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We built a pipeline to homogenize nonlinear
metamaterials, train machine learning constitutive
models and solve macroscopic FEA in COMSOL®.
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Project goals

In functional material design, achieving desired macroscopic Using COMSOL Multiphysics®, we generate detailed, high-
properties through precise microstructural configurations fidelity homogenization data of microstructured materials.
remains a significant challenge. Numerical homogenization is With these data, we calibrate physics-augmented neural
a powerful computational approach to derive effective network material models [1,2] that can accurately capture the
macroscopic properties of materials with complex complex behavior of heterogeneous materials within potential
microstructures. macroscopic digital twin applications [3,4].
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PANN model A spherical inclusion inside a material matrix is modeled with a user-
— defined, nearly incompressible hyperelastic Ogden material model,
% with a contrast of ten between the sphere and matrix material.
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Our approach incorporates nonlinear material effects of finite strain
elasticity. This encompasses modifying the Cell Periodicity boundary
90 condition to accept variable deformation gradients. We homogenize
1 load step |-} 20 the first Piola-Kirchhoff stress P = dr Y and the tangent modulus
FIGURE 1. Homogenized First Piola-Kirchhoff stresses. A=0pP = 0:1.

Neural Network-Based Material Model

The homogenized behavior of microstructures is often highly

nonlinear. Thus, we envision using physics-augmented neural

network constitutive models [1,2]. These models are formulated P

to fulfill important conditions such as thermodynamic consistency F]— —|ICNN |— [wNN ]ﬂbstfess - qpgrowth —F>
and convexity conditions by construction. They combine the
extraordinary flexibility of neural networks with a sound
mechanical basis. These material models are calibrated in a
TensorFlow code using homogenization data generated with
COMSOL Multiphysics®.

FIGURE 2. Hyperelastic physics-augmented neural
Currently, approaches are being investigated to include the network constitutive model.
calibrated neural network models back into macroscopic FEA

simulations within COMSOL Multiphysics®.
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