

COMSOL
CONFERENCE ROTTERDAM2013

MODELING OF A MAGNETOCALORIC SYSTEM FOR ELECTRIC VEHICLE

Arsene Noume Carmen Vasile Amadou Coulibaly

ICE PROJECT: OBJECTIVES

- Development of an efficient air-conditioning and heating system based on Magneto-Caloric heat pump
- New system architecture to fulfill the thermal comfort and energy requirements of a FEV

Heating power: 5 kW Cooling power: 3 kW Temperature span:-7°C,+50°C $COP > 3$

MAGNETOCALORIC HEAT PUMP

- Based on Magneto-Caloric Effect (MCE)
- MCE: temperature changing of a magneto-caloric material exposed to a changing magnetic field
- Active Magnetic Regenerator (AMR)

MAGNETOCALORIC HEAT PUMP

Active Magnetic Regenerator cycle(AMR cycle)

DELING OF MAGNETOCALORI HEAT PUMP

• Model of fluid flow and heat transfer in Minichannel

 $\nabla \cdot \vec{u} = 0$ $\rho_f(\vec{u}\cdot\nabla)\vec{u}=-\nabla p+\mu_f\nabla^2\vec{u}$ $\rho_f C_{p,f}(\vec{u} \cdot \nabla T_f) = k_f \nabla^2 T_f$ $k_s \nabla^2 T_s + Q_0 = 0$ $h = \frac{q_{wall}}{T}$ $T_{wall} - T_f$ Mass conservation equation Momentum equation Energy equation for fluid domain Energy equation for solid domain Equation for heat transfer coefficient

ODELING OF MAGNETOCALORIC **HEAT PUMP**

Physical model of AMR cycle

Energy equation for fluid
$$
\rho_f C_{p,f} \left(\frac{\partial T_f}{\partial t} + (\vec{u} \cdot \nabla) T_f \right) = \nabla \cdot (k_f \nabla T_f) - \dot{Q}_{TT}
$$

Energy equation for solid

$$
\rho_s C_{p,s} \frac{\partial T_s}{\partial t} = \nabla \cdot (k_s \nabla T_s) + \dot{Q}_{MAG} + \dot{Q}_{TT}
$$

Equation of MCE source term

$$
\dot{Q}_{MCE} = \rho_s C_{P,s} \left(\frac{\partial T_{ad}}{\partial H} \frac{dH}{dt} + \frac{\partial T_{ad}}{\partial T_s} \frac{dT_s}{dt} \right)
$$

Equation of heat transfer between fluid and solid as source term

$$
\dot{Q}_{TT} = h\beta \big(T_s - T_f\big)_{Int:f/s}
$$

6

Interpolation of Cp and ∆Tad of Gadolinium

Variation of Cp with temperature, for $0 \leq \mu$ OH ≤ 2 T

Variation of ∆Tad with temperature, for $0 \leq \mu$ 0H ≤ 2 T

$$
\dot{Q}_{MCE} = \rho_{Gd} C p_{Gd} \left(T, \mu_0 H \left(t \right) \right) \frac{\Delta T a d_{Gd} \left(T, \mu_0 H \left(t + dt \right) \right) - \Delta T a d_{Gd} \left(T, \mu_0 H \left(t \right) \right)}{dt}
$$

7

RESULTS AND CONCLUSION

RESULTS AND CONCLUSION

Contributions

- A different and acurate approach to calculate de QMCE
- An accurate determination of heat transfer coefficient

ENCOUNTERED PROBLEMS

- \odot Implementation of Q_{MCE}
- Requirement of high quantity of memory

FUTURE WORK

- Analyse the surface rugosity influence on the fluid flow and heat transfer in microchannels.
- Analyse the influence of the dimensions of the system (plate thickness, channel height) on the heat transfer quantities.

THANKYOU!

12