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The hot extrusion process of light alloys

Container liner

Billet

Container

Some Fields of Application:
» Furniture design

» Automotive

» Aeronautics

» Railway transportation

» Construction...

High quality and shape Aim of the work

» High geometric complexity complexity required
| > High strength-to-density ratio

Show the recent

. . . The use of simulation | advancements in the
» High Corrosion Resistance becomes essential sirrulEten e

, » High Crash Resistance... extrusion process

Very competitive market
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From real process to numerical simulation
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Involved phenomena

Deformation energy and friction forces are converted
into heat

High temperatures are necessary to promote the
proper material flow and to reduce the extrusion load

Exit profile temperature can limit the maximum
productivity (nitrogen cooling possible solution)

Continuous process (high productivity) lead to
interaction  between  two  subsequent  Dbillet
(unavoidable defects)

|dentify what is necessary to simulate

Prediction of thermal field and extrusion load
Prediction of material flow behavior
Tooling-set stress analysis

Prediction of extrusion defects



Model Implementation (Uncooled Extrusion Process)

COMSOL Model

Convective Heat Flux + Convective Heat Flux +

4 » . Combined Tooling set no slip Condition (Container) po slip Condition (Ram)
Container liner — Container Convective Heat Flux :
e T e

(Container and Press)

Real Extrusion Process

Ram’s pressing
stem

Conductive Heat Exchange + no slip
Final Profile (Die) or slip (bearings) condition
Convective Heat Flux with air

» Container and Ram replaced with equivalent thermal and frictional conditions (Eulerian approach )

v

Material under deformation treated as a fluid at very high viscosity (Laminar Flow)

v

Viscosity is temperature and strain-rate depended (Zener-Hollomon model)

v

Heat Transfer and Laminar Flow equations are coupled

v

Solid Mechanics Interface is added for the tooling set stress analysis
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Model Implementation (Extrusion Process with Nitrogen Cooling)

Convective Heat Flux +
Combined Tooling set no slip Condition (Container)
Convective Heat Flux
(Container and Press)

Convective Heat Flux +
no slip Condition (Ram)

\\/ A\
\
\

e
~ 1D cooling chanpél/
“integrated within the”

~extrusion die

\ : .\\
Conductive Heat Exchange + no slip

Final Profile (Die) or slip (bearings) condition
Convective Heat Flux with air

b)

» The 3D model of extrusion process is coupled with
1D model of cooling channel

» Non-Isothermal Pipe Flow is added and coupled with
the Heat Transfer interface

Backer is “virtually milled” to obtain
the cooling path

» If necessary, a preliminary evaluation of the channel S °/°\
design is possible with Topological Optimization < —>Gum fig

interface (Density Model + Porous Media) =)
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Model Implementation (Extrusion defects)

» Since the extrusion is performed in continuous process, a certain length of the
profile is contaminated by the interaction between the old and the new billet

material for each run.

» This contaminated length is unavoidable scrap (low mechanical properties)

NEW OLD
BILLET BILLET

Start transition between
old billet and new billet

% _ Extrusion Direction

Ystop-mark

\
wa%////
d= Discard length Stop-mark
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. New Billet material

- Old Billet material

Boundary condition for the

Boundary condition for contact with container

the contact with ram

N

Boundary condition for the
contact with die

Bearings surface

Phase field interface was chosen to describe the interaction

between two immiscible fluids



Equations (Material Flow and Heat Exchange)

Navier-Stokes Equations for incompressible flow (Laminar Flow Interface)

Plu-Vu=V -[-pl + K| + F ==—p Conservation of momentum

K=Vu+ (Vu)') e /i t
#(Vu + (Vu)') scous term COUPLED SYSTEM
n : ) Perzyna viscoplastic model
1 1
1 .l ENTR 1 [(Z\]
o= Esmh bS exp (ﬁ)] = Esmh Kﬂ]—» Zener-Hollomon Model of material flow stress

Fourier Equations for heat transfer in solid and fluid (Heat Transfer in Solid and Fluid Interface)
PCP@V®+vq:G+QtEd
q=-kVT
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Equations (Die-stress analysis)

Tooling set subjected to compression state

Fixed ~.

Aluminum under
deformation

Fixed l
Pressure on die-set from
Laminar Flow Interface
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Solid Mechanics Interface

S = Sipel T Sels Eg =€ - €jnel
€inel = €p T eyt + Eps T Spl Tt Svp T Eve

Thermal expansion from
Heat Transfer Interface

Sinel = S0 + Sext + 5q
1 T
€= E[{Tu&l:} + ?uﬂ]

C=C(EV)



Equations (Nitrogen Cooling)

—

Conservation of the momentum
2. Conservation of the mass

3. Heat transfer equation

4. Convective contribute with the die

5. Heat transfer equation for the die 5 Cp 0T die _

Quwait = hZ(T 4;. — T) hisnotconstant

p Hydraulic diameter

P 5t B —Vp N fD ulul variable along the path
—+ V(4pu) =0

A
pACp =+ pAc,uV'T = VAKVT + f, sar lul® + Quatr

=V kVlee Qwall

Phase change of nitrogen is not simulated

C,, p, k function of temperature to consider the effect of nitrogen phase change (Homogenous fluid model)

Topological Optimization interface
Density Approach

. (tanh(B(6f - 6p)) + tanh(B6g))

(tanh(B(6 r-6p)) + tanh(B6g))
6 output material volume factor
0 solid
1 liquid
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Penalization functions

c=c +(1-86) *(cs—¢)
k=ks+ (1—-0)x(k; — k)

Cp =Cps t (1 —0) = (Cpi — Cps

Heat Transfer in Solid and
Fluid interface

Permeability
Conductivity
p=ps+(1—=0)*(p—ps) Density

)  Specific Heat Capacity

Non-Isothermal
Pipe Flow Interface

Inlet
channel

Porous domain virtually milled

Temperature
Control Point
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Equations (Extrusion defects)

Velocity field from Laminar , .
Flow interface Chemical Potential

0P
= +@|7¢ =V. yV@ === Cahn-Hilliard equation

_ Mobility tuning
Y - X parameter

2_
G =21|-72¢ + 222 1’]

30500;

1=
2+/2
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Surface tension
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¢ phase field parameter:
-Value O fluid 1 o |
_Va/ue 7 ﬂUle . New Billet material

- Old Billet material

Boundary condition for the
Boundary condition for contact with container
the contact with ram

N

Boundary condition for the
contact with die

Bearings surface



Case Study 1: Multi-die design with conformal cooling channel

Insert for extrusion die realized with 3D . Thermal History recorded by the thermocouple
. 450 -
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Die Temperature 450 °C 150 - ' ' -
Container Temperature | 376 °C : = i e i i
Ram Temperature 280 °C . . ] .
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Case Study 2: Phase field method for the assessment of the
new-old billet material interaction

New billet material (visible after chemical etching)
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Experimental Analysis is a time and cost |
. . . Excessive scrap
consuming activity — or
L ) Not Enough Scrap
Empirical and analytical approach not accurate
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Case Study 3: Cooling Channel re-design by means of
topological optimization interface

Original Design

INLET m Circular section ¢ 8 mm

Gas formation ¢

B Rectangular section3x5 mm 340 » Channel designed by the die maker without
M Rectangular section4x6 mm zzz numerlcal tOOlS

B Rectangular section 2x5 mm

280 Experimental results evidenced not efficient
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240 .
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Case Study 4: Multi-objective optimization of extrusion die

MULTI-OBJECTIVE OPTIMIZATION OF COOLING CHANNEL

Channel Re-design
Optimized

Channel Geometry Parametrization

(& f‘_\_
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Original
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Matlab » Constraints
t I » Genetic Algorithm to
|n| %%ﬁ f#a‘?'g%na optimize the problem
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MULTI-OJECTIVE OPTIMIZATION OF DIE DESIGN

WC_AVG_PRESSURE [MPa]

In the original die
extrusion.

The optimal design
reduced of 46%

Ram speed doubled
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design a break occurred after 64

showed a peak principal die stress

Mechanical properties of profile improved



Conclusions

Different interfaces were coupled to generate advanced models able to assess the hot extrusion
process from different points of view.

The accuracy of numerical predictions was demonstrated in terms of extrusion load, thermal field,
scrap assessment, cooling efficiency, and die stress analysis.

The experimental-numerical comparisons also showed the limits of industrial practices, sometimes
based on experience and/or empirical approaches.

An advanced iterative procedures based on the use of genetic algorithms evidenced the concrete
possibility of automatically optimizing the die design as well as the entire process concerning the
objectives to be achieved.
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