Multiphysics (coupling) between Deep Geothermal Water Cycle, Surface Heat Exchanger Cycle and Geothermal Power Plant Cycle

Li Wah Wong*,1, Guido Blöcher1, Oliver Kastner1, Günter Zimmermann1

1. International Centre for Geothermal Research (ICGR Germany) Section 4.1: Reservoir Technologies, Helmholtz Centre Potsdam, GFZ German Research Centre For Geosciences, Telegrafenberg, D-14473 Potsdam, Germany.

Introduction

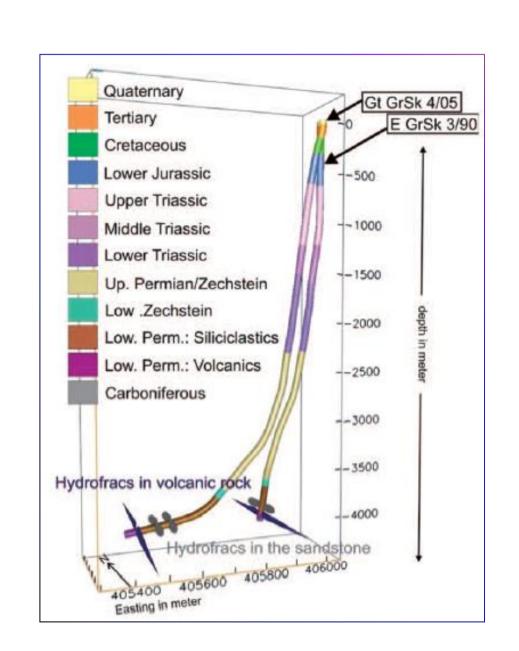
Geographical coordina Geographical location Geological setting Depth Enthalphy, Concept Rock classification Hydraulic induced

Major components

Geographical coordinates 52° 54′ 0″ North, 13° 31′ 0″ East

Brandenburg, Germany (≈ 50km away from Berlin centre)
Lower Permian of Northeast German Basin (NEGB)

-3815m - -4247m bsl


low enthalphy, Enhanced Geothermal System (EGS)

volcanic rock (Lower Rotliegend), siliciclastics (Upper Rotliegend)

production well: water fracture (low permeable volcanic rock), gel-proppant (high permeable sandstone)

injection well: multi fracture (water fracture cum gel-proppant)

reservoir, hydraulically induced fractures, natural internal faults (f21n, f28, f29), production well Gt GrSk 4/05, injection well E GrSk 3/90

Darcy's Law Physics Interface

Permeability, k, [m²], is selected to specify the capacity of materials of f21n, f28 and f29 to transmit flow. Darcy's velocity, u, [m/s] : $u = -\frac{k}{u}(\nabla p + \rho g \nabla D)$

Hydraulic conductivity, K, [m/s], is selected to define a combination of fluid permeability, k, [m²] and dynamic viscosity, μ , [Pa·s] of each geological layer or the reservoir. Darcy's velocity, u, [m/s] : $u = -\frac{K}{2g}(\nabla p + \rho g \nabla D)$

The approximate solution from Darcy's Law is expected to be continuous along the boundary between adjacent elements, (2)

Continuity equation:
$$\frac{\partial}{\partial t} (\rho \epsilon_p) + \nabla \cdot (\rho \mathbf{u}) = Q_m$$
 (3)

Using COMSOL Multiphysics, homogenization of the porous and fluid media into a single medium is the alternative approach applied. Darcy's Law is combined with continuity equation, for instance (1) and (3) becomes (4).

$$\frac{\partial}{\partial t}(\rho\varepsilon) + \nabla \cdot \rho \left[-\frac{k}{\mu} (\nabla p + \rho g \nabla D) \right] = Q_m \tag{4}$$

Time derivative term of (4) is expanded to get (5). Porosity, ε and density, ρ are defined as functions of pressure, p, chain rule is applied to get (6).

$$\frac{\partial}{\partial t}(\rho \varepsilon) = \varepsilon \frac{\partial \rho}{\partial t} + \rho \frac{\partial \varepsilon}{\partial t}$$
 (5)
$$\varepsilon \frac{\partial \rho}{\partial t} + \rho \frac{\partial \varepsilon}{\partial t} = \varepsilon \frac{\partial \rho}{\partial p} \frac{\partial p}{\partial t} + \rho \frac{\partial \varepsilon}{\partial p} \frac{\partial p}{\partial t}$$
 (6)

Definition of fluid compressibility (7) is inserted to the right hand side of (6) in order to rearrange to arrive at (8)

$$X_f = \left(\frac{1}{\rho}\right)\left(\frac{\partial \rho}{\partial \mathbf{p}}\right) \qquad \qquad \frac{\partial(\rho \varepsilon)}{\partial \mathbf{t}} = \rho \left(\varepsilon X_f + \frac{\partial \varepsilon}{\partial \mathbf{p}}\right)\frac{\partial \mathbf{p}}{\partial \mathbf{t}} = \rho S \frac{\partial \mathbf{p}}{\partial \mathbf{t}} \qquad \qquad (8)$$

Final governing equation is
$$\rho S \frac{\partial p}{\partial t} + \nabla \cdot \rho \left[-\frac{k}{u} (\nabla p + \rho g \nabla D) \right] = Q_m$$
 (9)

Heat Transfer in Fluid Physics Interface

Volume fraction of reservoir solid material, θ_p , [1] takes the value of $\theta_p = 1 - \epsilon$, with different λ , [W/m*K] of each geological layer, heat transfer in reservoir solid material in a stationary state is (10) and that in a time dependant state is (11).

$$\rho C_{p} \mathbf{u} \cdot \nabla T = \nabla \cdot (\lambda \nabla T) + Q$$

$$\lambda = \lambda_{eq}$$

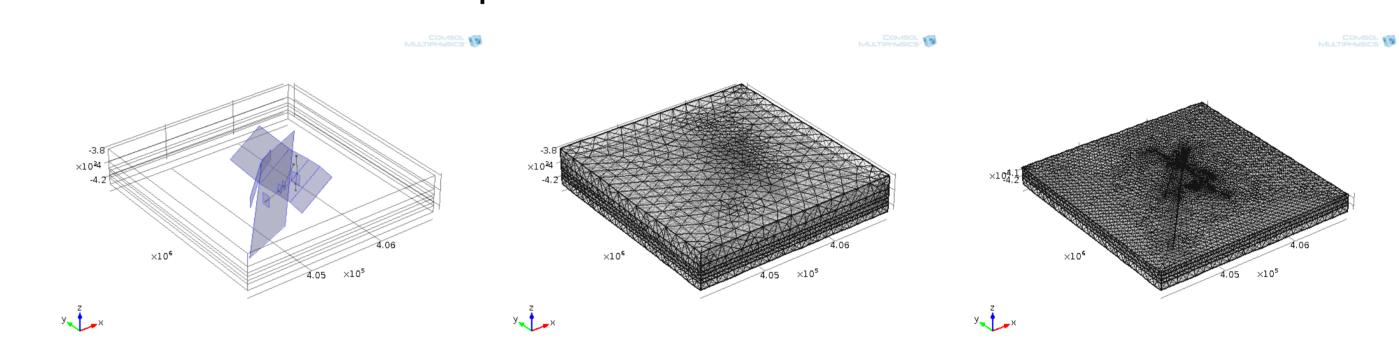
$$\lambda_{eq} = \theta_{p} \lambda + (1 - \theta_{p}) \lambda \tag{10}$$

Temperature solution from a stationary state is implemented as initial temperature for a time dependant state with a *m* number of nodes in the mesh, in the form of interpolated function, *int*, of depth, as shown in (12).

$$\rho C_{p} \frac{dT}{dt} + \rho C_{p} \mathbf{u} \cdot \nabla T = \nabla \cdot (\lambda \nabla T) + Q$$

$$\lambda = \lambda_{eq}$$

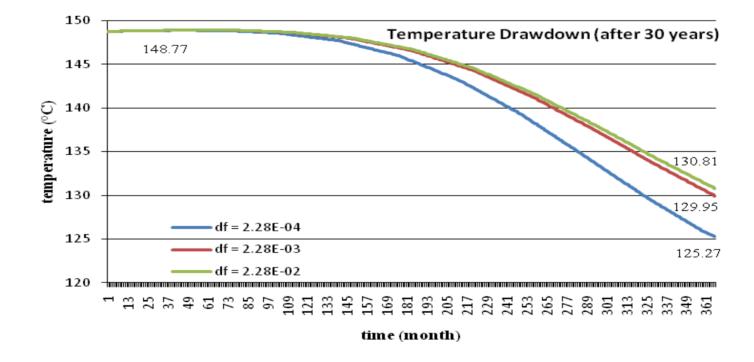
$$\lambda_{\rm eq} = \theta_{\rm p}\lambda + (1 - \theta_{\rm p})\lambda$$

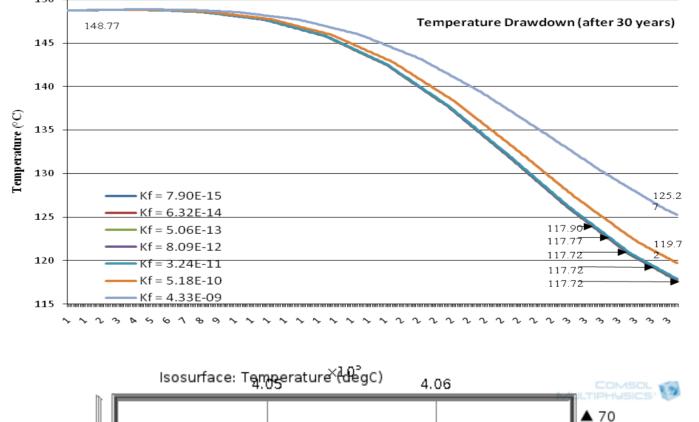

$$\rho C_{\rm p} = \left(\rho C_{\rm p}\right)_{\rm eq}$$

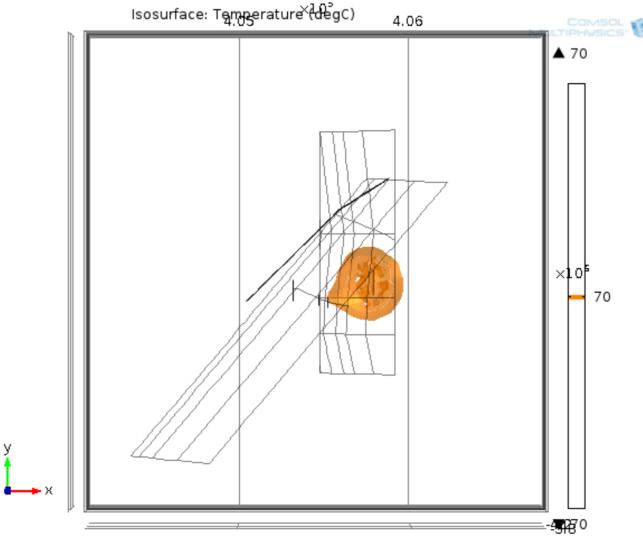
$$(\rho C_{p})_{eq} = \theta_{p} \rho_{p} C_{p,p} + (1 - \theta_{p}) \rho C_{p}$$
 (11)

$$\sum_{i=1}^{m} int(x, y, z) T_0$$
 (12)

Numerical Model


Using COMSOL Multiphysics, deviated Gt GrSk 4/05 is represented by 1D Bézier curve, as well as E GrSk 3/90. f21n, f28, f29 and four major hydraulically induced fractures are represented by 2D linear curve extrusion from workplanes.


Figure 1. 2D geometries are discretized into triangular mesh elements and 3D geometries into tetrahedral mesh elements


Results

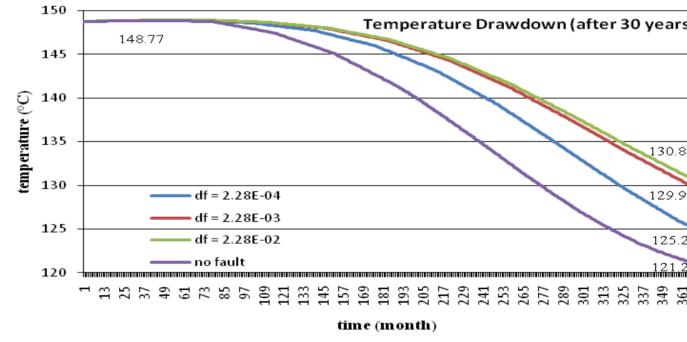

Within Groß Schönebeck framework, aperture, $d_{\rm fr}$, [m], of hydraulically induced fractures is 2.28E-04m. Elbe Base Sandstone layer of the North German Basin possesses the highest permeability, $k_{\rm r}$, [m²], 7.90E-15m².

Figure 2. If aperture of internal faults zone, $d_{\rm f}$, [m] = $d_{\rm fr}$, production temperature drawdown is 23.50°C and is reduced with the increment in $d_{\rm f}$, from $d_{\rm f} = 10^* d_{\rm fr}$ to $d_{\rm f} = 100^* d_{\rm fr}$, by 4.68°C and 7.34°C respectively

Figure 3. A drawdown in production temperature of 27.54°C in a non fault system and 23.50°C in a faulted system after 30 years. The latter production temperature drops from 148.77°C to 125.27°C

Figure 4. When $d_f = d_{fr}$ and k, [m²] of f21n, f28 and f29, $k_{fr} = 4.33\text{E-}09\text{m}^2$, production temperature drawdown increases with the decrease in k of internal fault zones, k_f , for instance 29.05°C when $k_f = 1.02\text{E-}01*k_{fr}$. It stays constant gradually when k_f approaches k_f

Figure 5. Cold water front (70°C) from E GrSk 3/90 propagates and reaches the second gel-proppant fracture along Gt GrSk 4/05 after 30 years, causing a significant drop of production temperature to 125.27°C

Future Work

Geothermal water cycle will be linked via an interface to surface heat exchanger cycle before another further coupling with the power plant cycle.