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ABSTRACT

In this work, the numerical analysis of stretchable thermoplastic polyurethane (TPU) substrates with integrated copper traces serving as resistive or rather capacitive sensor elements is
presented. Fundamentals of phenomenological hyperelastic material models with emphasis on the 5 parameter Mooney-Rivlin approach to describe the material behavior of TPU best
possible are discussed in a first instance. Capabilities for shape optimization of embedded copper traces are additionally studied by means of COMSOL Multiphysics® in consideration of
TPU strain rates up to 60%. Based on these findings, first designs for shape-adjustable resistive and capacitive sensor devices are successfully realized and modeled by FEM simulations.

FUNDAMENTALS OF HYPER-
ELASTIC MATERIAL MODELS
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Fig. 1: Classification of phenomenological hyperelastic material
models. Adapted from [1,2].
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Fig. 2: Comparison of hyperelastic material models for descrip-
tion of TPU.

GOVERNING EQUATIONS OF THE
5 P MOONEY-RIVLIN MODEL

Strain energy density function WMR :

WMR =C10 (I1−3)+C01 (I2−3)
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Expression for the relating invariants I:
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Derived stress-strain relation σMR :
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)

SHAPE OPTIMIZATION OF
FUNCTIONAL SENSOR ELEMENTS
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Fig. 3: Shape optimization of TPU with conductive copper traces: (a)
Straight copper path, (b) meanders of 180° (U-shaped) and (c)
rectangular traces of metallic structures in their initial state,
(d)-(f) copper trace geometries at 40% strain.

ELECTRICAL CHARACTERIZATION OF
SENSOR ELEMENTS
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Fig. 4: Relative change in resistance △R/R0 of the strain gauge: Com-
parison of simulation and measurement results for strain rates
up to 60%.

INITIAL RESISTANCES & STRESSES
OF THE COPPER GEOMETRIES

Geometry R0,norm. σM

Straight 100% 100%

Meander 180° 157% 90%

Rectangular 291% 26%

FEM MODELING OF SENSORS
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Fig. 5: Shape-adjustable sensors: (a) Resistive sensor with 100 µm
thick TPU, (b) relating FEM model at 15% strain, (c) capac-
itive sensor design and (d) capacitive sensor at 15% strain.

CONCLUSION & OUTLOOK

FEM models of resistive and capacitive sensors based
on TPU sheets with functional copper elements are in-
troduced successfully aiming the development of novel
sensors for human health monitoring. Different invariant-
and stretch-based material models are discussed initially.
Moreover, options for shape optimization towards 180°
meanders and rectangular copper traces of the devices
have been highlighted. In conclusion, the simulations
have proven an uniaxial deformation of both sensor ver-
sions up to 35% without loss of functionality.
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