2D Axisymmetric Simulation of Pulsed Electrochemical Machining (PECM) of Internal Precision Geometries

M. Hackert-Oschätzchen [1], M. Kowalick [1], R. Paul [1], M. Zinecker [1], D. Kuhn [1], G. Meichsner [2], A. Schubert [3],
[1] Professorship Micromanufacturing Technology, Technische Universität Chemnitz, Chemnitz, Germany
[2] Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany
[3] Professorship Micromanufacturing Technology, Technische Universität Chemnitz, Chemnitz, Germany; Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany
发布日期 2016

This study presents investigations on a developed process design for manufacturing internal precision geometries by pulsed electrochemical machining (PECM) with help of multiphysics simulations. Therefore, a 2D axisymmetric transient model was created. The considered physical phenomena are fluid dynamics, thermodynamics, electrodynamics, the formation and transport of hydrogen as well as geometry deformation. The resulting geometry is calculated for a machining time up to 250 s applying the developed model. The model allows a detailed prediction of the material removal process and helps to perform further developments and optimizations in the process design.

Baidu
map