

Thermal Study of a Valve Regulated Lead-Acid Batteries and Electronics Chamber used in Stand-Alone Street Lighting Applications

COMSOL CONFERENCE 2014 BOSTON

Jonas Skaalum, Trevor Jamieson, Dominic Groulx Mechanical Engineering, Dalhousie University Halifax, NS, Canada

Research Rationale

- ▶6 month research grant with PoleCo ltd.
- They design and supply grid-independent street lighting systems.
- ➤ All of their power derived from renewable sources using small wind turbines, solar panels, or a combination of the two.
- ➤ Power stored in on-board rechargeable Valve Regulated Lead Acid (VRLA) batteries.
- ➤ VRLA batteries are particularly vulnerable to higher operating temperature; when receiving a float charge at a temperature 10°C above intended operating temperature, the battery life will be cut in half¹.

Research Objective

- Determine the thermal behaviour of VRLA batteries under various charging and discharging conditions and ambient temperature;
- ➤ Using COMSOL Multiphysics, determine the amount of heat generated during battery operation validated with experiments;
- Model and validate the entire battery enclosure, including the impact of the charge controller.

1st Type of Experiments: Battery

- One VRLA battery enclosed in a tight-fitting box made from half-inch RSI-0.5 extruded polystyrene (XPS).
- ➤ The battery was charged with a bench-top DC power supply set to 14.5 V and various charging currents.
- The temperature of the battery measured with fourteen adhesive T-type thermocouples.

1st Type of Experiments: Results

Discharge experiment

COMSOL Model: Battery

- Modeled as two blocks, one representing the battery, the other representing the insulation.
- ➤ The battery domain is 287 mm tall, 342 mm long, and 172 mm wide.
- The insulation block is subdivided into six panels to make it easier to mesh.
- ➤ Geometry simplified, not including any of the surface features of the battery such as handholds and electrical terminals and internal geometries of the cells.

Material	Insulation	Battery
Thermal Conductivity (W/m·K)	0.0254	34
Density (kg/m³)	21	2841
Heat Capacity (J/kg·K)	1500	862.3

COMSOL Physics: Battery

- Only heat transfer by conduction through solids is present in this study;
- ➤ With a initial temperature and natural convection boundary conditions on outside surface to ambient temperature of 22.2 °C;
- ➤ How to determine the amount of heat generation? The entire battery volume is assigned as a heat source with heat generation related to internal resistance through the following function¹:

$$P_{OV} = I \cdot DV$$

- \triangleright P_{OV} is the heat generated (W), I is the current flowing through the battery (A), DV is the over-voltage (V)
- Over-voltage is the difference between the open circuit voltage of the battery before charging begins and the measured voltage at the battery terminals during charging.
- I and DV are taken from the experiment.

6. H. Giess, Investigation of Thermal Phenomena in VRLA/AGM Stationary Lead/Acid Batteries with a Thermal Video Imaging System, *Journal of Power Sources*, **67**, 49-59 (1997)

COMSOL Mesh: Battery

- Mesh with swept tetragonals.
- ➤ Mesh convergence study: difference in temperature between the finest and coarsest meshes less than 0.004 °C.
- The Normal predefined mesh setting was used with 3553 elements.

At this mesh size, simulations ran in less than 5 minutes.

UNIVERSIT

COMSOL Results: Battery

Slice: Temperature (degC)

2nd Type of Experiments: Enclosure

- ➤ VRLA batteries in a PoleCo lighting installation are held within an 18 inch square aluminum enclosure.
- ➤ The air cavities within this chamber are large enough that convective currents are expected to have a noticeable effect on the temperature of the batteries.
- > 40 mm gap between the batteries.
- ➤ 65 mm gap between the enclosure walls and the batteries on the four sides.
- > 150 mm of space above the two batteries.
- The charge controller has a 128 mm square base and is 73 mm tall.
- Exterior of the enclosure was completely wrapped in polystyrene insulation.

2nd Type of Experiments: Results

COMSOL Model: Enclosure

- > This model is defined by four domains;
 - > the aluminum box,
 - the air inside the box,
 - the two batteries,
 - > the charge controller.
- ➤ The box and the air use the standard material properties from the COMSOL library.
- ➤ The batteries use the same material properties as the ones in the model of the insulated battery experiment.
- The charge controller modulates the current and voltage characteristics of the electrical energy from the solar panel; the electronic circuitry generates fair amount of heat. It is modeled as a mass with a predefined temperature

COMSOL Physics: Enclosure

- ➤ The batteries are defined as uniform masses, with the exception of the 50 mm air gap on the top surface.
- ➤ The heat generation is given by a function taken from experimental data.
- The outside faces of the box are thermally insulated, representing the polystyrene.
- An air domain is added, all air flow due to the natural convection (laminar). A buoyancy force is included in the model as a volumetric force given by:

$$F_Z = -g \cdot (rho - rho ref)$$

COMSOL Mesh: Enclosure

- Mesh with swept tetragonal elements.
- ➤ Several parametric surfaces were used to divide up the geometry in order to facilitate this.
- > The mesh has 5760 elements.
- ➤ Simulation completes in a time of 30 to 40 minutes.

COMSOL Results: Enclosure

COMSOL Results: Enclosure

COMSOL Results: Enclosure

Conclusions – Future Work

- DALHOUSIE UNIVERSITY
- The lead-acid battery tested generated heat during charging at a rate that followed the over-voltage published model;
 - Well reproduced numerically;
- ➤ A validated model of heat transfer within the batteries/electronics enclosure was produced showing the effect of natural convection within it;
- > Some limitations where identified:
 - Limitation in the understanding of heat generated from the charge controller;
 - > Possible effects of radiation heat transfer within the enclosure;

Follow-up work using this model will look at the effect of external heat sources, *i.e.*, solar radiation, wind, cooling fans, etc.