?ut ?P;m?l ?`_ ?iA ?iv9 ?eI ?7rA ?|]1 ?\ c ?6[' ?;Y2 ?v9 ?# ? - ?Q ?m[ ?I ?V ?x ?T ?f# ?= ? ? ? ?51 ?o ?R ? U ? Q ?" ?L ?H ?]v7V ?%c ?n_ ? a ?YMe ?8u ??m ?}deM~ ?$` ?-m ?,mv ?֡ ?GŐ ?0b~ ?S&:7 ?A ?8]V ?C( ?yK0 ?`^ ?=2 ? @U8 ?; ?PK ?2) ?ː ?:*rQ ?x ?)\à ?ڙm ?rAmX?gh?L۝Q? b?o(5px?r?(Ih?Z)Ш?Q!r?c??H)?O.?s!?J ?8??3O)?sxo?|@?0\? ?6?Y ??o9}?ܾf?c?;E?V-?U? ?Ů??q ?54 ?j3 ?C= ? ?# ?Qj ?r5 ?L5g ?Ő5 ?~a ?_ ?| ?a ?+W8 ?[j ?U[ ?SǛ ?/5i ?( ?e㊧ ? ?S) ?:º ?j ?) t ? i>f ?n ?:s} ?Q ?\Cx ?c ?y0R ?} ?1K ?͔ ?" ?qI ?[ ?F ?"`' ?;Ͽ1 ?%  ?HL+ ? %< ?śF ?976 ?Q#B ? _Q ?q@a ?2mY ?|&~dj ?L ?,ĞY ?$a ?lq ?L!,* ?8j ?0؃)& ?*3 ?I= ?J/ ?riPc9 ?5%G ? P ? ?L;??(?G?Y?25?Pٶ?tjr?"A?d?0$:?C?|{??y?AФ?]P?#j?#gY[?pP&r?)b??4L?/{=?`S?>zD?2T!V?q$?(?ZaM?^#l?pO0?]&?*P?juP?/@RW?LN?1-?8 ?5 ?.w?ak(?!?q!?\^_?[ s@?l3}?!**?_岈%?u!? !?ʽ'}?-oP?0?71?mH?*?9?n?19?Q?>? |??UDܱ??f?O-'?dv@&?b5Tm '?{(?XC(?3w(?jg(?j+y'?/c (?b`U'?T2~U'?u+(?X%?G$?f\#?D$?(#?"$?#?[/#?0_#?WZ$?*B$?xE^nq$?`U$?p $?;fB$?uq$?:f*}#?SKNNQ#?#?t^o#?%#?}J"?|!D#?7^#?C(/"?5qy"?0@"?rZ"??+ۋ"?t"?86ݘ"? !?@"?uץ;"?/!?/8U"?Lx!?"?^^!?'Ŋ!?Io3!?5R!?Xs!?;.!?ŽOqv!?[_!?o[-?Ը@,? {E-?n,?!8.?ƻ-?Gp-?oː-?nH,?h$$+?b,?=~)?{"RA*?2{ߜ*?^*.Y)? G+*?1*?,9 E+?!*?د}*?$Vb60?E.?Gw/?YW1? 6.?Cy0?NV/?TH-?yVu.?Ն2/?LMx>.?\!4?TJ1?2?4?0?+bT2?ae3?$+4?ܠ5?w{3?5?%=V??;?o_?"4T? "?Dy?0?;|?u`?1qm|?DûA?QJ:?d?Q?O? ? ?T?6+?0^R?ɏ/ ?҅.?8N7?0U?x?Q[â?h0Z?`K=/?av?�H?'%y?<4?GmxBU?Aׄ?FP!? ?s'!?}n ?`o ?Sr?dpi?{$ ?3Z?M?.:bL?ܿ ?t&F ?ʀ/v ?IX ?& ?s^R ? ?aW?pg?8,?D`?L/8?p?)Xu?(?gZ?9I"?$]h"?^IN?΂pEhL?mJ?:I?WBN?{eL?]-J?W F?J~H? weBG?~'D?淯aI?i*G?3OcF?}@?weA?1??V@?_GQC?B+E?0A?˄C?c)P8?M;u7? 6?69?)5?_q|8?7?cPۜ;?5>?Sf?㡺U)?vq ?! ?1 ? ?! ?~N ?u˔ ?SY ? ?㒜 ?R=L ? ?d; ?, ?H"5 ?܀R8 ??Mχ?H\@?ŧ ?U.?`? 1?r?-b?װ?.3\?|?_RF?c??R?zL??u$?\[?I9? ? !8? {@?RAx?Q?"n?!פ?_?ɞ?A>J?1??SQ?6A?q5?zС?{vC ?pS??2?)l2av?Pd?uy,?&I?Y`:?pbV?zu*?%>7?m?"4K?XY?m6A=?r(?G?:;?h \-?@?:}$?d4Q7??1ǁ1?vRK?9\?*D?66U?}?YH?l??<?ESCT?H?:B`?`'3:6?eqI?uU?k? z?e~ `?jBr?[d??V]?߉?T@?(0T?@!*? 1?Qv? B? ݡ/?y{*??!;?q#)?M^d??jq?L\?N`H?AW}?w L?W ֖?Eq?B(?C?Gh?4b?ef?gR???AP|u?e&g?eO? ~? $i?u>?6?3?/k??x2 Q?? U?A2?ڻz?\Ϸ?xE ?|> ?af?Y8??kX?B??U5`?u6?Y;?h?ӬlK?T6?aР?Ao?Ȃ?S q?3? ?0$+?lYr?/??g+N?s#4O?k͉ s? bg+?񠁹?FF?0o?B?"? ?wMQ?#J?Bۦ?j0??#< ?漒?)O?ː?(I9?n .?>?OB?7W?oz?<?51Tf? E?E=??wJ?i9?)k??!H?%C?-?׽?!`?ԮH?WX~?Wl?h0?Rj?b3T?-6?:j?d.x^?a^m@C?P?w3?Be?3A~H?V?Yuw?<<ă?@jq? ݦN~?|K?l~(ǜ?pע?n?i\`?t?՟K???Ft?="p ?hS?;$?]}|?# ?$/??fd?B ?6u?P:?]2??"(v ?C ?. ?/|w ?N ?lc{A ?!,( ?ن4 ?!N# ?~KH ?`]G0 ?<{< ?De \ ?B%li ?D0V ?[b ?Nӕ ?^ ?y' ?I ? ?S ? ?痧 ?Ml ?] ?)_Yp ?9# ?%. ?d ?@F'v ?; ?|o ?h} ?ܲ5Α ?> ?΋ ? ㎙ ?Xx ?v0 ?Cd ? ] ?=f# ? ?P ?g? ?wru ? ?߰x ?4g] ?f ?0l?iڀ?U e?|Au?K?f6rP?R\G??N?*t$?Ez??9?*U&??䧳ķ?YG?`N??n׼?J?)"!?#? ?46?'?c?f??-h3! ?z~ ?ei ?* ? / ? %I ?w ?7) ? ? ?[Y ?|  ?|~* ?I} ?JSr ? ?p\ ?X ?+ ?z ?MY ?:m ?NY) ? :# ? s ?ޢ} ?j ?tx ?lB/E ?{!J ?9Ő ?!L ?, ?3Et ?9E ? 7ʪ ?!Ӗ ?_A ?.կ ?!0 ?,< ?y6) ?:5 ?-T=$H ?r"U ?A ?`@O ?p)b ?~:p ?\ ?Ii ?@@+ ?,_]5 ?( ?F2 ?S> ?H ?97; ?C ?s*9Q ?w5Z ?F6oM ?HU ?7d ?dn ?D<_ ?)j ?k-x ?Ȃ ?)39t ?A ? ?hO ?"; ?| ?K ?r ?>t# ?ɠ ?"( ?;{7B ?@ ?; ? 0 ?kWD ?+ ?nl ?9  ?hEwи ?ќ ? ?"p!?r"0? #?a:? ?1ʅ7??z%?kA? /`/?7'?G?˥b?%k'?c. ?zjb?cw ?~?T??i+3?Ӏ?%ٲ??A?q?a?‰Sbi?~GR?X<[?iw?' p?|?;$U@?/^hc?+TUq??h53B?٨O1?b9 L?1:? ?x“?"*?qv?d?`a?\?vfB? ~p?b( C`?+́^x?Ch?XP?-]0?2@?m'?ۉRX?B'5?>2cE?+?#C?J?>2G?+?Jo??T&?V6?s??I?Ƭ@?Ѫgp?` n?Ly?.?}3?a5?@yV&?;l?=?F M?YZ9B?hRk?+i?f?l ??^,V?iܟ? ?f?? ?EÃ˯?<s?<. ?vy?:m4?[y?Qj?¶Ё?#Qq?Z?eK?h>ۋb?ODzS?<?rD-?bvD?#135?Д?L+?I?&b?[_.?Q?CuQy??{?IN?#ǽ? &??{+??X1`?zTu{?vl? ?V.s?g?}!^?eO?5-Qe?DoV?[0@?#<^2?LH?mՉ9?h#?NY?r*?<?+^~?PE? K?p@?xt?M?Y[?7?5f?5 2P??b ?TE?'Oq?X1?.??eB??-?!?tH?G3Ou?X#?*å?CJ@F?'?X??=I?yוֽ?[^y?q4d?+!?7Op?nC?8}!?VxƑ+??d#O?$?) T(?9?r?@E^?/!K?ǙD?q, ?x?^Jn? ?ߐA?&?5A?TQ?,? $m`?cb?@?"?zש??,JL?W<<?9!??6/@?&Q?]i?Fs<?ò?iP? %cdh?j'?8}?t};?%y?=d6??CP?n ܐ?$7g?N?Dw?n3^?Lk6?sM?jE?8D-?5D?"Ʋ?.?gc?{3?O"?4.?R?mF)?Q?4ͭ?~?ruq?^?,~?h?>+K?WX9?5U?iC?6?S y&?冤&?nKc&?&?$'d~&?ѯ"&?3Y%?t=&?nqY&?/s1)?3@(?خ(?=](?${_)?D艾(?}[`(?S2'?"|'? '?N]'?O(?'?2 (?/U͇(?w'?o'?I=3(?WA%?sbMh%?İ%?T}%?EDy$?B+)%?%Ű$? &$?I?%?e`$?g$?2\u$?#?8B$?(T $?uE#?9Qa N$?w~#?k[$?J2b#?IE(+&#?%YT#?F#?i6"?f)"?`S? #?>"?}=n"?a!? NC6"?!?Rs"?O"?mIG?"?bF!?yer!?/!?yFV6!?:M!?[n!?a!?k!?Q,-?":.],?q-?H{1-?:,?\j+?dd+?>Or+?\8$+?x)?4`)?٦&)?Tb)?V*?6 Z*?l*?Lifa*?f)?)?C*?/?H<.?)Jf.?wwQ1? @-?/?#J.?%u2?׼HQ5?Kb4?[e5?Ф91?~uQ@4?^2?%U[.?>? R??O&?Q?{ei??J?YTT?|Hs?!x? ?eݵ ?嗗?e"?1?J`?5G?%,?4W?vs1?ަ<' ?lf |? ?ɾ{GD?Ȓ7??}?lm2??j?<?וJ?ɒH?^!YF?/Ȕ$7E?롼K?jhH?AdAyF?Ԇ,@?QuC?Gp,B?>?Ms'E?mLBB?CtA?'Mk8?:? 7?sD(#9?:[$=?E??9\[;?=d=?U?< kUU? R? Q?[?P?WL?kL{N?fI?8+O?AūL? GFJ?]`:??IFc?{?If-(?2?Ii6?Ǭ`?!=D?jf?>='?U|x?w?LfA ?*>?1 ?TRS" ? ?P٠ ?Of??uP1?w??fo?0\?ء??|@?C0)???u1?/?_'2?(?Z? >?]?~?A .r?ɇ?\/? A?B"?#?[\! ?4??!^?!N?U'7n?k8?FP6^?|N??$?]q|?yt/g?`ř?Zj??LV?־x?|}ig?E?+2AO?hw?絤e?g?m?p?S.?W?|~?~ Ց?gG?2h>5?I&^?NJ?jG"?t>y ? "8?z?vڒo?ґ?E+?!? ?j?\? S6?d?#s? $O?Iܰk?,?TI-?UL?".$ ??V(Xv?d+-?#0c?GC???Ÿ?? e'?/?.Z?Vt?{ c?OE?U~??; 9?B\?g8?h?x?[[K?o$jf? K&?+ϭ?ނA?$ΒS?=l?m,?G??]D?X!w?$?? ?v\?V? T?L V:?[? ? ?0H?Iw? p/?L&I?:c*?0`?.8?8̴\o? c?brc?h?ob ?3Y?U?`z?mJ??>oN?hM?vb?v?:/>"?rK?B lv?*?Cy ?N)|S? ?:. ?Χ}?J??6m?;㊆?ל?Ƕ#?3ܙ?Hw?R(??_/<?H(?,?u?ƯnP?M͞(?|2??\S?{. ?O$ ? &2s ?Wߏ+ ?  ?̜ ?Y~ ?pkƦ ?G6C ?wf ?|ê ?݃ ?N@]* ?g( ?g ?OE ? ?i ?  ?KN ? B ?y ?H  ?#f} ?1q[ˋ ?`tw ?g ?,齙 ? K ? ?FF ?r ?V-: ?O ?zܔ ?Q7x; ?~V ?}H ?*c ??l: ?)2J ?)nW ?8tq ? ~ ?a,d ?_`v ?8 ?ťKH ?xر@ ?*TQ ?u^5 ?\4A ?JII ?+ܷY ?d ?iQ ?8^ ?\<|o ?8^z ?Dsi ?8v ?nt F ?VY ?.9 ?n# ? ?3 ?>ݖ ?T# ?v9 ?; 6 ?i ?r ?PH ?Ff ?]- ?] ?* ?kn ? ӟ ?G}@ ? ?{y ?/i?ׄA?Š$E-?R:%?S?`7!%??hP?C` '? ?}Nx1?X  ?r? 0?g ?5\?vX? 䨷?~|?*b?W ?W܈??5ui?$2U?gc?̩D?٫O?Y%q?+B~?K]?#Dk? ?s3?o!?`>?*?q? 3?\;?-?Ah? "?`?B?T`?N?=~Gj?I3Z?$_z;?sS*??$(?L?m; ?^??pJTB?ɣ?KOfB?V:?Y?f(v?q`+?B+?}/kT?+Z/?' Ҧ? ??@Ռ?b6[?Z4?yWcg?G5=? ?? &?Z?*d?r$?u?j;?IJd?L?`?C?]=??{???{8??S*4?n?h?FqU?li?z:ƞ?t>w?q瘹?.m?O?D,/?Ql?F??>7?#l&?Bd?0?PCT?"m;_n?qp<?KGh~?-IW?yEq?S7 $?6/?n ?Ğ?sRS??U?D?J}?LC?G?=U1?R? R3fu??i3?tl^?Z;?MMNM? "=?KN?b6?}wK4?t5o7?qW5?{VP7'?F_&?H۟&?ā'?jX&?6X&?]w]%?E+p&?P[%?#Kh&?y%?KN&? (?AFۇ'?(?,gk(?A '?(?8V'?n'?*(?yk(??%?4T%?(J1Z$?;u$?#=鯎$?n3 %?K$?>%?*oR$?|bކ$?vU$?Wh"#?7&w#?74$? #?=Ȣ*#?rkq"?ZR#?#?)E"?p"?ʚ-T"?}X!?"?-^"?>_"?b &!?!^!?90= ?N!? ʋ!?OE\!?[J!?tz!?q[b-?~1,?S,?V,?-[+?Ur,?:ҹ+?M+?{7*?7)?,S)?J)?A*?6}y(?h *?3zj$)?c|)?0!)?/?}_53?؊vov1?G.?sPZG4?[1?-|/?vZ-?E=V,?}.?FJr-?Nݧ? = }?Mi?O?[%W?)?)?=?sxT(?$-3?ٿ7?eD?W3?j?>p??O@?jk?_+ݞ??ꧫM? <?&p?qg`?P? la?>3?F2?iB? ?2B ?e ?p ?5?T3X?Mj?&W:? ? y?"HO?L?ċ?,Z[?zt?5uF?3YC?\uA?&̶??@*)G?4C?kA?;p9?mĤ=?\0;?s7?;~??;!L ?zo>ѧ ?gC6 ?ϘQ@ ?l1 ?B N; ?-J ?ՐFT ?i;E ?a*O ?O] ?RT ?2 ?ֶ ? ?j$~ ?aD ?9Mr ?` s ?P_ ?èXi ?+PZ ?7>cx ?vݕ!d ?.+un ? Ql, ?l=' ?E6 ?֙0 ?~|2 ?, ?) ?Md ? ?bm" ?x̸ ?+ ?!P ?Mv ?0*" ?B? G:T?&@?I?hN?Pߖ?"b?H8?m*?B^?'?r%??)?,<?iGv??+?AVu?%N?/7{+b?o?AMI>?Q^??\Fr? ?c,?t?a ?/WH2?>G?xҚ!?Wy:?]?Utv?qhlP?Rg?`rP?* ,?ؘ]???(x?Qg?13?R?1 ?,?Fj?#U?!?3Zu?>H?x[?qă}a?Z; ?7JT~?Bf?\M?ʃ44?|kj?O?S?3?!7?T\?6?p??D;?B<?))?Ƒ#?`Z?ᷢ?Y5?9x??{8>?E?_zw42?]V1?n_?2Ly?p b?D ? 6?`W?ͩ?}8?i(??4ə?;Sj? qqB?39z_?p?UW?d>U%?YMmy>???ax??y?:?'u%S?`i_(?rգ?q?)??oP??n)s??& ?S?? r ??F^?~;vJ?)x?sf?8?T?S ?f \d?N@? r?qa??x?xP?Ė<?1{h? YS?y{??AMT?؊Ϋ?@˧?h?Ye?d?K ?߾J! ?| ?$2P ?8NO?Be?qe?!=?1 1 ?*.[ ?;)kG ?(A< ?NvQ ?^h ?}, ?ݗL ?V ?BܘA ?_ v ?k ?O1 d ? ?!$ ?c2 ?8u ?ݦ ?rU ?g6 ?dl* ?J ?Թ ?8Rj ?N ? ? ?C ? ? nJ ?'z ? Y- ? ?: ? " ?( : ? daI ?*. ?=A ?:p??%9?8i#?p?;\M ?>x?v?((??L?? m??)c?Ef?-?\E> ?mΖ2 ?&' ?QP9 ?jf0 ?{AA ?{0K ? U% ?c\ ?tF ?^ ] ?Xv ?D1 ?3L ?wN ?M6 ? pc ?- ?_)C ? ?< ?vD ?+ ?E/Lm ?]X ?~ƽ ?{ ?8HJ ?8- ? ?\ ? ?փX ?9j ?P ?a ?Z6{ ?7' ?%r ?le ?-`I ? V ?sD ?I,O ?WPukc ?P+-p ?-+\ ?pxj ?Ic ? | ?M ?e~saw ? ?-s$ ?Mإ ?- ?ˀҋ ?e;Y ?Mb: ??^H ?! ?& ?w ?@X ?ND ?, ?3 ?X R ?K5?M? Ih%?h=?W?R$/?`E?o(7W?? E?[ ,?7(?o?mˀ?y? ?"Zs?ˊ?"?Zzw?Ͻ?:R? ͟?m:ZI? ,W?X5?e|@?d?{x? N?>+\?q]"?w?oK,?66??y鏼?ci?.jI?Oې?E ?d7?,C??۪S?OgB?Pc^?WYHO?V1?! ?{>?V|-?7Z?z?{.?%?:?'7i?e!e{?&Z?L]?Im?!T;?k?C?w#?h?{?H ?#~?<ۅa?՝?G`??a?-?ࡌ%?>g?=7m?ܒ?//?:?M?wue?5)%{? i?b?MҔr?P/[rX?@d<?_dr=J?fu.? Ba?wE<?&m^sJ?n ?E?zJ.?5C?Tj?n?}?e?X?X?iг?Y?{?J??ޗL?&^??P?@?=ś?m?vw?f?v~?ssC'i?$Z?ep?2ha?4?&? ?1nq?ѮQ?/?`1t??g?Q;'?4?j?j+?{?0Rl?? ?vd|t?i]?N?Oֵe?*#&U?)@? 1?DsF?s8?*#?=c?*?ҴN?C"?4m?ۖ?_d*??7yD!?ik?&?u_c?y'?GM)?DAI{?c'&?84?*@N?'2?/?DI+n?o(4?*r?8I? J?S?KS?1?Ɛ?]7?N[)?gY;?T6?Zރ?Qs?'h_?M}?'8?f?*b?|q?}j?ј!?7n6?"?Է?=?Uc?X?kG?h)q@?Ujf?4B?k ?YX?=u?Z?.*?u??D?l{??4F??7G?Ș ?~?,O6?$*Mt?"??LxY?"l3%?h6?҇C?^?wĩs]5?W2?'5?pp3??&%'?f^&?"'?&?5w&?}%? &&?~%? ǣ&?Yy%?mg&?l9(?ӐK(?M^r'?eJ'?j'%?vs$?u%?K$?CJ$?U G{#?V+p#?i:,#?X 3n$?^VJ]h#?aG#?8R"? &"?M"??!?xuF#? 3"?‰"?>J ?G!?z4ޘ ? C ? `k!?J!? B1!?H,!?r+?.:4+?z$,?T@*?<Ǹ*?)?F)??f(p:?O8?_ C?M>?cb:?A;`6?)[3??8?~#4?W7$S?!$TPS?b)DO?R&M?DZJ?-T/D?G?I??6H?⽋#D?PA?x?}8 ?ՀD?SF?"R?헃qm?E2?2.? I?6|J?oQ6?Z'H;?ac'?[2/?U?Tf ?M+?d ??KR? B,Q?,\PL?#7I?ԣXQ?doO??;I?OF?|ݮN?pCL?M? I?[=S?J+PE?*1?8E#?m7? )?o?y5?Ϩ?}?gp?=q9? ? ?Y ?m ?~ ?5 ? ? ?р@ ?|iJ ?v: ?HF ?U ?W{*_ ?P ?'HV#Z ?Z. ?I ?X ?&+ ?@F~ ?Tܱ]Y?i"i" ?YZ??kK'v&?OAq?a$_?=xV?Hw?ڞ7?ƗU?u)Ls?8#?љ_?(Zi?uTH?F{?7?%i}?uL3?? ?%}?et *-?zo?D%?iR?o"4ʩ?LTl?4{?oߒ?Hp?GQ?(kX ?~-?&Ab?uw?eAV.?IR?)/4?/?$Æ?7?ok?y( l???Ke??/q9?q嶎?a5?D?Y?Q ?Y+R?Y;?v-?0kA?OH|?Q?ֳN?3?&~V?:j??+AD?o?Ƙ?ص?~c?W?c9?- ?u' ?[ ??< ?Y ?sx* ?3H?`?( ? jK?k!R ?xhm ?ۋ? ?k j!^ ?WN}' ? ?,!y ?* ?ź ?C^ ? ?p8 ?_f ?/8 ?yA% ?O_ ?G}# ?SI ?t56 ?q`Y ?'K ?I ?Ӹ!7 ?(wݦ?+?S?k*??P ??%H? n?g瘥2?s]? g8#?aibO?;? ?H6 ?8MJ ?t B ?=- ?ș]|! ?z%9 ?o., ?+` ? ?}M; ?#1 ?]@z ?I ?zگ ?ʯ ?TB ?# ?LE ?}p ?ө ?,,/ ?x[! ? ?݌q ?@ ?w ?g ?Ɖ ?6Z- ?+'Cj ?: ?Xztz ?P)Z ?LI ?[/׊ ?..z ? V ?c ?_X0M ? [ ?(tq ?X~ ?\i ?6ci{ ?~&H; ?]F ?9c܉ ? ?$Q8 ?U ?> ?Fõ ?ؗ ?Ju.N ?uY ? ?>ƚ ?( ?( ?^~ ? ?b ? u & ?{0 ?I ?'3~+ ?]>n; ?LJ(F ?&/6 ?~{@ ? ?f?B`?== ?J?? ?a;d?`X ?+?I)?V1?m-?55?њ#?̝o?wv?A???7ej7?{xE?|e[!?A0)?rLS?:7Lo?z7?˳cG?Ѹz% ?/h?%?i1?IL?A?"m?ª?n?8_ ?$cֹ?ÔL?.([)?l:?v^?u1 ?)3?,ZD?8+?+g>q?Nmچ?k?}W?=#"v?>vg??%1?j??8?춈#?o 8?i???^?_i?Dd?jW?}?jQϛ?@?oj?@<>S?u?c`?k?C{<?7Z ?%?6 1J?%v?#W?_w*/?*da?'q?f{?P?v&?*XG?$\?.(?zz?F&? R0X?\«?ڔ?,?uq?=v?v?ߌOh?5-I~?Bn? Y?'2MK?_?g KQ?o?E.ܵ?6V~?HҾ?|_դ?!a??<5x{?Fƭ?xx͈?8?rm?cvI]? ,{?!e? L?ء^1?:???.W#?5T?1[2?}??-?^+?Q˂$?fVp?TC?Il?`s??*?x?9 _?s_?-%?vJQ?2?}?"?5?~c?$҇n? ǩ?ef3?<?CW?2P?<]#?9]G?̰;?]Лn?. 8?. ?aF0?a$?ki?\5?GtD?tͬ? V`?D7{?Scǎ?B?{8k?uBo?#;u?X:?ar5?5^?/6#/??@NJ?fin?YY?P!$?ҏ.?Tj?g?^k?~?G?gP<?Xi?sb6:?͔1?H/?я2?~'g/?z)0?棂&?%?OrI&?Fu*'?gg4'?7 *%?L'?Gfȵ&?)S&?%?9͑$?h#?c3%?Ħ$?U#?pp?"?k"?3!?[8#?g3"?K>,"?1 ?g'!?ؠ}!?6V ?&?NQ?J?8?'|b?J?n&ǰ?j\0R?R2?ȩ &??{?,m?|7jM ?jt?<4?:;?b;?:#)7?!3? Y%=?H,1?,#17?<3?'QF?msU??EyB?*0D1D?N79?z{??X  ?ˏ+.?j!?@P? ~)2?Ȍjq? '?Vw?٬$A?M>?:=?Tn8?1drJ?v8?&?]??!?@?H?%F?*; ?Hp. ?Nd c& ?e.D! ?<  ?Je ?7A ?Oq ?Uް ?H ?P8 ?k ! ?i ?- ?$r- ?V[ ?hk ?ʈ3 ?6 Z ?۟ ?Ӭ| ? ?>ڱ ?^ ?-ן ?y5 ?һ ?lڲ ?1gȠ ?tb ?b. ?cͿ ?bL ?*_ ?NU ?Ph ?M&G ? ;V ?IP_ ?x ?%Mnr ?G5~ ?\ ?u2+i ?<21Ix ?rŝ ?#9A ?B: ?P ?rH ?' ?<& ?Zd3 ?J:z( ?ԟ@ ?c$ ? ?2 ?U>???q? f??~%~Z?S|?TLP?~!?z?Pw?ÙJ?a?Z?IoM ?A?\<?~?M,]?x'?'?Co*C?#e?Փhl?wE??f/_?XP;?i??JSp84?t͗S?J?'?bQ?Wc?=ǟ?p^s?5wI?v]x?\?,+?GޞM?!R?a};?$Ғ?F"wi?eh?g(/?Id|?k~?'?s ?c\?(w?6?GQ?BK?]?wE?%ǂ0?fق?%ۯYV?HU ?2?NQ?q| ?1?ll ?`?̇?q!?2?Տ?r ?p?7?Ud~g?"ڈ??:ث?@G? ?&%@ ?+w?O*_??Yv?!c?|?'G%f?ƅW?C2l?#?N@c?+?Wf?|J?L? 'Fw?f?+m$?j+? E?151?m?>W?2~(?J:q?e+?J??^?j*:?cߒ[? X: ?Ƿ?aܷ?y6,??t&LV?6?Dp?)T91?.%-?"].?^R.?/T+?xP,?f+?ĩ#,?dd%? %R$?K #? #?x`q&}&?|픁$?@p#?,"?Y^&R ?QVj!?N,F"?-t"?}%e ?A"?!?`~!?hZsD ?a5%'? (?~B"%?%?(?zT4)?χ&?&~b+'?qt?<.?ᶘ?x ^?gx?>Fx?6(_Ư?*. ?k'?q2? ?ZNx3?v;|8?¦o76?;4?Qxy/?1?a6~/?e'W@+?w<?U ?] ?o2e$??\D&? Q~5?'g+0??!(?䦍,?@+.?a?\w(?R%??+?N?RqE?$K???ns!?ҝ/?;{i?1<"?9R ?U+3?=n?Gt"?2V? ?XW ? F?@? yޗ ?Î?"??J?GGJA?#D?nNU~?dHp?Es0?cw??t?D]O?U"?v& ?\қ! ?I51 ?&n{+ ?8 ? ?C ~& ?iĮ ?/ ?FA ?ю ?H ?) ?޲# ?9. ?|GH ?g ?D( ?h> ? ?嘑 ?!h ? h ?k` ?; ?) ?ٹ ?Aƭ ? ?Šj ?X ?x0\ ?Y_ ?%~ ?"\o ?&ٯ5W ? ?1g ?!v ?`cN ?+&? ?ؠ _ ? ONU ?-1 ?U!& ?JzF ?@9 ?ط?d?b,}?~? aS?G/?tb>?i_??ՀG?>?k?.K?\p?׬Y??I/?V?Jz?y?)0?Ԥ;U?g;?M(?uPfgs? N?BV?8 ?G#?"Q?s%Ԋ?b*?T=??Y?-e?F?4?l??C?T譺f?d?~@9?誇'?on7c?,1*?݇C?/?M ? ?b?$9 ?rFtt?y[} ??ʫI ?8& ? "8 ?s`h ?’{ ?eR ?OfA ?=,tN ? ?#Vq ?Ocј ?į ?F= ?R ?py  ?dgݧ ?|f ?2o ?D324 ?wAe ?rL ? ~ ?-BU ?O[H ?` ?<?_^?#?Vl?P4K?VfA5}?$Q-?fts?A?X6?d?;.?8s1J ?l&8 ?] _ ?gO ?i&' ?Ȋ? ?I)' ?: ?= ? 6 ?|ׯ+ ?m8 ?A% ?Bը ?\ ?h ? ?S ?+ ?ۗ ?y ?{gI ?S ?P. ? Q ?. ?MS ?-Qs ?pDM ?d ? ?:c ?C ?ݛ ?r+U ?'L ?EY ?v ?\`| ?C4# ?D ?w| ? ?umWv ?d ?cۑ ?]œ ?gM ?bܥ ?[ ?ݎf ?qaV ?2;a ?}q ?#]| ?1il ?0)w ?; ?4~F ?C6 ?g' wA ?T$CQ ?L,[ ?p9L ?EħV ?B?Zŀ??#?6p?h?a?^o?e?C?Ğk?/&?+? o?f?G\??u?7ZE?'J? Wt?vq{?ys?M??F,?0֜?; C?p?lc?6?\H?t?tF?w?ɷ?X9?Tǃ? c?sP2?fs?{ D?>+?1T?31????ݛd?l?}?C?! ?c?c:?ьo?0?r@?X,?"!?s?b?dS|?^Wyh?^\FQ?2X6?-C?pR&?qV?]64?AbxA?wE?-ZX?w3?0/C? _? tk?,7`?h.î?NU?.!r?k$?Lh!?|'?K??硳0?[AG?<3?7X\\?~v?i?7`1?x?Deq?4Н ?鿀l ?" ?9?Q ?>- ?г?NӤϵ?NOg?ǡ!Z?#?Z-i? hL?Ms? m?)&o?%1? M?1?QӠ?&N?Q?Hq#?Y1U?fu?/?L?Lӈ?^QdR$?&(V?C? ¬?@?_b?'?ZKG?f&>?Mt?_x?~?N[$?l=*?Fbv)?VQ*?%k'?nY'?:'?HӚ&?}z?ׁ37#?z{ "?<}= ?ӡ #?nwwͫ?Ǟ!?L$ ~ ?}1~>$?Dsv%?ӈ$?Aֱ$?M"? W#?"?fUG?y?WI\?w ?&߭1F?Qlq?\? ҷ+? L=?(?!D&? [4&?G %?~X7w$?Ԡ#?ww ""?}Y?/kԔ?zq?=?Wz}!?Јh!?/뛼?GCi?5 5c?"U?(i?O\?c73H?:?_N?^A?nR-?M?j)3?q}&?k?+:??{a ??4F!?<4?7I? ?F餦? ǹ?"?Ȭ?Ws?#?#YH ?Ã?_,n?O8?#b‹?Y?&?|wz?j-?PӶ?2y~??AɄ?xtp?DƦb?(w?ji?f!W?.Uџ??\d? pF0 ?q3' ?揸; ?F݉6 ?;*t- ?u$ ?  ?Zi& ?,%P ?ށ\ ?1WI ?Q ?B ?Y # ?b ?ͩ' ?ӟ ?)NC ?Tn ?y ?. ?eP͟ ?w ?0p ?é 9 ? ?\T ?f ?(Y ?(o ?n= ?e ?ģ ?qz ? ?&\ ?cfO ?p ?/2f ?RVB ?~ / ?*Z ??"cI ?P?+p?x`?_'?O?;祭?O?k++?^ٷ?W7d?hcm?&0W?&'? _w?GOv?Wn?xG?~7i?=K?.q#?Imj?|?v?3h.?Ld?Cy?Mj?UR?FiO?^d?JP5?* ?K\ ?:4 ? a* ? ?BHNg ?m? ?^Tf ? WL ?}ɻ ?: ?=x ?8 . ?W3= ?~! ?:[ ?7|5 ?0?E ?zl ?c?^gU?U?l=?hju?a?uJ\ ?i9 ? L-??/ ?Ax ? /'T ?*'5 ?͕5 ?QV ?Ph ?5& ?zD ? ? N ? ? o˸ ?X#K ?v* ?] I ?bΦ ?9/ ?YD ?MQ. ?w ?0 ?5 ?G' ?#п ? ?LU ?G ?< ? ?T ?׎P ?E ?q ? ?J ?PvE ?xR/ ?߳ ?FC ?ё ? ?u( ?)e ?u ?й ?k ?yW ?ɣ ?\E ?kRQD ?dЩf ?Tq ?pwZa ??ବk ?xQw| ? ?Ov ?)s ?&1G ?b \ ?ŜQ ?6[A ?{;]f ?3Q ?G%Q\ ?wc ?P| ?wO ?7 ?ڗ ? ?<, ?G?+i?Z#?GM!?.͕? lZ?ln0?T_$?M?P:?r7M? ?Ne?e_&?x_??Klu?Z>$?&*?::?f?aœ? 6L?!'?nf??!d?J=K?Z1ۂ?4n.?w?Θ~?ɵ?a d?H^A?п;Uz?ə M?>hU?bu?3?,?ON+??u]?ԧ? &3?kJս?,-¤?RbЄ?|p?W?x:tw?7\? F?>\ٗc?{O?c1?C?[l^:?6dcn%?Lrai@?!]?M&"?,k8? sy?X##? 8U? p?vg? g?? &?h67?*?Ό8?K#?ƦA^?o3D?A?fՇ??xĥ?|,?l?Z?5-?Wp ?٦,?8#?dh!:"?>F!?jE!?V?⁹?]T?JƓE?1T ?Թ/S!?Bj ?.xG8?d/?#-?W!b?kAp?iTE?%Z~?S?Bf?p+T!?fyr?$bfa ?T?rT? ?2Ŭ?l2?"T?=-J??h?j b? 2U?}?[?(Oy?"@? s? mU?yG?X[?Ʃ N?>:?;-?Z@A?#3? E?[U? GF&?xB?4M>?P?pMq ?ߥ;g?Ē? -M? ?.?6Wݙ??$(G?2L?D?ߊg?!? l?2?]?Ó?\z?D~%?tTO?Lo}?̞p?f§?HMu?NQcb?)U?[#;h?N[?t?[5?}??(i?#J3??< ?;8'6 ? ȫL ?{!oC ?/ ?/I" ?Y!= ?BiS~0 ?@| ? ?_# ?ċM ?, ?C˲ ?~= ? ?2H ?:x8 ?# ?߹o ?sJ ?x ? ?x42 ?(^{ ?c̙ ?&ၗ{ ?l ?㒕 ?l ?C{q ?Q` ?G= ?GLЀ ?^[P ?Kb~6 ?bo ?졼Z ?D-g??w+qe?6ڨ?b3?9=9?Ѿ?UU?gh`G?`E!?75?s?>?>?9Bs ?) ?NM ?-w ?yJV ?< ?ġ ?"(/ ?/} ?>V ?xf7 ?k[7Y ?hU ?Yk| ?V"k?\?7!A??9 ?zM ?8C ?~] ?K| ?H%X ?߫K ?'ron| ?diA5 ?rY ?h ?ͧK ?X ?O* ?g6 ?]2e ? ? ? ?z; ?& ?믳@ ?U ?!G1Q ?, ?) ? ?hHe&? ?5 ?(q ?N ?B ?[l ? T\ ?>Z ? ? ࠥ ?(V ? ?d ?Ȗ ?sy ? ?{L ? ?u6f= ?бp ?w]} ?~Jf ?äkw ? ?, ?{ ?ѲUȒ ?\ ?pBS ?Wm ?qe ?H ?{9- ?d6 ?d ?=? ?A9?o?yT?'" !?==,?u<?eui&?3},?b7?dY1?xY =? x?l ??w?8ʘ?Qc?Ʋ'? Dxv?C8O?#8?8UWp??-?%J?玢? ?X?̮A?' |?3f?W ?Њ?ZĒJ?7?? ?#I?ܵ?S?Ex ??KBb?wrަ?y|1?n{j? " C?V?.?es?ǽ @?S?Mo/??*+?*?80?Yilig?0K?`?u3w?bU)? rHE?rb ?~?f?'?4/"?>-?~??JvY?җ?Nُ? ? ?5 ?<| ?8,m?,2?dJn?JOT?4da?Cv?ZH?D~/ST?]_b`?WBv~?T?B&i?w u?WdS?ZAߵ?DdB?J ?G> ?~\ ?тQ ? {1 ?& ?gQidD ?O<1 ?j ?5D ?Q ?ojtk ?gC/ ?EX ?aQ  ?f~ ?SԵ ?Z^ ?JК ?e ?L ?h$v ?O ?;z ?)δ ?w.^ ?$'ke ?{oZC ? ?G֓x ?Df?}.,?_CQ?۶LN?Xx ?E!Q7 ??|?. ?Lj| ?$Y8 ? ?&D4 ?^ ?O ?Ԕw|M ? ? ?n ?PF ?)` ?ed- ?pMR| ?  ?M ?)j ?:+ ?$}` ?"G ?pjO ?^} ?\1 ?cN! ?˱x ?^' ?gV ?sʧ ?#?o ?Pq\" ?.I07?V}1?KB?ׇZ<?k)= ? ?d ?+ ?Ĺ ?@P ?߫G ??s ?z 5 ?:" ?Mۦ' ?ʣ ?Ӓ ?B4 ?& ? ?^O'(~ ?ʂЌ ??v ?M ?|O ?A, ?G ?p ?>o ?/Kc ?ӂ ?Q:{ ?% ?K ?N ?3?? ?~޴K?&?Ў+?O6?f7&?'SM1?6wG?62xR?RB?=+N?L*H?<?_?ޏ? &?;;rE?9چ7?C?nT??=?ě?0h|?\tʶ\?3Vs?Asj?W@ =?l4? ?%@7?yJ?.XQ?b$?YT#??>?nV_?y?s??L?/k:?;'F"?@ ?@P ?=a??sϊt$?:Xr ?ǩO ?rO- ? ?rl6 ?[ ? ? ' ?D3pV?f@h?V`}?b?j?c?g%?n?Rkx?;.?7?s[?w?>荨?+0?ym??70?JL#?B ?32?]8K?0$?3̓?L ?d??_aq?JN?f>? rn??d;?~(?4??=1? 6?k ?=C?o/5?6e?k;?M?+,?UG?-f4?x?d??r?v6[%?dA݈?]:?8?_t?5s ?$??Fo?5R?9~d??xv?L+?#B?Z|-?)?dҖ?d?f? h S?(7_?"@?B34K? k? t?xW?[Za?-?̪?uKu??^W ?kD ?ҳo ?h_ ?}1 ?q ?m ?b ?$M ?d ?<, ?" ?g] ? ?R ?+޸ ?jI ?5 ?X ? W ? Ћ ?#Xa ?Uա ?Yѻ ?m') ?Ջ/ ?? ?G ?lĪ ?֕w ?fbA ? U ?2 N ?z4 ?J[ ?4C_, ?Vo$ ?/iw# ?~\ ?̄ ? ?P += ?G yA?U=*<?+ZL?\(E?? ?I2 ?Y ?6 ?)9 ?뗣\ ?wck ?2 s ?H ?rA> ?? ?|B ?y ?/`#_ ?EԪy ?[p ?#q ?eS ?V ?)ܡ ? @ ? ?L [ix ?T> ? ?Qo ?.L ?}]v???fS ?P6?f+?2@?!~b?z+??Y96?Z֝]?[=̆W?>P?-Yb?Ճ\?C%i? pY?d?yC^?&c?`7i?FzSo?(?t C?]C&X?~JӬ??R?W?U?\Z{r?O?I4?J1??q?I?5}ծ?fZ?%?) ?s2?h?]a?+Z?@7̀?1X? ?=1?_%m?XB?H$E?PIn:?k?/o?TKo?cjV;?RN?@?g?H?2O't?PbV?Ki?{Z ?Ҽ ?O ?(! ?9=?:N? ?C ?%A?}?89?SoS?5b:?|f?|\?o?4gʍ?E<??N?D)??|?1#S??L?7?+?F?D޶?]?-:?KXÚ?R;P?=?,?)4?D?6K?_7?%P4?E@-?@G?.e7?"?z`?\?yD?qq?D?j??E?x`8?\X?te? dz?"Uf?R~?#d?J$?^Άj?z?JFi?K(t?VB?P_L?W?V8-?U?8?= CB?1m|{?z/Wn?gj?jx앁?AN[{?^O!?`]?u?_ڗVh ?ڽ' ?ٻG ?+i ?ڂ ?yb"I ?񴛈i ?P o ?~It ?[" ?NY ?< ?s) ?+@ ?Եt ?m ?czu ?h- ?w> ? ?% ?з ?+ ?awp ?f乔 ?0 ?廚 ?Z.&- ?3'# ?rV ?² a ?Ί ?^* ?]k ?ssJ?I@?)U?۹N?[-?Wm ??رh?g ?3n ?6\ ?[ ?y ?uc ?=4 ?y ? ?sJ ?gq ?= ?&~ ?< < ?J ? ?  ?Cf? ?XDr?:(?eE5?H"?I)6?rLD?$0?=?:kt?Z^w`n?@5g?,z?؉s?Ɂa?/@Z?E13m?ntf?>3?J p?Q^{?Awdu?z?p*? :C?j?ZU?W?dw?XT?3o6"?e{k?= ?Rn0?RV? ?-+Q?#mh??Sr?a?ON?4?)q?% ?7>?gxr?ZH x?4I;?lf?\p ?yBo ?A!z[T?㇩ ?%ᘌ?o?p'??Vd?z?)0a?|?:N?!4?J?S^&?*Y?~5?Gρ[?̝}٫?3?1ep?T]?3I?|R?e˂?|g-?{?T ?TUu?Ydh?hp|?n?Xja?8?d%?Q r#?Yr ?ڸ\? ? ?Ij?Rr?$?:PQ?e8?⌟?꺓?v?6q? c?/ b?g:Q?[;DT?.?)A?L?0V C?)!?Y4?%U?s&{[?Ma?@8O?T?St?㓡g?k~`]a?( h?Pn?}{<[?dj ?KW ?@• ?$V ?n(E ?iD ? Mdy ?ly ?8 ?1[C ?ػ ?IAH ? (y ?Lx ?,S ?g| ?tZ ?j@.' ?kg ?i ? O ?w ?)3 ?Q# ?m! ?cF& ?A ?6S?/ )K?S]_?+*9W?x!d?;w ?u` ?nA( ?n ?L? ?;?Ȥ} ?`N%% ?OB3 ?WѠ ? ?_: ?dE ?t.Q+?w"7?RmD?z?wP?":!? 8?c^D?1N?Ը?Z;I?s?J}C?*x?k?Tr?%>p?R?3.~?:,w?%?0׷?yi?o+A?b>ˑ?. ?\Z?#M?`???{Wl?:+S?As?A)^B?A? -?%V2$??<?*(A?})?ʟ?&?Y ?ER3?a?6J?r 7 ?% S?tcq?Qfk?\aE ?fY ?}9]?0Y?U{,?T{?Ng~g?9X{?R?Q? _J?VAF%??]?{.?Pѩ>?w[L?/pÃ?g ߌ?1 ;u?g??V|?B?7bI?iXf?ncO?q?[?ئ~m?D?_LP?Zx[?(G?P?ɗ? ?UH?,d?H?S?DB?({U=?= ,?P1??N%#?v?P ?@[?2?"b>?8B?H?^6?\U<?^dױZ?@|M?&G?ՎuN?ݒT?Ƀ߿A?ӌ% ?m ?[r ? ?ږ/ ?Q ?P/` ?_ ?b ?a&Ν ?0 ??Z ?kdA?Ap%?t $?`ER ?DZ? $?[?)?u?e|?B4?7 ?f훝?:#?.z\?bh??[u?cP?LϟX?)Pe?!q?`)?~N? RZ?D?X-?W(?|$6Y?*-?"1?:NH?0?8D??#F?5e?}ߐ?]aq?A^'? f? N0?{?PW??Tl?puf?Ny?b+s?ׇ3?7?vV?_j?(nd7?Cާ?hf?K\?[`?z'Y?qD?{?r^X?!Hb?LSk?ɣ$?Ԍ.?u?&FIa?4븗?|.Z?' ?̋莋?'?}lW?~<1?2B(?\k^!?$+n??}?u ?ƳA??5[?dU?=g?I?2?Ѱb?-+Bt? G`~?7b?,T?~ej?7ۚt?N9?_D?op,?a4?;P?_~X?d@?H?_x?RU?F?& ?;b?"?9ބ?U*L? ? ??$?7c)?.l/?Ď?I"?S.@?l4?!m*.?0s5?F:?e7(?ń ?k?d)e*?oFYA? n`?U/?e(g?&S?,?"X?8xD?/*޸?'i[?clb?ߺ} ?$F?&*+?^?iO?w _V?E? @?]{,$?}|2?y?w\7?1?zTh*?N?{2?cK>?'&3?^u?Q?v)?t԰??5?ܯ ?[ r?p?Z?];??$<?.?KT*`?g!K?_8] ?ƣz$?0^?6ۙ? I? +?F=nd?u .?w?̈́?uN۰?A٬?S??w!?iݤ?$W\?嵛?>?؅?zC?b?lJg?c?.4?T?x`?U?B?M^??/\V? L4?vz"?Zwa?O@?@??ڝ?iX?YuF?;Neú?-!c?tbv??R?A?0|?$U?PWT?@z?}LO?UIl?{w?tp?ڎk?k2Z?n?et?3;kU?-"mI?/f7?*f?R?rm%?z'4?P"?p%?@?몊0?ѐ%3?י?GD]?!K?ۨ ?E)?!ķ)?r%?A*?Q5?\e/?Vw;?3?Q3?Ca&.?펠z>?!]9?V(?{|"?R]L3?f.?{7s?_?f!l?hsqf? "?g'?Ĥ$O?6F?Jm??+?*y?ϪR?:ٽ?&?1t??V?8Ø?:~?&k?9k~?酯?'SC?z?A ? ާ? 1b?HY? 7?X+??0?s?1]?T?Ʀ\?R0q?tao?{?]?b ?=\? ?o?/g?]u?=C7?rn$p?.?`?J'?:?kIf?M?*?M/)V? ?~?j&$?6[?B@?!ZN?dF?3q?%W?Q\d?G3?D`t@?>?0#E?GM?9#0]?PCLR?$[?cP?i˱@I?w!D?c?V?x/O?1g;??jF9?C|J?QD?ڌ'?\Z3?#-?'3?"I9?,f!??C5^?$ Xo???T?\ ?(E?q^?P?A?t ?Ċ?[e?lI"?Ejz?Ds?E??f?s?w?=y~?;~Q?$#?Ag?S͉?Pۨ?3ka?d?Ņ/?'?[֏?6?dD!?B1:?b!?g ?6?F? ?-_y?J}?0l?K?;H?Ufy?ՁM? +?t?iZm?i?o l?:r?Aմ(z?W?>"a?Ŋj?f]?Vx?Qnf? p?ͰOl?ػEc?C\?7@n?P+h?)A^bV?LP?L.b?gNH\?V??ŦJ?0MD?FJ?p5P?ҎsV?K?˛|X?}i6?KD?bP(x?fdo?gFf? q?߱qQ?>e?(4,\?]?Vi?Gp?s]?pc?Z??a}r?9ne?K]?EG?d+?Y]?KE? }&?_:?1o2?;I?D?6‰?}?' ?9}?u-?9J!?mL?s!?s'?92o?W5?&k? ?E*?߬?N?w?߃?{?סu?-?} ?,7?e 5? ]?G$?1Fv?3F'? ?E4?Wr ?/;K?(?I?n?ư$?L?;?rJ@?!ˣ?e<?h,=?Bؖ?ZF?E?T??z7?1f4?{@4 ?߄}p?9mI?@^k?ģՈ!?r?[D?g$(?ە6W?*Cڗ?t0?\?*¦?SXoD8?Lu!?Q(?8@??W6)?:H?`8_?>?vɡoP?BzM?Xx?T²X?Z{r?ǧ0?;0,a?9l?"!`?qϴi?+'gx?E?awr?pT? G?[,J{?[O ?n>xX?gZ?U ;?*-?4H}? h\?d]??0 ?E ?_PX?iqD?4u???‰`?#+?ɔe??Q>?k0 ?x?)???,6?S??l?[?:W?h?H?%Ф?7Kc?6h{?[?2sw??.¾c??m7?` U{?r ?FR? T\+ ?t~?nj? ^X?"?'Z ?}K ?ģ-/?@F?S4?ƫ;?ek?i ? ?iiI?!? ?D!tV?sK ?C"M ?M=`d?KO? E?ɿur?b2: ? k+ ?x?,?b'?ǜЕ?W?7 ?-= ?mᒪ?;Nx?il?,POx?iD?j<?&L(?&/?Uh?xi?I??b[?fX%?$e??¶?‡`?LS ?=^T?yZw?z?ml?U\?@?T!??_a?x2{? ?q?x]?Ż? ^u? #/\?ea?c?m?DO? $???N? +?#־?NA?? H?4m?֙?V?uWL?a v??`!r?v}?[T?l[O?A?9W?8?bj?}j?*?u?hzϏ?3?J?#'?jC?-[?7?NZ\^?b?UȐ?w/?`?f]G?;?4Gt?A_?*l?E>?t?i#K?է?H!s?(U#?).?"k?[-??7Fk&?$)?G?lTJ? ;?beej?EM1??G$?ņ?\ M?N?D?I???WN?`LV?W뒮?R?6?k.(ϯ?タV?vJ?Ubi?LK{k?fm?btgj?rl?r᮷o?Dnq?ښn?p?ct?y.v?`r?]u? \x?\qz?EEw?4zy?!|?~?ť{?(}?R=?~??~V?D>Å?' ?!F?D!?jAY?R?A*?I|??? ?=Kb?1Wm?z>?P<'?O?_? 'B?y`a?,?h?VǏ?ޘ??!?g ??Ҍ?a 1?i7`? y?]#,?& ?{?{q? ? ? ?x-?xj`?vdۍ???o_?"w?0c,?4rq ?AM?qTg??Qi͑?!?Y?j[4?# ?">%r ?+ ?<l ?M}?C ?F ?<?p_?>H@?2?v?=?7?@?v?m )?f{?Udg?ƕ?#?C?/|\?l?,h*!?\?6b ?GH"?r?$?P!? u#?X?GzB?b>?w@?dA?{D??& =?~_;?ł=?Xd9?_2?7?e?b7?˩??_? ?y?6O?qBI?\?Y?mw?c?+?Zn1+?Wj?!aj?t?\ktE?=?N?ޥv?pu?)?J?&'X?g$?h>M?ol??#?lWG?A?|+K?? @"??J#?2q??aH?|??%9s?/z?a4`?D?G-??۷)?5[?}&?b?9?݌o?]?u[?/4? ?5?),?d?f#?ckE?)??fB? b?ȼ?ҶT!?^f?&'B?#=A?v@?;+?$?R?K??:U?iu?M_?dP?Be??{?>4??Fy?R?!Cd? ??Ց?4ݳ?ac?u?vD?Xǭ??OX?:&?(n?"?P"?h?L/B?'?i?W? ;??6~t>??Uk?eƕ?V<%?_?Gä?8?QY?f??}??^ ?i?]?y?fO?4?=َ?h( ?@R ?RE?A?Ӡ%?!?̐?/:?Y@?<?9?(? g?M;?mJ?f?Ǒ8?wB?U?e?a?K!?O-?9?$./?C?zF?9?W?W?No?y: ?Fu ?[ ?i ?0'3 ?!?h ?Fp ?"q0?T؁?Y??xL?????n(?ʁ?\U??N#n?E[*?P?GJ?)?V ?E?\? ?? ?9?Җ?-?r?w??x?-Ğ?Is?f??_?j?N!?8?ou?#a?o?I?#&?%? x?jf(Y?$_3xv?tmt?($w?azu? Hfr?bp?^qs? ʶjq?2!an?HUcl?0Lho?em?Ϸhj?3Iqh?Qik?Cpi? }f?Qd?@zg?e?R,b?i`?}gac?a?d^?Ti\?bŖ[?;!Z?p_?qL[?]?BO?T?#Y? Q?-CV?L?U<2'?h.+?9(?SC$?8W!?9%?"?/Xo???0N ?X?W?D"?N6L?@z?î|?Uy?k={??&?B"p?R?&F ?|v ?? ?-Ʃ?.s?̀# ?L{L?|?W?m?V?}?U%?vP?*?Vu?6?Ȧ?ԝ#?Izێ??]Z?ȋ?G?[L?࡚Ҙ?L??*?B[.W?-??!;?g? j?}!5?_Nɠ?#?E?צ\ڨ?/j? >?%o@?y ??L?/sw?~/A?}?d?>Һ?Y?G?HaI?)???˄?Y1?Ra?!?Ŕj?ZhƮ?c{a?Ind?B_?1c?T1??:FB? =?ly@?QE?nvaH?GC?4>F?a?c^?:?[?Qk_?P\?x+JX?pTT?vY?\[wV? Q?%vK?ƚN?XZI?Y4vS?M?M+P?qSg?e#k?1&Jf?Y{i?bn?c=lq? l?Xo?t?A5x?r>s?̧v?=?Jh@{?U~?Íy?"{*}? 3?wŴ?,?Z倩?@;9?I?? ?L?ܙ?Id?R䪛?$n?I ?{;?NԔ?b̞? !?V:?ۨ6? 4? "0?V茯*?&?b ,? (?gfj"?šx?$?ȁ ?>?B?ܜ?i? A?N?]?1#?<?J, ?‘L?4/ ?G ?q?Eʘ?!M?9?=i?w??S_?abWh?Go d?R> b?.:f?8l?zgp?/^sj?byn?ju?;\y?_Jr?3O-w?Ӧ}?!-?QQu{?h?yPG?DQ? ?:i?<R?oU?I/?^3??3?䓕?O ?5? 9?u?qC?՜i?:?W??Ӽ[?:ڶ?ٕ7?3?^?nX?6,?\?a)p?0u?J&>?.r?R:?!,?9P8^??$jJ?j!E?3L?nMG?T*@?sV7;?XDZB?ň=?}EH6??\1?<ϑ8?|_3?Kt,?/'?w.?Z *?"??W8%?Bv ?/?x{&?d?9?%U?J$ ?? ?1s? ?K?ןr?K';?V~?ۯ?a$???[1?q~?57a?}״?K/?q? ?rKh?(??yq?Ó"?ڵ4?zP??ٰn?cG^?JC?Q͇?7?ULΓ?T,?2?nvD?6y?"[~?x?ā?SG&?9*?nr?כv??P?Ȃ#?_o?J2??/l?vgw?Uv?` ~?0 6?-g?:4?A_?BE??/?3p)L?Δ?]`?{%> ?=????J?֟7A?,/k?,?4BT?=@?+?0s?ֳ%?t A? ?{r)?F?y(?'q.??_)?D"A?Fu0?_X??jP?S?)#?^?7D|k?Oq?8? 5?v?L)?6?G]??a?c?r??|?KG4??H?GȬ?^y?3??jZJ???5 q?&`A?l?R5m!?jP?ãi?V$?R?E?5?<$i?߈?L?'m??ؿ?kN?9U?|_?+?k?8?k?2?k5f?=H4?P?ܬ??W&?|N?A>ui???`??QB? um?Ԉ6O?v?+J?4?J?{?ab?w?^?Ǝ?y?9 ?T/? h?LX?15?\l? XM?-;`C?H?nT?W??C?.?t4?&H?U?q??_d]?r6^?D/JD?B`_F?^B?`C?`M1E? G?yoI?BG?qH?QK?q:M?ԄJ?oJL?"LMg?Hm?1@!?[?]? ?2X=?dq?Gw?Ҩ& ? H?̴?0+?7S?5E+? ?̕?Qon?M?u??[w?zŷ?32`?X?.rW?L:!?T?"!??_?A ?U?uAP??5s?/?Tr ?v? ?% ?۫7?J ?l!?3w*?5t ?ߥ?"Â?x?c?5:g?`?w?l?t0?5N '?dL?l9?ȦfF?J?ouF"?r,P?bg?_e?1~5?C=g?Ui?mk?,mBh?^j?p tm?o?&_xl?n? ?q?Ss?np?r?2.v? uax?^ u?Ww?,|z?~?|?|Ȫ ?oy?‡}?DZ={?+no??;F?nM>~?N]?BM?%Ć? ?Fr?Ck?cr?):̍?sNc?h?2i?.s?8L?8N(?gܠ?Lf?4C?7h?6?)9?V?ᇡ)?y[7??=?Fr??/h ??$o?N??Y\X?n?ڴ|?"?& 0 ?d ?) ?g$f ?%S?OO??*(?ӡ?E??J7Y?F?ˍ?i?{g?W?p ?_q|" ?  ?<5?Ǫ ?>?ẏ?%?{4X?]S?b?e2 ?:75?U? y?y?R0?=?Y a?M?1?M?44K? i?? !?ޖ7$?\2"?$??\g=?M??G=?k#lS;?ǣ9?{.? >?R?kr?[l2g?r*?c?]rJ?<9?@?az??)G?x ?g?m?v?wD?X?L[?-2͞?e?2Zp?t?h[?u(?A )?>?ef%?-u?f?U.?H??"bOW?v ?s/=?^(?e? ?Z_?z)(? B?˚u?F?4Y?}?W?8b?o$?l&@?3?uJ?? %?}I?>5B?=U?D?α?j?j&?{E9?~7?y?ŀ?Ӣ??/~]?ț?ؠS5?yC2?;%T?-?J"?k|?t?3b3?rz? 2?o??J?vb?t?$M?fZ?1F?2?"?N"?,?q ?bx?g?D?w#?.?/?D5NW?vU?@X?hV?;SТS?Q?bT?`R?HP?MC:N?uP?)O?`QsL?DJ?L.aM?oNuK?LH??2G?SI?\H?꼄xE?8C?\1bF?D?/O_&?H%?vP$?W&?@$?T"?Ь.!?T?[IF?ջf#?K]z ?)!?+.~(?U*?_v'?L)?"v+?-?]`*?N,? 嶚.?*L)0?$-?f/?`ں1?_O3?340?2?+"B?T_@?B?)I?>v=?]?/?K?W?`-? Gt?R7?f?? ?,4?ť?I ?$i[?o ?o ?0? 0?D?:?]?k??n??h'?s?fR?o=4?(W?KQ?|Ғ?^?Ie?s?i?!7?hz?Ix?/$v?y?cHw?ZW?&p4Y?0r [?'PX?cRr&Z?ҷO}t?*ur?ku?n̅s?|op?kn?q?ro??Hkl?@pj?5Zom?=Cmk?Vyh?ԅf?Iti?.g?\~d?jb?04e?ŝc?s`?[\?^?#`\?ѣa?PL]?(_?I4??@z??t?ݶC?L?]?#û4?y?U?4r?q?ZS?gS3?1?!?8£?:.?Qb?&?D?XDZ?∑,?[n?F_?G?fہ??!?=8|?w?Sy?Hdiz?ֶ\{r?Tbm?:Ju?(p?Lh?+S;c?c-^?mK[?Jk?jj`?4e?^55J?La3O?6T?pL?JJQ?C=Y?~*[^?DV?i[?&9?H6?:?z7?ј3?#0?`S4?1?J.-?f>*?p.?,+?]Q'?^$?Ao(?%?؄Co!??=V"?B?l??}3f?26?<?Ja?S=_?o}ث?|?뺶~?oL{?>|}?QDN?M{t ?<?J@ ?, ?`?3 ?ל> ?!h?7&? g?ۈ?O&_??֔=???;'?bG?EӃ?5o??$M?U{F?PW?Өb?;3c?Z?`϶?F a?]+?5j??Ys@ ?3? ? *?K?&?.@?/g?ˈ ɍ?p?F?u?c?ny?\?%?K`?;T9?^-c?t7?ԫ?Ndu?8?Cч?$?8^?qMb?#z$??Q3V?v2?^??(?qW?d?.N?BH4?pm?LCy?xb? !i??be?C_ӗ?U!?,)d? A?C? ?_-?J.$?٠?{P?KФ?o+?@Ȕ? $? 0O?0T?d=??W}p?h] ?!k?<?)?^^??a?G? ?4Թ?C(?ǭ? ?ܔ?%6?X\Ǵ??RL?[?ϭ?u?$?!ғ?Ү?1w.?ޞ=9?ؑwd?r c?-g? a?lmB?9m^E?9A?C?'uSH?/rK?F?VI?d?una?!^?Tc?|t`?,[?_X?g;]?@UZ?wn*U?7e}N?5zQ?\L?ݐW?wDP?y֯S?R@bk?On?mi?Sl?kK?q?G(t?4{o?Ԍ5s?1x?0{?v?pby?W2Ʈ?H?U?A?w~?7+?a_/}?'u?vfΧ?jU?'?j*"?{?~s?A?v49?'Ǫ ?ݓ?%͛?-?:?eʏ?sqN?Ub?j#l]?t?m?vσ?p=?@?M?)[?WW?C]?vY?[Ե?jo?K ?و??Xj?844?j A?u?y_??H??`p?t???|?OQ?Cl?=Ȍ%??lF?jˡA?2!?^?Ӫb?B?"O??7X? ?ؠ?ApZ?Tp?Vu?F 0?')?mJ I?幹?g??nO?PdiS?REO?0 U?WI2Q?b#%K?G?(sB?@?#M?a+D?5hLH?dRB? m>?:? ^@?on"?(3(?]$?z^%?c?*d ?E; ?!?/?N'?:"?X4?WJ ?^>?'h\ ?-c?lՕ?z??s ?q?+Op?e[?_?id %d?E]?܏Eb?JZTh?ލl?304f? ij?ǯp?; u?%n?~Fr?% Fy?oщ}?Z'w?xlK{?~=с?B,?&U?@ۃ?ջ?ϩs?>8? "?^q??n2?`A͕?ic?N/Ҡ?AF?ZJx؞?2E?᪩?I?j/?W?d,? ?rQ??~g;?Ŵ?mM?4 ?cn?bս?6t?-)??? ?w MF????::E?8@?r5G?{BB? Z:;?Z'I6?S=?m8?Ɔ \1?Jx,?Y |3?A.?J'?"?"*?K;i%?6>?i?z~S ?5?:`?޶?L6c?;:n?n ?:?߆ ?Ȕ)?%?c_??/?;? ?'g?U?3y7??ԡ???Y3~?)? Q/? L?N?z?I-͂@? :?c3?FJ4=?!6?mk-?'?XLJ0?A*?[ ?~yk?j#?3Pm?4I$?X?Jś?!?OY;.?מ?L?71?՟O ??,H?H\?zVx?pw?h?9??1+?>qR?!W?u?~?I? ֞?>H?`?5?A@?g?]?&pZ?fC???f6?F6Ӳ?#?e凢? ޛ?F1s?ϱ?8?j=?wL[?Jˑ?kN?7 e?-?ƹ?sz?ADt?$~?mw?.jm? 7g?ќq?{pj?u`?΢?-? ?8&?h?L~v?aN?}?W?OM^??/?ps?W?$P???!??A ?d?Oy1?Zg??_BK?uT?m?v|??/H??i7??d?p)?ǯF?oX? B?8{g?C?o?A?s.?n:K?7? }??zh+?;?(2?m/?Y?B?+?ܘ8?Ds_?)g?hm~?g6:}?LF?G?>.E?lG?]I?ꫠK?-H?BTJ?{M?K]O?PSsL?jBYN?G(e?p,c?X,f? d?ma?7I_?Nb?/#w`?~CQ?/5S?y=P?#)R?X*U?;1:#W?xT?J)V?jY?]?5[?8^?#X?n\?` Z?|?6?Vҹ?L\R.?P?,7??CT8=?AnM? ?Z"?q?`?9Tk?NΔ?KS7? YӚ?d̤?Ȫ::?S?Π?Yɛ?Ǖr?V ?SUk? ?{F?uZ?(-?/&f?i ?Wju?K??a}?_?F&?]?DB,c?v?F?0b?H?(x[?}?/z? H?NI? h?0?̯?p/??C?Q߲?j3?#Z-?yD?+?PF|??R?1?D?B?Moy?0E?? ?@D?q?o?F?26?aA?NN=?/P??B?]`?Uh~?4g ?Ny ?x ? ???x` ?Z"?P ?b )?|D?7]-??3?/?.^?05?%?t9 `?fe?Q`?5?%s?G? 㮓?ذx? |?&˱z?[/{}?Kkw?6"|?/Jy?g??E?23?=Ԝ?D?]?P??I?ϬE?P??7j?Lz?h?EH??ƻ?J?o]d?5A?sv?4^Z?Ժ?^.?F{?j8?Tݖ?X ??@e?Y?`?BF?XP?6c?m?h ?#'6? ?*Ѹ ?8$o ?LgN ?. ?Hu?u?Hi?K?w?Mq@?)1?k•?"?* ?% ?&\ ?e?lĞ?5R? ??TXA?Ԍ?ZxS'?%?D8S/$?g!1k&?/$?]?Y6'/?QA?XG?@ä?ʹ?tU?^PV??*Ro?J?.?rp?3"?Q!?۲j#?8j?!?e] ??ʞ?:"?h??jF?MqED?PuB?ݠ-E?ZC? @?|2p>?KA?Ϸ?? =?D;?ބ>?wd3??c?tC?iu?k.9?{L?I?:$?z?M?F/?μ?(=?p~?+Ҫ?88C?2I?mV?nq=?~F?Af? 0u?^S?Ƕa?aA?RI_?d^?|?}?Oi?_s?[q?B[.?C .?;{T0?-?3/? ,5?-?j80?Oq=? W?G5 I?z%_?6?y O?0kA?ʰ4?)';?>".?]1? ȍ?Ѡ?? U?eP1?b?*0?'?>?'^?`7?wSL?S?o`?VC? ??q?O4C?[??D?+v(?mx+?E`?zϴ?b?4?r?$?<\?*?q? ??:f?č?B?ik?$]?xl??W?!? ?C?cB?\!?ʢ?XQ?9Y?U??m%?? X?\?$#?Bo? ??U?8?? ?>V`?S?p?['!?8Y?F?֥G?8*?lZA?f?0#?:K??rK?LI?M?ND?^2]?NF?PP?]? ?欰X?Ύ?E?mG?L?賅?1*?? '??A<?A?}R?p?%F ?RW?o?:{??'.?c)>?օ~"?g+E"?^{r?G"?ǓA?D?-J?4 ?5Z?^U?O0S?OZxV?T?Q?5&P?OUR?P?qqON?ML?6O?=M?NJ? I?_FK?wQJ? LG?/E?bCH?QwF?;C?B?!D?v8B?¢(?Ed-'?%?7(?M&?>n=$?n?XI!?"?Si0 ?%?qf%"?#?q*?&+?f.w)?S$*?U"-?}=.?&Y,?*-?R30?u1?!h/?1?JTva3?H4?2?T[<4?Wj@?;k1>?RQFA?T?? d1=?z!o;?[=?DG?'!?R|?WN:?HTv?ؽW??yE?;V?ZH0?0!??c-??݁s?p)?,o?@?h?n?0m?kR}*?w?_R?Qe?[?R??鼨?"Ô?ؗ?s?9?LY?? ?Qw?X u?_U?CmW?]AY?7=V?E]X?NEK[?+Y\?.n3Z? \?z(r?6fp?;s?)q? un?Vpl?ezo?TiYm?7 pj?]Q]h?AWk?EEzi?Iĕf?ąd?akg?le?ob?M ^?w`?9]?/c?(D_? ɥa?\JA?<Ȟ?6 ?½֩?yf?U@?ac#?x/?S:?Uۀ?V.?e?lM?{a͸?^U?}G?DJ?l?.?C?Ξ??&:?co ?Ng#a? H#?m0??.: ?D?lV? )? z?:,H?%?(?4?4b?t?6{?b?M?9??M[8?}?zs?l?,=?1?j?Am??y/?t? €?ۑ?BИ?8?0㥠?zĩ?!أ?W?D;,۔?-:??%8?f3?Í-?F5?'Ji0?$'?*_W"??39?M*?OL?@I%?Z?݇U?oeO?W?9R?I? D?a>?;?_L?pL4A?Ir(F??4; ?߬z??H?-xu}?V? ~?3j??o^?O?Q-OK?\&?Jݻ?}i?Qo??iC? ?⒕>?m?BW??o~??ZS?ӭZ ?Y.?}͞?[Ȗ? ?i{?K`9?Fh?'P?lq ?6?xsD?͚)?Ԏ?u- ? o?G???1?N?u?!?RM ?qˇ?-?K?#d?ѷU?}³_??I?s?  _?V?d?^Ŗ??=dj?!t?B? \E?J?lN? !H?lL?d?]"b? 'g?#d?7{_? D\?c? #UE?upLA?:?6?,W=?8?a2?I(.?<4?X0?*+?*&?L -?fFb)?Š"?R?4wY%?WG ?o??h?g?H?8e?T%?$?c)M ?~?̪?wka? ?Ia?. ?UX?W?EJ\? `?|Z?^?wd?fHh?mb?e?l?mp?;& j?(n?؛ u?ڜ+y??s?*JJ w?5P}??C{???~2~k?#M?1y? 6??1Qه?koM?P?+?-к?T?~?YN?w?g~R?1t?Ep?)F?a??h @??.]?ք?:d'?v;?I=?8Y4?{?c[?Tm?z R??Ck]?-?e?m?S?qǛ?X?b^@?:;?wXC?1=?O6?N1? 8?53?,?KY(?/j.?a*?ă#? D?k%?lB!?Y.? 7?TE?oA?C?'4 ?^ܻK?L ?A(?-E?3?Èiw? e?_?5??- ?he?^d?4[?(?D?5?׵б?J;6?dM?﫡?` F?1I@?o9?πKC?Ȗ:~?8~?O_??p?)??*8?NJ?ָ?U??' ?1?Mv?j?Q?Z ?^?x?45?VV!c?F?7EG?r?_~? Kw??0*?TN?a?|?QEl?_gN?~?? 2f?%PZ3?V?y?.1?Sd?-?Sd?!?<I?Z?Fd?^&?Uq?? d?%?o??&Op??dP?~?Kx?[?ң??JA?5?U͹?`?UB?xno?&?Z7 ?*t?@z?K?;eC?v*?F??r?hm?W=?ga1??߶/?%E?1(?A"`?=}???~?-0?`cV?¾?G?{)?oN??m??X?~?m??9u?g'?I^v?9*?Ϯ?qb?wm?xw?\?8 ?j;??v$7?&?? ?8?va?\?t?nG?_׾I?\G?hekH?K?zdM?KtJ? jwL?~/8O?ҷ"Q?IN?k:~O?b? `?ٱc?Qwa?^?W ]?_?r^? S?U?=#eQ?5 T?D(W?"[?%$Y?-\?{V?jhSZ?dUX?pG??xlk?H+?Sʨv??? j2?Ǡ?Q?ʳ'?Ij?()?h?SDA?6'Ӛ?#l?x ?06?ʙ?q? v?!?N o4?-??(?MȽ?[dq?J ??8?S ?fj?X\l?zc?g?,?h?rD??$?q5a?Ԋ?*uǻ?۪?^#e?Nr?}?a?~?ʫ%??ﯖ?mE?c7?uޭ?r?%??J?Ud?S?QD1?ӯ?G!u?fp?L,?KD?@??س?n?G??#-??kG ?X??D?= ?痲??R?N?_?!o |?? ?`?UC?y?,?5>??Ms?b'?x?P0?H?5$?Yٲb?d?_20g?tic?1{ie?? ?c"}? ?Vۂ?|4B?O?Y?Ji?D8jm?S)tk?M [o?Eh?~(Mm?q[Wk?'Nq?'6s?=B>o?kr?TxVv?:?{?,x?:}?^ Bt? &oz?@>w?u欇?A@?o(?l?҈??G،?*|??$< ?Tt? yg?c"??o?"#?? ?ٳ-?,?y?BB@?KR?E?u7?O?ơ?o?~8H?O??z?6A?"!? Y?jI?BA?*v ?q ?.i ?cХ ?2= ?{ ?k+ ? i ?`?,,?V7?:4Z7?$G8?o98?8V8?4#*'8?*=? {=?HZ=?=?ʩ=??#!=? ??zoX>?3]{;?#<8?X9?|~7?za^/?Lt?J?e`$~?g?r-?(KD?c?Br?Q!?`-?q?7?UɃ?k}?X4˺?8?1B?"L?7h?~N?$)S?~?v~?R|?B x?>z?q]Dv?}U}?x?Kz?`t?Nr?v?mfEt?șU?u|W?1)T?NX.W?ONY?YG\?9%[?0^?]X?沀X[?2]?p?zn?B%Dr?1YKo?>l?JAh?`j?)f?gtm?h?~j?d}d?E`?~b?l'_?BFf?.a? c?$w,.?ZD*?W>_&?)<,?^(?1%|"?/?Sy$?Ka ?~kK?n?z?:?~<?a1?;ߥ ?2P=?\ ?A?9g ? ?;?gX?}`?q?:G?UZ?B`+?hk?dg3???kYĞ?Jn?Nfy?ό?gv?bЈ?.]*j?ߋ?I?18?QA3?@;?W7#6?w-?6ߨ"?ڬl-(?' ?>g0?Ve%?ɮ+?3Cw?miq?_$z?=tHt?[l?RMf?N`?؉]?~n?7c?`bh?-/2`?2BZ?9GT?+\?bW?b%[O?,D?mI?n;(A? G9R?F?JL?)Lv?:؈?`|?%?ձI?.;y?.#? ?I?bg?=? k?~n?K?TA??Q0?"/?(>pJ?߁ ?YTy?^?zv?.]!?lh? ?w;?Ƴ?G ww?آ\I?+}??W?R/?ז?[V?u!ێ?˺ȅ??:ɉ?NH?gs}?Q0Rx?m?/|?&拺s?;i?qWlhn?=f?H5w?q7l?q?e@?uHTF?0`O?/J?LkZS?tC?' K?p޷O?zٟX?eK^?~/T?D̴b[? c?vMi?Ha?3g?>ð2?NP-? u/?D@*?:>4?+h-?Q0?I2$(?4$?h/*?߿"&?k>!?Jg?i#?A?gp)9?v>?2?ƶ0?d-t?9Jf?3p?A@0t?wT??=Tw?"F?gK?9?||?a9 ?W?ag ?l ?v?N@^?$1??Ȳ^?ɖn?+???{S ?nw?S??r"?vŒ?'?~q?lh?A߷?]Sd?SA?_!?+oD?>"?\XME?}?Y?mS?Mބ?)j?)?!?sO??͔?+?)?[l?p΋?QS ?.?@q_?j?#?3?G? 5K>?;?HA?Q _?KM?qjT?P?CR?s$?)A?+5? '?=P?qW?#BOB?|P?m?T?.k?Fò?-魢?x/?2LM?1V@?"?ʭ?ī?#8?M5Ш?1۫??IK? ?pF?v?#S? U?GӖO?E6m?h?wy#?cMt?f?&d?=:1 ?紴?":?L ?vf4?h?XA?-Y=?v9?۟b??[;?x5?P1?Gp7?7)3?$Ij?` g?S]m?Ak? /^E?I?1=dC?L,G?ӪXM?%R? vK?[V,P?<e?a?tNh?Sve?^?U95V?.'Z?MT?Ma?xa Y?\?#q?_t?/n?V?w6Q?a/$T?`X[?(l&[?wI?)i?^?u9? ?'?:?D?'\-?R ?#Q6?6:?|Q?21?l2?V ?ZP?)?a?"?/i?=?u?Sk/?:9?2 ?E?纭y?p ?#K?,I?,V!E?hKL?Z$GH? @?^;?OC?i?+>?6?:a/?/^2?g+?y79?-H/? 3?('?#?@+?Y%?؞?a?aH?؞Z?>!?h?ո?e%?vfر?ğ ?֦?!? ?nS?.; ?~9?T?qR?Fs?FX?M*C`?\?xc?eW?2n\?`?Wg?&el?לc?_i?2-3q?7y?3u?|?_n?>Wu?L.y?{f ?+g?5| |?ǂ??-`ߎ?y?`?\?w%}?%?d4? W?G ?O ?j? ¦?U,?ۢu?K_?> ?q_Q?!_C?}1?r?R`w?[d??5(G?E/~?fL??W?'W?7Q?Ȭz? x_8??E ?= \?j_??_;?^ާ5?]>>?gIz7?GBP0?N=(?ZF,?HiOM$?-!2?2i(?!/r,?)_ ?6X?-y$?kN?3$U?ԳJ?(a?8?7E ?%9?H?Ȃ) ?zA?f?}@?y#2?w-?oQ?y?=?IJ ?ʦ!?Y? j?67>?߆??AM?WOF? IJ??qI? #dpB?,s9? 3?g?B C??s?`O?Y#?R?j?XWh??u]? ? J!?Ł?`?Z/!??1????`J?!?j!h???? ?\aז??B3?y",?7N?݅(?T5?36?גXI?ZM?K?N?DwH?oa4M?nK?OP?WR?IN?jQ?ä@`?']?i^?H[?&`a?^?U]?%U?uY?!BW? 蚛S?T[?N%̖X?{1WV?q EJ?xvG? D?P8H?_F?,b ?ᗟ?hС?`?=?١?~Fꠟ? o?7,?Zj?W?Fi?S?b0?LJ??V??ܾtԩ?v ?;X?Jͫ?g8?v?(L?}?Rs?Ym?_(??rG??/%A?{i?K2?/ʶ?N$?sH`?_?IB?.?c?7??1Q?9?I?ĮS?)e?9Yɲ?%Y(??f;\?ҕ?Z6?Mp?/o„?R?'?}?״?3c׍?R?9?%6"?tIi?/?X\? vn?n??Ӳm?!?3?uI8?Sw_?+:b?/d?Da?,c?7* g?pXj?Te?Ug?_?h|?p L? ^7???(ZZ~??? ?Gc?0m?3Yp?ѫj?3Rn?:s?y?H谐v?,U{?g/q?WZx? Du?&?3{?h,? ?g?/=ٔ?Gm?sh/?;?^?:?P`j?C?z?s?qw=?0P?d?>#?xG??͛p ?j?\ ?o@?Ϙ?Ƴ?89-?Fh ?Bϔ?Wzz ?Nd ?.{? ?(5?ě?H^ ?r?UEq??$?Rd?6?"7?T)?(&?c@C*?b(??ɳj?K?(?7.! $?$5I!?H!%?)fp"?%?-?{ ??{r?NP?"f{ ?cώ?Ł,{?(??>B?jW?? _C? q@?K??+?t?hU?!?+rl? >?g1?xQN?5?;?c?`G?K,g?-bJ?H(?L,3?N,?)?5(?m+?#@5?[u*?̳&?l&?7k??G?ni?4?qK??dސ?,V?1 F?^?z?4,1k?m1?v+2?5a' 2?RG1?ƾ1?nOl1?Y1?\ڌYJ?$pg,J?jm7J?Qi@J?옄J?ʐJ?[jSmJ?=J?hJ?^ K?PJ?xB}J?g^gzL?LL?iL?=n/`L?r&2L?{"K?A K?o:L?1'K?5K?#hK? /;K?!K?⦚K?fNK?/;H|K?Ҷ~E?1uE?nekE?*H_#E?>1#E?ӛB?q7B?B?@tB?hC?רs^CC?0@C?Y-C?}!dE?Rod:E?>΍wE?ME?C%E?e0D?A"E?~D?]zD?WD?6XaID?URD??JgD?:xS=D?LmzD?PD?'WPrD?SKC?El&D?C?5C?CTC?ZlC?:zVC?\C?RXC?H"cC?q|I?ƒvI?9tI?RI?pyI?]u`MI?L|I?3 TaI?# I?VH?l=4I?HI?,:TH?t$H?uH?\/H?ӣ pH?`&DH?/уH?{DXH?7\H?S>G??M,H?>H?0F?T|eF?H:F?F?2 E?tF?>!F??s{??ć>?촰>?6k->?~~>?h>?rzk>?T{D>?c>?Mjv >?S|>?{/>?m iV>?1 B?XiHB?X2LqB?si2B?q>[B?1B?B?dB?JHVB?Ar`?7?g];7?kwg6?O*7?( 7?N6?ӵַ6?Nx6?Hѝ6?N/6?rt6?ч٤6?HD6?>?Mw;?!YR;?;?3́c;?a7?ɒN̈́7?ՙ{L7?߬n7?4Ez-;?3ꦯ;?!_>;?p;?4:?LgX:?EC:?ͭO:?˚:?{Sv:?3 -:?)ɇ:?H{Q:? -:?K]c:?<h 9?9:B9?~9?аu8?p8?8?v'|8? ?̅8?=[,8?8\8?0xNJ8?%8?m8?Qِ8?+7? 7?q467?jw7?7?\8?Ulz7?y8?s78?ഇZ8?=U_J%8?/e I8? Ԑ=?=?nd>?u=?4=?a:=?#a7=?C=?[=?e5=?)l=?݅?G=?;=? ?)D?r@?SB?T`K*?ao)?*+?H/Y*?)9c'?C$?gR`&?)nQ$?%'#)?g%?l'?U,?@x.?+?Jg-?50?f2?G]/?271?D13?Q:6?9H5?q\D8?ɚ3?f8]5?䈝6?qKB=?W9?y;???*eX8?:?n?I?l?\A?4n?'/#?7g?Wd?7#K? 4?xR2) ? ? ?Zn; ?)n?2 ? Y ?I# ?) ?-?@;?Ł[?,CW?9??fH1?]~???\a'?M0,?v?dg?E?a?L?ODD?k̜?'?Aim?(!QN?g??s2?/0?Hk?η??|???M?-?ι?ol?F?F_?8 ?{???)Wg?=?P%z?m??'a%??Y?^? )?[jw??ٴی?;6?sjg?KA?|?m9?; s? ?{F,?T|??T<~?jx?Uv?#{?BMw?͔s?a:q?d\u?9 r?X?Z?W?XY?Sf]?*b)`?t(_\?@^?,zn?!k?_g?p?HK m?Rh?Ab?ge?Ǝa?m@j?7!\d?'Bg?2?!u&4.?3cT*?r,0?:}tV,?w&?X"?iNx(?Bޙ$?1?B?w ?jJ?ވ?HxA??R?VȞs?Rߛ ?_?U ?g?M?ŨT ??f??r?Eo?|?!^?`,l]??e?Pw:?O?8*?:?58?ErA?WG7:-Z?\3+nd?. ]?UmU?tWI?gO?29+G?8X?jL?R?@u?\<{?ٴo? s;u?j?e\G?yF{?`鏀?E?H(?? ?}K?mj?Ɛ=?Dwc?>н?y?~-? A?婔?z?> ?9? wf?|?~9+??r?W5ߧ?Z@N? ?9?ܙ?>>?R ?{ ?i?+~?: Ď?wX?؇?eRWz?|Vo?Ht?l?H_A~?or?ux?Fd? :?'A?W}pH?)[=?D?_\O?&^?R@!V?gj a?ZL?ڃYT?C[?Zlj?ӊ}p?@Yh?umm?q-?E~)?Jٹ/?J+?e%?B?,!?4(?z4k#?sү??)bC?i?1}?f?M^o?S?~ ?+ b?-|?i?HDU?B?3?z?&-?| ?+(!?a?k_*?<.?7q??3 .??#?2X?^?l?? Z ?Uꫦ?b8w?t۳?׻?FaQ?'Ӎ?[[?F^??1y?Oو?x#?`t|??ɋ>? y?Ȭ>?m% ?%)? !?i?(??Բ?tu}?uz?4=?%D?d|?b? \?Ut??+?9W?%Lk?r׮?8U?:??C?o?ԣ?wߧ?UB?W:Ȧ?h?ܘ?Dz)?֞W?W?TN?Oi?8W?­?`A?cS?9B?l?|?sa`?p l?5IJ?]e?S??)elA?߅E=? 1E?ZCA?Nh:?VK)1? 6?\h6.?រ=?)&1?;5?c:l?:h?Gp?a7Dm? iH?.M?E?n)K?T=(hR?R\ W?MO? UU?d>?,+?@y?|?; ?0k?9Ԇ?s|? Қ?7.ڑ?xMS?)%??%On?"`y? د? `{Z?#P?_S?= V?duK?B W?hN?Q?wRF?((?B ?B&?_R>~?5?z?@ ?y8I^?5?$NM'?V؞?֥:?s2?]adH?Dκ?`X9?y=?[7?ώY?Dצ?#?͐?s?9r:?I?E?̿?qR??.. ?;H?F?KA?bRJ?+D?;?j^5?KXm??L:09?]~/?)?ii3?G,? #?o9?b,'?r ?=?~'˂ ?W+?e> ?Ep?iY*?Фc? l?_C?M[oչ?U>?[?Q?)?bsr? h_?ϵk?1e?n[?ERn?7Wrb?!h?(x?2~?`u?*|?Yل????:>CK??sm?X=1?vM?˜??\{͕?? ?0F? b?dD_?[?EB?##ά?bj?ܲ3?/?fX?O?y?{;?oĿ?;R\?h?5?e?{ƞ??ri?[?}?-$3?q(?kA.?<^ #?i 6?Xq (?e].?Dȉ??1_#?^O?^[f?^ ???J@U?He?Ft ?,?@?/?v?Ɣ??(s?k)l?!|?DL? )E?;0*$P?aH?\>?p|3?Y9?W3-?2n~A?_R3?t8?!S?$?Y?}K?(?z? ?:-??N?$?onOF?L>?(cM?ZE?k7?NVv/? W>?ݥ5? f'? ?|^-?a#??v?b$ ? ?=CŦ?ߔ3?^' ?e~?`a? 5E?y?,?Ԍ?QJ?B3?'?|2?j?? b?'?m??7?hZ?i ?f+?n??b͖? ?ke?;N?QW??b`? O?4e?0Wؗ??WZ]?Q?֏?ڂ?9t?dyC{?zn?ņ?v:t?mKA{?|i?Z?0Sa? HW?Bfn?^?-f?b L?^<S?J[?w(P?YZW?_?ŗ? w?1 ?艡?:F?y?o?߾R?&ڸ?V ?_.V?L?fV?7t?wo?<?? ا?)?\?/?A?6]??d?^CU?IY?S?$YW??]?a?qȘ[?_?;?s ?Mm?!0?[:ki?Z e?.q`?iGg?Ob?7|[?CW?=)^?HY?GR?QMN?EIU?BzvP?WI?=E?ʱK? RG?1{@?)h;?-A$o7?2~)85?RB?R9? H8>?KЈ.?*I*?UyG%?l,?'?# !?l)?i#? e?|| ??ҵ>?{kd?7? ?RZ?- ?t?*?Ѵ?۵P?`X?SعN? ???~ܔ?9'??.@?G?#?J'?B|?dfǽ?Z?x}??r?.hB?IQ?$h? u?jw+?? 8?TՊ?Mc?Y2₇??+߀?u5|?5ւ?h/~?{b*w?^r?X Hn?56k?8y? k*p?:<&u?4 ?L^ġ?ֺ?D?]W??8!?*Dj?2>?;??Y_?|?p?~?ȩ?h? ??$e?YH?z?\x-?'_? 8?[??Sm?Aʴ?6?[[M?:?A??.M=?E?K\??z?/t?&?S?G?A?j?35?CY4?ȥ?nZ ?36(?e~ ?D@9? #?{+?C;?ڪ?W?Kn?,B?>>n?v?G/F?*)?PD???Ui?r ?Sf?B?H/.?{?8\@?{?rOo?1?Eb??N?F?r?WW?A?i./?L??Z8?h??b?≺?>?,U?u?3?_~1?k^?H?ըD?=¼A?uF?-1C?U? e?wS,?qc?Shv?~U?;؛?"?P??Wj?xY\?F?O??GܽV?r?[?&s?Ѽ?q9?<6co?;Р|? ???Z??2?n?ۻ?<3B?J ?n -?+2O?d?~`?Ud?6 b?`&Kf?4']?_c?ta?t|h?|?9l?6 e?di?~}?p؅?ŋ5?|ز?҅?z?FUՈ?A?J?:? 2Ip?3s x?Wxs?/ym?U|?w+v?j r?1؋??8???9?a??ߕ?t|?Q?F5D?rD:a?d?az?A??T ??K-?է ?t ? ?6Rk ??A]c?=p<?XC?=?*<?U ?+PK?2?[? ? u-?d?oAx?+?r&?`:?9Ԋ?c?kV'?5`#?ːH'?R$? ?~ ??լuq?=ܷ ?)z?!??[?.)f?1{f%?sD4>?sM9?lG-?x7?]+?O3?$Zu0?L.?|(t??4i?w?Ykk?YM?q?VR?fd? C?q?U?S.?7?$%?t*? %?/^:?68?ee#"?F #?BA'?=?J~? ?{?&J?9X?`?? 9?- >?٬?1?h.?2?YW?22?u&?Z?t? > ?ܼ?tkC?'w?)7i?8_?JJ?-)??`m!?O?gia?7x?x?^?U$?훏 ?Qڳ!?}1!?9!?,6.?9M#.?}{@-?N'.?Gg .?t-?ZJ-?i-?(.-?_-?O-?ɳ-?{5-?+ɽ\m-?=P-?nz-?91^-?@(i4-?5~q-?ӇA-?-zQ%-?O,?w,?l -?,?UqG,?o#',?⒜,?,?S,?΢Xo,?4,?b+|,?N$S,?-C7,?X3`,?wAC,?q,? +?j',? ,?B71?d[k1?$̶D1?𾒏1?9_Za1?]B1? Ryp1?2Q1?Os#1?J1?(c21?|P[1?_0?')0?+0?10?z0?0?[F0?|V0?9k0?~,M0?my0?6t[0?.0?;0?=0?/0?z/?Id/?\30?ʈ/?r`/?o/?K/?(/?ݐz/?dm\/?)ƾ/?;j/? ?/?Vsc!/?rL/?1L//?FF/?1N.?65 /?o4.?o.?V.?nT.?6C.?>.?8q.?]S.?BAD.?)M.?yLa.?r߾~.?{R6?^n{16?fb6?LgSA6? .6?3}5?6?5?l5?,5?qDj5?is5?5?f5?-DMZ5?iv5?4tD5?@+#5?,T5?1`25?Z5?CxM4?SD5?Y&4?S4?ՅT4?`4?tS4?3i~4?I}]4?14?&al4?KM=4?!4?( L4?7ܸ,4?Hѣ3?A3?@je 4?*h2?v#:2?|22?EH2?.q)2?ZwV1?2q 1?I 2?(1?u1?nC1?}n1?xĬ1? WOL?IL?=oR L?tOлL?[NTM?́r2M?$DL?$gLM?#nN`M?`7M?JoFM?]uM?XrO?N?^IwN?O N?4YLN?>wN?{ HN?vB]N?"x\N?.N?U_M?D>8M?bM?6~R.N?&M?rLN?ҳ{T?^R?]R?YR?ΝR?– nR?)sE)R?(#Q?>>R?P]38R?"8l2O?DdaO?>O?J3FO?lO?ŬO?ouO?O?iO?Ѝ<P?4JO?#P?*[Q?0Q?J;YQ?_&ʮQ? bIjQ?8:Q?C Q?jYOQ?Z= Q?qP?zgQ?|ӆ=P?LtP?W|P?m0MP?2P?ySP?&abP?R`P?&=+TJ?UJ?:J?$չgJ?L?YTJ?oJ?X.J?pJ?JK?\6h5K?J?LK?BsL?N~z(FL?lnL?БH3ZL?݇L?:K?Y,L?zmK?8K?њbK?UߏK?C:pIK?K?uK?rK?ԫnNJ?9E?>G2E? E?E?AE?5k_E?̍)E?eZrE?}PB?¼C?&rB?~/%C?Z)0@C?ziC?*C?NVSC?^Q5E?z+ E?/gUGE?-~E?mD?xKD?fD?bD?NhD?KcD?yPD?EZwD?v9D?!D?`MD?_3#D?4C?'ܒC?CfC?=;!+}C?HC?ggC?`OC?0dI?uI?ڳI?X+I?*HI?I?]I?~/I?;H?aH?TI?H?H?^lH?NLH? {OH?@H?̇`oH?iIqTH??e)H?֘mG?u;G?H[G? IG?F?1F?FT\F?\ 2F?r{[F?bpF?P}F?%Y8 >F?ڭfF?%E? F|E?,#F?JcE?G?W:aG?ҥmG?puG?%Rn3G?߫F?%G?<F?/JGG?R F?k5G? !J?sT,I?&7J?_ J?h:I?WI?RAI?xI? A?~A?gNS B?0hA?ӆA?Db~A?Q]A?FA?ݔOVVA?$EJ.A?MohA?\AA?TA?;@?5A?]@?S%@?H>@?'@?~:7@?Q~e@?.h=@?Zv@?*@N@?A@?#~??q>'@?W@?&22??vğ??VPs??ʱ??~lx??KQ??rj??٣Cb??φ@*??>\C??;??U[i??\>?ca>?@Ey>?^>?B|>?[ZA>? ёg>?,>?!}j&>?DhvR>?&y>?\@ A?B?$TEB?/B?:g/B?7>mB?Z'B?ya5zWB?;|}B? B?wB?B?T.B?EY7?:'f77?27?i@7?^!$7?+_6?&6?Y-7?pD6?v՛6?j^6?1k{6?gnbE6?q3q6?bwP6?3b~6?e`6?=>?+:>?%6ol=?X)>?>?xQO;?nmx*;?)Ý`;?:?+*>:?6J:?9?9?J9?7:9?9?S̔v9?=Ά9?>9?R9?u/9?bJMb9?p[Z?9? 9?x8?; 49?Po8?)݉8?3~8?gT8?zEl8?8?ait8? 8?Z97?m7?ܞA7?C7? 8?<В68?HѮ7?'8?\Z8?|8?szBK8?lIj8?;=?w =?T Q=? !=?V/t}=?-{'X=?(Ӆ=? i=?\72=?) =?]=C=?HEX =?ȘEG?^1E?; @?l>?B?9@?lg*?&? l(?P|1,?d/]X&?%g(?\{*?].?0? E,?LJ.?je:2?A겎4?1?Iiԗ3?X6?K5[$?H&?a?p]? 3K!?MAS?Sgȧ?pT?'W?u?e?oG?w?x}x?r 1?ѻ?]?^ ?j?ҩV?N^I?Y??L?2B??碋R?j?Y j??Gy2 ?) ?u*% ?5Q ?0?}2?ٴ5 ?(k8w ?κ ?w #?c? ?[i&??g}?b??5l]?w?aE?댍??? ?:|?;'?,??٩? ?? c$?m?'?U?,y??H?BX?Un?bw?f6??;$?m ?sp3'?v?59 9?ͭ;?Q?ha? WF???W?<??H_9?&?6x?BLY~?!?Fؕ?E?yO?b? LѴ[?i?iB9b?|T?ɊL?-NB[?THD T?up?=<*!w?eDji? p? % Ő??П?ÿ?oZ?垧?VR?~rv?? ?|?\EƳ?Kf?4y?Av?9??t?;?^,9?:^?oZ'?J\?9?Iׅ>?p7?o ;?N%B?h F? @?$D?A|J?M?XH??L?&JQ?_|sU? WO?:S?xy??t13}?W?vg ?zA?$?owE#?`WX?,(?[/#? i?X?6??bYn??B?Պ?;xW?ܞC?#K?? I?~?WL?t??(?a?e?Bi)?*?6S?9?Eպ?n?p???(5`?wm?Ln!?x1&?8l?Ĵ@?)Uج?D?r^??b#I?! ;E?Vf#:?8b-?s3?:v(???yP2?[Dw8?Xi?j5"c?o?Ӓg?,\?ғO?~U? xJ?R}a?g TR?^ڍY?V-t?.W?~*z?/?!vm?t?B!:wz?!K?*'?Ň?xm?q?P C[?=?"@9?Vwm?=?}ȶ?w?v?+k? ;?2??I?gwl?rJƤ?){?r̍?Ƥ?6 ??cev?+}?Fs?*נ?^%z?J.=?iwe? I_?G8Nk?Eg?`1?/9? A? 6?kjC3?NE??BJ?3xb ?*[? 1?L}C ??e?-ha?8|?_?0c3?h?O??6?>9??^ `?dE?z?i?~ ?"?o?Hh??'}=?Hq?Œ_?`z? J>??ɿ? ?sNi!?0ƛ?N5?Gx?0e?H;??C?S?G3P?8s?wl?n? K@Y?;/?Tя??׆P ?ނY\?i;?+g? ?T???ғ?l2G?7A?j)z9?t!RD?T>?$1?]a,?Z7?"l0?o?/+j?:t?p?PWM?R?eqJ?9ɩO?FX?{^?4 U?Iv[?U]e?ZT>l?+?b?Yh?|y?D ?g~v?Xb|?`M?6?$ϭ?XQ?#Q?cQ?=?ꗈ?w{?{'? ?x0?=?bN?cYٍ?c?o?pɛ?EY??O??Vf?3*^? X?Tk*M?R?toH? ĮeY?ߪlM?zuĀR?Aw??A?y?'?fmf?i? ?ks?_ƭ?d(?:?Yl?Wܝd?At?E??ל?Rl?p?8?w?2 ?VPM?-?=?h??1l ?"NezS?dTN?y2I?<+P?aWPK?GD?dZ>?^ͥF?A?@9?4?8hY/??-?ln<?VI2?W\7?I?r'oq?_7?H E?b߿?R??? [hw? ?(?c? ?G3?>+?֜?a٤??n?5?*.?H??^?8K?,c!K?ʥ\?O}?"@?Vb?w?9#r?_Pmz?Ou?kgfm?0h?plp?g{Pj??]b?"]?"X?A V?.He?<4[?%b`?M?V7?!O??F8?Y x?I? ?Zi0?>(?; ?J,?m7?,ZG?$_?K ?s[?6k3U?N? X?)R?tH?B?GK?||E?QƬL??v;?%?>o? ?/Y?M?EL+?#*&? ?ڪY)?U a#?C?u >?갠?7 ? ? }?,?>2N?jmH?լB?&rVK?jE?<?\197? 1?͵.???J^4?:?S?SMY?&]Q?`sV?e_?s|e?\?b?Zk?[>q?N}h?\n?>D? ?>l??-??7 ?z?\\1?%?gL_?*a&?C?vƻ?m3?؏G?k?X@D? "?ox?|?_?Q?T?Bw?"uY?Р? a{?lǵ?"?MY?h@]?W?M,\?Fa?$e?7`?,c?kUX?F?j?ZT?P׶?准??j%U?M6o[?KY~?'?KX?HsZz?P^;v?,0X|?2'x?8ݿr?Fi?m?MKg?yt?rhk?fo?a =?r|?ްp?r;?-n?3?,>r{7?l0?a85?Ni?sqd?D sk?+Zg?]ڙy`?ٹ[?rb?86^?VXW?iR?Y?)H$U?C=N?>_I?3nP?SL?m#E?k;?d@?I99?-9{G?57>?tB?v3?fG.?Z G*?&{0?ٕ-?2%?s!?v,(?~#?^p??ge?'?qe}?c8?b,Q?pV?0 ?gTҐ?p ? N! ?o-?X[?u?z?*uK[?Bd?%G`?VB?+?فq?C???d ? L?fT?5?S^/G?\?߭1?tl?S{?Rt ?%)?o)%?Í?Ÿ́?f?g9? ?](?}?h z{?Gr?[%w?yp?Qge}? Ct? x?z?u<?E/П?5j?8lm? @?@?/?P'?D?mC?)C?i?K?p?a??S^?I??]<?W[Y?h#?^?h??؜?Wй?TY ?eqh?Qd?-ps?Nf<?BR(? 7䝷?(G??Ԭo?}S??AD?J0??DC?E?( ?7篘?8; ?'c??($N? ފ?E?n5/?Uh^?f?X:Ee?J8?y3?.5?CT?\7??? }?kl>?|?O?+]?#?Z?pU?S& ?pW?iZ??}?cO. ?Yt?`?k?xp;?$?0?2?~?!U?#?~h?Gu͔?ڬ!?m+??p ?w?-R ?%'?? ;?by?CU?ɺ?M?Z-I??+nQ,?@??}!??tH?x????kO?ɠ?l~?u,?S>k?h?U?yM?q0:?\2?vHB?=5??AyU?"??E ?7?P?M"?DS??x,N?dLxQ?8K?N?NHT?fq[?X?8.D'_?)iR?Ր~W?wZ?TLH?tA?E?Da=?kK?QذB?BKE?6?#W?|2@?tM}?îͭ?[b??h?$ި? M>t?׈?o"?k?0?~?zMp?/F?c?YPb?pj?f?4-~o?+ӆ^?dfbNi?Fe?N?'pt?ETz?[Q?NF:m?wx?q~?0Y ?=|?qX?q̵??A6o?/?,?9? L? Ny? ^?x'J ?2Z?l ?Nj/?% ?鲐?HT? _ ?Q?N ?*?P!L?@?73t> ?α?4?#[&?3."?n?&?Q?Wj[2$?̆,? 4 ?<?sl?+9%?(? !?I&?iq9?z2+?^5?D1?1l.?>?" )?@C{6?5%2?AF{K/?y?R?}x?+c>?W?{Z(?=@?@@8?}VP?Mf_H?%?rX'?9P?ϑ#?Ц?s-?Y?Ҍ@?e1/?WHt?@A?g?@.}?Eu?>K?K!?ގLm?a?&??{?}?rE???|?=y?)E?I?nM?' G?ֽ? ~?&? ?V˯?/կ?i|5?P?Iq!?=?ih?gc?Jy?7g?к?[C??|9? ?u?4?A??b?0??߭^?\?O%?͸W?YV?eR?r?ů?Z?5?!?h!?M1?k6R.?95.?g.?KC.?&.?K-?ϻ-?S .?7-?R-? e-?ȝW;-?S5S-?4{ۇ-?Kjk-?z=-?x-? O-?-%2-?m\-?9G@-??-? *,?;#-?W(-?j,?E,?H,? v,?+,?&!,?t,?2.,?^h+?Z+?Ӂ/+?E+?]`Ǭ+?FO6C+?s5+?~@+?Mfu+? hZ+?lł+?vg+?P?+?#+?D@.L+?y^\0+?*+?90Eo*?x+?ak*?W*?yP*?7JM*?)W*?HrW*?{n*?nX*?]I*?pEm,?(LP,?StX{,?.-^,?]+?d3,?\c+?sT,?Ȟ=A,?U<+?r,?gTh ,?}o1?Z&a1?9u1?̸p1?IyB1?岚s#1?@R1?ż31?h1?80?$p1?0?&0?=$Q 0?0?g0? '0?i0?"y0?uiw0?/aK0?. K-0?& #LY0?;0?]/?/.?,.?.?E.?(.?Eo.?o.?]`.?.?Ӛ|.?qd.?%g/6?j6?5?6?j"6?5?婇5?`6?2a5?k} 5?5?05?/o5?;8yc5?\#A5?Ҩ(t5?IKN5?5?Z/4?,5?R5?'??J4?4?o 4?Y4?vۜ4?{4?}s4?4?teZ4?ڇ;4?&Cg4?I4?G*4?>3?Ũe*4?i 4?"{3?#򙷺3?;3?F3?<ȍ3?z^y3?3?|3?r|YCY3?0F:3?af3?I3? m+[3?H2?a{ҷ*3?TA3?1m2?&9L2?z 2?P 02?VF1?pE2?lMw2?l䘨2?2?]V2?;s72?Ec2?AXF2?( 2?J1?RfC'2?' 2?T1?kG1?}J11?}:o1?I1?X@1?L1?+O?RL?j>L?:tL?L?E,M?̫ZM?# M?J=UAM?M?z A÷M? (oM? 9M??N?JN?O?8NN?^N?p6qN?}N?~BN? 0BN?xM?%?N?k M?h|VN?OK?gĈK?K? oK?»K?UK?aK?3@ZNJ?^'J?)uJ?HNJ?*%E?VC?,B?Pe+C?5gC?H C?Ā;TC? ezC? γE?ָWD?iE?= D?`jD?}0&D?nD? aD?ᄥ*aD? 6D?3;!uD?֗=LD? D?ʟC?C?CVC?r!D?&dC?C?iU%sI??DI?ZI?~2XI?oI?X-H?#!*I?7MH?1^H?нH?=H?g5:ͥH?&\ iH? W=H?hW{H?yTH?@KH?,1G?wx)H?G?-G?NG?PԓG?(#l=G?KTE?%PF?`N"vF?]1F?:F?ZIF?ƃE?ښF?GFE?b`nF?~A?lA?9y$n@?o@? @?Cb@?u@?3`@?¢@?_o@?:8@?!@?coOvG@?~1H#@?.??\}??&??؜??}k??t???aK??Ti??a3M??]&??\??/)k8??lܙ??+>?̕ ??>?@ӱ>?ic>?>?YO>?gW>?N+բr>?n>?+A?LMA?/AB?!B?dgB?ɖA? B?dAB?̍B?bB?h`gB?_ģB?jWB?S}\C?|lB?*@TqC?q7?ĞJ7?7?I2k-7?6?Ԝ+Q7?< 7?f(7?l_6? 6? 0I6?q6?x6?0dP6?2G~m6?9%926?!wA6?ø7Q6?cn6? z:>?>? kR ^>?9U8>?U?=?,<^=?av>?-J=?N(;?xN9;?9,9;?mq;?9I7?ۢ07?]UFx7?CK7?)-:?M):?'!:?`9?%,9?SR 9?R=9?xS9?Ya8?M8?IF8? ׌8?T_r8?b% 8?/\8?T%57?g\#8?_>7?TY8?,,<8?'z8? [8?x%8?N{+8? "[8?"z8?WC=?7vԸT=?B / x=?U!61=?3vy=?HR=?$v=?ԕ8 =?YqF?¡N?YH?v=YJ?9jD?0?? B?0I=?dڬF?ZB@?C?*?9-?9)?,?$/?Sm2?.??C&1?4?17?L3?W:6?+} ;?EW>?zCC9?"N?? ?Ѐ?+!?R螗?ƒF? q?uZ?0 ??8?Sg??C_?lF?|??bI?2 l?Y{?S4v?{Xf}? 8wy?Br?q7m?d̶2u?z3`q?:o_?mیi?\sd?$]?2\Ul?7!\b?6Hmg?o˨9?P=5?-9.?1?*?Z& 7?E.? 1?DI'?_Q"?^Q9*?7eb%?;r?pk?>?CY ?E!?/?@?,#?_ ?p +?K?-{?vf?_o?? ?9|?Bd??AE?,??.?#?*?i? *û?H"{?%?l?'?[?>?M0B?S;?@?x5F?;N?JJ?,KQ?)E?|CJ?B-N?eU?,xY?2Q? W?tr,?kF?ʑ ???E#??uy*?Co!?5?!2?CF/?L ?jq?* ?9V%?!?<?N?Y?]8?;<t?߱?Ib?vٵ?֗?KU? G?IJ?[ M?U4?8/??X\wG? Of?ʒU?O ]?_m?OO?%mc? [? ir=?:N,9?ab?d?td)>?߿??ig??6w?4mغ?uþ"?tʎ?8z?LVI?\&?lG?)B? L?-џG?Q]E? U\?VbL?M.>S?kx}?\??53i?m?YR??_ ?D?kPs?-~_??&j?ĥE?ŃT?0?AK??B?s ?2g%?Ko? m ? >?I1?MFG8?{+?s=E?+RE9??2?m%?n̓7?2~?PW?,?8K?!?B&@?ys??A`L?G4f?TPy?ewh?1q?6fWc?)|?PVj?& s? ]?T? je?]P[?~? 9s??QԜ? ]?$d?Ohɓ?25?H?1jN?}E?qu6? ?UOݼ?^ᄱ?_¨?ס(?9P2?}??v L?NH?5?ؖ?PT?~?S?"?.5?P^(?o?v?Z; ?+9? Vv??ɾ_?x?K??NT?7d???OeC?r?^"V?wVX?-k4"?-6!?].?+?Ys?sD?`?cu?/{?0{gw?.ے?uR?)~?hRj? t?#Za?X?3'an?Zx?ӂX?2N?P˾e?΀\?m?N/w?sf ? !?ϣ ? t%?Ѓ##?zzH#?"*?KM/?l߮V(?O[-?@X?$7vS?BUN?~]U?MP?08I?D?tI3K?tF?] >?~#4?x9?rFf2?̵FA?]7?q#o<?;{?K?8ѱ?q??fM? Lط?4?4ƺ?ff?g?R??c{?:/?S;?fOʤ?Dڜ?댗?3os?|C?B?y?A?[5?(8?__n?WZ? ?12}?i[jw??kz?hBr?:m? #u?@Gp?Ch?]?ۣc? [?X k?L\`?e?)?@ g? G?e?,s?_a?F.;?h?+,?a?sE?w?~٣?cp?<6?Șm?r:@b?zg[? tU?8_?̭X?yw O?(H?>WR?e BL?;?l5?I"??98?ru/?$8(?l2?T,?~"?E5? %?WFc?cb?۵#??y?7ńB?E?P!<?M??A?@?ɁE?e5?!+ ?(?w9ts?98 ?=N11?,+?=&?.?))?w6 ?Gx.[??6H?r:w#?~/?Jf9? &w?q}?Bt??&z?"Y?8????\? ? )?gj? d?eO?s?s ?2ls?V ?3A?-T? 6@N?amH?DIQ?]O/DK?uB?77?T<?5Sp4?PsE?} 9? ,??XZ?[_?u*W?I+]??e?zMk?2"c?Hh?N `q?dAw?In?PSHt?nh ?)? ?ׂte? [?0Ƴ?-'?bD?\|?ԊH?D?|?07?.?|I?d*?8%?-ߗ??+:?VYt?WT?S ?G?av9?^"?Kd?'?גa?.E?NZ??FRƍ?K?͉6]???8Y??gð??c"?b ?.?[⁵?uDM? ?~ ذ?墋 ?TNܳ?RRH?x.F?,?|?1d?B??Du?n?Mޓ?Y ?=iD? Wz^?Se?|+b?qi? Y3\?0b?4r~?%@?jpNv?W6Ʌm?q3r?ˎi?z?Up?y}Dt?;9? ?^? ?cm?}Ji?yq?vzl?lo7?;?sP5?1Z9?}J2e?`?ĵah?ib?q[?qpW?<$^?*@Y?>:R?hhN?3U?AJ,Q?@qI?2Nmx@?>,E?=?5ߥL?kXB?tܑG?13?ݠ9/?g;;7?Q3?YIC+?jM/:&?VX/?)O@)?%=4!?=*+?}|8$?HP?y3&?40?"*?z= ?I?4?ܺ.?sL?qW?FB ?%?e?V)?lF?>9?Z_p(?.Z?Yv?J?PO?Yf?h?pVBi?~?ׅ?ٱxŘ?n?@?11?Im?,A?(?5?+?6J?dۃ?Dz?"5~?bo?ZC?Q83?^w?[u?+ԫp? Iy?y1GBt?!ܦ?Bb?My@? w ?RR?-?d?a<??.?km?Lp?N~a?,i?Ey?2W?aAt?>???w? x?q;K?Y 0?9? ?Y{C?IUW?n?-4?|h?$M?A,ҭ?ߋV ?,|@?HDa?J??S"?n?5Q?4 ?Zh?= ?z?tߐ?"I?B?a*? X?n E?N?;?fb? 1?b?׆?z?uS??2?0J?]бf?? _?/-?P?h4?7?i?Oo?^*E?v?y?{x?Z$?/%?[' ?>·?ܘ \??^?zt?6?)?ށe?=A?yU?)cx?7?1?"o?ģ? ?I?Y?6s0?!B?͛?Y]g:?<??y?I`l??}e?&!?P?\]O?Z;?޳k?sh ?)H?Y?oKW?uQw?])fO?5Z?.GT?6qI?`?W?]Q?C?+? {Hf+? eK+?"+?A?+?#0+?m'+?vE*?ZI*?X^*?^*?t\*?;圅*?g*?h7ڨ*?=ǽ*?se*?r *?FYs*?(O,? RU<.,?mx_,? @bA,?q+?^%m+?(\+?V+?ot ,?? ,?+?sE,?5 b1? )C1?48p1?BEV1?J<%1? o(1?v%71?n1?J(0?MM0?͗0? E6F0?"Ϥ0?;0?X0?<0?# :g0?YiI0?dts0?*[3W0?;+0?z 0?n%90?L0?}/?=j/?+]_/?Z/?Ovh/?#/?pNu/?ʻ/?JGov/?rX/? 2ޅ/?Ɯd/?)A:/?-l/?F/?C}+/?[/?V$.?A#/?̛1.?~m.?*.?§.?X {.?p.?g3.?l.ҳ.?An6?'5?\36? 6?K35?~[5?CQ5?h' 5?wֱۄ5?q^5?#o5?0nn5?b&95?>4?5?7b4?GH5?O84?uJl^5?|>4?:Q4?4?D߬4?\Yt4?084?ZV4?PJ4?s/4?}o54?ݟbS4?ۼ3?x"3?Nm4?j3?i3?)3?+X3?&.Y3?s3?P::3?QV3?{g 3?<3?҉93?c+V3?vݦ+3?sE2?g3?;'2?(x2?Rwؔ2?Z<2?c2?5C1?cG1?Sd1?x+1?Rp2?܋52?ІS2?2?Ӏ2?7Œ42?yQ2?3Î1?[}1?Z1?1?p2?cuH1?CU#1? jSO?($O?v N?@J5O?K? O?L?Af~+&M?2L? M?yeVM?M?q+;M?ænM?3M?M?UʋM?~&M?eN?sU5N?NwN?UN?EkN? N?qU@qP?2)P? WP? 2_Q?}8/Q?BsQ?խFQ?-NP?JޟP?~P?䈆P? Q?cP?ݳlP?'/yL?lMJ?79(E?-QE?|BC?9LC?UgC?C?ބ1C?cC?``C?x5D?6AND?M4D?bj.`D?GxD?6: D?<@D?d#W7D?C?i| D?;t.C?3!dD?EC?Qp%D?c>I? I? YI?rI?^H?UH?H?3gH?H?\H?qH?R@H?KTH?bH?OgP)H?g2VFG?cdµG?G?G?[VG?d\G?cLG?+{rG?"7mE?E?[E?8WE?#mE?fSE?1WsF?Ct0F? aF?zR]F?}7&F?4D`F?A!őF?T/G?UF?`G?0f4FG?_}F?F?' G?eu(I?I?cJ?H9I?tI?!8I? I?'SI?Wd'A?mXPA?7GguA?{),A?n:A?3;2gNA?5YsA?.vS A?F@?*A?Nn@?M"S_@?ZlG@?W@?e@?^MV@?VM@?Vmaj2@?Z??ģ|h@?;} @?K0@?E/??qzB??EA??w-??rl??#??eH??>:>?,DOQ??z(!??{VF??>?mK>?vE:>?[>?iC>?70>?3>?@0eA?A?=uB?_QA? ;A?" AB?>M}B?_#EB?K=dB? ;#B?B?^jB?8LB?_ C?@RC?( C?qP>C?a=7?w7? VX7?d>7?k/7?Q6?|N7?5!6?țI7?o6?[R6? |6?BJ(6?nPE6?H.%U6?Bî6?,o>?е5>? v=?8S>?ġD>?_=?a(=?m=?=?;?tX:??RW(;?#@:? Q7?Bq7?7? H7?c@:?vFr:?qp:?u R:?.:?N p:?DG:?1:?NH :?pO:?M=!:? 9?39?wx'9?9?9?FM9?i=n9?5b}+9?49?L9? ; n9?׭ 9?mX_8?8?j[8?֎*9?[8?,8?KU&8?J8?1Tl8?1"78?%z8?)8? v0g8?ȓ8?ɺP=?7W^v=?iϨXm=?f+=?HUW%qW?pE?,, ?$[]?s<?C?*ʄ?x?n?HBЀ?*>?|M?y?Zr?^}?v?+el?0e?Imo?Qh?P^?*tW? a?Z?iP?PI?`QT?W#M?B?(<<?`EF?^??.Q5?ن.?`8?]1?C'? ?*?+Jy@$?#_9?{?"}?b?Gؿ ??9R?ox?Y?g?V ?ڟ?[?T"|??/ù?յ!u? +h?6o?]e?+5My?O3;l?GXr?bC??~?Z?G?- D? ?\5? ? ?:\??m*E?pLF?$ſ?! ?=?(r?*X?%V?<?+3?-`?r){ӯ?3 ?+?u0I?+f?$?9?u:?IT?ŕ?(G?^~?S?9,?]H?qA?ɛ7Y?#O?S? \N?#?&?L@ ?hM#?SL)?Q^-?v &?o +?{_~H?e @C?ߋ)!?gn?K?Sg??]?}l?x.-?XJ?ޭH?#pp ?Wͽ? ?EU?!.gx?k;a?{1?$4Y? 8B?N?ޝr?N)?pB?>ނ ?CU?:uX?LP"?ܖ`?xG?7Uq?(*0?3:?ju9~?+?nq?#?q7?+,a?i$?(? ?lv?;?-?K'f??@?++??c74)?Z?AI?SR?Sjuo?[e?k*w?${? t? W?qy?1>|?>p?VjQe?#{j?N#~a?ۂ0u?Ƃn?%i?[-?/N3?I9?7*>?eq)K6?wR;?&Q.?7E(?LU0?{H,?8O|#?c1?ϓw&?!9!?Ձ?Wo?mN?4`?A= ?Cʒ?r?y?-*? Dm?[?Z'C?ꢪi?;?N[?jnRO?jOJ?~r?$}?*d?Ms?GT??i?i?7&?S?fr=?W+?B`?bu?Ylp?/"?KӜ?_~?8?^ wȃ? ڣ?/%?A=B?$;t?ci?#8^?|n?>d?iF>?bRT?`5I?L[7?`l%Z??OC?M?~?b@O?hx?u Ł?ڧ ?' ?5"]/?`k ? %?Ѱ ?娀?1 ?u?4(?E?\+̏?I?^V?-?a\a?3?uڗ?5̶?9?\?R?uI?l?7g?nyH?)~??Yow??z?"#?캃ǡ?M?@HӞ??G?%?]I? ?2x?i}!?$? z"?㾿?f?? Bs(?e~m?==?7G?/@?*X5-O?1G?h9?Pz1?@?V7?(lu)?ZDI?3/t/?.|'?7 x?Y^p?oqO?{y?V?fȲ_?RRO?bpY?T.h?Ǜ^q?̴b?[Qk?z?qG?܋À?xA?i+?L)8?ꥐ?u?t7DX?.L?+7?C?8п?'#?Q[??ߤBK???<;R?lqF?4Y?)?lLk?Y?n!?lQ?ֳ/?z76?8?6B?8?P?/2z?;S?h?KCs+?6?.x8?͢3?b?.(?7P:?]s?C.?)E #?b,_?ȕ9t?۳?~&?/͇?F?%Tnv?Ëߘ? |?T~'l? b?Ms?v)k?!fX?;\M?ZYa?ĝU?3?O?Kv?ʠM?Z/?x^r? 涙??gj?f??J??TC?ʿK?h2?Ȼ?*d?q ?]???ÓN?V?? ?r?k?¾?jɪ?W9&?Zz?LtW? ?/?;?$?33?s"T?*RH?:i a?T?n 1?LH7?Y1?\?I8ˀ&?©D;?٩?F F?p(?OV?TD?l# R?f1?xE?=?eU0?H?9B:?$? ?ZC?<:.?hG -?"W?C? F?vt?CZ?pn? (?!Wy??ܴ?,?vX?# ? h??qˤ?~?i?>O?#r?\_? i?{iG?n&x?Z?z_?$AS?Vo?\0c??m?pQ ?FW?sa?Z }%?%B*?6#?(?,/?f'4?-?dcv2?h]?b?+\h?_??dp?e?70k?N;?f[?E?K?*?-?h.?"^B?)~?\?` ??_Sf?P?#??qaA?H i?Z\b?[?)e?|ı^?:U?nxO??UX?XR?dFdI?C?VxL?>OGG?I5?V/?_E9?sH2?(Ж ?@(?^њ"?j'>,?%?JfH?<?KN ?.$ ?pQm??[A*?>$<?@@?È*6?69?37?L ?U ? ?rk?ܺ-?z?a_]i ?a?t#1?t4?ޓ~#/?`X&?#r? ?3N?dpz)?T;;?䝼Z#?>&}?`'?0N,z?qU'?,? Q5?*?m?mA?c;? x?~?_\?F]@?:?vW;?!vP{?ub?1}L?O?QZ?~ST?KN?8MW?MQ?HH?c<?B?9?^'HK?.??VQD?3U`?f?]? c? k?,C q?i?t=n?y2w?n,}? tt?쀸y?Rc?y&?ҳ?yv?&\Ӯ?D?Zp?&:?6?}Y{?B[?7?w?i=?́(?hX?/v?p? ض?~b?ha? ?<}?GH?f‶???Iм?5?&y?ـ-?sD?䜷?`W?W,5?k?/r? n?kS?.G?t?F%?"K?5GU?&?y?#?bF!?xX??ƯS?@F?|c?Jle?Mȏ??(?$E{e?H6l? fb?Fh? %?Y9?l?W?q~?er? وx?gMo?9?)u?b{?1A?(?'$(?*J(?1(?2 (?Zo'?Q@~(?'?'"'?g'?eo !'?B%B'?^h'?90'?W_Ⱥ'?Zx'?.u+r'?%u@'?7Y'?13'? TW~'?*L'?|Je'?2&?qb&?kΦ&?{#S&?k&?|ڗ&?e25&?&?,&?ru&?D&?.xD]&?LG&?ժ6&??%M&?Lf&?nN%?w&?_ %?W<%?Ho&? %?1%?o&?Ԁo%? X%?y%?|ҫa%?&@%?IR(%?sI%?x+1%?b%?%?z%?g5%?|%?ihk%?҂%?pu%?%?j$?"0%? >?%?!-$?]+$?= $?,$?|n+=$?.m%$?$?kV0$? $?i }#?\A#? $?kʢ#?8. $?2ь$?/q<$?Y`A$?e$?Jk$?ƆnnT$?G$?=:$? 3^$?Ku$?:#?fqò#?Ġ#?FPQ{#?4#? #?Ji#?P#?JCn#? ƿW#?K|w#?g+_R`#?.9@#?uO /*#?3I#?#2#?Q#?k"?}U#??#?x"?.-r "?s]"?"?X."?:<"? "?j\"?I73k.?8nP.?r.?yk.?n5.?.?i΁P.?*.?ax*,? p,?Wwx,?S8,?{-? %U-?<7O .?-?C,'-?9 -?N-?шi-?KwN-?(-?͎-?AO-?:-?/-?3~,?Jvh-?|ֿ-?#5>-?$Mե,?4Bъ,? ,?$ݝ,?6no,?(Q,?Yނ,?c,?̫VJ*?f(h.*?&X*?gj?;*?EÉ*?<)?`E)?P)?t *?}r)?۸f*?:V+?S+?R:+?t_+?~_Gs+?oY]X+?w+?!+d+?Ҋ]=+?v!+?J+?}Y;1+?2z+?4 *?ˈ+?y \*?`*?W|*?Ec*?ʤ*?s\*?K죀*?xN *? *?FX:e*?"МI*?< u*?|Y*?^3,?,rG\,?崠E,?:w2%,?yt+?+?9P+?$獮+?D ,?{+?%Ch+?J1?Iv;)1?#d1? i>1? 1?t0?AL,1?˚E0?dj0?q 0?@0?:B80?b}0?O0H0?}c0?ގ0*0?_]^0?o$I0?d0?D 0? \/?%+0?.?.?6.?>I/??ұ.?3n.?EՑ5?5?o+6?Q>5?'5Q5?z 5?:m5?`卙5?tX5?/'/)5?vQn5?4B5?K찪4?^4?۝5?4?j@4?%e4?@4?~4?mB.24?4Ƶ 4?TgN4?Ͽc4?n3?3?;3?Ը:X3?Pt3?udg3?ש3?u|3? 93?13?LRS3?%3? 2?2?$2?pfs2?EX2?Gb2?>d2?~2? 1?`hۦ1?X1?e"O}1?-%a32?T1?;2?øO2?f01?U2 1?xU2? ?vT??|? 8?Jy?$W?xd? R?o?`!?M? ?̦7?:~/??G?O%?݄!?'nJ!?=2 ?L !? ?[쏇 ?Q7 ?x?{ ?'e: ?>L ?D ?3 ?L̢ ?Y ?[dn ?=ߘ ?i~x ?X;KY ?h ?O9 ?T$ ?P ? k?!a ?,d?E? ?G<? ?XW ?F?Xg?wT?ʜ? As?xB?A}?)=\_?ICJ?Q_i?T? K6?!?CY@?ǎ+?Tme ??BSu?l? h)?9gN^?[Z?V9?K??ب?y(?_̸?QAS?F?Kz]?[k?tW?V(tC?,ѧ9?Au?W`M?)fa?yzO?'FO?!N?ni2O?ήN?b,U]O?N?9] O?NM?gƳSM?stL?R59M?zM? }M?wM?RR.N?\mM?M?M? N?*D/N?dN?\N?LYN?v̮|EN?P,-zN?LM?V^T?"yT?h83T? RT?'T?NmT?b+lT?RT?U?\xU?`pU?|VU?62U?vAU?KU?cbH*T?.44U? l U?*PT?)ZbU?B)T?*U?&T?FS?b&T?% S?!S?69S?$"+mS?hS?CS?NaNS?JS?}0,S?SR?jR?R?SCZvR?ƪt^S?qGSR?mR?4IR?CKR?*qR?m,,R?/0$PQ?|Q?!4wQ?I[Q?Q1Q?]#Q?OԯQ?NfO?=O?խO?ʲO?%P?%:mP?'?P?D١P?EcO?=P?1kP?.Q?7%8P?*kP?}!WQ?? QBP?ߥ,P?WFQ? O?gL?/!KL?L?tL?kEC+J?'K?;ԆJ?WJ?>BL_L?HL?tl){L?m8L?juJK?OVK?2KZK?_K?KpgK?NK?!PJ?,lJ?"iJ?kBMJ?P%E?"TD?s_hYGE?J E?tC?EaC?fpC?VUmC? D?!ĎD?je-RD?rG`D?FC?+Y;D?dzD?wY_H? H?%I?:H?y ?o4>? >?}>??G>?TV??A?-=A?}MRA?1:OA?A?9ϴ8AB?/lA?B? B?lsB?I )B?+k)C?DvbB?TB?uЦB?8*\C?C?I(C?8+C?{_Zn7?K67?}f7?tcă7?}7?ZE7??7?9Z7?,7?FKB7?nD 6?̩R6?,v6?f 6?LW6?AL#6?׾3x6?Dr:6?ͨ>?`_@p>?ٶ9>?3e>?b|Z>?e>?WM8K=?CQ#>?V=?z=?O G=?GR=?Se=?W i:?Q:?T4;?(A:?'7?0 W#8?:Ҙ7?h 8?m:?%q?:?J:?tW:?H3:?,79?ho(:??9?J 9?9? 9?@f9?8KL9?)8?.=9?>R8?mh9?8?-9?.DT8?b.̀8?tt8?0v_=8?sxd8?>|8?,38?4~=?p3:h?1-'8?jef?.?p'?sp`1?"*? ?? 2T$?"59?cG?? И ?Q~?ƕ|?Hl ?6?S}?;????r9|?iHo?Pv?l?]?(2s?OAz?5?äQ?>x̠?6]?\?) ? ~??ք?CE?#?Ra?EX?+=U?Ag|?b0?~4?u?,&?5ڃ? 0?cf?L?kl?J?dn??[?*)9?p?;¢?i•?A?p’? (l??Uu ?g%Ee?ꉱD?L??bG?UB?R2?F/;?3ݘ6?]+/?c>?.c4?".8?"J?TL?sZE?zI?bjW]?uR?$X?SgmP?>b?]C:SU?fZ?tߡN?':K?=S?7ǦM?$?v#(?hK ?H$?FG,?Ի|m1?KV(?-?軔?:4?g*_| ?ھ????0k?L0? ?ƥQK? ?o ?]٧?W2?hF]?&(?E?26B?h?W?Ue?^ K?T?(ɍ?! )?j{?M?E?2??Œ2?ȳ}>?L?&6z?1m?hWs?aI?ۜ+2??9i? |s?vz??YC?3?8?X.?H2?1*ǡ=?QsB?\Z7?{<?wȥ@*?ʙ$?)L.?(?T?/? .1#??f?CQH?Hۿ ?\?1mf?s3w ?*? #?bL?z2A?wA?,8??١??}?!?0gw?価?nC?m?Gky?`??tPV?de?¦t?zqh??L?1`?uo?b?ҥ;?\?+^[?.S.?ݰ|?>?~_?yCG?S???vg?M?sY?E(?Ͼ!? z?HF? ?xF?"?Ϻ ?aQX?ecM?y ?v~? X?'*?ST,??Q?۹A?e W?{pP?w?h??2b?ŀy?@4"*?]W?]?K'??J]?|Z?$?xd0?龺?Hp? !9U?Uk?ge?#w?_?uR?OCR?2G?g؁5?B>?j6w-?iL?S#8?cA?5%?"?̵Rs0?*#? z?t? 2Y?;{?\?ėd?Em?]%W?wt?TpHa?6i?7?'df?/?壙?a$??s6?vJ?\z?Bw?\?pOZ*?}?' ?\?ߑB?mOY5?|WJ?æ=?ΪW?{!?Î ?K" ?H?+??5](?pj(?\?j&1??"?P?p?Z?-C?P |?->?!$8? Dq?Q?J?m|? Zi?]?ct?g?3R?=.F?'bj\?-O?[?P??<ˊ??ۖ?~j?Z[5?%HA3?ˀ?TFܸ? DJq?[?DV?3&?=j?O/c?]N??$+D?T4:?.#N?1iA?sG?i?rn?H???,??jr? ֶ?hF?t?_?6?f*?o?s\I?\?I?}˜?툮?s?2s?ۜ?Aš?H;/?~x ?9zO ?n?, ? \N}?0?x?,b?$(}? k ?, t?LsCh?Nn?Qe?ʄx?]_k?Uq?D?#?#?Ě=?`KT?C?Y?q?S {? D?AC?r??I[W?ح?#Np?obi?W=b?m?&'e?[? *dO?kU?=J?[ q^?sO?U?!մD?=?aGdYJ?9:CB?/?xs?Vk?ጡ?Qvz?ž? ҹ?F?>_?mOp?[?aAն??w*?*_Ga?[?W T?\v_?\7%X?*HN?JGKA?G?XI<?0Q?&{D?3J?s g? q?Zl?dv?xu1Qe?@l?|?x*?Utw?}#?zJ' ?? ?/?$?? ?lI97?4錕?H?'?]?B*t?"s? Q?(B??"?ޫʫ?O?j??<+$?9Ye?d$?Fh?߲?i!?3g??;g?/|?Iw?<[ʽ?4+?a(?zGw?rS4?V?Ҙ*?7'$?L?TXܢ?ͦ?I ?"a?x5?k0?#l?R?~.M?j_S?;ǖ?z8q?Tul?Sr??D'h?Śo?*^?l,y?IB?~x?Cpv?ex|? xׂ?ۤ?.?/<?O/a?`e?6^? ?H?}ׄ? ?^i&?UG? * ?JPmw ?? *?}?i ?/? ?m`?;L?{?HF?]??ۈʖ?ݜ?Iɑ?P*T?Y?tBA?1h?'+I,?Ɍ?Oq?sR?t?4P=}?@*m?bu?&Bmj?Nkȃ?NEs?jT{?|X?,vb?1D?dy?ڥ\?{b?ά)?'8f?[SD?t#.+? 9?$OE???A;%?3K2??ۯ?5cT??k?k??S|?Wr?_?kF?2?E??{w?3j^?A?I???U,?2 ?u2??E`8?L?t???a6?L%? ,%?j5%?_ &? %?%?:f#?!*(ά%?BY %?[3{bS%?/Q#%?V;%?pyd]%?w%?B,%?EuD%?I}%?9hg%?\z~%?Gד%? MsN%?*@d%?_d|%?]*ݬ$?EE$?ߟq$?--$?*.$?-%$?χ $?kB$?ZHRQ$?/r:$?DZ $$?Ig D$?l$/$?fi $?턒#?v#?N#?Wвr$?NKq#?#[$?#aW$?g$?O֡~$?c$?0cZ$?6o$?pZ$?0I#?V#?|3ɼ#?(#?ټ;#?r#?fR#?)ȹi#?'>#?zD#?z)Z#?{e3q#?"?%#?;"??#?9-#?'"?d#?'#?:hC"? v"?nD"?"?pVc`"?Q3J"? i"?'skS"?׫4"?e"?ٞC="?'"? "?ǾW!?" "?VD!?.ڈ"?4t"?,0*?'+?ܧV+?Gar+?"X=+?JDƧ+?8aV+?br+?I$+?P+?=+?^W+?UE*?7*?9:*?}*?"*? ʱ*?s*?a6*?"4L*?$ h*?F@*?iۙ*?Ш8Z*?3>+v*?ʡ_r,?VC+?qTf;,?Ԭ3 ,?n+?/^+?pY+?ϻ+?;tT21?t_ 1?q&V1?<o#1?Z0?/0?fӆ0?@My0?G0?s0?;ª0?x0?'J0?5<#0?~j]0?[70?>/?6/?߸/?o~Ф/?&W0?vDjK/?~T/?t/?x6ts/?2DC9G/?3/?N0c/?6@'/?3[k.?3.?n.?O7/?0g|.?,#Y/?N5?1 5?eY6? `5?峆4?ӄ5?q+5?Yc/%X5?eք5?*h5?рm5?\r@5?4?_4?tf4?RO4?|ERk4?V_+94?d(4?7YQ4?`4?;tۙ3?_aJ3?/<3?XX>4?ⰺ3?q]3?:}l3?r`?3?W3?cR3?3?u,z2?!32?~씑2?1z]$3?W12?/W2?G1?9k2?v42?4L2?K\V2?t{1?[1?RrJ1?ܜ+g1?9L2?[^1?:J1?}?f(;j?+ ?9s?JV?9IC?(`? @L?Es/?)?K(L9?ׅ%?1 ?©1?d܌?:H? ?y?0?Hl?VSR?v5?ui?Eh|?#?Oa?7e?Ia??W"?$?-,? @,?sYշ?(?Y}?Z2?U?z!|?_s?B?af??#?f~?/?C?Izv&?7:?!?y(o!?Q?V+Q0R?uSQ?}nQ?UF9Q?/H|Q?UQ?O?0)2*P?!2O?r P?jP?"BP?RP?KQ?NmzIP?mS6P?aeqP?E*nO?뷟vO?KóO?KupO?+DL?EXqTL?B$L? WuL?thaJ?;4K?\xJ?SU K?/wa]L?QuK?͒ڄJ?+sD?mC?8ʫ$dD?'D?мfD?OwE?C?rtD?+vD?A8D?r=D?j$-H?+w!=H?CrH?H?^1H?qs=/H?tdH?%G?!^G?)J|G?j"G?nG?v_dG?nG?.DE?$TE?|kqE? E?Q1=E? (E?ogE?h rCF?@ǔF?P%HF?t\(G?y*F?8]pxF?,9F?I?LO.I?ds\'I?^]VI?H? :;"}H?]H?*4QH?O]4A?A<@?%JA?CW~A?@?s@?ZE@?Ӑuz@?C"@?k"1@?#0@?J^@?sY??׊Kɚ??#'??# S??PIo]?? >?% ??u>?uu?? >?y/7??qsA?YfwA?zP .A?˒A?eaA?P=D?D=B?ߘB?%B?wlB?b$MB?IuNC?oPC?K,I!C?eʤB?ʑ#C?IC?z0Zp7?7?[7?Rf7? 7?K7? Ь7?W47?I5?67?G87?k\7?j%g6?W-p7?%u7?V*7?-5'6?6?ρoZ6?T5?v6?o&86?Ȗ,v6?1>?aDD>?pq>?hq>?-Tv>?c6Z>?2;>?=?2_"=?&!V&>?aO=?ajA=?x;M#mV?=d#V?/1U?J?_~?r= ?߬n#?"$?g B?V>?F7?ը[B?l+;?O/? '?N{3?#+?g_E ?{?eZ&$?OU#?bu?#oc ?W?X ?Cw?2?ƕ.?(?q?9?Վ|?lXQ?V6?> ?*E?d ?Y?|?Rd?n?t?"J ?Viq?(+ ?7?~O?C&CH?H"@?#3L?nkqD?q9?B2?=?%46?*?D?1WYQ#?!?.?8ۃ?d+'?\I? ?F#ϕ?"Ў?Hre?]?Wև?'aހ???9Ly?08+>s?ШZ }?$+v?l?we? o?Ii? ^?gP?sW?sϵL?c?.XT?H7[?8S0B?gW;?tE?R!=?4?-?e&7?1?N'?"[~ ?N*?Y $?"~I?qE ?iU?< ?ιM?_G?5X?gKÏ?1&?;??b ?w?~?t?W1r?S։|?4?Ŵ?ZH?~ ?{`X? h?%?9l(??p)?-3?CY?'??̛??#8gn?*?)C?JE?8?'D|?2? G?>d?0䠶?w`ּ??9S?d޲?Օ? -l?OKQ?Xd?Kf? US_? p?*mf?{A?a6?$;?\ /|D?UG? t#3J?x2? H:?|??3C?W?O}L?[-R?0_?lE?04]|T?}N?vz$?>'/?")?w?>D~6?;}%?G?*?2 ?kEt?L? ?w?&?;4u? -a?\??K?0 ?P?Å?~n?4G?p\?e7?D?t1w?>?E?' ?n ?6Xn?݉z??p?#~?ޮM?9;F?xcA?`I?ش]D?Y2?1<?%xD7?*,?jJ)??zY3?VD8?'m'?KG ?jU(-?VR%? ?- ?r8U?ᥓK?~?RZ??û| ?K? ?F?3??Kɪ?ILL:?a?w1?o?:?G?x}?hp?TVn?NM y?sc?E\_?6g?Vp?M ΄|?%5u?W"? !?u?ϡT?r\?AP?I7iW?U=d?܆ l?0J._? h?q5?-k?c0?~t$?ħ;?,R?%?Ƌ??U?I?  ? ?^?vg?_,q?°?pgʔ?S?exv?(ԇ?{?,!?}??nB* ?tyB?{?o ?Uaa?ޒ?!̔?֯???-g?앝E? w?դ?O?"?v?c?=?yo]?@!u?D??)Ѡ?Yص?ҮX=?U*&Q?cxPF?-A[?BR?~;?[.?;^G?H3:? Q\"?w ?Ƶ-?#c ?>|?,!;e? c(q? ;܈?8S\? {?o?T??+RM?? ?6??*X?ZK?H"?8?!9?'*?tC?7!6?'?+D?u ?ov+?M)(?ч@? D$?1`?.?̗r?/p%?x?]grs?-L?c?0ZGf?FVtL?RKY?/(@?Ms? R?k_?}̘?~P?ڑ?]?&W??ӡ?7?9H?A?0N?X }?ȂqO?yh?"?/+?B?eqđ?:{? $?EO3? UC?%JT?e? ii0?Qp@?'Q?h&>?$b?3Q??^5'?vsծ?? Y0"?t2 5?4W?o?؞M?[c?|,,?$???Z\ %'?'+Z?W?t)?_)Cl?bY?DR?ץ?ج{?7?wO? O??h?W/P(?tC/? -%?//,?ͼ5? <=?2?7V9?Nb?±[?U,f?M_?+S?D7ZD?;K?閥@?\ .W?G1H?!fO?|:m?' ? ?4c?^?mu?]?A*?f?T?˕??/9?G?˨?b)?L?"6?J?Q?4?>?T?f?h^? ;}?,cgo?T2v?`al?j3?Wr?%y?<'?(:x?YI%?h?Kןy??*U4??/;?^?>??ܘ ?qq?<}i? v?uTtn? a?CX?pf?$]?{VO?G?Q-T?ĆL?H>??v-8??D?<?0j(?*?q+N?@Y? )["?XA,? ?-;0? Ov?P"?H0?5?{&?),-?.??7$7?~|/?:t<?7t5?)<? (?)Z?0?ڼ-??-h$?˒?c/t?B7ޅ?ۍ?8?ȡ?v?K?I۞?'ܜ?8&?o ?/,&?d>Ь?*x?A?n۽?RKf;?1?kj?<c?s)\?f?,`?JU?]G?v&PN?28D?.fY?J?]Q?Y?l9q?vu ?y?Un?< ?<u?iD;}?kӶ ?i*?}F:(?s# ?<?FUA?%?i?gg?Ͷ?L??|?6?k?ѓu?p?l?|? '?t}B?(?͘i?ȩ?4.?*PQ?6?~^?R?{x?=?g?a?}r?.?*F?iJ|?0??ڜ?|Fe?C?s?Q?z?9g?>Vo?}?tH?$J$?z??T?O?)<?*PBp?e^]?gF?9P?*~K?hW?|b? @?J?y%hP?k\V? #g?zSMm?Fs[?h\d?W;?xs3?4E?n9?bn$,?2 %?7q1:2?^q)?)?K+?.s?(0 ?Fmۜ#?B~O?X@?`D?#?iF?(??V6?n?V^8?N?3?:s-?uGj?aޗ?'`%?c?/?Zԧ?5#?^&?Du?K)?#]4!$?{? c?i? ?ʸc?ܹ?O?Nh?"1w?-o ?92cT?"%e?\?DNX?`?8oam?B u?69i?Dmq?"}?:R0?=y? .?娈?zH+?)Җ? o?.Kz?=?b??E?'M??p\Qm?20e?@]?U [i?)Ua?\/V?F?xN?v:C?upZ?'.?wٚ?; u?F|?0{q?U?,o x?إ?)?2 ?R? ??\?0}?HB'?bL?{^D?JΚP?TdH?*8<?4?l2;@?orJ7?P{<+?/#??Kl ?/?#+j+?䂭C'?ĺ?@?? ?So?Ui?@]I?vuJ?ωp??8?\/?b?+Z?6 ?AE?\A?b>?Sɸ??a?:~??T?6? ?N?4R?2w?=Xh? #>???Mg?aQ??lK?cd{,? ve?zw=?f ?_?v? 7?c?l-?nOɆ??;' ?&?nk?6ss?Z)?MW?Iq9?mY8?hzx?rF2?hC?jos? R?{J*?޹6?e?l?!?F!??cX p?.]?I`y?L_Kf?GGJ?ak7?T_S?O??G$?ש?8s,?p?`?7f?)k^?X?]?e~$?D?w#??X6?G͍?V?ʊ(?W"}?ia??sj?KrcX?Ds?RNa?QF?GW3?=7|.O?m=?%!?΃d? *?`"? [@?&?o)Rd?!(?G6?54?ZD?u?e?t*?=MG!?L?A?VUD? h?sV?Q?nڠm? [?`zv?vd?2z)?]и)?^^)?lʩ)??|)?iPj_)?:dA)?1юp)?scB)?`l0%)?RS)?=D3)?Pi)?32(?5+)?ZE_(?/(?4׵(?M(?}`(?xC&?X&?P&?R&? 0py&?Xqn'?3>'?K ''?Y-cU'?2'?׽&'?83T='?0Ǝ(?A(?#"#(?q"9Y(?j_f;3(?1/3(?-`'?>'?pg+'?9 (?"I'?Q4'?4c'?xs_Hl'?oM2L'?z,T'?IKͽ'?k]^y'?)Rj'?w+&?*&?9 &?,Yh&?$"|&?G}&?ju&? "&?ÕO&?9&?  &?1+a5d&?Ggl&?=d4&?π*%?5M:%?%?]%%?Q&?I:%?I%?r.#?\EM#?H#?kľ#?t\#?1%?ҭ|y%?a]С%?/w%?n^N%?D %?ە$?C%?55%?K%? 0]b%?P`%?u%?7 1%?$DH%?_<ߧ$?X$?!$?a$? $?Qr$?\{$?$?VbM$?tj8$?a$?iF$?~#$?1R#?M^a $?sev#? vF1$? #?o$? #?Эs}#?##?ޔ#?e6#?OL#?#?n53#?a#?\Y%"s#?!H#?c4X[#? "?,,"?߼"?[N"?#?I #?x<"?#?sL0"?r"?o&RxF"?e\"?X{"?\99"?S_O"?3+e"? 6!?Ea%-"?@!?0"?Y#"?4!?@y!? "?S"?"?m Wn"??["?!"?)9"?mm9"?{Ҭ"?/YKS!?9!?r5Q!?ٗ&?!?W !?/!s!?:!?Q!?.?P.?1I.?Wl@n.?z]Z(.?c.?,ӌM.?#q.?&.?xT-?f+.?-?V" w,?,? U-?،o+-?*cH,?iϪ2,?f#-?odʧ-?EJR-?rb-?FǛ-?8v)-?We-?T-?g?,?Ps_,??ԡ@~,?Ď,?-,?s6ť,??AT,?јs,?*?Ep)?_$*?^[' *?&>")?#A)?rG)?p,֠)?NcP4*?_)N*?*?%I7*? OV+?OVC.+?Vy+?Ȃ4J+?d|ͼ+?*?}#+?8*?Z*? I?h*?6*?P*?| *?4O(v*?h֙*?:i+?k+? 0",?*6+?4+?] -m+?̽+?>0+?R1?x~n0?31?(0?bx0?˭q0?gce&0?B;K0?U:0?Y|k0?m~̎0?y$0?ٽ/?oa 5?~B{9V5?(Hq)5?xĻ/5?-4??5?@#5?MI5?KRv5?r 4? q4?v4?r4?J՗1?M p74?~Yx3?`C` a4?51 4?ȷ3?^Hw3?f@3?:$3?ss"73?>2?$$P3? 3?ӯ2?-2? 972?࣒ 2?R1?W1? <1?+u1??QT@2?4`I1?L}2?\2?Z1?tKu1? CK$2?{swi?3V?`r?Gz_? B?2WM/? }FL?Qj8??`R?Mj%?42?Sb?\\I-?B??|?_ѻ??[ )?3?o?R?|=.Ş?5?)bo??54M8y? ?%B[D?dB?>%.??g?5?޶?jui?]K?E?$????U_{?.h?1wy? H r?"aK?/0?s ?Yӭ(?#}+D?ߔ5W?cY;<?h, UM?5ebj!??!?a~M U!?7"3!?<&}s!?wUF!?h[!??\ǣ ?mC'!?I!?4am:!?`!!?D!?A ?e ?CĎ ?l !?'= ?); ?]ڇ ? ?ƴ ?Ӫɇ ?T#ځ ?>Yl ?Ώ ?b:u ?!WW ?0㪮B ? &` ?OˍL ? . ?w&v ?Ε7 ?$ ?Qܯ ?s?`^ ?\'P?9{?,_8?C;8??;?r@?ӧ?#K??Cwr?|<?,N{?l.^?t'J? g?}T?UU+6?M{!?Ȯ@?^&W-?d ??\H?K6?|}X?L?gkW??)IJ?$uئ?+?a??Cq?`Ij??;X~?-hc`?Gk}?Bsr?I?%N8O?>^*N?{vO?O?ysN?ڌM?|yM?K; N?PRN?~#cM?"DN?}̴M?ccyM?Bv;N?Y9M?TbDL?rNVM?IL?j M?v2_L?mM?B XT?h"U?U';7T?fpS?ŔYSU? T?ʼ;T?US?#R?0S?SF{R?[S?Tl^1S?vER?>RR?Q?2R?ptQ?:'R?.Q?;Q?+Q?.(P?eP?NdP?HP?QO?Q5kQ?LP?P$SP?n?\P?,OsO?tSO?P?ѕ~O?J}I?Q3TL?)N0K?:%|K?C7K?nL?mJ?pL?n@~K?K?/L?rI?JWJ? J?oI?pTEK?wSJ?FJ?JED?}PD?m8?D? ʮD?im-66E?^E? zE?=!bE?/+%iD?1"H?LjG?ЅoG? G?rԇJH?ŜqzG?JEG?/E?rzF?&OF?eE?6>$G?!F? F?Q'I?mrH?-4H?RcI?Ѡt8G?zFH?eH? @?r@?Ev@?`ԭ@?`J@?jj??+A?/\<@?z)Dh@?l@???^ ??,`??g9g>?@?*9??lV?? @OA?cA?(hBB?.aA?^ pLA?@@?ԮĠA?%A-A??C?B? QC?AB?C?YV,D?XHB?nB?P!>C?'C?i7?^*%7?8?7Eh7?2~7?%''>7?ۗ7?(]`u7?/?5+p>?>? 3>?`$:>?)=?7tF=?=?tqLw=?Έjys?u_hl?Zw?:4Pp?lDe??_V?g ]?dcpS?5Sh?/qZ?8a?UL?Oר?{H?Ѧ?1??Ѹ?)?`?s)??fcʼ?sqW? \?6?I?l4+?_8?g{ ?"d ?cq? ??@?IM?}~?u?S8?G@? v?hz?<þ??}?d ?l???#W?U $P?H? S?r{M?u|A?;:?DF?Ǝf>?2?].x#?+?G ?6?'?dn`/?~TA?H?tP? 2hD?̩L?7?>w??\K?V??Qxǖ?@Ԍ?{! /?s?Αy?$m?إ? Es?~y?+#g?:-'X?N_?^wIT?Em?@\?d?+ 9?Hy-?Lך3?6IO'?؄=?6'-?)3? ?n?OV=?ݖs> ?q'??jm?)eZ? u??7dӘ?~?2y??1Tk?ގ$??X?;Mz?5g?º?'Y9?e?B7?Uy?EL?U?X?P'N?J?U-?CŶ?BP?q ?y9?~F?9`*٥?k`?\f?[?#ht?b?Г>?vQ?*G?VAf2?#oX?b=?!+F?Q&?;_?yy?/+a?n~1?ba?- L?Vu?(|?sZ??E B?y'+?"d? p ?q?[[l? ?Zj3?! ؂?c?BUp?t?M?ה!B?]G?o(:;? 2S?aD?['5J?8 Y4?̐o+?F!=??r2?8#?0?/?8w?n=)?>?I?xl ?m?h?ӣ ?x??g⹣? ??F`ss?b?v()?db?3G}?_dǐ?;v?L´V??C?DJ"Z?єc?UP?'j[?5k?Pmv?nd?eq?*? ?3:#M?J]?gigm?A?/9pty?,S?}bfc?J??F??#g?>LN?Ae"g?W ? ?e?{k?Qv?sfQ?$?~;f?D"w?!yn?`i ?{?p?/ޣv??&?N&X?/#a?BC?an~?<_3?|'+?3"'5??Sb?CU?_?ʓ?\[?KDq?JR?lOd8?~ E?.+?_e? iP?JRC? , !?p ?eM3$6?!?Uz@y?+?_I?n?ic?/??8kg?Q?by?B-K?53?Zt?~3!?˵??וF?z?G?"1?@?b?XX?at%l?EF?C?Syk?tU??\.?^@߿?CC?'?^=?l?M?: ?YB=?VER?^?H?p!3?QLQ?E~9?Z/l?43JR?x]?P^0??*?f?һ?T?sl?ieYi? ?`?g߬?V?nI?M?Bu? ??@??_C#?6?v? D~?!dp?~܌?E8{?z?8?}c?+b?{?,{?vPXs?>?{?aq??- ?$;?;?:X?d ?ׄk?oY? JBb?[LQ?`*Ds?1MqY?.a?svI?IqA?k7Q?E"F?/N9?&8R2?>?4?nu?gb#?+?V ?u-?٤?$?A?%m:?]ʩG?A?}3?o/ ?u)? [C?&:? '?n0?Ux?Y@??9;V?ȕ?C?VL??5z?)\T? x?f?r?ʋ ?PW%?.@-?]#?Tj? jod? q?J%k?o^? DN? V?kxwlH?~d?R?;CZ?j?4?;Hox?=M? tq?t? ,?ɵ{?0 ??.?O0q ???6??hp?RI?`$?^??5?K??_D??5?b?s?LL?E?|? <?&D?x_`?z 0?q8o??)"?b@|?PH?!"t?ї?,??O%? ?=~t?k?)|?p?v O?wa?zhX?8x D?ה}yg?8*X?6MO?<jT8?G '?/?N?V3C?)?pg1?b??ɲ ?,ܽ?B ?Tq?>t?zBH??E!Բ?7˫?>?%ч?m?auօ?T-?!ۣ?]W?=zf??W?5O˻?Cr9?t?gua??xO?%?%`?)?8UH?HPa??Fl?+ۃ?Lx?h7?Pf?$ۅ%?ub!?ҿ/?,?x0? ?_40?? ?p1?RL?/(?,d?q(?'?5"?KtL?7¥T?@\?P?z1X?3$e?dfm?`?4&i??*YER?m«? ,?6z?*/?GB?W?(??b ?{?(?X炾u? ~?͚F|q?b'z?Wv??~?-Պ?xb?p?q? nK??[˫?,"?)Zn?yj?H$?/yOb??M?,j:?a?2%?./ ?&*D' ? ?>+ ?I@" ?  ?!d ?-< ?y ?SM ?e ?  ?")8 ?K.MA ?2'K4 ?BS< ?J ?\R ?bk߬E ?M֏bN ?s)[ ?XxqDd ?L W ?:_ ?u m ?h0u ?NSh ?L,xq ?e2~ ?i ?Hz ?&s ?c ?НD ? ?Xؔ ?d>}7?sV???2F?^a;?`#C?ҩt?aD9m?#Ae?>q?`j?J ^?/^N?aGV?J?@݆b?P9R?~pY?S?β?3?L-?0?P?[>?Iܭ?\kp?\i? 4?n? e?aƱ|?i?4y?u,d?F oD?#??N'|?? ?/*??ǵ?: ??D?H~;?ᆂH?,@?|I3?ŷx"?\*?+ @?OԠ7?ⓣ%?\-?2Թ?|?^?*M?c?wa?`\?S??u?וU?j+s\??{E.A?&I?ǔ?j~??.?J%--?S ?i6) ?A ?Z  ?a623% ? 3 ?TY< ?d. ?S(7 ?LE ?QN ?L@ ?IJ ?/ig??u?}?+M?2H?7L??YL?V=?ת??F"?JИ?4?+@P?Ykz?1? a?'?eb):?rKpb?\>?Ӏ?&??ш,?Ԧy?km?`J?V1i?:?j?A$t?ҤY?żI?|<\?H ?[? ǥy?7?!?!?%X?y\?H?Hc$f?ۇIR?ٹ?Fd+5?2i?P)j!?f%??<.2?nfj?.௓(?E(?x)?C~d.?z?9ɉ?z?6?/?"v?|?@y?Ųp?o7B|?63aoj?MkF?T.s?&ILX?M*F?E6a?O?zx4?5.!?\s=?<; o+?#?J?(Y8?R?=gQA?&?G ?`/?Q?ms?7?ׯ ?<?Bϊ?1?I?)e4*?ճ^?ü?0Q?K"?O)?n*?FE?3?RX?j?T@ba??6}š?a?%ەvm? )?s$v?*[?&xJ?W7>d?ǶR?~`??5m?YϞ ?@Pt?` ?4V?߹޴?]? aZU?+{?:?0px?Nf??%;o?kU?2RD?g]?Q L? 5'3?;"?: ;?׫t*???V?wO?9d?:?lC?VK??+E?-Q?:`g?i ?/?O?$͢?)&]?x?>1?c?)?b)?F=)?Aנ)?_d)?#'$D)?-?|)?lX)?.k$)?')??g@8)?)?cG(?gSgs(?=+W(?v(?\W(?vQ(?2(?&&?vgB&?'?F(`'?.%?%?8:F%?0@$?{jK%?`$?C%?uW'%?f$?ٳ$?Q$?Qwk$?߲$?3X]$?$?Rg?$?^ $? }9$$?T$?J#?M $?ޮ0$?Qi$?Bhd$?NE$?e$?h]#?uE%m#?/F@#?~9{#?H/#?U#?rB#?*'Q#?Hd#?+O{*#?Az>#?.@"?n#?7\w"?uI"?ۍ#? }"?e"?O-"?|^dB"?g L"?}*"?W"?k"?}?"?U"?(d!?C.!?]!?C!?͠!?> "?A!? !?5-"?2ԇ"?fŔ"?gUr@"?e;i"?j|"?)M1"?4|!?c@Y>!?]e!?u2z!?!?BL8!?%ԏ!?]U!?m~(.?Q#Q.?Z8.?G.?rs.?KKW.?+.?N5-? -?dA%.?;C͚-?b-?M)ty-?5j=-?\,?-?RI-?ewV-?EA,?ml,?+?R+?Δ\+?]0+?ǁ*?)*?5*?ôWNa*?s$+?i0Y*?V*?Idx+?Urz+?+?8],?XKN+?IC+?H +?0?wŤ0?Wx1?㾵0?S|_Ge0?)0?_I 0?4ZB0?P^_/?t10/?4MLy/?#s/?7/?Ie[/?TĤ/?sŸM>/?_;.?y.?<,/?7q.?K=5?f4?U5?-U#5?h5?Μ4?w#=4?5wm4?c*n4?c|_1? '1?Po0?]ǗI1?#C1?3?3?_]!4?d3?{i3?xB2?̧h-3?VsJ2?s3?uD2?j3?Mw2?:71?81?u2?Yu!b?2?11?v2?_1?wL2?&x;2?cU?Z[B?X<&_?qM?>A^.?ĥW?9?6#??c?mYQ?X<???Z ?xXO?^S? ?&?1?kl?hU?/3?(k|?`}o?:t\?x?]Yg?x.?#{ ?wz?1 <?f??/ |?dkw??.d?U?!+?zlƩ? S?ezh?%[y?R/V? *?";i?[z?JM4?FV?cE?9?h?ՆU+?E?)0V?M!?eC4!?P b!?|JF!?k1 ?1K ?0l ?ML ?!? 8 ?1h!?w:,!?-ۗ ?y ?i$)!?ޒ ?] ?lB ?M ?#`ri ?1A ?U ?3f. ?Tw ?}A ?bJU ? ?'6 ?2g. ? ?7 ?R?ߟܟ?nd?89 ?T^?j?]?o<?q?_J?ep?(DI?\?);/7?Z|?+ÃJ?Z*]?`e$? ?Ѫj7?Ӳ?'X?LB?a?ږ?'+?GR?\T?\XjS?] R?>3ŬQ?Q?MNf}P?-& P?lCIO?_"J-O?Y(1R?#P?|gP?TO?KKI?U=J?oyI?rWݷI?!pK?`4K?WJ?. CL?6J?K1K?hX,K?iD?ِ~E?)+A3E?tNsD?t`#E?/ŁE?'E?Q?^D?mC?뿔wD?V¤cD?2[VCG?JbF?qF?1H?E?4F?p}-YG?-!cH?W2I?dG?H?@Z@?8/??i;VO@?cgM@?0lb??rL??7??坶P??oA?&%A?-wkA?1\B?,t@?uXA?$,A?шx*C?rB2C?6N#fB?ggTC?^~1l8?~ 8?N`7?mJ8?t7?qHf7?2G37?nOw7?CW7?5?G_6?k+86?E585?(6?LX 6?:Ԕy6?Y@>?^>?@X>?Nl=?_N >?e3>?gHra>?:WpM=?;`9?d_Q:?8?%9?ߘj*t9?)f9?˽;?;?|C ;?MSrv:?G-:?:?|eQ;?1]:?}i:?IW?U@*W?(1kuV?02V?U?tT?vU?;S?or 1U?EzT?^S?!??(b?Ó?Mx:?'?;?Z?E?~1?D?d?Eƃ?േ?N]??

?U?k\?Ih ?rzW? o%Q?VV^? ԫW?J?i]B?VQ?\QG?S;?;,?~O3? >(?)FX??0./?i7?S/?)B6?Қ<@?RH?8<?*ID?NlP?X?h;aL?,T?5?Ԑ?i??zE謚?p?%H_~??%N?s?-Zsa?˓j?e\?mz?2f?Co?I-?K?i"?+]? 2?+?M&? KՏ??QG߅?[?%?W ?4??ûOD?,` ?Z??t??|f?!??*<?jqi?;?8??5.WS?Ӿb?mU?Ƣ?w??_ ??Թ6_?~9Deo? FH?ؚ?xb?xfx?t#?(ɼ?Ć?Z?@ط?4Ph?xRII? cH?4&?+دr?ѐ?JL|?\?|?#?3C?S-(?oE?PN?:f??M?V8?W$?)r?XT ?Ae8T?|c\??Y*?Nq?sy?!HEݮ?sU?HZ> ??-?JU?zf3/?B{~?hV?i?%H"?tV?j[~?֥?)?Ã{;?XR?{/?Rrw? ?<0R?uM5?Vp?P_T?Wo%?HD? ? (?kd?c?G?8`p?)Nh??7?u.?Mb}?Ć?.?Nی?T,???^tJl?t?Kq?u?db?2u?>Aj?~_?Oq?.m#g?=3:?Nz-U?U H?Kwb7?>Z]?CyC?P? ?w ?]?ɮ?j=?nܠ?q4?>L6?3r? e™?LU?,vפ?j??7:?L"??)E?{?i>?z?<)v?Mb?}\?NnU?T4 ?Fj?4{?p9j?S?)u?Vy4? !?4?,X? 4JX?^w@N?[,d?U? قC?d:?[WK?{nk>?0??t&?j??U4??" )?~WB?{j.?1{8?BHM?)?!vD?$#:?ܩ? 犥?ј?sV?Gtt?"?1W????"(>? ?Q ?O(?+){?Plk?ayW?cka?v:Xu?}$O?bb?l?)?apO??9?-(v?ާۅ?\#e?cn8?qR?md?l8 ?+?p?!*~? ?v_?S?) ?@y?:?:?[L?,/?D?M?$=h>??,?0^8?^?!,ދ?bU&?ɞ?ٲ=?bQ?>S?}H!?^l?v^?dԉN?n?;Rҝ[?(d??2eҟ?װ?t?O﫼?'׃?bG?` }?)?%?K9x1?UI>?τ&? ?3V?30 ?t?E??`U?I&<?Ke2?LA?AS8?l/(? ?DP.?&?Ƹ?t5?CT?0?h{?ʂ-?1?J"B?\?wi?-?\?ST?$?F}j?e?d9?L?:!X ?H&ma ?4S ?j\ ?j ?nyt ?"f ?fDlo ?Ǡo} ?aφ ?Zx ?B" ?=4 ?b7t ?. ? ?\_ ?G{ ?z= ?lj2 ?䃩) ?2͐2 ?8$ ?ޮ. ?fH< ?TE ? k7 ?4A ?N ?Q|?X ?M~NuJ ?MS ?Jg?) W?ޝp?_?gF?ƿ5?<-O?ُB>?g %?"=?D-??2?w? ?d?$?ш?i?}?{?:S??+ȹ?A_e?2?6[el?7-?&>t?'?8 :?N+Y? ?2 ? 1?!?͇6?1Ӡ%?J? ?a8NH?5?-@?|J3?N?E]??u_?%4x?I?4@?{DG?b.k?:)?Rpj-??&2?'RN?C)?W!?J!?Mmſ?"I?/2?<ˮT?DEiA?? ?c?'y?P?,*?9?N?ɗ:?yJq?K?E#?˲?{̠??8h??n{?5?ft~?9i?LFX?'gq?e<`?`F?U4?ԨKO?v??d_"?B3?$-?o?<8?B'?;4A?aBa0??lz?!Ӡ?? ?j\Y?gT?B΂?5??E6??<?~i?\L?%00??tw ?Hʾ?'ծ??}~?ޜ?I-?l?7&.[?Ux]v?bJb?` {I?8?]ʓP?b@?m??,??"?K?ܪ?l?ML?3l?}w?.?X?)rqf? i:U?An? ]? D?2?N<L?S;?چ!? .?C/*?A??.ǐ? ?H?o]? ?Q?5wA?u?Y??[X??;xO?=JL?EϢ?"?Bly?Nh?/?q?wԤJ)?3o)? })?)?K)?$)?i)? :)?:}&?j(?M;(?O)?hA(?ab0(?i}(?bZ*(?*(?ޙ'?x<&?tQ&?ܷ/'?q&?g=&?) '?ՆY'?MO'?˼U4'?}i'?!GR(?H((?R2ah(?X B(?r'?r'?5k'? XX'?M(?|8'?W<'?JO&?=[&?u#o&?a#P8&?v%?ke%?*&?ɞ%?%?9b%?7%?rvJ:o%?'(#?W'3#?\#?o#?%Q#?d5#?_{#?/:#?9%?+~%?EF%?`%?($?DU$?N!$?ݍ$?8$?>X$? X$?n;"$??6`$?8)iA$? $?u.y$?_A,$?vK$?U(r#?V L#?x^#?:gg#?-"&#?UY}"?gA#?W +#?4"? zΣ"?bQSx"?N%"?I<'"?sR"?}&="? ."?6ye"?p f&"?I;"?3Dڋ!?AÅ!?5!?ŝ!?@ T"?;3!?)!?Gx"?L͋n"?HcbN"?cgc"?w!?W!?1=!?3U[!?"mG!?x!?I!?uY!?\.?}.?@.?OL=.?-?3-?z-?԰-?&0'-?IW-?ye2I-?H*%-?zl,?[B,?mb,?k1+?Id,?F,?(?,?.)?#*?$M-)?h)?_>*?,;s*? *?C*?Ny!+?8y*?+}*?L`+?mw*?2*?u<h+?K+?!K+?xD+?vA+? l0?(˜Nh0?|ў0?q0?% 0?k\A/?R/?c/?[W0?2R/??*g?3Ii??%?j?q?ZR?RѺ?2? 6v?d=i?WN?R\y? _?xU?#1ir?Ƕ_G?\Q`?LXR>!?5"!?l \!?7Uy4!?|s?R ?g ?= ?3^ ?@$ ?%V!?ɩ ?7$ ?]< ?&=[c ?C3 ?/Tx ?8EA ?r! ?}h" ? ?DW ?ta ?3 ?g=k?uM?7??F?'*? s,i?V?b?y?XJ?_̒,?'_Z?.>?4?~z?Wx[ ?ӟ?L-?i?%=?|?b#7?3c?x[C?M`N?|M?6M?O?uxxL?{'G?~H?`PG?_I?\:VF?SUG?mzH?f?@?7ss ???s{??@"@?D~a>? p @?J 2??p>?j|A?s3B?eu@?5 A?,C?Q!D?onB?m`SC?p"8?UZ7?2DO:8?` 7?9?Mw8?N6en)8?bSI7?}K6?D156?Ů5?YD7?JV7?26?b)F6?_>?ۥ?3V=?ʞ W?V?U?(TU?T? VS?2۷ T?k R?-1T?׏D1S?:}R? ?9?:WѴo?;H h?0o߹?,\?" A?߆21?}B4?X? G'?wc[k?W ?薪?u+?&X8?v ?>&| ?pq?n2v?b 5?:<?_\??_m??}_H?{? ?P??)mP?HC?''? ?J&|?2am?(t?~?KV4X?^E? !?+?*>?ӳ?m?ñ?vΐ?{Ԃ?6Љ?]{?z<?n?^?B u?Xzd?Ɇl?)K^? |?i?4Gq?nX{ײ?$O?`}?P??Д2???z?`?n&?lv?G!?`??2? ]n?xB?Qq?]b?cAi%?N?3 ,?E&?+,?J ?6_?B? ?)x<???W?IRN?qi]?wFS?ؕD?3?Y}C<?1-?2?I? E?XL?hw?`b?6G?_QV?Z0F?I%?t5?rc?[L?9B*?K:?C&?;?H ? ?re!??np ?hM C?-.yg?&Z?6 rr? ?auW??‹g?|aAv?*E]?Coo?ˉ?^^? ~?-t?j7?1?sF?%\Q?{2?,7?Y?{A?1=?-R-?L,>?@S?pXOk?ۍ?Q?]+?b/9|?i?V ?ˎ%?tҪ??1 ?ؾ}?<@?*(?.q?#?g^&?'5d?F(?u:[?Qz?MF?M{??M1?goR?nH?60?s(?<?E~?]?)?@W6?(P?7^?o?V?'3? B?SY?p+?˂y{?2"yS?(v`?D$|N?)'~U?kǜ}??oHq?O?兓5?u?#?>ځ?tA*??{?u+?Ƙ4 ?JzAx?]?٭~?D'w?X5n? b?1;y?e?ʜbL? ,X?'G?bp?&(V?̅b?]+\?$[շ?X2?34?DԨ?Cm??r&~?N?Cɲ??Xœ?e?aa?ƔM{?-k?\z$?VPI5?i??.?;R?SE?kXt\?jK?:8?al)"?Z-?!?g=>?)$?s3N0?F?%SY?b2??S?o?|N?d?<ʰ?_?Os?i)v?s?5m}?CM?m?W0?:l?l m?^|?sXf?4䊘?y?gv???e3?PXS??|?1?}%?'F?6א?zD?A?+5?x%?P?, ?rR? 9??v?7?;?U?– ?}h??ܺdd?]r-R?v r?3`?seA?'?U%/?X^?1?N?Y9?fi'? Zv?k5?=s+?XȪ'?I^P?J$?;DQ?GR?7?ͦ,?'?t~?f? v?A?,6?lDc?8?`RŸ?) P?Mu!n?cjA?oHD~?[A?=A2:?P?$ VJ?PP?s"?*L ?L]?0p;2??oB?8'?/7?T?M?[?;;\T?F?G=?a LM?gC?^c?9el?_Ǻ[?6 g?q+v?vr?)p?ĸ{?1??C ?O?w?~/?*e>?5?*r?W' ?p@H?x,?U俈?\G`?%0?+?l.?8?0<?H?uX?X?mɯ?f=?*?QF? ?)؈?H?̧?v ?+d ?nd ?k0 ?MeI! ?2lA ?(!8 ?7'0 ?Қ.= ?T>5 ?\h' ?E ?s ?V ?C{, ?n ?" ?I ?R ?WѰE ?IM ?Q1 ? ? \ ?>P ? ?8 ?6/} ?-T ?x( ?:` ?>,J ?km ? ?%D ?՗k ?T ?( k ?B" ?. ?Z'w ?ES ?@f ?lNRO ?E[ ?Ewd ?_@V ?` ?DVm ?2u ?ɏi ?އq ?,.~ ?ƒ ?yQz ?tm ?`鋐 ?5x ?8^̚ ?̜ ?ai ??  ?P̰ ?-ﴦ ?O4( ?cN ?k$ ?K ?DT ?- =G?'T?86A?BP?_@v?oOa?Z(k?%?R\?ͯl?\w?Ev?#?p_ ?Ql?! ?/x?k?/n?0?j?i7?y?SP?Cji=?X65?5 ~%?@A -?)[:?M?ia)?L1?V?i?z>k?en?*Է?y ?I ?m=e?s?P?s??YYt2? ?v ? Դ ?8S ? ?\9 ?9֥ ? 3 ?+ ?~? ?L҂ ?( ?")y ?'r ?Dex ?o ?8O ?^ ?] ?ud ?=O ?FdDϺ ?9/ ??5 ?]Άa ?x}j ?|] ?ǖu#f ?. t ?,{v} ?Umo ?ix ?~ֆ ?*2 ?G0 ?찘 ?Y

?|~?f?s? 'n?.?by^V?f!?\ !?-Y?Έ9?,Ӑ$?PG?DV5?Ʉ_`?E_k??7!?|?=8 ?i?H ?F) 0?dՁ?#? ?Ձ="??_? ? .?Vy?W?}eh?$H??W?V{h?8?q$?=;H?ZV0?_9??v!?9U7q?a-(?bZQ)?cJ0?_y!?.?-_d?y?(l??}?ٌ?V;)7?{-?Ҏ??W?c?K?=?Jy??qD?dS?s ˨??k?K"?Kڔt?̭W?"0'?A'?<(? /!&?E?%?ͦ@&?Ⲙo&?^3%? |%?MF%?5&%?YXzR%?h"%?Dd%?p_S-%?栶#? #?!#?ְ#?ۃI#?Ol$?$@#?#?̠K$? e$?($?0$?u=$?'H6$?Ic$?ӌ"$?M$?-%<$?n@,j$?Xj‰#?\#?=Xg=+#?}Ql#?'Y)A#?"?Z"?r#?R"?ɑz "?hx"?]SϬ"?gʍ"?J,$"?R)!?!?~j9"?vBE!? \!?D "?@O"?lIN[d"?""?ԱE"?[ay!? !?\5Q!?;l!?̧!?κ!?Vw&!?SW!?.? G|-?Z-?(LA-?XO.?]F_-?U~-?gkh-?,?9]-?:& ,?{sJ,?39+?6 ,?(,?F)?!1*?,p)?x)?hG*?^*? *?qD*? *?C^=+?~5+?NV+?j*?MhjD+?*?8'0? G{/?/0?Fw/?;dNj0?b0?Q!c0?7u9/?~.?{.?|.? OX/?ݪc.?6.?>)5?qHb4? {85?Td4?Gl4?_}3?N5?O4?*i 4?MYu4?W1? $3?iG=1?iQE2? kٴ2??A0?@B3?l\21?X$;2?꩘2?c5?詏Q2??,C?X'?-?9???հK??^?3K?0_?9*4N?p]˾?T?J?mb?nD?Õ?+i_*?>W?qo?8NN?}%P?YO?.AM?A22Q??]O?W@(N?_?J?7L? ^M:K?Y1I?-M?K? b+J?ylE?mk4F?V]'D?#iE?&'H?{I?ƪIfG?B SH?$vO#??=AQ3&??O6s>?[A@?s>?7??͢:??00 B?YsD? C?RP E?!A?0B?|C?"%f8?-7?@.6?ՖTu6?t _]9?q[8? 7?\Ԡ5?p5?Ө^ 7?`I6?}5 :?j?=֬ V?.,U?TjT?bS?]fԥQ?"R?:O?ԋgR?ޘQ?ūTP?m^+?C)?7{X?&(?ֻ'?1|&?`?b7ɱ?&?7,?hq?|A ?a6?gq?&?%)8?$H?ϚT?B?N?%]`?l?3һZ?:]Lf?/5?db? w?āa? ?_x?};*?f?r? D֍?.Q?31?ߣ1+?JS_?'e?T|%?}?;̢?Vچ?,P̔?:=?5m?<㍥?Ɋ?.?/??PW??7 ?VDŽ?A{B?g-Z?F0}??"d D?8n?eQΞ?v3?a?\+i?! ?,e?b}S?w/?|gA?+ '?;_{]?B͂?3?1-E?+E?zV?Gj?]؁??Q?{źQ?{x?T?s-?X<?Mo?#?S?Oϭ6?|7v?9./a?Ĉ?|?D?@&?.^ȉb?v?g ?RV?ɀF??L9#?h?E0?:79?Ax?sūf??#?gY?6 r1?3}?B쩶e??yB?o?KB?9\$?sr?1x?L ?f=?#/j??}}[?}%-?ڬl?tg?V_?rlj:?^z?\?+"8?a1F?CNn?˸?c-? z??q?5 *?7;!? j?C{?_?rm?tp<?]Y?(q6o?i |?ʼ?SR?W?:??唓?`?@??d&?d4?'?݀(?zsc ??Zlf?g~U? Dr?!E`?[q7?FbK?[*??u5C?m_E?/F'?x^6?g?2P?3UPR(?PWh6?k_?QXr?O%W?Tnbn?? ?Fô?Q<?,e 3??o?,c?a Ts?s?2t?uC?\?~?1I҈ ?S?Kp?nl?/B/?_Qm? Y?C?cf ?o? ?~?̼?q8:?tAl?M?ka?Px?E1\?` 2?:=G?_ m?'?JD?sZ?ES? ??T?^X&?Ƹx?+m??XG?~?ő?d?7nj?k}?0?I~j?Jc?^H?V[?iԔR?_WH?B#h?L/Y?!$Jn?q=?3~_-?t# ?O?AW.'?^.37?_?kT?0O@?Ӣ1J?Yf7?{MY?0A?aK?$&k? v?*Fe?LBq? 靁?_?K|?"4?j? ?E!T?-?/E8]?x?D?m^?xU?%?P?!#5?֣?f??K H?/?R=?n"?_Ĭ? +?+\?Usr?fr]p?iQ ?_ ?XQw} ?1v?Su ? Q_h ?#rA ?G9 ?{I ?CJ{A ? ;j1 ?g ?d' ?)#4 ?kZ9 ?V&# ?%- ?TʹQ ?[ ?]I ?+V ?Rq ?^k ?^P, ?nJ ?*֯ ? ? ?: ?B ? ?4X^ ?M ?Tg ? ?9 ?Lt_ ? ? ?` ?ne ?҂v ?;m ?_V~ ?Z` ?+km ?lv ?SA ?\d ϐ ?ڌl~ ?j@ ?) ?X ?Ua ?;9 ?zg ?S; ?TA ?x ?$C ?$3 ? ? Z ? ?[O$ ?uw ?uX?M;ph?+.Q?Xb?UVxx?\{?x)p?+ب?uur??m䱆? ?.?!?\ ?b9?QSQ?I)?kx? ?>-e?6?>??C.?m??#=?޴?NS6?^?N?P<?*? 쫜 ?ӒN ?L ?G ?r  ?0- ?džJ ?Ü? ? *p ?J ?RLk ? ?r ?Z ?A ?;= ?"d ?h ?*r ?މ ?ܬ{ ?~ ?X23 ?Ӭf̺ ?+Dj ?#t ?f)Gf ?an ?1} ? ?9 Lx ? ?ھ[ ?HF ?sT ?rה ?t ?@S ?/? ?@Ŧ ?i' ?*=1 ?ҽY ? + ?ߧ!/< ?P:F ?i(6 ?Pn-B ?ʔ!Q ?a ?vY ?nj ?L ?@Y ?Ub ?!G/{ ?L5* ?,# ?"I3& ?r 3 ?¥Ȍ= ?z/ ?ram9 ?&(G ?P ?o C ?h5L ?*{Z ?"Sd ?OU ?٪_ ?(0n ?Tx ?mi ?Gs ?1@ ?ETʋ ?J~} ?XR ?Z-5 ?޻H ? ?K ?9O+ ?͞ ?ǓG) ? 1 ?G2 ?> ?o ?(j ?! ?iE ? ?p ??]H?dث6?evQ???J%?99?.?{(N?IJ?XN? ? {z?H|`?7e_x?~i?]KX<?ߖ?ЎC?X?>?˻p?}_x?\`?I*di??[<ː?0?2܀? ?6q?໩g?B%x?!.a?Q?Bi?yX?N9B?2?US #?m? *I?)?ޟsP9?tq1?̜?'s5.?ps?.? ?B?; ? ?^q?8|??.?+2?-?zD?AE??y% K ?\YXH?]L?xۥ?R?yf?FB?R?!}#??c?F?mRP?"??iѕy?ՖH?G\?hVj?e[?Dg$r?b?AL?A %=?2S?цD?V?$?C?(^M??%*?u?RI?DH?2R?\HG?.C'??S+ ?'Ѩ??d!?[!?@AS?{62h@?|T'}?Q ?F~%?!!?)M!?n}?.[UP?߁0?V?xbH?e*??c|?G??Y|?~ϊ?^?!B?w ??:o?`n?Ɇ?l!?k07?>N?y0??c8??s?~?OS?R~v?/??^}?*Ɓ?Z|?iq[i?z~O?Su?uКw]?@6?'!?;Q D?6Ҟ.?P?g?}q?:?&H*?qUCe?nu?L>(U? }??nf?N?v?[D?L2?>Q#V?=?[??ؿ?ea?7+?A)?x"?0o!? t? D?40?ԓ?On?)?mDY?в?`ҙ?</?1wJ~?(l?M?ow?,[?|I?|f?(Z$S?{g`&?Y `&?Uh$&?v%C&?6yA&?,;h)?h.)?A)?WL)?M(?O[(?G)?x(?F%&?z^-'?P&?| '?+<%(?w?C(?YR(?h(?k#y'?(?e'?ZU'?S+(?( ['?'?ʻe%?5&%?T,&?K%?6w%?Ϋ?%?pO=%?W^,lP%?@E %?-$?Y g%?A$?]#?`/$?w7#?EB&"$?ث #?ڄ>#?#?Ri$?DCB$?}q$?A$? L $?2\quB$?s|%q$?Gq9}#?a]Q#?\x#?Mvo#?Cc+%#?XY"?90D#? g#?< '>"?0(y"?ȐO"?<`Z"?FWܚ"?ʰ#t"?qC"?!?-N"?2;"?t!?)GU"?%z,!?"?00'^!?ٓ!?{p~3!?R!?,!? W=!?3v!?`n!?|k-?P,? E-?'n,?(28.?-?X{p-?,:-?},?uI4+?~ѿ,?+?=)?cE*?2x)?O))?C!bA*?'s*?!i)?|]D+*?2T2 *?mXE+?*?O*?s60?Ѯ}V.?Kw/?91?}.?O}0??"V/?r -?,u.?H22/?[>.?24?&1?:2?4?pM!0?o J U2?ee3?O<4?&5?#3?ܿ5?%Wd?nƜ?!<?w?9b?O0? ??򾊘?_߉`?>{|?A?FH?' e?}?4?! ?A+?@ ?`\+?lR?@q ?h.?#E? d? %?ߋѢ?`TZ?.KhK/?@w?< I? 4y??lPU?kї?@_!?u ?Kx'!?& ?-@~ ?\)?w? <% ?h?;{\?Z?WΥ ?6ĨF ?v ? ?S ?_mR ? ?Me?g?:?%‰?t$8?}&?eÃ?>ϱ?OZ??xv"?HGN?zj~XhL?ίJ?ŧI?7)N?yݎeL?!J?~i F?|N~H?vzBG?co:D?MwtI?ӜG?acF? .@?aɫA?{ ??&V@?8T*QC?}>E?>CA?QބC?FP8?@Mu7?!T26?a9?x@05?%#|8? Ҡ7?;?5>?zJ?f)?e{ ?ua! ?rB ?=- ?~+ ?ǜ?7M?`9?rK?$2?u?[$Ό~?2k?"m!?o?`<?m? Ŧ?E55?B:?>*?Z5Ea ?ڱ?i+?-uoG?H?W[?> B?O]p? ?R?N?V! f?jΚD?~o_?Fi(?r?9?w?w}?V?v \jv?GՑ? ?d?T?-ڮ?R?~?~T?p$W?ޒ?ܼ?TMK?#?s?n"9?2?s!??HW?z?rѰ<?Of?,?ڂ??*PO?(?p?ЦW?"N?H?M(n?mé?V`?foH?*~?\]l?T0?fo?%n9T?136?j?4B^?&IC?3P?ƃ3?:Ke?6|H? u!V?~w?̓?G*q?lW~?&?oϜ?2?lw?RGi?Nd?3H?7 ?W}?V%y ?~E?@; ?T?N)?Զ?ذ??em?o)?Ep_?|0C?S??& ?; ?R  ?U ?Z+N ?lvvA ?5( ?5 ?QU # ?EH ?ziP0 ?|< ?ڣ\ ?i ?Y_9V ?l{b ?) ?E ?Kw 1 ?-^R ?- ?{g ?f ? ?ӎu ? ?-y ?W, ?DE7 ?_{m ?ǵ1v ?sh ?6o ??~ ?gב ?ܘu ?i ؋ ? ? ?9 ? n ?If ?wo# ?O ?' ?C} ?~ ?| ?, ?{%f ?4p ?mkl??We?vJu?V*?yX?D O?V?$?QM ?w 9?'C&?{lA?\x%ͷ? P?DV?vP¯?~O?YS?紋?T?=3?q??G?l?G?8! ?> ?N"ƌ ?R ?i8 ?1R ?t ?f ?8A ?s ?-Nuc ?bT ?+^4 ?G( ?K| ?f ?_vf ?4} ? ??7` ?cc ?k ?s3 ?E, ?'ls ?`h} ?j ?<~x ?"N ?x;T ?!Qlϐ ? ?$7 ? ?ٍ۪ ?Ӫ ?p ?3K ?6L\߯ ?$0 ?/%< ?A ) ?j5 ?I-H ?Kk+U ?rA ?l2#O ?D2b ? p ?&\ ?wi ?++ ?*g5 ?O"( ?2P2 ?g!> ?H ?.; ?={C ?!j^CQ ?)Y Z ? BM ?TU ?ud ?n ?ѺF_ ?j ?y ?O/҂ ? Ct ?' ?q ?;$ ? ?,g ?U ?u ?K&t- ?eΪ ?.)) ?4 4L ?V J ?,E ?I ?YMN ? ?v ?! ?nڸ ?5G ?X ?R}!?3?;ߑ?? pW ?̖7?gӇ%?((A?`C_m/?}iT??h?Q-??0:?g*?uX~?M?cA?fro?o-#? ?NF?U'?_f?=n(?+?]r?؆?6RBd?u/?b]p?c4!C?6s/?Zz+?y˺?60O?b,?Sa(?Ocl?̘۠?$?BX?l~R? ?Fg?o@-|? ?/O?2j4?QQ?E?(?~m? ?9*{N?[?* ?|g? Y?I?Z?lw?aN?ǀQ?OOji?цo<?^(?CQ-?oQ??N;?>?@?H/?g;?_ҡ?E6?u!_?&j~ڭ?#߰?q?D/^?]~?XF9-h?j1aK?8e9?բKBU?C?6?&?)o&?̙c&?)0&?)~&? (#&?w%?*h=&?kͫ&?O'1)?JS-(?(? m(?sŋ_)?⏷(?jVYp(?ß2'?a|'?k @ '?^]'?O(??^'?R (?*݇(?xl#'?('?! e6!?7c[!?qF!?ub!?wvz!?(Nb,-?j{>],?u0W-?dA-?J,?z+?It+?đ+?#4+?Ww)?Q)?P&)?b)?R6Q*?J:Z*?x*?rq*?&mv)?&)?C*?z2/?>Vʏ.?6v.?ۚQ1?[g-?&/?.?gi2?}cYQ5?x4?P5?vXr91?o@4?k2?se[.?j2T?a?5?D8?dY ?r_i?5י?V{J?_ ? CVs??.? ?ͥ?Ί*1?^ے1?}`?F?%),? e? Ke? iɵ?1E?@Sm7? ?!3S?≄$?썅?ߙ?ۨCX\? ?C y? ?3;+ ? ?7 ?&;?:3^ ?r% ?؆?ny ?~??C֔' ?$|?6w ?D,UD?KE?6y?KY|2?cѺ-j?G?" ΨJ?̚H?kF?y$77E?K?T:H?DxF?]>@?UA#C?P,B?: >?q'E?DrTB?A?J|8?e0:?l{7?z9#9?$=?E??Vf'[;?>d=?0t$U?.UU?R?i Q?T4#?P?%uL?:{N?.I?F?O?@AثL?IYJ?Oѫ]:?D6?~Ic?=?8"?\ ?H ? /[?^.=D?=f?Q9'?e~?}?BA ? r ?U ?EB?ЮL ?i`?'&*?c9?#?z)?mP@?B?k/?$(u+ ?'6 ?Xp& ?g0 ?i<@ ?$yJ ?X1; ?gE ?Wp ? ?O ?Y ?}A ?-} ?Ns ?NWN ?!Ox ?):Mi ?x_ ? BT ?GO ?+n ?_gY ?'/d ?U:! ?O ?p, ?' ?6M ?Z ?B( ?ik ?I> ?S ?p ? ?Ҧ ?Rm]" ? ?m] ?iŊ?ȣ?&l9?2?r?B~?z?j%?>2?`:H?,:1??[?9?37?K:?Y0?^*?>?K?a[t?6y??1?WCȉ?/?j*?#?, ) ?Qc?FMu? a?La?u?hl N?ٛ>3?@?[.?a?1ΦyN?a-A??rX?\h+?@ ?%?Ǘ>?^? eN??n?As8?B>^?kN?i!?Di^?߶Q6g?Qn̙?*u$??V?#(x?-pg??̕O?w?Ξe?*4?oVu?9'Yx?+6?G_??`?NG?E5?LH^?J?Eۅ"?UҀ ?LH)8??1ѹv?S ?D3?($?RО?g?"?;6?f??9? 8k?u?u-?YL?&c?y6?n$}?ob/-?S5c?4YD?!Zy?ͪ?C?W+?ō5?-_?Ct?^"c?I?~??9?5&\?u8?T?(?sYK?Zof?mQ&?g֭?aH?ؙS?p?W$A?Ͼ?,?%DJ?DJ?Ǹ?|? ?AB ?PL?R4T?;\:? b?`ʸ ?%?=H?I~? 0?+-I?i*? `?98?aco?\?kxc?nn?|5 ?_?LGd?o?ʌ?X?Da??T?kz?!"?K?aTqv?{m¢?u1 ?|S?x7~?׉o?ۦG? W?:A?&?Lg???[1x?h5o;?ՈaY?[o ? t ?՘f?/? U l?؍\?S7sx? eo?LlM?9%zY;?:1`?O`O?-$i3?nFΠ??ziD?6{?n\?xc0?V?{??? ?HU ? W?u ?a_?Q ?7u^ ?Co ?hz ?Q|i ?6Bv ?ӨO ?oE ?U" ?Lq ?g' ?= ? | ?yh ?C ? @ ?l ?B ?YR ?A)g ?\7 ?Hg ? ?Xx ?Oܟ ?ڂ J ?v ? ?+#?d?2_Q-?zY2?f}?1?'?Y$]?ۢ'?n2?1?d ?&?,=?`0 ?♨i?pf??P‰?no?y#?tf?"˩?PPv?K86U?gc?ͶD?㓂O?*/q?cO~?#]?Rk? <3?d`!?I>?D*?M%)?G%? H? ?y u?D /?gP?ODO?C`?N?tD+j?D@Z?,;?{_*?G?%6?? ?P1?^*?!:4?r? '?ef?VM?U??`s?4Vc?tTR?n?Z,?O?W~]4&?Q?Iؠ?⻵??{r??+a6?)\?1?O?fЊw?/V? Z?7ۢ?Iܕ?׿4O?sM$???+(z?Oa?Z?U3'j?=Z?r?MYQa?rMK?~|<?wQ?C?)rY-?Ol}?4?Ѥ?&?Tc?wp?ZX%?C;?}?U?xG?3?c?l?h?loF?A̰?N?6? ũ?tT?*x$?(c?CB)?DxVw? i?sk~?>p?}?;``?Y?aj?z "?/??X ?D[Д?'2e?Ҩѡ?iؙ?K7?]S?B7{?:?(?)l?:]?ys?ge?q@O?m @?kSmV?eֹG?:& 52?j/#?_49?a*? ]???ё?D6=??h4k? q?r>?[%?C??*WZ??(dQB?g⡉?`jcB?zS?,?(v?/,?K9?X'yT?dh/?ߦ?qٯ?μc?`?aD[?|g4?̬0g?%C=?̺ ?r?!3?Rĸ?"?}ϫ?-?u?E??f?Q??[w??L?C7E?A?q |? ?8c?VZ?lӞ?f&w??{?/O?;/?ʼnl?rF?}?D?w&?q?) ?<-T?VUln?u}<?s{ዣ?>ݳW?BxRq?n-$?%9=?iʫ ?m?w`??jb?ε??)ZP?)C?D>?_@,?eqsu?M ?#A?c^?;?9[M?Ӡkz*?Ai?U=?,N?s4b6?w4?w7?vh5?G_7'?;n&?ܚ&?D'?.&?]X&?El%?R&?׷j%?h&?V%?s&?i(?0t'?(?+k(?'?tg(?V'? u .'? M(?>k(?XK%?yT%?U܃@Z$?$?f*$?x{ %?X$?^9,>%?fc~R$?u$?%M$?R2#?Zl?,w#?*fC$?+,#?Q7ױ*#?#o"?XoR#?M#?Cyǘ"? "?ٍm"?:x_"?9E&!?٩0^!?YK ? s !?H!?*#k!?)YJ!?2c{!?b-?t,?2 d,?Q},?|9[+?2fr,?/+?ZA N+?ćG*?ov8)?>)?A)? XA*?J(?!*?2M? ?+?(?Tb^?va?1iA?@?. C?g ?_B ?-9 ?p ?^YD?-EAX?bx? f:?r ?y?*]?Xv?ey?[?q?#F?KC?&uA?m??Û;G?~C?ЪkA?9?Rj֤=?$;?0s7?M~??O3LBF? ]8?Ξ#??b`*?#?v}( ?V ?h ?{- ?5d ? k ?X ?8 ?B: ?[] ?댲 ?! ?` ?;8d ?& ?O ?DU ?L ?l֬ ?H ?3ۧ ?td(6 ?[@ ?Y1 ?KrY; ?J ?">rT ?lݎE ?N@ O ? ?9] ?u41 ? ?@@ ?a.~ ? 6N ?*8| ?Bs ?_ ?bbi ?Z ?Ӛy ?S+d ?Q_n ?, ?G' ?@O6 ?u0 ?< ?=$ ?d $ ?n ?& ?lw" ? ?|5+ ?6Z ?de ?U5" ?\?||I\?I?5`?S ?VB?Zj?|d2@?7? f?Ӹ?-?x?7-m)?#<?}?Cwq?k+?8u?kN?"KT3b?ﶏ?Q>?^?Nr? ?[?-?Di ?Q2?zG?!?nB:?*e<]?|v?Y&P?-[g?jA2yP?3?dd?s?3?Tx?X%g?d.$???|b99 ?/Ɏ?Ik?]Q?x仮?4bu?? _c?a?E;?[~?^m?M?];4?1rj?1O??+?N>?H ?E,6? ?_?eF;??F+?#?SZ?O?5?e|?*?>??K92?܂7?Ge?")Ty?(/b?ڝ ?I8=?\?2Rq?8?\?+??rᯝ?Q$'Xj?LF?7c~_?f?W?Q}%?>?2O?#4agx??k?ڲ :?#+S?*(?A???qry ?g ??s???~2 ?2?{??Я?J?+!x?k?q!u?}Z?u?>ad?PHF?d8r?@a?u?Ix?.dP?P/A<?Mȉ h? S?O?ĺ?`n]?b׫?8??{n?hF%?& ?kS! ?d ?U ?y7?hn?Wn?E?))1 ?[ ?;#?tG ?DJ< ?"hQ ?h ?K܆, ?JL ?V ?A ?+<v ? ? Rd ?E ?.. ?; ?è ? ?4_ ?3? ?13 ?=$ ?4=޹ ?I ?SMX ?n ?+ ?q ?_ ?p{S ?Ae ?C#c- ?Z$ ?x ? #" ?x}: ?OjI ? W. ?YbA ?EZ(y?I|?@B?D +?η?q?!黴? n?qH\(?-?wG?8??qk??0-?Vz*O> ?`2 ?4s' ?VZ9 ?3p0 ? w ?T ?^% ?P ? ? f ?W ?I; ? ? ?c? ?m ? ?KM ? ?6DF ?Q)N ?iv ?v ?a ?nwdǵ ?ll ?潰 ?d6 ? ?i) ?J6~ ?}^X ?nLCj ?>lHP ?Z a ?{ ?t0 ?s ?Ń ?m2I ?K_V ?D ?LO ?Puc ?=7p ?j\ ?Uj ?q ?~} ?w5 ?.Ukw ?n ?/_. ?z ?7 ?7 ?.Ec ?ogD ?R ?Ӫ+ ?!0 ?m ?b ?N ?]d ?j7 ?P ?QB?TI?1 u%??_?T;?R? c??"S?t,?U6?ۓ?F?"??ܰq?؊?C$%?w?Uܽ?Ͻ?mڟ?[I?9W?= 5? ȉ@?>d?.#x?N?ýD8\?jj"?.S?G,?-L?`?8onv?=?˝?{,?aKD?GP?Ky?xS?\2B?*l^?EO?iF1?. ?ŚE>?-?Xf?C&?U;? ͨ?`? i?8Yr{?&[?:9?^m?jzH?%$O?s0?~;?q{? )?V)?n?>T?m4??C?D62?}?9y?N?œ? 0?k?qr?x2{?Si?<?p2r?~X?<? JJ?]u!.?۟Na? R<?6J? r, ?(`?)CW.?`?Aw?? ?Kgh?U(?E?F=e??Ae?R+?J-?}5)?WX? 0?t3\?v"?b&.қ?FF?Ǖw?$Br?H~?j3i?w߸[?|p?$Wta?J?! 2?S ?Kl~?6 ??#ᦀ?PTt?^ ?7?^w? ?3){?vo#_l?'?l-0t?qe]?&2N?c8e?Q2U?S5@?U7c1?X F?.9?mT#?I4p?(*?v?m?,}y?{8)?낮6??\,!? `k?9 &?pI ?S*?$H)?M{?1&?04?>GN?2?9=?D9n?/b64?hՅr?NI?W?֮W'S?/ʇa?-5E?[J?m E?oi)?¥}I??YX?Nï?u_? d+}?ӗ?5T?:'??y?# /?i?)/?W'?8 >?d?f ?FQ?5~@? 4xf?n- P?D-?_ ??LiZ?a#*?Ru?VD?lN?.?1T?0<?ڑ?%?M`+?A[}?ĊhZt?$10??lY? 6@%?rD?C?"^?/]5?X22?>v5?~p3?Q9%'?C-&?9ң'?#&?Ew&?e%?S&&?;["~%?1hcף&?#%?&?(?Z(?'Nmr'?'?z'%?$?Su%?[$?%lJ$?;V{#?T#?AJ,#?jHBn$?blh#?AV#?e4a"?̽ȼ&"?xXD"?dN!?U#?3"?t!"?X ?MަG!?y ?M ?B y!?6ߝ!?1!?5:!?9+?E\,4+? %,?oQ*?*?8x)?V)?G)S(?r)E*?'_)?k(?3v0?ɿ,0.?@0?0.?c҂_,?.1+?1.,?? N+?TԺ?m ?Go?b?y|d?MH+?8*|?V?9+ ?U?y,?r4?y`g$?݃?:?S>a8?Ϸ! C?>?DP:?L`6? l3?a= 8?m!#54?67S?ShPS??<&IS?Y]E?bC1?)Q#?2y7?kN*??xkA?S?%E??GE??ye?GH ?jk ?n3 ?GT ?VmU ?Cv ?Ð ?ӝ ?~ ?w ?U| ?0w4d ?V ?nV ?lt ?Ӌ ?oU ?6z ?o#. ?놼 ?{Z^ ?ft ?H ?z/ ?_7x ?Ə ?/@ ?~a ?QѰ ?S$@ ?iJ ?: ?(oF ?E'U ?>4_ ?EP ?4ԃ-Z ?&n ? ?fc ?4 ?l3Q~ ?YTFi ?*Xis ?x?=d ?nٯ. ?;m ?kcx ?8M05 ?+ ?@ ?Ott; ?v ?V ?F ?nRE ?]U! ?4R1 ?}$m ?x* ?oD?z?gCE??RU??CX?pm1`? B?h0Y-? n?tTLN?M!?PS?vXD?#d?,?ҕ?݊B?)?CY?,* ?[b??{Y~&?q?n?459V?Lw?ud7?bU?\;Rs?E#?c_?Šw?HO?d炪?QX?Mp}?"2:?$¶?/??b?:1-??%?99aZ?'ٵѩ?`[l?(? ?(ˏw?Q?u_ ?-?zhi? w?].? R?4?TY4?=?[܁??۶(l?nD?Zej?@?LL9??5?ф\?]Ä?ZC?KR?{?5{-?"oA?r|??N?= ?2j?+<<?ԯ-?_?`5N?z!?bn6?+s)?6Ŭ?2?cGIn??a=?!k<?{A3V?jj? ᔚ?'PD?o?͐?"???_?=?6 ?qU' ?] ?8j?Op< ?5 ?7* ?*<??K ?ƼcT?*R ?Œm ?/h? ? *^ ? 0 ?g$ ?IU*y ?(策 ?" ?X+h ?^ ?l3 ?F9 ?6 ?7. ? ɼ ?4M# ?:\ I ?/?6 ?SZxY ?"lz  ?LKI ?\F)+7 ?,? ?ȯ?42?9'? ?ҕP?v?X?2?V|]? A#?<kO? ? ?v"6 ?J ?B ?kk. ?@!! ?7'9 ?s"S, ?w ?ƙ ?E ?* ?l ?q0X ?,? ?u ?i L ?b- ? ?; ?eݩ ?8 ?뻸Ǣ ?̐ ?&5{ ?!w ?W ?` ?_ ?h6 ?3.Mj ?ʋ ?p{ ?Z ?OR ?nG ? Wz ?A&V ? c ?+:M ?O\ ?[Sq ? ?mi ?K\L{ ?#XE ? & ?~ ?ww0 ?:B ?蝛 ?mv ?V2͵ ?+ʼn ?X ?K ?- ? ?w ?+ ?-V ? ?f ?~& ?Y0 ? ?7+ ?x; ?hr2F ?Rj:6 ?@ ?-ʺ??¦?2 ??9 ??Ap?G f ? ?y)?s8X?z:?&B?D10?o?7??U?6ocw7?}E?\"U!?)?S?vPAYo?Ր8?eG?4o2 ?m&u?,~?>?6^Y?}N?i?=x?RP?zI?G?ja L?Wzg)?*f:?)Q^?h,?T«3?gE?v8? 'q?’F?qx?5MW?.v?\Өt?X+?=?Z?U?3h?U0??L?.??Sq?"?}}?])ܛ?33"? j? KS? g u?4 a?c?ƭ)<? ?8^+%?z=J?# ? B?5h/?I?Ӑ}?DŽ”?1?i^'? S?VJVh?V4?Ɋ?Nz2?Jid?EΫ?~??U9?ٛ}?nEm?w?n[h?u~? n?I7۷Y?lK?3_?t3WQ?J???O߾?JP?c%?]?i{?,Jӭ?و??<Km?U]?9{?}-e? uvL?g71?@L??;+#? T?7h2???m(?Lw?p$?|?O?;Xx?*bY?R?Q1?b.?Ce? e?]L%?^/QQ?2??R?ζ5?-L?UFn??-)t3?)?[?(Q?51?a?H?n?cF?s?[*>?7=$$?pi?b ?Q?6|ڬ?m`?溩 |? Վ?KB?֧x?6|?>"??"Lf:??X?裙0/?E8R?JJ?T|?MBg?$2?(<?v9k?2%?2j?1LȘ?*SG?x}I?ei?VC:?1?eƨH/?Yk2?ȣw/?ȶ.0?%5&?ַQ%?j=I&?wn":'?Lw4'?n*%?N'?~׵&?!t(S&?%?&L<ݑ$?w#?*"dr3%?$?;3U#?O~]?"?Y"? )B!?ǺG#?v83("? >7M,"?_ ?L'!?̡q~!? V ?'"P!?Lg ?pg0!?zg"?ө3 *?|]%)?D(?HL/&*?> '?»$(?~+'?&_-?B*?R"+?vot-?Hʭ(?s"K*?Hs)?B8?|?޳"Q? Î?e?V#Hb?X?=հ?F`?h?W&?&?N*?Gm?]xM ?EZt?u]C?;?zo;?9\5)7?z3?k%=?na-1?9417?\I3?R,F?U?? B?HV1D?(79?E{??{??ݟ_?͎Z?/ ?gv ?|<.?y!?tO ?r)2?=;@wq?'?ƫ?987A?ZB>?:=?WF/8?ژ\=?Ug0?;mC?/6?J3"?Tƙ?:QO)?i4?!?!?K ?J?)rD? 8?Bi?}? ?WK?E?K?? ?( ?{m& ?zN! ?;X ?ųo ?5٦ ? ?d0F ?*R ?|B ?t/, ?s ?7 ?(8 ?7f ?3į ?Ź= ?҇e ?ű ? ?  ?+) ?)( ?>W" ?} ?z'ݻ ? ?m٫Ҡ ?jm ?J v ?ʜ ?L ?4_ ?|"U ?h ?ވ.(G ? EV ?;_ ?l ?xr ?)?~ ?Ff ?,6i ?hSx ?' ?!^A ?Ve: ?P ? "H ?` ?6(& ?O] o3 ?T2 ? @ ?y% ?TI2 ?CN??*?@n?4?6TZ?\|?%TP?8)?i?=%4w?H׼R?O?ys? U ?oy?_<?9~?ޘ4]?֩'?@?gujC?p,e?KDrpl?ւE?SO?9_?!X;?N+i?$?2?4?lZ?0?H0/?5a?N?sHn?0{?2Q?pdx?AT?5k2?=U?MR?!;?ْ?~i?h?6)3?i|?9$?ZB? HG ?Y\?\qYw?^?90?`K?0?C^L?l7?-? `V?6 ?lQk2?A2 UQ? ??V?lˆ?t??;z? Ѥ?Zw?^i?_?WbN?+- ?V ?uK ?ʎ; ?% ?k*j ?" 5, ?4M ?~2j ?Z"X ?>Q3Y ? Wؾx ?{7 ?UK ?JU@ ?^ ?Ǿ ? ?RE ?\v ?&3 ?e. ?iu~ ? u# ?J ?lQj ?? ? c>X ?>??po?3hm?b???e?vz/?NZl?$z?k[?@{?>=QD ?7 ?,S ?y9G ?Ge+ ?~# ?4q; ?W) ?ߤ ? d ?* ?;Z ?vɟ ?eT ?V ?W% ?wQ ?Lg ?Hg ?ҚY ?EE ? ?] ? ?w ?j ?R= ?ٍF ?a ?>ds ?JV ?#j ?-RJ ?cpؖ ?+{ ?1& ?f' ?dƱ ?Y ?_ ?Et ?^ ?@ ?:껡 ?j ?זa ?wk. ?P ? Fȷ[ ?ڨܤK ?"H]eV ?䙂f ?kbRq ?kX-a ?ͷl ?0 ? j; ?3+ ?tb6 ?R]XF ?ZQ ?uA ?xK ?n(?fWw?>t#?u?$k??;F?lT?aq`?OIۼ?K ?0 ?q0?c?2?9/x?5K?aKi,?ྜ?Ce?OQV<?(JQ? @?#ё*?(??!?x6Y?"L?Yͤ?@?`nm>?|-Q\?ldz?Na>!?+ʋ?@?%_?v"?+ ?}wl?"?Q?d#?$m:ؓ?nl?~&?e$?1? W?<?L~m?{N?33^?3 ?Qc<? ?s!?d{2?r?O!? :?ѹC?>s?-????@?T?q?R?/$l?b ?O$v?!p?BA}?v@1f?)W?}hZ m?ѿ[?eH?FO<?&M?,??wѰG?JdǶ?JV? ?pT? ?t\?qxr?8Q?gz? d?dz?Y2?ۅ?}<?_*? ?~?v?Ѿ?v?;PH?*?P:n?.J1 ?ŵ, ?z&;?c g4?#? ȼ ?2? ȅ?È?T篾?H?U?}v?b4?9}7?s?#ka?U1?Ζdc?3,?b}ef?~3pX?G?Sw?%3f?01?R"*+? iIE?11?7Ŀ?+H?c(?tGq?y9??U^?0m?gxG?/[?; ?ܟ?h=>?ng,?&?,_YV?GtC?l? e91?ބ-?W3^.?/$.?4?T+?Ő`,?9+?6.k3,?xs%?fqa$?f#?@ #?"v5}&?T2$?O:Op#?l=,"?` ?$j!?F"?d%t"?ft ?c"?o!?&G~!?+S ?;!"%'? t (?Q"%?]R%?Tq(?CҒ4)?I߇&? +'?Gt? J.?6?9i^??[$x?ԯ?9. ?~?v#2??t3?6N8?76?= 4?0|W/?t 1?R`G~/?3@+?(G?FmU ?1,?0 xBe$???\&?0A?UV\<0?8(?:,?% P+.?yp?tw(?Yq+%?Yk ?I7?%Z?I?GI#W?]=?~?Vp-?5#/?zu?7R"?<I^ ?~k73?gs"?"?.J?3?\,?3EN?L? ?j-?+?,? ?@M?+?5ze$?$?]O?]B?YQt?ZK?p?a?p?!wGV?MOz?P{y?w 0?xCU?hC?M0?gHos? N?=c??1?qJ?VZ6?bl?"?| k?B ?'R}?1 ?N?I ?jɵ& ?M+8 ?+;ih ?A) ?QnS ?QoA ?hW ?6 ?|q ?ژ ?)} ?zF ? ?!c* ? ?ʼ ?x ?;4 ?11áe ?*?L ?w~ ?1_ ?s< H ?N F` ?W,?f?N?G6t?=K?MY>}?-?(}s?W?E??s;?J?J ?8 ?_ ?[qO ?4(/' ?eBI ?:0 ? ?ȣ= ?? ?ps5 ?z ?i. ?xߨ ?3e ?3B ?xQ ? ? ?$ ?vPy ?<DS ?bR] ?"8 ?[ ?. ?f] ?es ?; ? ? ?Bc ?9 ?@ ?'a ?7i#V ?‘c ?;Ā ?膰 ?s- ?- ?)| ? ?v ?) ?\ ?Y̜ ?p ?C8* ?Ϸ[ ?Bf ?&V ?Ea ?l4q ?/Lh| ?Xl ?`4w ? ; ?F ?h' 6 ?2 A ?MQ ?o[ ?CL ?qCV ??i6}?>$?b#|? ?T )?C{?3r?P?T~?cH?{8?E>Lf? i??k?gE?SRW?߶K?N-t?2럀?G??^ ??۪ՔC?^p?O'? C?N)H?8t?CvS?j[p?շ?#E?$4ԃ?c?c?CWs?D?v0xK+?ÂT?B1?6<?"J?%#?^q??l"?5S0P?i],?o?F?y0?b˜?\`M?Fe8?#Q͎?,s?^8b?OV_|?q6h?~SQ?i2s6? L D?\5^&?V?B4?9A?@F?ڹX?`3? ;C?G9Ul?wk?d?JCЮ?>*V?Ŗr?`0?!?i3?WK?+4?0?\uS???\h?#?x?<>?*?'1pq?S ?w ?~9 ?l_%?D?nG- ??(b3׵?s۶g?.)Z?{3?u+;i?Z?I3?m?o?x??Z?N??DX?I{'N?y3?A#?m^V??|U&?XPʈ??cD_$?V?_CP??^@?o?[?sT?3>?]rxt?k??Ҵ&?#2?*h *?Lerv)?a*?\4k'?0%'?? ;'?&?[z?ScJ8#?d "?9L ?9#?ܫ?#|֞!?2~ ?r>$?׵v%?,$?.$?!"?=0W#?AV"? cG?8y?wW\?ys?*@F?|πzq?»,\?Kp+?=[,M?(?SL"D&?|k4&? %?6w$?}#?""?k1ݜY?/?>~??p}!?:wh!??mQi? @c?T{U?Gi? |[\??H?<:?N?ƉjA?:]-??G3?u&?s?UE?LJ(?ר ?X?t?V@?t\?b?ᰦ?ɾӹ?I.??!b?Ì#?'T ?>?X/v?B:)?5Ɨ?Jd ??ē?9?J‹?aq~??p1Մ?{p?Zb?7!3w?9eqvi?Pc?Kݟ?~?Kp?-P0 ?W=' ? ; ? #R6 ?~- ?Pe/ ?c/ ?& ? Z ? ?@S ?.S ?^3! ?i% ?k ?R ?@ ?8߬M ?g ?B ?qJ ?x ?'; ?׻ ? MC ?= ?0_ ?2"q ?B ?l %o ?h ?Ce ?  ? }z ?NJ ?gU(\ ?mpO ?lp ?xf ?vB ?f}/ ?-4Z ?}'nI ?(X?nN? `?ẓ'?9 '?j~䭭?!?Ho3+?8?E D@d?B m?W?Q.'?-~?D~?{7;_n?_?{?i?mS?x#?!r?t|?lv?fڰ.?[Q@??2,??_W?gd?UX5?" ?U\ ?-4 ?3 ?K9 ?Plqg ?&? ?;o ?_U ?Ď ?x& ?Oժ ?. ?PF ?0' ?H[ ?A? ?E ?#ovl ?S?LyU?Y1?;=?[H$?l~?Ge ?~r9 ?D}?2?86 ?|#x ?R;1T ?> ?,5 ?'Y_ ?3Zh ?}?& ?W[vD ?I'F ? ?bU* ?jո ?T ?4 ?]RS ?Iצ ? ? ?48 ? ?j, ?L/@5 ? ?bɝ ?w ?1Q ?( ?/ ?b  ?N_ ?Y# ?:|' ? ?t ?S ?&iP ?#`ȸ ? ?0AN ?rܑ ?\ ?Y܌3 ?׽o ?4ڰ ?2bė ?9 ?5Jc ?r ?LP ?ۼN ?K-f ?ܥq ?+da ?1k ?| ?" ?8v ?c=} ?ߊ;G ?ˠ6\ ?1BQ ?Z B ?3gf ?^Q ?[\ ?. ?8%+ ?PFZ ?f ? ? ? ??R?ss?Kf.?!uX!??^(g?SX=?k$?t@?^F?4"?/?Vq?ǂs3?Ԁ_?45?yu?~$?`?=)G:?W??PL?$?*? q?J K?. ?hP;?@ ?? ߇յ?-d?A?"az?~.M??h%??f[9?N+?OS?m=? ?}Y??c?PbΤ?R܄?Ep?8Ec? w?MD\?͔F?_c??OO?C_ο1?e$+?Aj:?zz%?u@?$.]?8y"?:8?0.z?/?hDU?p?es?z? bq ?aA?J?B@?+?5?N?j!?(^?{V'Y?ɻ ?e) ?[ ?l?)?hTh,e ? ?B2?.n?h>>r ?"1"?&M}?#,?/?T.g?Q?)3?>bE?f,z?9E?H#?N^?nbD?Uƹ?e%?C>?Lgѥ?0,??:H?` ;?"k~ ?,?Jӥ#?C ,I"?J'U!?!? ?$ŏ?sT?@S?TXc ?S!?N[k( ?!U8??I?Oo/b?Eq?bE?#?q0-?t?T!?Ky r?sua ?#T?ÀT?;?7Ӭ?)2?QD?-J?q?3?Pb?@wV?e?ƶ?mS?CK? ; ?xU?yYH?e>[?N?rr:?#-? GcLA?֊3?:a?Ua? R&?J???J?ȳ} ?& s?w?|%Y?櫝?s˧ ?L?G?``#S?L?1$?iPy? o?x?|?i?ߐ?ʁ?%?[?h}?3(p?W?cv?$8ob?f5U?5 Gh?ۤ[?<?A?`"}?m?t?7E ???m< ?16 ?DL ?C ?i/ ?ϵ# ?#+= ?O?ƈ0 ?% ?h ?E$ ?y2PX ?ޒ ?l-$ ?Ю ?=M ?W= ?"$C ?-ۂ ? z ?5U ?W ?ad ?=]}< ? ?[>י ?f캡{ ?򗻫 ?d % ?Դ ?-q ?n<` ?C; ?[=ڀ ?m.P ?@ 6 ? o ?Z ?}g?@E?ye?E3?Ȼ?"VE9? Eھ?V&U?К|O?=N!?+?vм?-dcG? [G?'J?Ks ?{V ?V ?P}զ ?SV ?|}ij ?K ?zƖ/ ?#} ?<4HV ?@ ?5Zb ?V ?8| ?+k?%z?!bA?$|?9 ?#V ?C ?lf ?̔| ?>X ?,U ?JSx| ?$4K5 ?/6r ?;1C ?RU ?WX ?4* ? ?a ?IK ?~ ?V ?ӴE ?& ?+ֽ@ ?p ?0[ ?t6 ?$ ?S ?|#&?rF ?^ ?m ?=X ?X ? > ?2@õ ?Ce ?[4+ ?) w ?` ?2> ?( ?q* ?$ ?x ?8W ?է ? vH ?_Vp ?3h} ?7/f ?}vw ?[g ?7 ?E& ?Ғ ?A\ ?Xb=?Zk? tC?{+W? U!.?u s?u@?zl8T??;??#+?A< ?_0?Aug?\2 L?>?1w?4 *?iKTE?T??ir?53?VD|.?w9??Cm?.TY? ?@? ?ou ?aa ?a ?dEM ?jw ?rX ?pWD ?_ ?e?\r?7? ?gۭ\?xW?.?ͣH:? 2ؓY? |?Ʒ?_ǧ?P?2\?Q ? F?Pg?]k?HR?i(|$?Ro?KF?ﭲqm?H;?Ay?q?1(D?N'?*䑯+?"߻0?bT?2t"?^W?$&@?KH?H?~?nC?䳭?Bn?7? ^?s?;9?U_?ɣ?l9N?!%?/H?p?- H?t:?`dN?83~B?զ,?g?*{4?{08%?D??{?WV< ? M"?.?*21?8?A ?'cb/?? ?q?k?_/Z? ?`$"?pK?i?.>?;5 n?&33T?mpa?1Ov?͘fH?`_T?gIa??G1~?N?Bc2i?-u?k?% ??rxJ ?2(> ?E ] ??Q ?ˀ1 ?0 ?nD ?㭯1 ?/"V* ?Z ?( ??[u ?@b! ?a ?o ?5( ?c ?" i ?P ۚ ? ?o @ ?ay˿ ?͏ ?nVz ?ش ?<i ?VZue ?dC ?*M ?̟x ?n?]4?TQ?(W?8y ?-5Z7 ?e;?7 ?4| ?ʖb8 ?s ?7 ? ?>O ?F.M ?A ?^ш ?Ϫ ?yXF ?) ?- ?1\| ?a_" ? {N ? ? ?pj ?Q ?tO ?Z} ?(2 ?)! ?z ?  ?6qV ?7ԧ ?I}Oy ?zjy# ?we;7?S31?UUB?Le<?G ?? ?G ?;6 ?1Ϲ ?Z ?M ?M ?5k ?O; ?B?2 ? 1] ?/j ?S ?Xj5* ?C? ?GN2~ ?o ی ?Ԛv ?X ?U㍛ ?aɨ ? ?" ?ikIo ?Uc ?o݂ ?'{ ?؎ ?-_ ?0' ?ⷹ?O?3R ?6lV?^1?N+?ð6?`&?kX1?G?@R?dB?6N?5H?ZuM?]wS?LX?&3?2?Δ?ө[?=~\?{8?Ԣv?>?O?t络?-&? VR?VҤ7?c?;@U?S p?8XJ?1<?lrަU?!{q?ds?t ?qM?:?²|?v+\??ƛj?{]=?D?27 ?@?J??؅#?yJ ?X??V2EK?Q$?̇? ?-\q?%#?a&q?Q3Y?tJ?{6]z???52⊯?J?<ż?eB?a.Y?gkO?@?r"?-7 <?r;,?|G?m4?h>?ڍ4?"y?3?g%?Q8?V ?S?+k ?v@?0֮?|D?퇾?^?SK??.?&ǯ?${9? ?QYޖ?\?ǎ?DS?_?@?)@K?Ϋk?Vt?]W?VԬfa?̨?6끶?33?ug?AiW ?ZD ?:o ?]_ ?A1 ?H  ? ?f ?K'M ?D ?KG, ?z ?+h ?} ?' ?kT ?S ?u? ?E ?۔W ?6 Rڋ ?} ?9 ?eܻ ?v~ ?/ ?B4 ? ?qΪ ? w ?~sJ ? ?/X ?O5> ?<e ?aE6 ?y$ ?sTy- ?\ ?`ք ?a" ?gO5= ?f?A?O5<? lL?F?)?"$ ?a# ? ?Q ?ČD ?ҜCg ?uv ? # ?tO ?BI ?Wr ?#M ? ?PUi ?2y= ?Cr{ ?C{ ?㊏ ?n= ?lp> ?ٵ ?G<- ?sx ?յ ?aϧƙ ? ?h ?$i?\bD?^v?x^ ?6?&+?`@?#m?v?+?6?l]?p1W? Q?b?h\?/ԟ0i?x|{Y?kd?6^?+c?2 j?:N^o?ҵx?+?YJ3X?d߬?Җ?p?ԸU?|;2r??}A?)>?U&q?` ?,?MZ?,2?[?F4G2?{ Zͫ?nen?fGZ? ؀?8X?f% ?X1?zs1m?I$?ҍ8Q?=:?$?CB?Bq{?G?r^N?? 5t?ۧH?A.2t?Y]b?[6i?.d ?7; ?$1 ?1+ ?H?GI ?MP ?N? O}??)_?l:?r .#?ki?l??E?3$I[?o?? ?%_?P?9?m?Ef?B>?p?a>)i{?Lou?Rz? ƀ?N?kw?eR? |X??#?\T?ֺ.?0w? ?#̩z0?i+V?^?bQ?&[?5X?ey~?؛?[N?/?hF}?* ?ڳ>?"}?SKx?} ;?1wf?cp ?#y ?LfT?!N ?+'?D??g??4G?޵?&?0W?A'?Eŧ?=&?Ǵ/e?"?N>g?B 7?9? (?a i?v}8U?!]?#ׂ?8?=O,?S?\gau?y[rph?|?˔rn?,'a?S$ ?41?8~#?,~ ? |h?&?Wӟ?Ju?$??mj?]?WD?!?eƓ?f?)nq?Zq,c?b?Q?(T?e.?A?x?+C?w!?yĕ4?{K(U?Y[?vWa?VDO?qU?Ht?+Ig?eia?uˏh?=R[n?H[?tj ?FyW ?~@͕ ?BCa ?2E ?XtD ?|-moy ?ly ?% ?յC ?qMH ?ϳ ?7O2y ?Ox ?CS ?11 ?d ?8' ? g ?"8i ?O ?6Q ?0Ѭ ?vh. ?j, ?.0 ?p- ? S?ӴK?K#h_?rW?,d?٠- ?hQ"k ?2 ??FXy ?^??=DI?F ?/ ?A ?  ?lҙ ? ?8P ?[+?b?7?DxD? P?E!?D{8?y6&D?7*ċ?gx?dT?ļ~?N?:,vx??k?1_r?p??[8~?Zɠw?x?4ѱ†?G!?zvL?rkt֑?s쬗? >e?M?|?9?x?M_?4?4~B?!?kc-?<70?0?z H?q@A?U:4?m?#%2??YC?OIH?ڃj6?<?{Z?G`M?VjG?qN?T?+a}A?g0 ?Fr ?2 ?6z ?: ?g ?sj ?d ?) ? | ?\/; ?U&?`} ?gnA?|%?٬?,\ ??@$?53?p|?;>? ?6`X?/E#?`H\?׉h?fu?1jP?Kyc?İ!e?NZr?m4?g? e?D?V-?ȱ(?-Y? 0-? 1?H?#?훟O?i?Dk?ɼjp?;?f;|?I2?p?3;?[?L?d?#%S?列q?Fڄ?X?k>??z=?=t?FjC?Ӯ??1g|W\??u?(?S?#9?,h?45?*c?՚? ?X?e?GS?-cE?j?LJ?.?KZ?+=Ϳ?'??,f?WU?F?H] i?5?|&?>/?bq?t̉?n˼m?{9\?p8?҅R~?D9?y?do?X4'?IA? 3+?=?k?5?(̥?u7?BОi?/?Tbo? ;? 6?6FM?P\z?4v?s`?Y8/k?1P?| j?/9BP?z[?/?B8?lA? vs ?@?T*?)p2?WG?P2??!Yz?M ?Ri?ywl??b#y?tgQ'???q?ʣ`!?jBC{?-\?[;Ox?9??Ԗ?Ӯ?a?}#?̹?1?Y9?;bZ?lѲ?El?CK?we\?Z"{?|?O+ޟ?~e??R>~??5?32?å?ŽJ?Vx?X2f?[?!?&?>2?n?{E?D?>n;?GQ?#?G?;?a?w;?һ ?u?[?W/?bH6?|??G?xB?k6y?RȻ?hD?<??t?1}?fy1?>4??:?ы?PD?co[?y?2&7?F: ?NC?~l0??KE7 ?0V?M?\Gf?Cc?$?)?'&8?1 ?&{;v?A?6[??13?,?Yi?pʲ?:<+?L?-Ԝ@?ӡ ?1? ??ɪ?%3&?UG?s#)?k?׌V?W?$?A2;^?b?j1 T?$+?Zyd?99?&?!?6?ŷ?^? ?q?Oӯ?Ig??<1 ?4~?N??r?;Y?)?A??eL?wM?i?X-?aa?2?a4w-?Sl?jK??2cB?8?3/?.?T?dY??CVR?1??㷪?=T?].??A ?^Eh?G9?0?|L0?H?_ k?u?1? ?{`?Q?-+?'?z ?Ku?&?ߋG?A)?J%V??[}Y-?b ?!?kH?"?a?i?:u?`S?ƗE ?;)?e~?Va?7?(vx?u-y?8v?5?fL?,c?&?Gh?-v}?G ?> .?I<? l<?W1?BƲ1?%:?HҺj?!V?ތө?y_?}?n ?@Q㊵?]5?#=??d?>2P?c;;0?WQ ?SG?ұ?e+ ???YO ?BYz?句?$_?QC,??0,?b$?LFR ?m?Es?3z?)?̮$?o?b< ???gU?y ?/?a, ? ?t?H%i?AT?R@?9ӭ?"+|?;?u!L???ƺ7a?ѣ1??v`?:$BN?ܠO?Wy?4?!@-?:?S?o@??դ?83?E?̭4?i?D?4m?k?9?-?r7S?lK?kh?u? v?vU??5V?lc?%Q?κ??`?JT?R ?Ü?u6?e?2?;h9?(?܇"?Y3?B .?8:~? ?&w?*xq?/"?Au(?7Z?/@F?B m?2G?+?'y?I $R??2X?H0?hз? ??v??G?N?ӹY?*3?U?m?d?c?E6?]F?z?(%?i?1`?`*#?x?lz?ȌN?N,??Uh??c?rr?Bꔨ?Bi7?m#D!p?`E?b!l?5w?I}!F?;Moq?X?IZ˧?Na?~I?ު?\/? [?pT@?eN?G?q?S0>!W?Lxd?(3?q@? >?: E?wM?;]?oYWR?|=[?=nP? KI?.,D? JV?Y٦O?w0L??yQ9?J?)D?'?e3?-?3?b1T9?v,??@^?qco?r[??/T?<?YP?v7j?L?@[?/?0?f?ϵ-?wz?P(yOs?8`K?zŅ?:b?5Yw?L~?7\?>}|]?ulai?;Sp?t]?VYc?}Gw?j}?q6j? |q?:ܢ??]}?H?nĉ?4y(w?B/?q!? ?: ?'p?)?z?6?ȶ<?n?=ݲ?^6X?c\<?O%?$?yv??b ?@gu?Kf7~?XYw?h?f"?Iŕ?%k?/KKy?1ɪs?:>?+j?-d?W8j?b 7p?ˊw^?+?Bأ?6.'?+ ]?7y;?U??d?PF?D{?>=h?A?;Ъ?ڹ?cA?Yx?WY?B?f/?1$?&˭?~Ӥ?b ?iz7?o@K?u?E?2 H?Y} ?v/?4 ?e? .?? &?a ?l4,.?'?+?# î?[?N?dg?3?AX?{J?,?=?4?_9?&?r,?t?y{?%Z?xT?7ǴH?`z ?f1'?7a?;?˩-?y3?p~!?Z'?оE?葴9?73?h^C9??? -?lN ??D!?t?.F?\?iŪ>?L?6դU?ww`?q?_Տ?;?V}?L}?%-p?$S%i?vR?ca?yLh?vP?T1?~%F?b/=?>*?~&P???Y ?è? O"-?LU!?W?Y*~!?#~'?+vz?t͞@?Kjv?kp]?Zo??9Z?%?3?뺽)?e?!(?G?7?aA@?Mi?%0?qׁ?C2?$ ???A} ?>W?n?Vt?,?Mg?䧋?X?UK?8\?~G?)nH?;?*Q?j1)??? G7?żf4?x4 ?ᢓ}p?(9}I?^k?g?kAE ?ϙJS~5qTFxsrcom.femlab.xmesh.Xmesh[{ωI dofVersionZ initializedZuseInteriorBndLelemIndtLcom/femlab/util/FlIntList;Lelementsq~[geomMapt[ILgeomNumq~kL initElemIndq~kL initElementsq~[mcasesq~l[meGrpst[Lcom/femlab/xmesh/MEGrp;[meshNumt[[I[sorderq~l[ unitsystemst#[Lcom/femlab/api/client/UnitSystem;Lversionq~xpwq~ur[IM`&v겥xpuq~ tstruct('elem',{'elmesh'},'g',{{'1'}},'frame',{{'ref'}},'geomdim',{{{struct('qualname',{'qual'},'dvolname',{'dvol'},'emetric2name',{'emetric2'},'meshtypename',{'meshtype'},'meshelemname',{'meshelement'},'sshape',{{{'vtx',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'r$2','z$2'}}),'lvtx',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'r$2','z$2'}})}}},'ind',{{{'1','2','3','4'}}}),struct('qualname',{'qual'},'dvolname',{'dvol'},'emetric2name',{'emetric2'},'meshtypename',{'meshtype'},'meshelemname',{'meshelement'},'sshape',{{{'edg',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'r$2','z$2'}}),'ledg',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'r$2','z$2'}}),'edg2',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'r$2','z$2'}})}}},'ind',{{{'1','2','3','4'}}}),struct('qualname',{'qual'},'sizename',{'h'},'dvolname',{'dvol'},'detjacname',{'detjac'},'reldetjacname',{'reldetjac'},'reldetjacminname',{'reldetjacmin'},'emetric2name',{'emetric2'},'meshtypename',{'meshtype'},'meshelemname',{'meshelement'},'sshape',{{{'tri',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'r$2','z$2'}}),'ltri',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'r$2','z$2'}}),'quad',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'r$2','z$2'}}),'lquad',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'r$2','z$2'}}),'tri2',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'r$2','z$2'}}),'quad2',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'r$2','z$2'}})}}},'ind',{{{'1'}}})}}})tTstruct('elem',{'elmesh'},'g',{{'2'}},'frame',{{'ref'}},'geomdim',{{{struct('qualname',{'qual'},'dvolname',{'dvol'},'emetric2name',{'emetric2'},'meshtypename',{'meshtype'},'meshelemname',{'meshelement'},'sshape',{{{'vtx',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'x$2'}}),'lvtx',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'x$2'}})}}},'ind',{{{'1','2'}}}),struct('qualname',{'qual'},'sizename',{'h'},'dvolname',{'dvol'},'detjacname',{'detjac'},'reldetjacname',{'reldetjac'},'reldetjacminname',{'reldetjacmin'},'emetric2name',{'emetric2'},'meshtypename',{'meshtype'},'meshelemname',{'meshelement'},'sshape',{{{'edg',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'x$2'}}),'ledg',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'x$2'}}),'edg2',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'x$2'}})}}},'ind',{{{'1'}}})}}})tstruct('elem',{'elmesh'},'g',{{'0'}},'frame',{{'ref'}},'geomdim',{{{struct('qualname',{'qual'},'dvolname',{'dvol0'},'ind',{{{'1'}}},'sshape',{{{'vtx',struct('type',{'fixed'},'sorder',{'1'},'sdimdofs',{{}}),'lvtx',struct('type',{'fixed'},'sorder',{'1'},'sdimdofs',{{}})}}})}}})tstruct('elem',{'elshape'},'g',{{'1','2'}},'tvars',{'on'},'geomdim',{{{struct('shelem',{struct('default',{{{'vtx','shlag',struct('order',{'2'},'basename',{'T'},'frame',{'ref'}),'lvtx','shlag',struct('order',{'2'},'basename',{'T'},'frame',{'ref'})}}},'case',{{{}}},'mind',{{}})},'ind',{{{'1','2','3','4'}}}),struct('shelem',{struct('default',{{{'edg','shlag',struct('order',{'2'},'basename',{'T'},'frame',{'ref'}),'ledg','shlag',struct('order',{'2'},'basename',{'T'},'frame',{'ref'})}}},'case',{{{}}},'mind',{{}})},'ind',{{{'1','2','3','4'}}}),struct('shelem',{struct('default',{{{'tri','shlag',struct('order',{'2'},'basename',{'T'},'frame',{'ref'}),'ltri','shlag',struct('order',{'2'},'basename',{'T'},'frame',{'ref'})}}},'case',{{{}}},'mind',{{}})},'ind',{{{'1'}}})},{struct('shelem',{struct('default',{{{'vtx','shlag',struct('order',{'2'},'basename',{'F'},'frame',{'ref'}),'lvtx','shlag',struct('order',{'2'},'basename',{'F'},'frame',{'ref'})}}},'case',{{{}}},'mind',{{}})},'ind',{{{'1','2'}}}),struct('shelem',{struct('default',{{{'edg','shlag',struct('order',{'2'},'basename',{'F'},'frame',{'ref'}),'ledg','shlag',struct('order',{'2'},'basename',{'F'},'frame',{'ref'})}}},'case',{{{}}},'mind',{{}})},'ind',{{{'1'}}})}}})tstruct('elem',{'elvar'},'g',{{'1','2'}},'geomdim',{{{struct('var',{{}},'ind',{{{'1','2','3','4'}}}),struct('var',{{'nflux_ht',{'nr_ht*fluxr_ht+nz_ht*fluxz_ht','nr_ht*fluxr_ht+nz_ht*fluxz_ht','nr_ht*fluxr_ht+nz_ht*fluxz_ht'},'q0_ht',{'0','0','0'},'h_ht',{'0.5*St*M*d','0','0'},'Tinf_ht',{'F','273.15','273.15'},'Const_ht',{'0','0','0'},'Tamb_ht',{'0','0','0'},'T0_ht',{'1','273.15','1'},'kbnd_ht',{'0','0','0'},'d_ht',{'1','1','1'},'nr_ht',{'nr','nr','nr'},'nz_ht',{'nz','nz','nz'}}},'ind',{{{'1'},{'2','3'},{'4'}}}),struct('var',{{'fluxr_ht',{'-krr_ht*Tr-krz_ht*Tz'},'fluxz_ht',{'-kzr_ht*Tr-kzz_ht*Tz'},'gradT_ht',{'sqrt(Tr^2+Tz^2)'},'flux_ht',{'sqrt(fluxr_ht^2+fluxz_ht^2)'},'k_ht',{'1'},'Dts_ht',{'d'},'rho_ht',{'1'},'C_ht',{'1'},'Q_ht',{'0'},'krr_ht',{'1'},'kzr_ht',{'0'},'krz_ht',{'0'},'kzz_ht',{'L^2'}}},'ind',{{{'1'}}})},{struct('var',{{'nx_c',{'nx'}}},'ind',{{{'1','2'}}}),struct('var',{{}},'ind',{{{'1'}}})}}})tsstruct('elem',{'elconst'},'var',{{'St','10','Pe','200','L','1/1000','M','998.2071*4181.8/(2611*840)','d','0.001'}})tHstruct('elem',{'elgeom'},'g',{{'1'}},'frame',{{'ref'}},'sorder',{{'2'}})tHstruct('elem',{'elgeom'},'g',{{'2'}},'frame',{{'ref'}},'sorder',{{'2'}})thstruct('elem',{'elepspec'},'g',{{'1','2'}},'geom',{{struct('ep',{{'2','1'}}),struct('ep',{{'2','1'}})}})thstruct('elem',{'elgpspec'},'g',{{'1','2'}},'geom',{{struct('ep',{{'4','0'}}),struct('ep',{{'4','0'}})}})tPstruct('elem',{'eleqw'},'g',{{'1','2'}},'geomdim',{{{struct('coeff',{{{'0'}}},'tcoeff',{{{'0'}}},'ipoints',{{'2'}},'dvolname',{{{'dvol'}}},'ind',{{{'1','2','3','4'}}}),struct('coeff',{{{'r*h_ht*(-T+Tinf_ht)*test(T)'},{'0'}}},'tcoeff',{{{'0'},{'0'}}},'ipoints',{{{'1'},{'1'}}},'dvolname',{{{'dvol'},{'dvol'}}},'ind',{{{'1'},{'2','3','4'}}}),struct('coeff',{{{'r*(-krr_ht*Tr*test(Tr)-kzz_ht*Tz*test(Tz))'}}},'tcoeff',{{{'r*Dts_ht*rho_ht*C_ht*Tt*test(T)'}}},'ipoints',{{{'1'}}},'dvolname',{{{'dvol'}}},'ind',{{{'1'}}})},{struct('coeff',{{{'(2-F)*test(F)'},{'0'}}},'tcoeff',{{{'0'},{'0'}}},'ipoints',{{'2','2'}},'dvolname',{{{'dvol'},{'dvol'}}},'ind',{{{'1'},{'2'}}}),struct('coeff',{{{'-Fx*test(Fx)/Pe+(-Fx-St*F+St*T)*test(F)'}}},'tcoeff',{{{'Ft*test(F)'}}},'ipoints',{{{'1'}}},'dvolname',{{{'dvol'}}},'ind',{{{'1'}}})}}},'nonlintest',{{'off','off'}})tstruct('elem',{'elpconstr'},'g',{{'1','2'}},'geomdim',{{{{},struct('constr',{{{'-T+T0_ht'}}},'constrf',{{{'test(-T+T0_ht)'}}},'cpoints',{{{'1'}}},'ind',{{{'4'}}}),{}},{{},{}}}})tOstruct('elem',{'elcplextr'},'var',{{'T'}},'g',{{'1','2'}},'src',{{{{},struct('expr',{{{'T',{}}}},'map',{{{'1','1'}}},'ind',{{{'1'},{'2','3','4'}}}),{}},{}}},'geomdim',{{{},{{},struct('map',{{{'2'}}},'ind',{{{'1'}}})}}},'map',{{struct('type',{'unit'}),struct('type',{'linear'},'sg',{'2'},'sv',{{'1','2'}},'dg',{'1'},'dv',{{'1','2'}})}})tKstruct('elem',{'elcplextr'},'var',{{'F'}},'g',{{'1','2'}},'src',{{{},{{},struct('expr',{{{'F'}}},'map',{{{'1'}}},'ind',{{{'1'}}})}}},'geomdim',{{{{},struct('map',{{{'2',{}}}},'ind',{{{'1'},{'2','3','4'}}}),{}},{}}},'map',{{struct('type',{'unit'}),struct('type',{'linear'},'sg',{'1'},'sv',{{'1','2'}},'dg',{'2'},'dv',{{'1','2'}})}})t=struct('elem',{'elvar'},'g',{{'0','1','2'}},'geomdim',{{{struct('var',{{'geomnum',{'0'}}},'ind',{{{'1'}}})},{struct('var',{{}},'ind',{{{'1','2','3','4'}}}),struct('var',{{}},'ind',{{{'1','2','3','4'}}}),struct('var',{{}},'ind',{{{'1'}}})},{struct('var',{{}},'ind',{{{'1','2'}}}),struct('var',{{}},'ind',{{{'1'}}})}}})uq~q uq~ thstruct('elem',{'elvar'},'g',{{'1','2'}},'geomdim',{{{struct('var',{{'r$2',{'rg'},'z$2',{'zg'}}},'ind',{{{'1','2','3','4'}}}),struct('var',{{'r$2',{'rg'},'z$2',{'zg'}}},'ind',{{{'1','2','3','4'}}}),struct('var',{{'r$2',{'rg'},'z$2',{'zg'}}},'ind',{{{'1'}}})},{struct('var',{{'x$2',{'xg'}}},'ind',{{{'1','2'}}}),struct('var',{{'x$2',{'xg'}}},'ind',{{{'1'}}})}}})tcstruct('elem',{'elvar'},'g',{{'1','2'}},'geomdim',{{{struct('var',{{'T',{''},'Tt',{''}}},'ind',{{{'1','2','3','4'}}}),struct('var',{{'T',{''},'Tt',{''}}},'ind',{{{'1','2','3','4'}}}),struct('var',{{'T',{'1'},'Tt',{'0'}}},'ind',{{{'1'}}})},{struct('var',{{'F',{''},'Ft',{''}}},'ind',{{{'1','2'}}}),struct('var',{{'F',{'1'},'Ft',{'0'}}},'ind',{{{'1'}}})}}})uq~quq~qur[Lcom.femlab.xmesh.MEGrp;5q|Yxpsrcom.femlab.xmesh.MEGrpfI bmTypeIndIeDimIgeomNumImeshCaseL bmTypeStrq~[coordst[[D[domainsq~l[namest[Ljava/lang/String;xpwtls(0)uq~quq~ ur[[Dǭ dgExpxsq~wtls(0)uq~quq~ tTuq~xsq~wts(1)uq~quq~ tTtTtTtr$2tz$2uq~uq~<????xsq~wts(2)uq~quq~ tTtTtTtTtTtTtr$2tr$2tr$2tz$2tz$2tz$2uq~uq~< ???????uq~< ???????xsq~wtls(2)uq~quq~ tTtTtTtTtTtTuq~uq~<???uq~<???xsq~wtls(0)uq~quq~ tFuq~xsq~wtls(1)uq~quq~ tFtFtFuq~uq~<??xuq~qwxq~Kq~Nq~Xq~Zq~]q~psrcom.femlab.api.client.MFileInfo3$$LfemNameq~[historyq~[mfileTagsAndTypest[[Ljava/lang/String;[ resetHistoryq~[ storedNamesq~Lversionq~xpwsq~wq~q~q~ q~t COMSOL 3.5twt $Name: $t$Date: 2008/09/19 16:09:48 $xuq~ t`% COMSOL Multiphysics Model M-file % Generated by COMSOL 3.5 (COMSOL 3.5.0.494, $Date: 2008/09/19 16:09:48 $) flclear xfem % COMSOL version clear vrsn vrsn.name = 'COMSOL 3.5'; vrsn.ext = ''; vrsn.major = 0; vrsn.build = 494; vrsn.rcs = '$Name: $'; vrsn.date = '$Date: 2008/09/19 16:09:48 $'; xfem.version = vrsn; % Geometry 2 g1=solid1([0,1]); % Geometry 1 g2=rect2('50','1','base','corner','pos',{'0','0'},'rot','0'); g3=rect2('50','1','base','corner','pos',{'0.5','0'},'rot','0'); flclear fem % Analyzed geometry clear s s.objs={g3}; s.name={'R1'}; s.tags={'g3'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); xfem.fem{1}=fem; % Geometry 2 flclear fem % Analyzed geometry clear s s.objs={g1}; s.name={'I1'}; s.tags={'g1'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % Constants xfem.const = {'w','0.6', ... 'N','100', ... 'D','1'}; % Constants xfem.const = {'w','0.6', ... 'N','100', ... 'D','1'}; xfem.fem{2}=fem; fem=xfem.fem{1}; % Initialize mesh for geometry 1 fem.mesh=meshinit(fem, ... 'hauto',5); xfem.fem{1}=fem; fem=xfem.fem{2}; % Initialize mesh for geometry 2 fem.mesh=meshinit(fem); xfem.fem{2}=fem; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q0','q','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {273.15,'F',273.15}; bnd.h = {0,'w*N/D',0}; bnd.ind = [2,1,1,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;0.25}}; equ.C = 1; equ.init = 1; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,'1+1*sin(pi*t/100000)'}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*0.00006'; equ.c = 0.01; equ.a = 0.00006; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'D','hydraulic diameter [m]','w','thermal conductivity of water [W/(m*K)]','N','Nusselt number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-2,53,-0.050000000000000044,1.05]); fem=xfem.fem{1}; % Initialize mesh for geometry 1 fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxedg',[1,0.001]); % Initialize mesh for geometry 1 fem.mesh=meshinit(fem, ... 'hauto',5); % Initialize mesh for geometry 1 fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxedg',[1,0.001]); xfem.fem{1}=fem; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q0','q','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {273.15,'F',273.15}; bnd.h = {0,'w*N/D',0}; bnd.ind = [2,1,1,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;0.25}}; equ.C = 1; equ.init = 1; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,'1+1*sin(pi*t/100000)'}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*0.00006'; equ.c = 0.01; equ.a = 0.00006; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'D','hydraulic diameter [m]','w','thermal conductivity of water [W/(m*K)]','N','Nusselt number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1000:100000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1e5 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-2,53,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum',51, ... 'title','Time=50000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-2,53,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum',51, ... 'title','Time=50000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-2,53,-0.050000000000000044,1.05]); % Plot in cross-section or along domain postcrossplot(xfem,1,[50.5 50.5;0 1], ... 'lindata','T', ... 'title','Temperature [K]', ... 'axislabel',{'Arc-length','Temperature [K]'}); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum',61, ... 'title','Time=60000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-2,53,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum',71, ... 'title','Time=70000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-2,53,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum',51, ... 'title','Time=50000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-2,53,-0.050000000000000044,1.05]); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q0','q','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {273.15,'F',273.15}; bnd.h = {0,'w*N/D',0}; bnd.ind = [2,1,1,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;0.25}}; equ.C = 1; equ.init = 1; equ.Dts = 100; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,'1+1*sin(pi*t/100000)'}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*0.00006'; equ.c = 0.01; equ.a = 0.00006; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'D','hydraulic diameter [m]','w','thermal conductivity of water [W/(m*K)]','N','Nusselt number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1000:100000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1e5 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-2,53,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1e5 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q0','q','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {273.15,'F',273.15}; bnd.h = {0,'w*N/D',0}; bnd.ind = [2,1,1,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;0.25}}; equ.C = 1; equ.init = 1; equ.Dts = 100; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*0.00006'; equ.c = 0.01; equ.a = 0.00006; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'D','hydraulic diameter [m]','w','thermal conductivity of water [W/(m*K)]','N','Nusselt number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1000:100000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1e5 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1e5 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-2,53,-0.050000000000000044,1.05]); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q0','q','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {273.15,'F',273.15}; bnd.h = {0,'w*N/D',0}; bnd.ind = [2,1,1,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;0.25}}; equ.C = 1; equ.init = 1; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*0.00006'; equ.c = 0.01; equ.a = 0.00006; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'D','hydraulic diameter [m]','w','thermal conductivity of water [W/(m*K)]','N','Nusselt number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-2,53,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q0','q','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {273.15,'F',273.15}; bnd.h = {0,'w*N/D',0}; bnd.ind = [2,1,1,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;0.25}}; equ.C = 1; equ.init = 1; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*0.00006'; equ.c = 0.01; equ.a = 0.00006; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'D','hydraulic diameter [m]','w','thermal conductivity of water [W/(m*K)]','N','Nusselt number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:2], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=2 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=2 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-2,53,-0.050000000000000044,1.05]); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q0','q','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {273.15,'F',273.15}; bnd.h = {0,'w*N/D',0}; bnd.ind = [2,1,1,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;0.25}}; equ.C = 1; equ.init = 1; equ.Dts = .01; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*0.00006'; equ.c = 0.01; equ.a = 0.00006; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'D','hydraulic diameter [m]','w','thermal conductivity of water [W/(m*K)]','N','Nusselt number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:2], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=2 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-2,53,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=2 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q0','q','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {273.15,'F',273.15}; bnd.h = {0,'w*N/D',0}; bnd.ind = [2,1,1,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;0.25}}; equ.C = 1; equ.init = 1; equ.Dts = 246750; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*0.00006'; equ.c = 0.01; equ.a = 0.00006; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'D','hydraulic diameter [m]','w','thermal conductivity of water [W/(m*K)]','N','Nusselt number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:2], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=2 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-2,53,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=2 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Plot in cross-section or along domain postcrossplot(xfem,1,[50.5 50.5;0 1], ... 'lindata','T', ... 'title','Temperature [K]', ... 'axislabel',{'Arc-length','Temperature [K]'}); % Plot in cross-section or along domain postcrossplot(xfem,0,[0.5;0], ... 'pointdata',{'T','unit','K'}, ... 'title','Temperature [K]', ... 'axislabel',{'Time','Temperature [K]'}); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q0','q','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {273.15,'F',273.15}; bnd.h = {0,'w*N/D',0}; bnd.ind = [2,1,1,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;0.25}}; equ.C = 1; equ.init = 1; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*0.00006'; equ.c = 0.01; equ.a = 0.00006; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'D','hydraulic diameter [m]','w','thermal conductivity of water [W/(m*K)]','N','Nusselt number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:2], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=2 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[0.4798330527497195,0.515169051627385,-0.00972952667167526,0.06070623591284763]); % Plot in cross-section or along domain postcrossplot(xfem,0,[0.5;0], ... 'pointdata',{'T','unit','K'}, ... 'title','Temperature [K]', ... 'axislabel',{'Time','Temperature [K]'}); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=2 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q0','q','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {273.15,'F',273.15}; bnd.h = {0,'w*N/D',0}; bnd.ind = [2,1,1,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;0.25}}; equ.C = 1; equ.init = 1; equ.Dts = 246750; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*0.00006'; equ.c = 0.01; equ.a = 0.00006; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'D','hydraulic diameter [m]','w','thermal conductivity of water [W/(m*K)]','N','Nusselt number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:100:10000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=10000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[0.4798330527497195,0.515169051627385,-0.00972952667167526,0.06070623591284763]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=10000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum',31, ... 'title','Time=3000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-2,53,-0.05,1.05]); % Geometry 1 g4=rect2('50','1','base','corner','pos',{'1','0'},'rot','0'); fem=xfem.fem{1}; % Analyzed geometry clear s s.objs={g4}; s.name={'R1'}; s.tags={'g4'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % Initialize mesh for geometry 1 fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxedg',[1,0.001]); xfem.fem{1}=fem; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {60,0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;0.25}}; equ.C = 1; equ.init = 1; equ.Dts = 246750; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*1'; equ.c = 0.01; equ.a = 1; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'D','hydraulic diameter [m]','w','thermal conductivity of water [W/(m*K)]','N','Nusselt number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:100:10000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=10000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-2,53,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=10000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {60,0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;0.25}}; equ.C = 1; equ.init = 1; equ.Dts = 246750; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*10'; equ.c = 0.01; equ.a = 10; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'D','hydraulic diameter [m]','w','thermal conductivity of water [W/(m*K)]','N','Nusselt number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:100:10000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=10000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=10000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-2,53,-0.050000000000000044,1.05]); % Constants xfem.const = {'St','10', ... 'Re','5000', ... 'Pr','7', ... 'Pe','200', ... 'L','1/1000'}; % Constants xfem.const = {'St','10', ... 'Re','5000', ... 'Pr','7', ... 'Pe','200', ... 'L','1/1000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*Re*Pr*L/4',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 246750; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','Re','Stanton number','Pr','Prandtl number','L','conduit radius to length ratio','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:100:10000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=10000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-2,53,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=10000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*Re*Pr*L/4',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 246750; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','Re','Stanton number','Pr','Prandtl number','L','conduit radius to length ratio','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','0.0001', ... 'Re','5000', ... 'Pr','7', ... 'Pe','200', ... 'L','1/1000'}; % Constants xfem.const = {'St','0.0001', ... 'Re','5000', ... 'Pr','7', ... 'Pe','200', ... 'L','1/1000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*Re*Pr*L/4',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 246750; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear eqt`u equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','Re','Stanton number','Pr','Prandtl number','L','conduit radius to length ratio','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*Re*Pr*L/4',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 246750; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','Re','Stanton number','Pr','Prandtl number','L','conduit radius to length ratio','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*Re*Pr*L/4',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 246750; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','Re','Stanton number','Pr','Prandtl number','L','conduit radius to length ratio','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:100:10000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=10000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*Re*Pr*L/4',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 246750; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','Re','Stanton number','Pr','Prandtl number','L','conduit radius to length ratio','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','10', ... 'Re','5000', ... 'Pr','7', ... 'Pe','200', ... 'L','1/1000'}; % Constants xfem.const = {'St','10', ... 'Re','5000', ... 'Pr','7', ... 'Pe','200', ... 'L','1/1000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*Re*Pr*L/4',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 246750; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','Re','Stanton number','Pr','Prandtl number','L','conduit radius to length ratio','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-2,53,-0.050000000000000044,1.05]); % Constants xfem.const = {'St','10', ... 'Re','5000', ... 'Pr','7', ... 'Pe','200', ... 'L','1/1000'}; % Constants xfem.const = {'St','10', ... 'Re','5000', ... 'Pr','7', ... 'Pe','200', ... 'L','1/1000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*Re*Pr*L/4',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 987; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','Re','Stanton number','Pr','Prandtl number','L','conduit radius to length ratio','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.05,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','20', ... 'Re','5000', ... 'Pr','7', ... 'Pe','200', ... 'L','1/1000'}; % Constants xfem.const = {'St','20', ... 'Re','5000', ... 'Pr','7', ... 'Pe','200', ... 'L','1/1000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*Re*Pr*L/4',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 987; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','Re','Reynolds number','Pr','Prandtl number','L','conduit radius to length ratio','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.05,1.05]); % Constants xfem.const = {'St','1', ... 'Re','5000', ... 'Pr','7', ... 'Pe','200', ... 'L','1/1000'}; % Constants xfem.const = {'St','1', ... 'Re','5000', ... 'Pr','7', ... 'Pe','200', ... 'L','1/1000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*Re*Pr*L/4',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 987; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','Re','Reynolds number','Pr','Prandtl number','L','conduit radius to length ratio','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','1', ... 'Re','5000', ... 'Pr','7', ... 'Pe','200', ... 'L','0.5/1000'}; % Constants xfem.const = {'St','1', ... 'Re','5000', ... 'Pr','7', ... 'Pe','200', ... 'L','0.5/1000'}; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.05,1.05]); % Constants xfem.const = {'St','1', ... 'Re','5000', ... 'Pr','7', ... 'Pe','200', ... 'L','1/1000'}; % Constants xfem.const = {'St','1', ... 'Re','5000', ... 'Pr','7', ... 'Pe','200', ... 'L','1/1000'}; % Constants xfem.const = {'St','1', ... 'Re','5000', ... 'Pr','7', ... 'Pe','100', ... 'L','1/1000'}; % Constants xfem.const = {'St','1', ... 'Re','5000', ... 'Pr','7', ... 'Pe','100', ... 'L','1/1000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*Re*Pr*L/4',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 987; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','Re','Reynolds number','Pr','Prandtl number','L','conduit radius to length ratio','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.05,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','.1', ... 'Re','5000', ... 'Pr','7', ... 'Pe','200', ... 'L','1/1000'}; % Constants xfem.const = {'St','.1', ... 'Re','5000', ... 'Pr','7', ... 'Pe','200', ... 'L','1/1000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*Re*Pr*L/4',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 987; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','Re','Reynolds number','Pr','Prandtl number','L','conduit radius to length ratio','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum',3, ... 'title','Time=20 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','100', ... 'Re','5000', ... 'Pr','7', ... 'Pe','200', ... 'L','1/1000'}; % Constants xfem.const = {'St','100', ... 'Re','5000', ... 'Pr','7', ... 'Pe','200', ... 'L','1/1000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*Re*Pr*L/4',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 987; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','Re','Reynolds number','Pr','Prandtl number','L','conduit radius to length ratio','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum',6, ... 'title','Time=50 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','10', ... 'Re','1000', ... 'Pr','7', ... 'Pe','100', ... 'L','1/1000'}; % Constants xfem.const = {'St','10', ... 'Re','1000', ... 'Pr','7', ... 'Pe','100', ... 'L','1/1000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*Re*Pr*L/4',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 987; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','Re','Reynolds number','Pr','Prandtl number','L','conduit radius to length ratio','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.05,1.05]); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.5 (COMSOL 3.5.0.494, $Date: 2008/09/19 16:09:48 $) % Constants xfem.const = {'St','10', ... 'Re','1000', ... 'Pr','7', ... 'Pe','100', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(2*1000*1.3)'}; % Constants xfem.const = {'St','10', ... 'Re','1000', ... 'Pr','7', ... 'Pe','100', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(2*1000*1.3)'}; % Constants xfem.const = {'St','10', ... 'Re','1000', ... 'Pr','7', ... 'Pe','100', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(2*1000*1.3)'}; % Constants xfem.const = {'St','10', ... 'Re','1000', ... 'Pr','7', ... 'Pe','100', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(2*1000*1.3)'}; % Constants xfem.const = {'St','10', ... 'Re','1000', ... 'Pr','7', ... 'Pe','100', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)'}; % Constants xfem.const = {'St','10', ... 'Re','1000', ... 'Pr','7', ... 'Pe','100', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)'}; % Constants xfem.const = {'St','10', ... 'Re','1000', ... 'Pr','7', ... 'Pe','100', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)'}; % Constants xfem.const = {'St','10', ... 'Re','5000', ... 'Pr','7', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)'}; % Constants xfem.const = {'St','10', ... 'Re','5000', ... 'Pr','7', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','Re','Reynolds number','Pr','Prandtl number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.05,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Constants xfem.const = {'St','10', ... 'Re','5000', ... 'Pr','7', ... 'Pe','200', ... 'L','0.5/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.5^2*1*2611*840/(1000*1.3)'}; % Constants xfem.const = {'St','10', ... 'Re','5000', ... 'Pr','7', ... 'Pe','200', ... 'L','0.5/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.5^2*1*2611*840/(1000*1.3)'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','Re','Reynolds number','Pr','Prandtl number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[0.6359223300970873,2.2378640776699026,0.8150698602794412,1.0192614770459083]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','10', ... 'Re','5000', ... 'Pe','200', ... 'L','0.5/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.5^2*1*2611*840/(1000*1.3)'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','0.5/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.5^2*1*2611*840/(1000*1.3)'}; % Constants xfem.const = {'St','10', ... 'Pe','1', ... 'L','0.5/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.5^2*1*2611*840/(1000*1.3)'}; % Constants xfem.const = {'St','10', ... 'Pe','1', ... 'L','0.5/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.5^2*1*2611*840/(1000*1.3)'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear odt`e clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[0.6359223300970873,2.2378640776699026,0.8150698602794412,1.0192614770459083]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','0.5/1', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.5^2*1*2611*840/(1*1.3)'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','0.5/1', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.5^2*1*2611*840/(1*1.3)'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[0.6359223300970873,2.2378640776699026,0.8150698602794412,1.0192614770459083]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','0.1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.1^2*1*2611*840/(1000*1.3)'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','0.1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.1^2*1*2611*840/(1000*1.3)'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Constants xfem.const = {'St','0.05', ... 'Pe','200', ... 'L','0.1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.1^2*1*2611*840/(1000*1.3)'}; % Constants xfem.const = {'St','0.05', ... 'Pe','200', ... 'L','0.1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.1^2*1*2611*840/(1000*1.3)'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','0.1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.1^2*1*2611*840/(1000*1.3)'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','0.1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.1^2*1*2611*840/(1000*1.3)'}; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[0.6359223300970873,2.2378640776699026,0.8150698602794412,1.0192614770459083]); % Geometry 1 g2=rect2('50','1','base','corner','pos',{'0.1','0'},'rot','0'); fem=xfem.fem{1}; % Analyzed geometry clear s s.objs={g2}; s.name={'R1'}; s.tags={'g2'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % Initialize mesh for geometry 1 fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxedg',[1,0.001]); xfem.fem{1}=fem; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.05,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Geometry 1 g3=rect2('50','1','base','corner','pos',{'10','0'},'rot','0'); fem=xfem.fem{1}; % Analyzed geometry clear s s.objs={g3}; s.name={'R1'}; s.tags={'g3'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % Initialize mesh for geometry 1 fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxedg',[1,0.001]); xfem.fem{1}=fem; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.05,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Geometry 1 g5=rect2('50','1','base','corner','pos',{'1','0'},'rot','0'); fem=xfem.fem{1}; % Analyzed geometry clear s s.objs={g5}; s.name={'R1'}; s.tags={'g5'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % Initialize mesh for geometry 1 fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxedg',[1,0.001]); xfem.fem{1}=fem; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.05,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','0.1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.1^2*1*2611*840/(1000*1.3)'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','0.1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.1^2*1*2611*840/(1000*1.3)'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{'L^2';1}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.05,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','100', ... 'Pe','200', ... 'L','0.1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.1^2*1*2611*840/(1000*1.3)'}; % Constants xfem.const = {'St','100', ... 'Pe','200', ... 'L','0.1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.1^2*1*2611*840/(1000*1.3)'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; % Shape functions fem.shape = {'shlag(2,''T'')'}; fem.border = 1; fem.outform = 'general'; % Equation form fem.form = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Subdomain settings clear equ equ.da = 'r*Dts_ht*rho_ht*C_ht'; equ.c = {{{'-diff(-r*krr_ht*Tr,Tr)';'-diff(-r*kzz_ht*Tz,Tz)'}}}; equ.init = 1; equ.ga = {{{'-r*krr_ht*Tr';'-r*kzz_ht*Tz'}}}; equ.al = {{{'-diff(-r*krr_ht*Tr,T)';'-diff(-r*kzz_ht*Tz,T)'}}}; equ.ind = [1]; equ.dim = {'T'}; equ.var = {'fluxr_ht','-krr_ht*Tr-krz_ht*Tz', ... 'fluxz_ht','-kzr_ht*Tr-kzz_ht*Tz', ... 'gradT_ht','sqrt(Tr^2+Tz^2)', ... 'flux_ht','sqrt(fluxr_ht^2+fluxz_ht^2)','k_ht',1, ... 'Dts_ht','tau', ... 'rho_ht',1, ... 'C_ht',1, ... 'Q_ht',0, ... 'krr_ht',1, ... 'kzr_ht',0, ... 'krz_ht',0, ... 'kzz_ht','L^2'}; fem.equ = equ; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem, ... 'sdl',{[],NaN}); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.05,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','1000', ... 'Pe','200', ... 'L','0.1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.1^2*1*2611*840/(1000*1.3)'}; % Constants xfem.const = {'St','1000', ... 'Pe','200', ... 'L','0.1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.1^2*1*2611*840/(1000*1.3)'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; % Shape functions fem.shape = {'shlag(2,''T'')'}; fem.border = 1; fem.outform = 'general'; % Equation form fem.form = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Subdomain settings clear equ equ.da = 'r*Dts_ht*rho_ht*C_ht'; equ.c = {{{'-diff(-r*krr_ht*Tr,Tr)';'-diff(-r*kzz_ht*Tz,Tz)'}}}; equ.init = 1; equ.ga = {{{'-r*krr_ht*Tr';'-r*kzz_ht*Tz'}}}; equ.al = {{{'-diff(-r*krr_ht*Tr,T)';'-diff(-r*kzz_ht*Tz,T)'}}}; equ.ind = [1]; equ.dim = {'T'}; equ.var = {'fluxr_ht','-krr_ht*Tr-krz_ht*Tz', ... 'fluxz_ht','-kzr_ht*Tr-kzz_ht*Tz', ... 'gradT_ht','sqrt(Tr^2+Tz^2)', ... 'flux_ht','sqrt(fluxr_ht^2+fluxz_ht^2)','k_ht',1, ... 'Dts_ht','tau', ... 'rho_ht',1, ... 'C_ht',1, ... 'Q_ht',0, ... 'krr_ht',1, ... 'kzr_ht',0, ... 'krz_ht',0, ... 'kzz_ht','L^2'}; fem.equ = equ; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem, ... 'sdl',{[],NaN}); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','1000', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)'}; % Constants xfem.const = {'St','1000', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; % Shape functions fem.shape = {'shlag(2,''T'')'}; fem.border = 1; fem.outform = 'general'; % Equation form fem.form = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Subdomain settings clear equ equ.da = 'r*Dts_ht*rho_ht*C_ht'; equ.c = {{{'-diff(-r*krr_ht*Tr,Tr)';'-diff(-r*kzz_ht*Tz,Tz)'}}}; equ.init = 1; equ.ga = {{{'-r*krr_ht*Tr';'-r*kzz_ht*Tz'}}}; equ.al = {{{'-diff(-r*krr_ht*Tr,T)';'-diff(-r*kzz_ht*Tz,T)'}}}; equ.ind = [1]; equ.dim = {'T'}; equ.var = {'fluxr_ht','-krr_ht*Tr-krz_ht*Tz', ... 'fluxz_ht','-kzr_ht*Tr-kzz_ht*Tz', ... 'gradT_ht','sqrt(Tr^2+Tz^2)', ... 'flux_ht','sqrt(fluxr_ht^2+fluxz_ht^2)','k_ht',1, ... 'Dts_ht','tau', ... 'rho_ht',1, ... 'C_ht',1, ... 'Q_ht',0, ... 'krr_ht',1, ... 'kzr_ht',0, ... 'krz_ht',0, ... 'kzz_ht','L^2'}; fem.equ = equ; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem, ... 'sdl',{[],NaN}); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','0.001/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001^2*1*2611*840/(1000*1.3)'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','0.001/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001^2*1*2611*840/(1000*1.3)'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; % Shape functions fem.shape = {'shlag(2,''T'')'}; fem.border = 1; fem.outform = 'general'; % Equation form fem.form = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Subdomain settings clear equ equ.da = 'r*Dts_ht*rho_ht*C_ht'; equ.c = {{{'-diff(-r*krr_ht*Tr,Tr)';'-diff(-r*kzz_ht*Tz,Tz)'}}}; equ.init = 1; equ.ga = {{{'-r*krr_ht*Tr';'-r*kzz_ht*Tz'}}}; equ.al = {{{'-diff(-r*krr_ht*Tr,T)';'-diff(-r*kzz_ht*Tz,T)'}}}; equ.ind = [1]; equ.dim = {'T'}; equ.var = {'fluxr_ht','-krr_ht*Tr-krz_ht*Tz', ... 'fluxz_ht','-kzr_ht*Tr-kzz_ht*Tz', ... 'gradT_ht','sqrt(Tr^2+Tz^2)', ... 'flux_ht','sqrt(fluxr_ht^2+fluxz_ht^2)','k_ht',1, ... 'Dts_ht','tau', ... 'rho_ht',1, ... 'C_ht',1, ... 'Q_ht',0, ... 'krr_ht',1, ... 'kzr_ht',0, ... 'krz_ht',0, ... 'kzz_ht','L^2'}; fem.equ = equ; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem, ... 'sdl',{[],NaN}); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; % Shape functions fem.shape = {'shlag(2,''T'')'}; fem.border = 1; fem.outform = 'general'; % Equation form fem.form = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Subdomain settings clear equ equ.da = 'r*Dts_ht*rho_ht*C_ht'; equ.c = {{{'-diff(-r*krr_ht*Tr,Tr)';'-diff(-r*kzz_ht*Tz,Tz)'}}}; equ.init = 1; equ.ga = {{{'-r*krr_ht*Tr';'-r*kzz_ht*Tz'}}}; equ.al = {{{'-diff(-r*krr_ht*Tr,T)';'-diff(-r*kzz_ht*Tz,T)'}}}; equ.ind = [1]; equ.dim = {'T'}; equ.var = {'fluxr_ht','-krr_ht*Tr-krz_ht*Tz', ... 'fluxz_ht','-kzr_ht*Tr-kzz_ht*Tz', ... 'gradT_ht','sqrt(Tr^2+Tz^2)', ... 'flux_ht','sqrt(fluxr_ht^2+fluxz_ht^2)','k_ht',1, ... 'Dts_ht','tau', ... 'rho_ht',1, ... 'C_ht',1, ... 'Q_ht',0, ... 'krr_ht',1, ... 'kzr_ht',0, ... 'krz_ht',0, ... 'kzz_ht','L^2'}; fem.equ = equ; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem, ... 'sdl',{[],NaN}); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.05,1.05]); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = '1/tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... t` 'title','Time=1000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.05,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','0.00001/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.00001^2*1*2611*840/(1000*1.3)'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','0.00001/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','0.00001/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = '1/tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.49999999999999,-0.050000000000000044,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','0.00001/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','0.00001/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.49999999999999,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)', ... 's','10000'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)', ... 's','10000'}; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.49999999999999,-0.050000000000000044,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)', ... 'q','10000'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)', ... 'q','10000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'q'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.49999999999999,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)', ... 'q','100000'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)', ... 'q','100000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'q'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.49999999999999,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)', ... 'q','1'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)', ... 'q','1'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'q'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001^2*1*2611*840/(1000*1.3)', ... 'q','0.001'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001^2*1*2611*840/(1000*1.3)', ... 'q','0.001'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'q'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.49999999999999,-0.050000000000000044,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)', ... 'q','0.001'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)', ... 'q','0.001'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-0.5470297029702972,4.762376237623761,-0.001696606786427246,0.27934131736526946]); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'q'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-0.5470297029702972,4.762376237623761,-0.001696606786427246,0.27934131736526946]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','0.001/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)', ... 'q','0.001'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','0.001/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)', ... 'q','0.001'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'q'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.05,1.05]); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum',3, ... 'title','Time=20 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.05,1.05]); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum',2, ... 'title','Time=10 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.05,1.05]); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum',2, ... 'title','Time=10 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.05,1.05]); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'q'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:0.01:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.05,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'q'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'odesolver','genalpha', ... 'tlist',[0:0.01:1], ... 'tout','tlist', ... 'incrdelay','off', ... 'nlsolver','manual', ... 'ntolfact',1, ... 'maxiter',4, ... 'dtech','const', ... 'damp',1.0, ... 'jtech','minimal'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)', ... 'q','0.001'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)', ... 'q','0.001'}; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.05,1.05]); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:0.01:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.05,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xt`fem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:10], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=10 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=10 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[0.6782178217821779,1.2227722772277225,-0.008283433133732476,0.13882235528942122]); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; % Shape functions fem.shape = {'shlag(2,''T'')'}; fem.border = 1; fem.outform = 'general'; % Equation form fem.form = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Subdomain settings clear equ equ.da = 'r*Dts_ht*rho_ht*C_ht'; equ.c = {{{'-diff(-r*krr_ht*Tr,Tr)';'-diff(-r*kzz_ht*Tz,Tz)'}}}; equ.init = 1; equ.ga = {{{'-r*krr_ht*Tr';'-r*kzz_ht*Tz'}}}; equ.al = {{{'-diff(-r*krr_ht*Tr,T)';'-diff(-r*kzz_ht*Tz,T)'}}}; equ.ind = [1]; equ.dim = {'T'}; equ.var = {'fluxr_ht','-krr_ht*Tr-krz_ht*Tz', ... 'fluxz_ht','-kzr_ht*Tr-kzz_ht*Tz', ... 'gradT_ht','sqrt(Tr^2+Tz^2)', ... 'flux_ht','sqrt(fluxr_ht^2+fluxz_ht^2)','k_ht',1, ... 'Dts_ht','tau', ... 'rho_ht',1, ... 'C_ht',1, ... 'Q_ht',0, ... 'krr_ht',1, ... 'kzr_ht',0, ... 'krz_ht',0, ... 'kzz_ht','L^2'}; fem.equ = equ; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem, ... 'sdl',{[],NaN}); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:10], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=10 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[0.6782178217821779,1.2227722772277225,-0.008283433133732476,0.13882235528942122]); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:10], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=10 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[0.6793534932221061,1.8263816475495305,-0.021212121212121238,0.290909090909091]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=10 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)', ... 'q','0.000001'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1^2*1*2611*840/(1000*1.3)', ... 'q','0.000001'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'q'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:10], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=10 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-11.5,43.5,-0.05,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:10], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=10 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-11.5,43.5,-0.05,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=10 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {273.15,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'T','q0','T'}; bnd.T0 = {1,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-11.5,43.5,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {1,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-11.5,43.5,-0.050000000000000044,1.05]); % Plot in cross-section or along domain postcrossplot(xfem,0,[1;0], ... 'pointdata',{'T','unit','K'}, ... 'title','Temperature [K]', ... 'axislabel',{'Time','Temperature [K]'}); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {1,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-11.5,43.5,-0.050000000000000044,1.05]); % Plot in cross-section or along domain postcrossplot(xfem,0,[1;0], ... 'pointdata',{'T','unit','K'}, ... 'title','Temperature [K]', ... 'axislabel',{'Time','Temperature [K]'}); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Geometry 1 g6=rect2('50','1000','base','corner','pos',{'1','0'},'rot','0'); fem=xfem.fem{1}; % Analyzed geometry clear s s.objs={g6}; s.name={'R1'}; s.tags={'g6'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % Initialize mesh for geometry 1 fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxedg',[1,1]); xfem.fem{1}=fem; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {1,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-50,1050]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Geometry 1 g7=rect2('50','1','base','corner','pos',{'1','0'},'rot','0'); fem=xfem.fem{1}; % Analyzed geometry clear s s.objs={g7}; s.name={'R1'}; s.tags={'g7'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % Initialize mesh for geometry 1 fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxedg',[1,0.001]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; xfem.fem{1}=fem; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {1,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.05,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {1,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.05,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {1,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.05,1.05]); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'T','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.05,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 't`solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.05,1.05]); % Plot in cross-section or along domain postcrossplot(xfem,0,[1;0.5], ... 'pointdata',{'T','unit','K'}, ... 'title','Temperature [K]', ... 'axislabel',{'Time','Temperature [K]'}); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Plot in cross-section or along domain postcrossplot(xfem,0,[0.5], ... 'pointdata','F', ... 'title','F', ... 'axislabel',{'Time','F'}, ... 'geomnum',[2]); % Plot solution postplot(xfem, ... 'liny',{'F/T','cont','internal'}, ... 'lindata','F', ... 'linmap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Line: F/T Line Color: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.05,1.05]); % Plot in cross-section or along domain postcrossplot(xfem,0,[0.5], ... 'pointdata','F/T', ... 'title','F/T', ... 'axislabel',{'Time','F/T'}, ... 'geomnum',[2]); % Plot in cross-section or along domain postcrossplot(xfem,1,[50.5 50.5;0 1], ... 'lindata','T/F', ... 'title','T/F', ... 'axislabel',{'Arc-length','T/F'}); % Plot in cross-section or along domain postcrossplot(xfem,1,[50.5 50.5;0 1], ... 'lindata','F/T', ... 'title','F/T', ... 'axislabel',{'Arc-length','F/T'}); % Plot in cross-section or along domain postcrossplot(xfem,1,[50.5 50.5;0 1], ... 'lindata','T/F', ... 'title','T/F', ... 'axislabel',{'Arc-length','T/F'}); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'T','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.05,1.05]); % Plot in cross-section or along domain postcrossplot(xfem,0,[0.5], ... 'pointdata','F/T', ... 'title','F/T', ... 'axislabel',{'Time','F/T'}, ... 'geomnum',[2]); % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'T','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'T*St'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.05,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F/T','cont','internal'}, ... 'lindata','F', ... 'linmap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Line: F/T Line Color: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F/T','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F/T', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'St*T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'S'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'S'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'St*T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'S'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'S'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.050000000000000044,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'St*T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'S'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'S'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','q0'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.050000000000000044,1.05]); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[0.26318510858324706,2.140124095139607,-0.010606060606060508,1.0151515151515151]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[0.26318510858324706,2.140124095139607,-0.010606060606060508,1.0151515151515151]); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','q0'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[0.6793534932221061,5.5542231491136596,-0.025757575757575646,0.21212121212121215]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','q0'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.05,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','q0'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = 1; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[0.5057581573896353,1.7151093607819012,-0.011351351351351457,0.025810810810810603]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.00001'}; % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.00001'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[0.5057581573896353,1.7151093607819012,-0.011351351351351457,0.025810810810810603]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type =t` 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.050000000000000044,1.05]); % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.050000000000000044,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'T','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Plot in cross-section or along domain postcrossplot(xfem,0,[0.5], ... 'pointdata','F/T', ... 'title','F/T', ... 'axislabel',{'Time','F/T'}, ... 'geomnum',[2]); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1000:100000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1e5 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.050000000000000044,1.05]); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'T','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'T','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'T','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.050000000000000044,1.05]); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'T','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.dinit = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.050000000000000044,1.05]); % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'T','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'T','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:100:10000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=10000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'T','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1000:10000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=10000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor't`,[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=10000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.050000000000000044,1.05]); % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'T','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1000:10000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=10000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=10000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'T','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10000:100000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1e5 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'T','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10000:100000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1e5 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1e5 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.050000000000000044,1.05]); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.sshape = 2; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10000:100000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1e5 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.5,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1e5 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.5 (COMSOL 3.5.0.494, $Date: 2008/09/19 16:09:48 $) % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10000:100000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1e5 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:100:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.5 (COMSOL 3.5.0.494, $Date: 2008/09/19 16:09:48 $) % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*tau/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'tau'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','tau','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','0.001'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','0.001'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c t`= '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.49999999999999,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','0.001'}; % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','0.001'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','0.001'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','0.001'}; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.49999999999999,-0.050000000000000044,1.05]); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'T','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.49999999999999,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'T','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:100:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','0.001'}; % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','0.001'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'T','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:100:1000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','0.001'}; % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','0.001'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'T','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.49999999999999,-0.050000000000000044,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','0.001'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','0.001'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.49999999999999,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:100000:1000000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=10e5 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.49999999999999,-0.050000000000000044,1.05]); fem=xfem.fem{2}; % Initialize mesh for geometry 2 fem.mesh=meshinit(fem); % Refine mesh for geometry 2 fem.mesh=meshrefine(fem, ... 'mcase',0); xfem.fem{2}=fem; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); fem=xfem.fem{2}; % Initialize mesh for geometry 2 fem.mesh=meshinit(fem); xfem.fem{2}=fem; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.49999999999999,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.49999999999999,-0.050000000000000044,1.05]); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = '1/d'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.49999999999999,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','0.001'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','0.001'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=100 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.49999999999999,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','1000'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','1000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius ant`d avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10:100], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=100 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','1000000'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','1000000'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:100000000000:1000000000000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=10e11 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','0.001'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','0.001'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:100000000000:1000000000000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=10e11 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=10e11 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.49999999999999,-0.050000000000000044,1.05]); % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','0.001'}; % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','0.001'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:100000000000:1000000000000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=10e11 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.49999999999999,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=10e11 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','0.001'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','0.001'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'T','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:100000000000:1000000000000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=10e11 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','0.001'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','0.001'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:10], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=10 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.49999999999999,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=10 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1000:10000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=10000 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=10000 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.49999999999999,-0.050000000000000044,1.05]); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:10], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=10 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'u',0, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:10], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=10 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Evaluating u using all solution numbers u = asseminit(xfem,'init',fem0.sol,'solnum',11,'blocksize','auto'); % Solve problem xfem.sol=femtime(xfem, ... 'u',u, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:10], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=10 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:10], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=10 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=10 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.49999999999999,-0.050000000000000044,1.05]); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'T','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:10], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=10 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.49999999999999,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=10 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'T','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10000:100000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1e5 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','0.001'}; % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','0.001'}; % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'T','q0','T'}; bnd.T0 = {'F',273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type t5= 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:10000:100000], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1e5 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','0.001'}; % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','0.001'}; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1e5 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.49999999999999,-0.050000000000000044,1.05]); % (Default values are not included) fem=xfem.fem{1}; % Application mode 1 clear appl appl.mode.class = 'HeatTransfer'; appl.mode.type = 'axi'; appl.sshape = 2; appl.assignsuffix = '_ht'; clear bnd bnd.type = {'q','q0','T'}; bnd.T0 = {1,273.15,1}; bnd.Tinf = {'F',273.15,273.15}; bnd.h = {'St*M*d/2',0,0}; bnd.ind = [1,2,2,3]; appl.bnd = bnd; clear equ equ.ktensor = {{1;'L^2'}}; equ.C = 1; equ.init = 1; equ.Dts = 'd'; equ.ktype = 'aniso'; equ.rho = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'ref'}; fem.border = 1; fem.outform = 'general'; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); clear bnd bnd.expr = {{'T',{}}}; bnd.map = {{'1','1'}}; bnd.ind = {{'1'},{'2','3','4'}}; src{1} = {{},bnd,{}}; src{2} = {}; elem.src = src; geomdim = cell(1,2); geomdim{1} = {}; clear equ equ.map = {{'2'}}; equ.ind = {{'1'}}; geomdim{2} = {{},equ}; elem.geomdim = geomdim; elem.var = {'T'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '2'; submap.sv = {'1','2'}; submap.dg = '1'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{1} = fem; fem=xfem.fem{2}; % Application mode 1 clear appl appl.mode.class = 'FlPDEC'; appl.dim = {'F','F_t'}; appl.assignsuffix = '_c'; clear bnd bnd.g = {0,2}; bnd.q = {0,1}; bnd.type = 'neu'; bnd.ind = [2,1]; appl.bnd = bnd; clear equ equ.f = 'St*T'; equ.c = '1/Pe'; equ.a = 'St'; equ.init = {{1;0}}; equ.be = 1; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Coupling variable elements clear elemcpl % Extrusion coupling variables clear elem elem.elem = 'elcplextr'; elem.g = {'1','2'}; src = cell(1,2); src{1} = {}; clear equ equ.expr = {{'F'}}; equ.map = {{'1'}}; equ.ind = {{'1'}}; src{2} = {{},equ}; elem.src = src; geomdim = cell(1,2); clear bnd bnd.map = {{'2',{}}}; bnd.ind = {{'1'},{'2','3','4'}}; geomdim{1} = {{},bnd,{}}; geomdim{2} = {}; elem.geomdim = geomdim; elem.var = {'F'}; map = cell(1,2); clear submap submap.type = 'unit'; map{1} = submap; clear submap submap.type = 'linear'; submap.sg = '1'; submap.sv = {'1','2'}; submap.dg = '2'; submap.dv = {'1','2'}; map{2} = submap; elem.map = map; elemcpl{1} = elem; fem.elemcpl = elemcpl; xfem.fem{2} = fem; % Descriptions clear descr descr.const= {'Pe','Peclet number','d','dimensionless time (ratio of squared radius and avg velocity product to length of conduit and rock thermal diffusivity product)','L','conduit radius to length ratio','M','material ratio of water density and specific heat product to rock density and specific heat product','St','Stanton number'}; xfem.descr = descr; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; % Multiphysics xfem=multiphysics(xfem); % Extend mesh xfem.xmesh=meshextend(xfem); % Solve problem xfem.sol=femtime(xfem, ... 'solcomp',{'T','F'}, ... 'outcomp',{'T','F'}, ... 'blocksize','auto', ... 'tlist',[0:1:10], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=xfem; % Plot solution postplot(xfem, ... 'tridata',{'T','cont','internal','unit','K'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=10 Surface: Temperature [K]', ... 'axisequal','off', ... 'axis',[-1.5,53.49999999999999,-0.050000000000000044,1.05]); % Plot solution postplot(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=10 Line: F', ... 'geomnum',[2], ... 'axis',[-0.05,1.05]); % Animate solution postmovie(xfem, ... 'liny',{'F','cont','internal'}, ... 'lincolor',[0.0,0.0,0.0], ... 'geomnum',[2], ... 'axis',[-0.05,1.05], ... 'fps',10); uq~ t % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.5 (COMSOL 3.5.0.494, $Date: 2008/09/19 16:09:48 $) flclear xfem % COMSOL version clear vrsn vrsn.name = 'COMSOL 3.5'; vrsn.ext = ''; vrsn.major = 0; vrsn.build = 494; vrsn.rcs = '$Name: $'; vrsn.date = '$Date: 2008/09/19 16:09:48 $'; xfem.version = vrsn; % Geometry 2 g1=solid1([0,1]); % Geometry 1 g2=rect2('50','1','base','corner','pos',{'0','0'},'rot','0'); g3=rect2('50','1','base','corner','pos',{'0.5','0'},'rot','0'); flclear fem % Analyzed geometry clear s s.objs={g3}; s.name={'R1'}; s.tags={'g3'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); xfem.fem{1}=fem; % Geometry 2 flclear fem % Analyzed geometry clear s s.objs={g1}; s.name={'I1'}; s.tags={'g1'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % Constants xfem.const = {'w','0.6', ... 'N','100', ... 'D','1'}; % Geometry 1 g4=rect2('50','1','base','corner','pos',{'1','0'},'rot','0'); xfem.fem{2}=fem; fem=xfem.fem{1}; % Analyzed geometry clear s s.objs={g4}; s.name={'R1'}; s.tags={'g4'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % Constants xfem.const = {'St','10', ... 'Re','1000', ... 'Pr','7', ... 'Pe','100', ... 'L','1/1000'}; xfem.fem{1}=fem; % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.5 (COMSOL 3.5.0.494, $Date: 2008/09/19 16:09:48 $) % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','0.1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.1^2*1*2611*840/(1000*1.3)'}; % Geometry 1 g2=rect2('50','1','base','corner','pos',{'0.1','0'},'rot','0'); fem=xfem.fem{1}; % Analyzed geometry clear s s.objs={g2}; s.name={'R1'}; s.tags={'g2'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); g3=rect2('50','1','base','corner','pos',{'10','0'},'rot','0'); % Analyzed geometry clear s s.objs={g3}; s.name={'R1'}; s.tags={'g3'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); g5=rect2('50','1','base','corner','pos',{'1','0'},'rot','0'); % Analyzed geometry clear s s.objs={g5}; s.name={'R1'}; s.tags={'g5'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1'}; % Geometry 1 g6=rect2('50','1000','base','corner','pos',{'1','0'},'rot','0'); % Analyzed geometry clear s s.objs={g6}; s.name={'R1'}; s.tags={'g6'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); g7=rect2('50','1','base','corner','pos',{'1','0'},'rot','0'); % Analyzed geometry clear s s.objs={g7}; s.name={'R1'}; s.tags={'g7'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','1000'}; xfem.fem{1}=fem; % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.5 (COMSOL 3.5.0.494, $Date: 2008/09/19 16:09:48 $) % Constants xfem.const = {'St','0', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'tau','0.001'}; % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.5 (COMSOL 3.5.0.494, $Date: 2008/09/19 16:09:48 $) % Constants xfem.const = {'St','10', ... 'Pe','200', ... 'L','1/1000', ... 'M','998.2071*4181.8/(2611*840)', ... 'd','0.001'}; t clear mfile clear vrsn vrsn.name = 'COMSOL 3.5'; vrsn.ext = ''; vrsn.major = 0; vrsn.build = 494; vrsn.rcs = '$Name: $'; vrsn.date = '$Date: 2008/09/19 16:09:48 $'; mfile.version=vrsn; mfile.fem='xfem'; mfile.stored={'fem0','fem1'}; mfile.tags={}; mfile.types={}; x