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Transport-kinetic interactions in commercial porous catalyst shapes used for SO2 oxidation are 

analyzed using the Wilke, Wilke-Bosanquet, Maxwell-Stefan, and Dusty-Gas flux models. 

Particle effectiveness factors derived from the various flux models can differ for otherwise 

identical values for kinetic and transport parameters. Development of new catalysts having 

higher activity, lower pressure drop, and adequate crush strength to meet the anticipated 

reduction in SO2 emissions from H2SO4 manufacturing plants will potentially benefit by using 

this more realistic approach for particle-scale shape modeling. 

Introduction 
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•Review the current state-of-the art in modeling transport-kinetic interactions for catalyst 

particle shapes utilized in the SO2 oxidation. 

 

•Develop a rigorous modeling framework that accounts for diffusion and non-isothermal 

reaction in various realistic 3-D commercial catalyst shapes using different flux models. 
 

•Employ this framework to compare the performance of these various catalyst shapes under 

typical multi-pass convertor operation. 

Objectives 

Transport-Kinetics Particle Model 
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SO2 Oxidation 

Kinetics: 

(Collina et al, 1971) 
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Species Mass Balance: 

Energy Balance: 

where i = SO2, O2, SO3 & N2 

T = 420 to 590oC  

   C D- N imei,i 

Wilke Model 

Dusty-Gas Model 
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Diffusion Flux Models 
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Wilke-Bosanquet Model 
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Maxwell-Stefan Model 
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Results 
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CONCLUSIONS The Wilke model produces results that closely approximates those for the Dusty Gas Model for a 

uniform macroscopic pore structure for a given shape. However, the effectiveness factor varies with shape so it 

should be optimized in view of other factors, i.e., P and crush strength.  Detailed data on pore structure would be 

captured by the Dusty Gas Model. Monoliths provide another potential catalyst platform for SO2 oxidation. Detailed 

models that account for transport-kinetic interactions can provide rationale approaches for comparing traditional 

particulate vs monolith reactor performance. 

Monolith H2SO4 Catalysts 

• In 1991, Bespalov and coworkers* at Moscow Chemical 

Engineering Institute developed a numerical model for SO2 

oxidation in monolith catalysts. 
 

•This is the only known open literature on SO2 oxidation 

modeling for a monolith. 
 

•An opportunity ALSO exists to develop advanced models for 

the purpose of design and analysis. 

Modeling of SO2 Oxidation in Honeycomb Structures 

*Bespalov, A.V. et al.(1991) Zhurnal Prikladnoi Khimii, 64(10) pp 2048 - 2053 
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Inlet Conditions 
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Channel Length   = 75 mm 

Channel Width    = 1.5 mm 
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1-D Adiabatic Converter Profiles 
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Commercial 

 Multi-Pass Convertor 

 

•Maximize activity 

 

•Minimize ΔP 

+ 

Monolith Catalysts 

dpore = 638 nm  

ε      = 0.44 

τ      = 2.7 

*Reference: M. E. Davis, (1982)  

Chem. Eng. Sci., 37(3) pp 447-452 

• Brinkman Equation 

• Forchheimer Correction 
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