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Abstract:

Adaptive Optics units are mounted
on many large telescopes, thus enabling
diffraction-limited  astronomical images
through compensation of the effects of at-
mospheric turbulence. The design of the
control system of the Deformable Mirror
includes a feed-forward block, aimed for in-
creasing the efficiency of the control loop.
Such a block is based on the stiffness ma-
trix of the Deformable Mirror, defined as
the force required to move a single actua-
tor while all the others are constrained at
zero positions. The mirror shape caused by
this force pattern is called Influence Func-
tion. This paper discusses the computation
methods adopted to calculate the influence
functions of the LBT and VLT Deformable
Mirrors, grounded in the capabilities of the
Comsol/Matlab interactions. The compar-
ison of the Comsol results with the data
available from the optical tests shows that
the methods analyzed in this paper are suit-
able for accurately predicting the delicate
optomechanics of the Deformable Mirrors.

Keywords: Adaptive Optics, Optomechan-
ics, Influence Function, FEA

1 Introduction

The Adaptive Optics (AO) units imple-
mented on many large telescopes allow to
obtain diffraction limited astronomical im-
ages by compensating the effects of the
atmospheric turbulence. The control sys-
tem of a typical AO unit, sketched in
figure [T} provides the correction of the dis-
torted wavefront deforming the Deformable
Mirror (DM) by means of several actuators.
The closed-loop response is dramatically in-
creased when a feed-forward, open-loop cor-
rection is added to the servo system, as dis-

cussed in [2]. This correction is based on the
stiffness matrix of the DM, which is oper-
atively defined by arbitrarily displacing one
of the DM actuators along the normal to the
thin mirror surface, while all the other actu-
ators are constrained at their nominal posi-
tions, and calculating all the reaction forces.
In the AO terminology, the shape of the DM
when poking a single actuator is known as
the influence function (IF), whose numeri-
cal computation is discussed in this paper.
The method adopted to calculate the IF of
the concave DM of the Large Binocular Tele-
scope (LBT), described in [6], and of the con-
vex DM of the Very Large Telescope (VLT),
described in [I], is based on some Matlab
scripts and functions, found on the capabil-
ities of LiveLink for Matlab.
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Figure 1: Scheme of an AO control system.

Starting from the optical and physi-
cal parameters of the thin mirrors and
the geometrical layouts of the actuators, a
first script builds the geometry, applies the
physics required to solve the problem and
sets up the meshes. In fact, the complexity
of the actuator geometry (the LBT and the
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VLT DMs have 672 and 1170 actuators, re-
spectively) and the accuracy required by the
optics when modeling the geometry of the
actual glass shell makes the Comsol GUI in-
effective. Moreover, as many auxiliary coor-
dinate systems as the number of actuators
should be defined in order to properly ap-
ply the required constraints. Unfortunately,
this large number increases dramatically the
data to be stored by Comsol — which, as a
matter of fact, makes this choice unworkable.
Thereby, an alternative method is carried
out: the constraints are implemented via
a user-defined interpolation function, whose
input is defined by the Matlab algorithm dis-
cussed in section Finally, a further func-
tion runs the computational loop and per-
forms the post-processing of the results, as
examined in section [Bl

The comparison of the displacements ac-
quired by interferometric analyses and of the
the actuator forces derived from electrical
measures — such data have been collected
during the test runs, as explained in [6] —
with the Comsol results shows a good agree-
ment, analyzed in section [

2 Static assumptions and
simplifications

2.1 The model

LBT VLT
R, 455.5 mm 558 mm
R; 28 mm 48 mm
tm 1.6 mm 2.0mm
Ry | 1994.9mm | 4575.30 mm
Ky 0 0
Ry | 1974.24mm | 4575.3 mm
Ky —0.7330 —1.66926
N 672 1170

Table 1: The optical and physical main
parameters of the LBT and VLT Zerodur
DMs. R, and R; designate the physical outer
and inner radii, respectively; Ky and K, the
front and back surface conic constants,
respectively; Ry and R, the front and back
surface optical radii, respectively; t,, the mean
thickness; N the total number of actuators.

Starting from the optical parameters
listed in table [Il the aspherical and spherical
axially symmetric surfaces of both the DMs
can be generated in Matlab as zy = zf(r)
and z, = z(r), with r = v/22 + y2. Because
of the values of table[I the mean surface
z = (1/2)(zy + 2z,) as well as the thickness
t = |zy — zp| are very accurately fitted by the
polynomials v(r) and ¢(r), respectively, of
degree M = 9. Moreover, also the angle
¢ = —arctan(dz/dr), defined in section [2:2]
can be accurately approximated by the poly-
nomial p(r) of degree M. Naming V, P, and
Q the M + 1 coefficients of v(r), p(r), and
q(r), respectively, z, t, and ¢ can be analyt-
ically defined in the Comsol Finite Element
Model (FEM) according to , , and ,
respectively. As a consequence, the geome-
try generation is quite easy and all the rele-
vant variables are available in Comsol.

M+1

z= Z V()M (1)

M+1

o= D, Pl (2)
M+1 )
=Y Qo @

Both the VLT and LBT DMs strokes are
actuated by magnetic forces, as described
in [3], which are applied perpendicularly
to the DM by a puck built of a magnet
and a glass disk glued to it via three glue
spots, angularly equispaced at a distance
rg = 2mm from the puck axis — the blue
arrow in figure[2] Modeling the full puck
with a solid FEM, restrained at the three
glue/DM interfaces and loaded by a body
force inside the magnet, allows to calcu-
late K, the overall stiffness of the puck as
K, =112.5N x um~!. As the spot diame-
ters are as small as ~ 50 um, the magnetic
forces applied to the Zerodur DM, mod-
eled as a shell, can be approximated by the
three trusse of length [, =10 mnﬂ per-
pendicular to the DM surface (pictured in
black in figure [2) and the three rigid beams
of length ry = 2mm (pictured in yellow in
figure[2). The actual response of the full
puck is well approximated by assigning a

*The truss elements are modeled as beam elements with negligible moments of inertia and torsional constant,
because of a known Comsol issue about dealing with a large number of trusses
T As no force is applied perpendicularly to the actuator axis, lp an be arbitrarily chosen.
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null density to the truss and beam elements
and by the following two inputs: naming A,
the truss cross sections and E, its Young’s
modulus, A, must satisfy the relationship
K, = 3E,A,/l,; the beam elastic and cross
section data are chosen in order to define
a beam rigidity several orders of magnitude
larger that the truss and DM stiffnesses. Fi-
nally, the three beam /truss interfaces are re-
strained along the red and green directions
in figure[2] perpendicular to the blue axis,
identifying the stroke direction.

Figure 2: Approximation of the puck. See the
text for a discussion.

The effects of the central flat mem-
brane, described in [4], placed perpendic-
ularly with respect to z, whose z stiff-
ness is K,,, are simulated by the edge load
(=Km/(27R;)) x (w—0) and the prescrib-
ing a null radial and tangential (with respect
to the zy plane) displacement of the edges
at r = R;.

The VLT and LBT obtained models con-
sist of 32824 triangular elements and 7020
beam elements and 19144 triangular ele-
ments and 4032 beam elements, respectively.

2.2 Coordinates functioning

As the actuators axes are perpendicular to
the DM surface, the natural manner to prop-
erly define displacements and forces within
Comsol is the implementation of as many
auxiliary coordinate systems as the number
of the actuators. Defining ¢ the angle be-
tween the optical axis Z and the normal
to the DM at the point P = (X,Y), with
R =+/X?2+Y? and 0 = arctan(Y/X), the

“global-to-local” and “local-to-global” trans-

formation matrices G and L = G™! are de-
fined as in @ and , respectively:

cos(p)cos(0)  cos(p)sin(f) sin(p)

[ -sin(6) cos(0) 0 ] (4)

-cos(f) sin(y) -sin(y)sin(f) cos(p)

cos(p) cos(f) -sin(f) -cos() sin(y)
lcos(ga) sin(f) cos(f) -sin(yp) sin(@)] (5)
sin(p 0 cos(y)

Nevertheless, the definition of a number of
coordinate system as large as 672 or 1170
causes a Comsol crash — likely because sev-
eral hundreds of nodes isn’t manageable by
the program. For this reason, an alternative
way to handle forces and constraints must
be set up. Naming Xy, ; and Y7, ., with
1=1,2,...,4N and j =1,2,3, the X and
Y coordinates of P; — the three “interface
nodes” identified by the intersection of the
trusses and the beams in figure 2] whose an-
gles with respect to the actuation axis are 1);
(1 takes only the three values 0 and +(2/3)7
for j =1,2,3) —and X, and Yp, the X and
Y coordinates of Pr — the “actuation node”
of the ith actuator, identified by the intersec-
tion of the three yellow beams in figure [2]—,
we can define a 4N x 5 matrix whose rows
from i to i +4 of the table are defined in @

XI@',I YIi,l XF@' YFi 7/}1
Xfi,2 YIi,2 XFi YFl 7,112 (6)
XIi,S YIi,3 XFi YFi '@[}3

Xp, Yp Xp Ym 0O

The matrix defined in @ can be easily gen-
erated in Matlab and written as a file, which
can be used as table data source of the Com-
sol nearest meighbor interpolation function
I'(z,y). Such a function, with the nodal
variables (;; = Xp, and n;; = Yp,, al-
low to associate to each of the three P; co-
ordinates the coordinates of the correspon-
dent Pg; moreover, I' defines for each Py
the three angles ©;; = ;. Let’s define

p=1/C?+n2, 0 = arctan(n/¢), and, simi-
M+1
larly to (2), ¢’ = Z P'(i)pM+17% and sub-

i=1

stitute § with 6/ and ¢ with ¢’ in ([{): the
local displacement w; = [ug;v;w;] = Gu,
where u = [u;v;w] is the displacement
vector in the global coordinate system, is
defined in the coordinate system relative
to each actuation axis. If the kth (k =
1,2,...,N) actuator is displaced by w*
along its axis, we can define N pointwise
constraints as in in @, in order to apply the
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correct strokes to Pr, and 3N pointwise con-
straints as in and @, in order to radi-
ally and tangentially (in the cylindrical co-
ordinate system of each actuator, i.e. along
the red and green directions, respectively, in
figure 2) restrain P;. As a result, adding
a small set of analytic function allows the
computation of the N IFs avoiding any ad-
ditional auxiliary coordinate system.

0 ifki
- 7
o {w* if k=i )

ug, cos(v;) + v, sin(y;) §=1,2,3 (8)
-uy, sin(1h;) + vy, cos(v;) j=1,2,3 (9)

3 Results

A Matlab function, after reading the model
file built by a script discussed in sections
and runs the IF, taking the actu-
ator number(s) as input vector and comput-
ing the forces and the displacements in the
proper coordinate system.

3.1 LBT

Running the above described Matlab func-
tion gives the LBT DM 672 by 672 stiffness
matrix, whose main diagonal is plotted in
figure[3] An example of a single IF — the
one of the actuator # 145 — is plotted in
figure[d] in terms of actuator forces, while
figure 5] shows the DM deformations of the
portion of glass centered in the location of
the actuator # 145.

stiffness matrix main diagonal [prm'l]

. o‘ oo L1o
| o®® A4 ®eo,
04 Jeee ' 1.04
0.3 0.97
.'
02 . 0.91
L]
_ 012 °; 0.84
B :
2 . : 0.78
< * Py
>0k S e 0.72
. L]
*
02 %o el K 0.65
.. o.o.
-0.3} % * 0.59
.. °
Al . . | os2
04 .."oooooo°..
. . . . . 0.46
-0.4 -0.2 0 02 0.4
X axis [m]

Figure 3: The main diagonal of the 672 by 672
LBT DM stiffness matrix vs. the actuator
geometry.

if # 145 (1 pm @ (0.229,0.000)): actuator forces [N]

y axis [m]

-0.4

X axis [m]

Figure 4: LBT DM: the actuator forces when
the actuator #145 is displaced by w* = 1 um.

if # 145 (1 pm @ (0.229,0.000)): normal displacements [um]
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Figure 5: LBT DM: displacement normal to
the surface when the actuator #145 is
displaced by w* = 1 um.

3.2 VLT

The process described in section Bl gives
the VLT DM 1170 by 1170 stiffness matrix,
whose main diagonal is plotted in figure [6]
Again, an example of a single IF — the one
of the actuator # 377 — is plotted in figure [7]
in terms of actuator forces, while figure g
shows the DM deformations of the portion
of glass centered in the location of the actu-
ator # 377.
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stiffness matrix main diagonal [qum'l]
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Figure 6: The main diagonal of the 1170 by
1170 VLT DM stiffness matrix vs. the actuator
geometry.

if # 377 (1 pm @ (0.320,-0.000)): actuator forces [N]
- T 2.3

1.77
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y axis [m]
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Figure 7: VLT DM: the actuator forces when
the actuator #377 is displaced by w* = 1 pm.

if # 377 (1 pm @ (0.320,-0.000)): normal displacements [pum]

0.08
0.06
0.04
0.02

0

y axis [m]

-0.02

0.25 0.3 0.35 0.4
X axis [m]

Figure 8: VLT DM: displacement normal to
the surface when the actuator #377 is
displaced by w* = 1 um.

4 Experimental validation

The optical measurement of the mirror IF is
part of the standard calibration procedure
for deformable mirrors. As we want to com-
pare the stiffness obtained from the FEA
model with that from experimental data, we
need to measure, for each IF, the actuator
force applied and the actuator displacement
produced.

4.1 Set-up and procedure

IFs are measured by mean of an interfer-
ometer, that provides a deformation map of
the mirror using a reference Helio-Neon laser
whose wavelength is 632.8 nm. The typical
accuracy of an interferometer is 1 nm, over
a capturing range of ~ 40 um. During the
optical test, the DM is mounted on the tele-
scope or in a test tower and illuminated from
below by the laser. Figures [9] and [I0] show
two IF realizations of the LBT and the VLT,
respectively. In both cases, the interferomet-
ric map of a random selected actuator IF is
shown over the full mirror and over a small
sub-portion of it. In typical conditions, the
most relevant noises affecting the measure-
ments are convection and vibration. The vi-
bration noise is compensated by subtracting
tip and tilt from each image. The convec-
tion is reduced via a differential sampling
of n frames; as a result, the typical resid-
uals range from 1 to 5nm RMS, to be com-
pared with a typical actuator displacement
of ~ 100nm. Such a differential sampling
allows to reject constant and slowly varying
terms. In order to further reduce the mea-
surement noise, the images are collected at
the fastest interferometer frame rate (25 Hz).
Operatively, the procedure may be summa-
rized as follows. Fach actuator is sequen-
tially commanded n times to the same pos-
itive and negative position, which are im-
aged (s4 and s_, respectively) by the inter-
ferometer. The resulting deformation map,
n

S = % Z (5+275_7), provides the optical
shape of the actuator IF. The actuator force
is measured by a current gauge installed on
each actuator, whose reading is then con-
verted into a force value via a calibration
coefficient.
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Figure 9: Example of a LBT interferometric
displacement (see the text for a discussion).
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Figure 10: Example of a VLT interferometric
displacement (see the text for a discussion).

4.2 Data analysis

So far, we collected the IF images and the
corresponding actuator forces. The latter
can be absolutely calibrated by comparing
the vertical component of the DM weight
with the mean force requested to keep the
shell floating. However, this procedure is
a global calibration, i.e. it is not intended
to compensate actuator by actuator differ-
ences — such imprecision affects the stiffness
computation. The IF images are analyzed in
order to measure the actuator displacement,
according to the following procedure: the lo-
cation of the ith actuator is identified in the
image; a mask My, is drawn around the ac-
tuator position: the diameter of the mask

1
is &~ — of the inter-actuator distance, to en-

close the peak only of the IF; the values of
the pixels within My, are averaged together,
obtaining the value a; representing the ith
actuator position; a large mask M, is drawn
around the actuator position: the size is ~
4 times the inter-actuator distance, i.e. large
enough to fully exclude the IF; the values of
the pixels outside M;, are averaged together,
obtaining the value r;, that is the mirror ref-
erence position; finally, the displacement of
the actuator ith is computed as d; = a; — ;.
The actuator stiffness, deﬁne]dc as in the FEA
K3

%

model, is computed as k; =

4.3 Discussion
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Figure 11: LBT DM IF: comparison of
computed and measured data. In both cases,
the IFs are normalized to their maximum
value.
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Figure 12: VLT DM IF: comparison of
computed and measured data. In both case,
the IFs are normalized to their maximum

value.

The LBT and VLT stiffness values are plot-
ted in figures [I1] and [I2] respectively, versus
the actuator radial distance: as the actu-
ators are arranged in rings, the points are
accumulated in correspondence of the ring
radii. The spread of the experimental stiff-
ness values is larger than the FEA model
one, because of some limitations of the sam-
pling procedure. The most important lim-
itations come from: actuator by actuator
force calibration, relatively poor image res-
olution, tolerances of the actuator locations
in the images, poor IF visibility for the ac-
tuators located at the edges and close to the
spider arms (the hidden ones are not consid-
ered), effects of malfunctioning actuators on
the surrounding ones.
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5 Conclusions

Although originated by a flaw of Comsol,
a de facto unworkability of a large number
of coordinate systems, the functioning of a
FEA definition as delicate as the nodal con-
straint reveals the powerful of the flexibility
of Comsol. In fact, the availability of the
Matlab computational tools allows to imple-
ment a function of the spatial coordinates
able to apply the required displacements
even in a complex geometry, with a com-
pact definition of the pointwise constraints
that allows a solution both fast and accurate.
The precision of the results is demonstrated
by the interferometric and electric measure-
ments of the displacements and forces, re-
spectively. In conclusion, the influence func-
tions of an Adaptive Optics Deformable Mir-
ror can be truthfully evaluated by the nu-
merical method discussed in this paper — a
powerful and reliable computational tool for
the opto-mechanical design.
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