Increasing Heat Transfer in Microchannels with Surface Acoustic Waves*

Shaun Berry

COMSOL CONFERENCE 2014 BOSTON

10/9/2014

Study Motivation

- As the trend in electronics continues towards higher integration density and higher power devices current remote cooling technology will not be able to handle the predicted levels of heat removal
 - Increased integration density of electronics, including 3D chip stack will push localized heat fluxes >1kW/cm² and package-level volumetric heat generation > 1kW/cm³
 - New paradigm for embedded cooling required
- Microfluidic cooling holds potential promise and a large amount of research and technology development has been going on (multiple DARPA programs since 2000)
 - Single-phase flow performance in microchannels limited to high flow rates due to laminar flow conditions and fixed thermal boundary layer
- In this numerical study surface acoustic waves (SAWs) are evaluated as a disruptive flow technology
 - SAWs coupled with single-phase microchannel flow
 - Goal is to drive circulating/chaotic flow to disrupt thermal boundary layers

Surface Acoustic Waves (SAWs) and Acoustic Streaming

- SAWs are generated by sinusoidal electrical potential applied to an interdigitated transducer (IDT) on piezoelectric substrate and propagate along the surface
 - Used extensively in telecommunication
 - Signal processing and filtering
- When a SAW traveling along the surface comes in contact with a fluid medium some of SAW's energy is refracted into the liquid
 - Acoustic streaming ("Leaky SAW")
- Non-linear acoustic interaction occurs within a thin viscous boundary layer (<1µm for MHz frequencies)
 - Bulk fluid motion arises from viscous interactions with the boundary layer
- Frequency ranges: 1 to 100's MHz
- Substrate amplitude ranges: 0.1 nm to 10 nm
- Gaining attention in microfluidics
 - Fluid mixing and particle and cell sorting

X. Ding. et. al. Lab Chip, 13, 3626-3649, 2013.

X. Ding. et. al. Lab Chip, 13, 3626-3649, 2013.

Numerical Modeling of Acoustic Streaming

- Numerical simulation challenges:
 - SAW operate in MHz range and behave with harmonic time dependences $ightarrow e^{i\omega t}$
 - Viscous effects in a fluid occur on msec or larger time scales
 - This requires a time-averaged response of the acoustic oscillations
- Perturbation expansion is employed on dependent variables u, p, and ρ to solve conservation of mass and momentum
 - Acoustic velocity is of first-order (u_1)
 - Streaming velocity is assumed to be of second-order (u_2)
- Computational methodology:
 - Solve the first-order acoustic motion (u_1, p_1, ρ_1)
 - Use first-order solution as inputs for second order conservation equations
 - Time averaged equations need to be solved $\rho_o \nabla \cdot \left\langle \overline{u}_2 \right\rangle = \boxed{-\nabla \cdot \left\langle \rho_1 \overline{u}_1 \right\rangle}^{\text{Mass source term (kg/m²s)}}$ Volume force Source terms (N/m) $-\rho_o \left\langle \frac{\partial \overline{u}_2}{\partial t} \right\rangle + \mu \nabla^2 \left\langle \overline{u}_2 \right\rangle + \left(\mu_B + \frac{\mu}{3}\right) \nabla \left(\nabla \cdot \left\langle \overline{u}_2 \right\rangle\right) \left\langle \nabla p_2 \right\rangle = \left\langle \rho_1 \frac{\partial \overline{u}_1}{\partial t} \right\rangle + \rho_o \left\langle (\overline{u}_1 \cdot \nabla) \overline{u}_1 \right\rangle$

COMSOL Modeling

- COMSOL ver. 4.3b
- Step 1: solving first order equations using *Thermoacoustics interface*
 - Study 1: Frequency Domain
 - SAW introduced as velocity on channel walls
- Step 2: Solving second order equations using Conjugate Heat transfer interface
 - Study 2: Stationary (steady state)
 - Source terms (first-order results) added to mass and momentum equations
 - Momentum equation
 Volume force, F directly added
 - Mass

Constitutive equation needs to be altered

Use "weak contribution"

- No coupling of first-order terms to Energy equation
- Time-averaged response of complexvalues

Step 2: Second-Order boundary conditions

Model 1 Simulation Results: Laminar Flow Only

L = 1000 μ m w = 50 μ m f = 15 MHz d_o = 0.1 nm U_{in} = no inlet flow

Contour Plots of First-Order Fields

Time-averaged Second-order Results

Model 1: Effect of Inlet Velocity

- Inlet flow included in 2nd order simulations
 - 1st order results the same for all cases
- U_{in} <= Max acoustic streaming velocity
 - Circulating flow in the microchannel is created
- U_{in} > Max acoustic streaming velocity
 - Advection dominates flow and vortices are not generated
- Need to increase acoustic streaming velocity to have higher Reynolds number flows

Time-averaged 2nd Order Results: Streamlines for $\langle u_2 \rangle$

L = 1000 μ m w = 50 μ m f = 15 MHz d_o = 0.1 nm U_{in} = varied

Effects on Acoustic Streaming Velocity

- Maximum acoustic streaming velocity occurs when:
 - Channel width $w = \lambda/2$
 - Wave length determined from fluid properties

- Acoustic streaming velocity dependent on SAW amplitude d_o
- Streaming velocity is quadratic in SAW amplitude for all frequencies

Heat Transfer Results

- Results show under the right condition there is an increase in heat transfer due to SAWs
 - Stream velocity < Acoustic streaming velocity

Summary

- Developed the framework to numerically simulate Acoustic Streaming in microchannels from surface acoustic waves
- Coupled three physics together
 - Acoustics, fluid flow and heat transfer
- Results indicate that SAW can enhance heat transfer
 - Bulk stream velocity < Acoustic streaming velocity
- Considerably more analysis work needs to be done
 - Need to increase vorticity strength in order for concept to be useful in microfluidic cooling
 - Identified potential ways to achieve this condition
 - Pulse the SAW and frequency or amplitude modulate
 - Pulse the inlet velocity
 - Explore different frequencies and geometries
 - Launch SAW from different locations in channel

Perpendicular to the flow

Thank you!

Questions?

Backup Material

Model Material Parameters

Water @25°C			
Density	$ ho_{\!f}$	998	kg/m ³
Speed of sound	c_f	1495	m/s
Dynamic viscosity	μ	8.90e-4	Ps s
Thermal diffusivity	D	1.43e-7	m^2/s
Solid*			
Density	$ ho_{s}$	4650	kg/m ³
Speed of sound	\boldsymbol{c}_{s}	3990	m/s

^{*}Single crystal Lithium Niobate

Physics

First-order equations

a) Thermodynamic heat transfer equation for T_1

$$\frac{\partial T_1}{\partial t} = D\nabla^2 T_1 + \frac{\alpha T_0}{\rho_o C_p} \frac{\partial p_1}{\partial t}$$

b) Kinematic continuity equation in terms of p_1

$$\frac{\partial p_1}{\partial t} = \frac{1}{\gamma \kappa} \left[\alpha \frac{\partial T_1}{\partial t} - \nabla \cdot u_1 \right]$$

c) Momentum equation for velocity field \mathbf{u}_I

$$\rho_o \frac{\partial u_1}{\partial t} = -\nabla p_1 + \mu \nabla^2 u_1 + \left(\mu_B + \frac{\mu}{3}\right) \nabla (\nabla \cdot u_1)$$

Equations solved with Thermoacustics Physics interface in COMSOL

Second-order equations

a) Continuity equation

$$\rho_o \nabla \langle u_2 \rangle = -\nabla \cdot \langle \rho_1 u_1 \rangle$$

b) Momentum equation

$$\mu \nabla^{2} \langle u_{2} \rangle + \left(\mu_{B} + \frac{\mu}{3} \right) \nabla \nabla \cdot \langle u_{2} \rangle - \nabla \langle p_{2} \rangle$$

$$= \langle \rho_{1} \frac{\partial u_{1}}{\partial t} \rangle + \rho_{o} \langle (u_{1} \cdot \nabla) u_{1} \rangle$$

c) Energy equation

$$\rho_o C_p \langle u_2 \rangle \nabla T_2 = \nabla \cdot (K \nabla T_2) + Q$$

<x> = time average quantity over full oscillation period

Equations solved with Conjugate Heat Transfer interface in COMSOL

Time Averaging of Complex Variables

• For complex-valued fields A(t) and B(t) with harmonic time dependence, the time average is the real part:

$$\langle A(t)B(t)\rangle = \frac{1}{2}Re[conj(A(0))*B(0)]$$

Ex: Mass source term:
$$= -\nabla \cdot \left\langle \rho_1 \overline{u}_1 \right\rangle$$

$$= -\left(\frac{\partial \langle \rho_1 u_{1x} \rangle}{\partial x} + \frac{\partial \langle \rho_1 u_{1y} \rangle}{\partial y}\right)$$

$$\langle \rho_1 u_{1x} \rangle = \frac{1}{2} Re[conj(\rho_1) \cdot u_{1x}]$$

$$\langle \rho_1 u_{1y} \rangle = \frac{1}{2} Re[conj(\rho_1) \cdot u_{1y}]$$

SAW Streaming Analysis

- SAW can be generalized as periodic i.e. harmonic
- The fluid motion induced by harmonic forcing in general has two components
 - Harmonic component
 - This is the motion of the fluid from the acoustic response
 - Steady component
 - This is the streaming response
- The computational challenge is how to separate the two components
- To solve for the conservation of mass and momentum a perturbation expansion is done on dependent variables u, p, ρ

$$u = u_o + \varepsilon u_1 + \varepsilon^2 u_2 + O(\varepsilon^3)$$

$$p = p_o + \varepsilon p_1 + \varepsilon^2 p_2 + O(\varepsilon^3)$$

$$\rho = \rho_o + \varepsilon \rho_1 + \varepsilon^2 \rho_2 + O(\varepsilon^3)$$

$$\varepsilon = \frac{U}{c_o}$$
Smallness factor (acoustic Mach #)
$$\varepsilon < < 1$$