

Conclusions

COMSOL Application

Scope of Work

Oscillatory Thermal Response Tests

An advanced method for shallow geothermal applications, developed with COMSOL Phillip Oberdorfer, Dipl.-Phys.

Shallow Geothermal Energy

From: Leibniz Institute for Applied Geophysics

Closed Loop Borehole Heat Exchanger (BHE)

- Subsurface as heat source / sink
- Working fluid thermally connects a heat pump and the subsurface

thermal properties of subsurface?

Thermal Response Test (TRT)

Constraint:

$$t > \frac{5r^2}{a}$$

- Injection of heat at constant rate
- Record temperature development of the working fluid
- Line Source Approximation

How can the state-of-the-art TRT design be enhanced

to gain further information about the BHE quality and the subsurface thermal parameters?

Adding an oscillatory part to the constant injection rate:

Oscillatory Heat Injection

- Penetration depth depends on excitation frequency
- Phase shift and amplitude of response signal depend on thermal parameters of involved materials
- Analytical approximation not applicable!

Experimental Data

- Test site with three (nearby)
 70m deep Double-U BHEs
- Long-time run, going through 7 different frequencies

COMSOL Model

- 3D model of Double-U heat exchanger
- Reduction to the "basics" (pipes, grout, soil)
- Reduction due to symmetry

Heat Transfer in Porous Media

· conduction, (advection)

Heat Transfer in Solids

conduction

Heat Transfer in Fluids

- · conduction, advection
- convective heat transfer between pipes and grout (Nusselt Correlations)

Experimental Data

- Test site with three (nearby)
 70m deep Double-U BHEs
- Long-time run, going through 7 different frequencies

COMSOL Model

- · 3D model of Double-U heat exchanger
- · Reduction to the "basics" (pipes, grout, soil)
- Reduction due to symmetry

Raw Data

LiveLink for MATLAB

Post-Processing

Amplitude of the temperature response signal at different excitation frequencies

Phase Shift of the temperature response signal at different excitation frequencies

Experimental Results

PREZI

Conclusions

- Oscillatory heat injection bears additional information about thermal properties of the BHE and the subsurface
- Evaluation and interpretation of the thermal response requires numerical simulation

- O-TRTs may be a useful add-on to state-of-the-art TRTs
- This new method requires further numerical analysis

Thank you for your attention!

@ my poster (#113)

meet me

Conclusions

COMSOL Application

Scope of Work

COMSOL Model - 10 make of make the servings - 10 make of makes the servings - 10 make of makes the servings - 10 makes of makes - 10 makes of makes - 10 makes of makes - 10 ma

Oscillatory Thermal Response Tests

An advanced method for shallow geothermal applications, developed with COMSOL Phillip Oberdorfer, Dipl.-Phys.

