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Abstract 
In the present work, COMSOL® Multiphysics is used to implement 2D and 3D micropolar continuum models to 

address the multidisciplinary problem of modelling guided bone regeneration (GBR) meshes. GBR meshes are 

used in dentistry as mechanical barriers to isolate and protect the area of bone loss from the surrounding tissue 

while allowing for new bone growth. The micropolar theory is adopted to provide a homogenised and efficient 

mechanical model for the heterogeneous porous structure of the GBR mesh. The mechanical constants are derived 

based on the strain energy equivalence between a periodic porous plate and its equivalent micropolar model under 

prescribed boundary conditions. The effects of various architectural features, such as pore shapes, patterns, and 

sizes, on the material parameters are investigated. The results show that the micropolar theory can effectively 

predict the mechanical response of the GBR mesh with a more reliable performance compared to the classical 

Cauchy theory. The collected equivalent micropolar parameters are further used for GBR mesh design, considering 

both mechanical and biomedical requirements. As an example, different materials and arrangements are analysed 

to find micropolar constitutive parameters that are comparable to bone parameters reported in the literature. This 

allows the GBR mesh to possess the mechanical performance that matches the adjacent bones and avoid the stress-

shielding phenomenon.  

Keywords: Guided Bone Regeneration; COMSOL® Multiphysics; Micropolar Theory; Finite Element Analysis; 

Equivalent Porous-Cellular Materials. 

Introduction 
Bone tissue has a limited capacity for self-repair and 

cannot regenerate if the damaged area is too large. 

To support cellular proliferation and facilitate the 

filling of the damaged region, scaffolds are 

commonly employed [1], [2], [3]. These scaffolds 

are porous structures made from biomaterials, 

designed to provide mechanical support and 

encourage bone regeneration [4]. Guided Bone 

Regeneration (GBR) is a dental surgical procedure 

(see Figure 1) used to regenerate bone in specific 

areas where natural bone volume is insufficient, 

often in preparation for dental implants. The 

effectiveness of GBR depends significantly on the 

mechanical properties of the barriers [5]. The 

primary function of the scaffolds is to preserve the 

tissue while transferring appropriate mechanical 

forces [2]. The bone regrowth is dependent on the 

mechanical forces experienced by regenerating cells. 

Ideally, bone scaffold should mimic the stiffness of 

natural bone [6] as close as possible. On the other 

hand, studies suggest that the intricate structure of 

bone tissue may require more sophisticated 

mechanical models, such as micropolar theory, to 

take into account the effect of internal structures [7]. 

At the same time, compromising porosity and 

stiffness is crucial, as increasing porosity reduces 

stiffness but supports nutrient flow, waste removal, 

and cell migration [8]. As another challenge, 

metallic GBR sheets that are currently used as 

mechanical barriers (Figure 1d) should be removed 

after the healing period, which imposes a second 

surgery for the patients. To eliminate the need for 

this second procedure, a solution is to use 

biodegradable materials like polylactic acid (PLA) 

[9]. 

 

 

Figure 1. Guided bone regeneration surgical procedure: 

a) Exposing the Bone Defect: A small incision is made so 

to access the area of defect. b) Bone Grafting: a cement 

(bone+antimicrobial additives+stimulants) that promotes 

new bone growth is placed under the membrane. 

c) Preparing GBR Mesh: d) Placing the GBR Mesh 

The use of biodegradable material is also of great 

desire due to the recent advances in additive 

manufacturing, which enable the production of 

highly precise and customised 3D scaffolds with 
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tuneable pore size, density, and architecture. This 

allows for optimisation of their mechanical and 

biological performance by tailoring microstructural 

characteristics. However, biodegradable polymers 

such as PLA usually possess suboptimal mechanical 

properties, such as low stiffness and fracture 

toughness, that limit their application and there is the 

need to use reinforcements [10], [11]. 

The current work attempts to address the 

multifaceted and multidisciplinary challenges in the 

design of the GBR implants by proposing a 

mechanical model that can efficiently consider the 

effect of material and microstructure on the overall 

behaviour. The model is based on the micropolar 

theory, which considers the effect of internal 

structure through internal scale parameters in the 

equations [12]. This mechanical model will facilitate 

the design of GBR implants that can replicate the 

mechanical properties of that of the natural bone. 

The 2D and 3D governing equations of micropolar 

theory are implemented using the PDE Weak form 

in COMSOL® to conduct FE simulations. The 

developed implementation can account for complex 

geometry, loading and boundary conditions within a 

user-friendly interface. Also, the visualisation of the 

results and postprocessing will be quite convenient.  

Theoretical Background 

3D Micropolar Theory 
In classical continuum mechanics, materials are 

modelled as continuous entities without internal 

structure, leading to the assumption that the stress 

tensor is symmetric. However, this assumption fails 

in materials where microstructural effects play a 

significant role. Micropolar (or Cosserat [13]) 

continuum theory addresses this limitation by 

introducing additional kinematic variables. 

In this theory, a microscopic rotational degree of 

freedom, called micro-rotation (  ), is considered 

besides the usual translational deformations (U ) in 

classical (Cauchy) continua.  

This continuum is governed by the following 

linearised kinematic equations [14]: 

,ij j i ijk kE U e= −   

,jij iK =   
(1) 

where U  and   stand for the displacement and 

micro-rotation vectors, 
ijE  and 

ijK  denote the 

components of strain and curvature tensors and 
ijke  

is the usual third order permutation symbol. 

If the presence of body forces (
jP ) and body couples 

(
jQ ), the equilibrium equations take the following 

form: 

, 0ij i jP + =  

, 0ij i ijk i jkM e Q−  + =  
(2) 

Where 
ij  and 

ijM  are the non-symmetric stress 

and couple-stress tensors, respectively. 

In the isotropic micropolar solid there are six elastic 

constants, in contrast to the two parameters in the 

classical elastic solid. The constitutive equations are: 

( )kk ij ji ij

kk ij ji ij

ij

ij

E E E

M K K K

    

   

 = + + +

= + +
 (3) 

Eq. (3) includes six elastic material constants: the 

two Lamé's constants,   and  , similar to Cauchy 

continua plus four extra parameters,  ,  ,  ,  , 

related to the micropolar theory. The engineering 

constants listed below (Table 1) can be derived from 

these six constitutive parameters, providing a more 

sensible understanding of the physical properties 

[14]: 

Table 1: Engineering constants for a linear isotropic 

micropolar elastic 

(Generalised) Shear 

Modulus 2
G


= +  

(Generalised) 

Young’s Modulus 

( )( )2 3 2

2 2
E

    

  

+ + +
=

+ +
 

(Generalised) 

Poisson Ratio 2 2




  
=

+ +
 

Characteristic 

Length for Torsion 2
tl

 

 

+
=

+
 

Characteristic 

Length for Bending ( )2 2
bl



 
=

+
 

Polar Ratio 
 


  

+
=

+ +
 

Coupling Number 
( )2

N


 
=

+
 

 

Micropolar Theory in 2D Plane 
In the linearised 2D framework of micropolar, the 

degrees of freedom are reduced to two displacements 

(U ,V ) and one rotational component ( ), so the 

generalised displacement vector can be defined as: 

 T U V= U  (4) 

and the strain vector is: 

 11 22 12 21 1 2

T E E E E K K=E  (5) 

Where 11E , 22E , 12E , 21E are the in-plane normal 

and shear strains, and 1K , 2K are the micropolar 

curvatures that exist in the plane. 

The stress vector is also represented as: 

 11 22 12 21 1 2

T M M=    Σ  (6) 

where 
ij  (i, j = 1,2) represents the normal (i = j) and 

shear stress (i≠j) components, and 1M , 2M are the 

micro-couples act in-plane. 
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The general micropolar anisotropic constitutive 

equations can be represented as: 

=Σ CE  (7) 

Where C is the symmetrical constitutive stiffness 

matrix. Accordingly, Eq. (7) can be written in terms 

of the stiffness matrix components and Voigt 

notation as: 

1111 1122 1112 1121 111 112

2222 2212 2221 221 222

1212 1221 121 122

1221 1212 221 212

11 11

22 22

12 12

21 21

11 121 1

222 2
.
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D D
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    



    









 
(8) 

 

The geometries considered here for porous GBR 

meshes (Figure 3) are symmetric with respect to a 

90° rotation. This symmetry implies a special kind 

of orthotropic material known as "ortho-tetragonal." 

The constitutive equations for materials with ortho-

tetragonal symmetry can be presented as: 

1111 1122

1122 1111

1212 1221

1221 1212

11 11

22 22

12 12

21 21

111 1

112 2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
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(9) 

Therefore, the stiffness matrix contains five 

independent micropolar material parameters: 
1111

A , 

1122
A , 

1212
A , 

1221
A , 11D . 

Methods 

2D Plate Model for Porous GBR Mesh 

Currently, there are several types of GBR mesh 

available on the market. A common type that is 

widely used in dentistry is titanium alloy (Ti6Al4V) 

[15] sheets with a perforated structure. Before 

implantation of the GBR, the required dimensions 

and overall shape are cut and formed by the surgeon 

(Figure 1c). 

 
Figure 2 Different pore geometries and patterns 

considered for GBR meshes. 

GBR meshes are considered here as 2D square plates 

with an overall side length of L where pores are 

distributed regularly. The pores can be in various 

shapes and sizes and with different spacing, which 

leads to different pore densities. Here, the pores’ 

geometry and pattern are parametrised by two 

variables, the pore size, 𝑙𝑝 and the number of pores 

per unit length (pore density), 𝑁𝑝. The parametrised 

GBR sheets with rectangular- and circular-shape 

pores are shown in Figure 3. 

 
Figure 3 Parametrised GBR sheet with rectangular and 

circular shape pores 

Homogenisation and Identification of 

Micropolar Parameters for 2D Plate 

For modelling the GBR meshes with different 

microstructures (pores’ patterns), an equivalent 

homogenised material represents the detailed 

heterogeneous structure. At the macro-level, the 

micropolar continuum is chosen as it has been shown 

to be very suitable to describe materials with internal 

structures, while at the micro-level the classical 

Cauchy continuum is used (Figure 4).  

 
Figure 4 The homogenisation procedure for 2D model of 

porous GBR meshes. 

To determine the constitutive parameters of the 

equivalent model, the primary hypothesis is that the 

strain energy stored in the porous structure under 

prescribed boundary conditions is equal to that of the 

equivalent continuum description. First, we calculate 

the response of the porous plate subjected to various 

loadings using FE analysis by COMSOL®. Then, for 

each case, the corresponding micropolar material 

parameters are found so that the equivalent material 

stores the same total strain energy when subjected to 

the identical loading. The details of the 

homogenisation procedure can be found in [16]. 

Also, for the more general case of orthotropic pore 

configurations, the procedure described in [17] can 

be followed. 

3D Model for Porous GBR Scaffold 

Beside the 2D GBR membrane introduced and 

modelled in the previous section, the 3D bio-inspired 

microstructures such as gyroids and other triply 

periodic minimal surfaces (TPMS) (Figure 5) can be 

employed for designing GBR scaffolds. 



 

 

4 

 

 

 

Homogenised 3D micropolar theory can be utilised 

to model various microstructure topologies and 

distributions.  

 
Figure 5 Meta material modelling in nTop and FE 

analysis in COMSOL on the imported meshed geometry. 

Homogenisation and Identification of 

Micropolar Parameters in 3D Model 

Although the methodology presented for the 2D 

model can be extended for the 3D problem, to 

present a different idea, the size dependency 

observed in the torsional stiffness of the 

metamaterial is utilised to find the micropolar 

material parameters.  

For micropolar elastic materials, a size effect is 

predicted in the torsion and bending of circular 

cylinders that differentiate them from classical 

(Cauchy) theory description [18]. 

In micropolar media, thin and slender rods are more 

rigid than would be expected classically [19]. More 

precisely, the ratio of torsional rigidity (torsional 

stiffness) of a micropolar cylinder of radius R to its 

classical value is shown to be [14]: 

2

,

,

4
1

31 6
1

T micropoalr t

T

T classsical

XK l

K R X





−
 

 = = +  
− 

 (10) 

In which ,T classsicalK is the torsional rigidity (the torque 

required to produce unit angle of twist) and defined 

as the product of the shear modulus (G) and polar 

moment of inertia ( J ). Also, 

1

0

( )

( )

2

( )

I pR
X

pRI pR

p


  

=

=
+ +

 (11) 

Where 0I and 1I are the modified Bessel functions of 

the first kind of order 0 and 1, respectively. 

From Eq. (10), it is clear that for micropolar bodies, 

1T  and the torsional rigidity is higher than what 

is expected classically and reveals the occurrence of 

the “size effect”, which is more dominant in smaller 

diameters, where the internal length becomes 

comparable to cylinder diameter [14]. 

The equivalent micropolar parameters of the 

scaffolds will be found using numerical simulations 

for torsion deformations at different length scales. In 

this method, a set of numerical FE simulations is 

conducted on cylinders with different diameters 

while keeping the microstructure (unit cell size) 

constant (Figure 6).  

 
Figure 6 Numerical simulations for torsion deformations 

at different length scales while keeping unit cell size. 

The torsional rigidities obtained from FE simulations 

and the continuum relations of Eq.s (10) and (11) 

will be incorporated through an optimisation 

approach to determine the micropolar parameters. 

Simulation 
The detailed porous structures and the equivalent 

micropolar models in 2D and 3D were simulated by 

using COMSOL®. For 3D modelling of the 

metamaterials, nTop® was used. In this software, the 

TPMS microstructures are already available and 

easily customisable to produce efficient meshed 

models of the sample. 

2D and 3D FE Micropolar Models in COMSOL® 

To implement the micropolar theory numerically for 

solids, we used the capability of COMSOL® 

Multiphysics to apply the weak form to partial 

differential equations (PDE). The micropolar theory 

or other non-classical continua is not yet available in 

commercial FE codes. By using PDE modelling in 

COMSOL®, no user subroutines are required, and 

various complex geometries, boundary conditions, 

and loadings can be applied in a user-friendly 

graphical interface. Also, the visualisation of the 

results and obtaining the required data from FEM 

analysis is quite convenient. Building such a multi-

purpose and flexible model where the base material 

is a micropolar continuum is not straightforward 

when coding from scratch or using other FEM 

packages [20]. 

To develop the weak form, we multiply each of the 

balance equations in Eq. (2) by the test functions 

corresponding to unknowns iU  and i , denoted 

here as Uv  and v , and integrate over the entire 

computational domain D: 

, 0
j jU j U

D D

ij iv P v + =   

, 0
j j jij i ijk ik j

D D D

M v e v Q v  −  + =    
(12) 
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Then, based on the product rule of derivatives, we 

have: 

( ) ( )
,,

,j j j iij i U ij U ij U
i

D D D

v v v =  −     

( ) ( )
,,

,j j j iij i ij ij
i

D D D

M v M v M v  = −    
(13) 

And by using the divergence theorem and 

considering B as the surface boundary surrounding 

this domain, the weak form PDE for the momentum 

and angular momentum balance can be defined: 

,
0

j i j jij U Uij i j U

D B D

v v n P v−  +  + =    (14) 

,
0

j i j j jij ij iji j

D D

k ik

B D

M v M v n e v Q v   − + −  + =     

For the equivalent micropolar models, first-order 

(linear) elements (for both displacements and micro-

rotation) are used for discretisation of 2D and 3D 

domains. 

Validation of micropolar FE models 

The developed FEM micropolar models in 2D and 

3D were tested with the available benchmarks from 

the literature. For instance, the results of the patch 

test introduced in [21] for 2D and in [22] for 3D were 

consistent with the analytical solutions reported 

there as benchmark values.  

Results and Discussion 

Prediction of mechanical behaviour by 

micropolar theory 
To evaluate the capability of the developed 

micropolar model to predict the mechanical 

response, the indentation of a vertical load on a 

porous plate (Figure 7) was investigated for both 

circular and square pores with different pore sizes. 

 
Figure 7 The geometry, loading and boundary conditions 

to evaluate the homogenised micropolar model. 

For instance, the magnitude of the displacement for 

the real porous structure and the homogenised 

micropolar and Cauchy models are shown in Figure 

8 for square pores of size 0.05L. The values of the 

displacements are labelled on the corresponding 

contour lines. 

As can be seen, the prediction of the micropolar 

theory is closer to the real porous structure, and the 

load penetration reflected in the displacement 

contours is better captured by the micropolar model. 

 
Figure 8 The comparison of displacement magnitude for 

the homogenised micropolar and Cauchy models with the 

detailed porous structure for square pores. 

Designing porous GBR meshes 

Bone is a heterogeneous material composed of 

microscopic units, including collagen fibrils and 

hydroxyapatite crystals, which influence its 

macroscopic mechanical properties. As pointed out 

earlier, the micropolar theory is capable of 

accounting for the size effects that are observed in 

the bone [7]. 

Based on the available experimental data in the 

literature for the cortical bone (for instance, [23], 

[24]), the coefficients of the stiffness matrix can be 

found as presented in Table 2. These values are also 

marked by the yellow regions in Figure 9.  

Table 2: Micropolar stiffness matrix components for bone 

Parameter Unit Value 

1111A  GPa 12.00 ~ 43.43 

1122A  GPa 4.00 

1212A  GPa 21.10 ~ 36.77 

1221A  GPa -13.05 ~ 2.67 

11D  kN 3.24 

 

 

 
Figure 9 Equivalent micropolar parameters for square 

pores (each dataset for a specific pore size and various 

number of pores). The yellow area indicates the compact 

bone equivalent parameter range. 
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The results from the parametric study of GBR sheets 

(Figure 9) allow us to find a configuration with the 

material parameters close to the bone. For instance, 

in the case of rectangular pore patterns with a size of 

0.13 ~ 0.15 and porosity about 0.7, a good agreement 

for 1111A , 1122A and 1212A can be achieved. 

FG Porous Design for GBR Mesh 

The equivalent homogenised model for functionally 

graded (FG) porous structures can be derived by 

considering the homogenisation procedure 

developed for unit cells with uniform porosity 

(Figure 10). First, a parametric study is conducted to 

find the equivalent mechanical parameter of uniform 

porous plates with various pore sizes. In the 

parametric study, the pore sizes are changed to find 

the required equivalent parameters for each section 

of FG porous structure. 

 
Figure 10 The methodology for developing equivalent 

homogenised models of FG porous plates 

Being inspired by the natural functionally graded 

(FG) porous structure of the bone, a new design for 

GBR mesh can be suggested (Figure 11) so  that the 

central part possesses mechanical properties close to 

cancellous (trabecular) bone while providing a 

proper porosity and the part near fixing areas 

(screw’s location) as near as possible to cortical 

(compact) bone to provide required load-bearing 

capacities. 

 
Figure 11 The suggested FG porous (Type O) design for 

GBR mesh 

Designing FG 3D GBR scaffold 

The developed methodology enables efficient 

investigation of functional grading (FG) in both 

topological and material characteristics. The changes 

in microstructural architecture and material 

constituents will be reflected in the spatial function 

of equivalent micropolar parameters. By 

implementing the developed model, we suggest an 

innovative design for FG 3D GBR scaffolds where 

the microstructure evolves from the highly porous 

structure inside the scaffold to the compact structure 

at the load-bearing surfaces to mimic the natural FG 

microstructure of the bone (Figure 12).  

 
Figure 12 3D functionally graded design for GBR Meshes 

A unified 3D design can simplify the surgery process 

and results in more precise bone regeneration. Also, 

it can be individualised for each patient and medical 

case.  

Conclusions 
In the current work, a multiscale method based on 

micropolar theory was developed to study and 

design the mechanical performance of GBR porous 

biomedical implants. Both 2D and 3D micropolar 

theories were implemented using the weak form of 

partial differential equations within COMSOL® 

Multiphysics, enabling handling of complex 

geometries and boundary conditions in a user-

friendly interface. 

The homogenisation procedure for the 2D 

framework was based on the equivalence of strain 

energy between the porous plate and the micropolar 

model under designed boundary conditions. In the 

3D framework, the size-dependent behaviour 

observed in the torsional stiffness of porous 

cylinders was used to determine the equivalent 

micropolar model. 

To demonstrate the applicability of this framework, 

it was employed to suggest the mechanical design of 

a functionally graded 2D GBR membrane providing 

mechanical performance closely aligned with that of 

the adjacent bone to avoid stress shielding. Besides, 

based on the developed framework, an innovative 

suggestion is proposed for the design of 3D GBR 

implants.  
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