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Abstract: Seals or gaskets that are compressed 
between  walls  of  a  container  are  important  to 
many  industrial  applications.  In  this  paper  we 
present  a  fluid  flow  model  for  predicting  the 
sealing  performance  of  such  seals.  A 
computational study using COMSOL® suggests 
very strong simplifications to the postulated flow 
equations.
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1. Introduction

Sealing of fluids is a very important indus-
trial problem. Static and dynamic seals prevent 
fluids  in  one  compartment  from  leaking  into 
another  compartment  or  the  environment. 
Sealing techniques are of utmost importance in 
many  engineering  disciplines  including  auto-
motive engineering, aeronautics and astronautics, 
marine engineering, hydraulics and pneumatics, 
biomedical  engineering,  building  construction, 
etc.

This paper concentrates on seals that act by 
compression  –  a  piece  of  material  (known  in 
various situations as a gasket, an o-ring, a piston 
ring, etc.) is compressed between two compara-
tively  rigid  surfaces.  This  compression  causes 

the piece to press against the rigid surfaces, thus 
creating  a  seal  for  fluids.  Such  seals  are  used 
frequently in all the above disciplines, and there 
is  a  lot  of  information  available  about  the 
geometries and materials of the seal to be chosen 
for  various  applications  [1].  But  the  available 
information about compression seals is primarily 
of  a  heuristic  nature.  There  is  a  clear  need  to 
create a mathematical theory of the performance 
of seals, to be able to analyze and design better 
sealing solutions.

In this paper we concentrate  on the perfor-
mance of compression seals for sealing pressur-
ized  containers.  This  paper  represents  one  of 
many steps in a program for creating a theory of 
seal performance. The envisioned theory is in the 
form of a partial differential equation (PDE) that 
predicts the leakage rate of a seal. These equa-
tions  are  anticipated  to  be  homogenized  fluid 
flow  equations  of  the  creeping  flow  through 
crevices that an actual pressure seal experiences.

Section 2 describes the program for creating 
the  theory  of  seal  performance  in  general. 
Section 3 describes the seal microgeometry and 
summarizes a main result of a previous paper by 
the authors [2]. Section 4 describes the problem 
tackled in this paper: fluid flow through crevices 
between  abutting  sealing  surfaces,  and  a  main 
hypothesis of this paper: that the microgeometric 
variation due to mechanical  and fluid pressure, 
can  be  reduced,  from  a  bulk  fluid  mechanical 

Figure 1: (a) A seal ring (red) is compressed between two parts of a container. (b) Closeup.
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(b)
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perspective,  to  a  characterization  as  a  single 
number.  Section 5 describes  experiments  using 
COMSOL®  to  test  this  hypothesis.  Section  6 
describes  the  results  of  COMSOL® 
experimentation  and  Section  7  describes 
implications of this work in context of the larger 
program, and suggestions for future extensions.

2.  The Theory of  Seal  Performance – A 
Program

A  seal,  as shown in Figure 1 is  a piece of 
elastomeric  material  compressed  between  two 
independently  moving  parts  of  a  container.  If 
installed correctly,  the  seal  separates  the  space 
inside  the  container  from  the  environment.  In 
this and allied papers, we investigate the perfor-
mance of such a seal while sealing a pressurized 
fluid.

It has been observed by us (to be reported in 
detail in a subsequent paper), that such a seal can 
never seal a fluid perfectly, if the fluid is a gas – 
there will always be some gas leaking out of the 
container, even if at a very low leakage rate. It is 
observed (and easy to imagine), that the rate at 
which a seal leaks is dependent on the pressure 
of the fluid inside the container – in general, the 
more  the  pressure  of  the  fluid  inside  the  con-
tainer  (relative  to  the  pressure  of  the  environ-
ment), the faster the gas leaks. The performance 
of  a  seal  can thus be described  by the  sealing 
characteristic – a plot depicting the leakage rate 
of the fluid inside the container as a function of 
the pressure inside the container.

Noticing that the fluid leaks despite the seal 
being in place, we make the following assump-
tion: the fluid leaks through the interstices that 
remain between the surfaces of the seal and the 

container, even though these surfaces are pressed 
against each other. (See Figure 2). If the above 
assumption be true, the sealing characteristic will 
be  dependent  on  the  following  factors:  (1) 
geometry of the container,  (2) geometry of the 
seal/gasket,  (3)  material  of  the  seal/gasket,  (4) 
surface  properties  (like  roughness)  of  the 
seal/gasket  and of  the container  where the two 
meet, (5) the mechanical performance of clamps/ 
springs  or  whatever  is  holding  the  apparatus 
together.  The  program of  this  set  of  papers  is 
thus to create a methodology to which the above 
parameters can be input to produce an analytical 
model  or  simulation  for  predicting  the  sealing 
characteristic of the modeled sealing solution.

3. Seal Microgeometry

As  described  above,  we  assume  that  fluid 
leakage  happens  through  the  interstices  that 
remain between the surfaces of the seal and the 
container.  Locally,  these  interstices  can  be 
visualized as a network of connected “caverns”, 
formed due to  non-perfect  contact  between the 
rough  surfaces  of  the  seal  and  container.  (See 
Figure 3.) Any practically manufactured surface, 
however  smooth  to  the  human  eye,  will  have 
surface  imperfections,  which  are  enough  for 
fluid  to  seep  through.  We note  that  many ref-
erences on sealing (for example [1]) describe the 
importance  of  surface  roughness  for  sealing 
performance,  and  specifically  claim  that  the 
smoother the seal, the better it will seal.

Since one of the two materials forming the 
caverns  of Figure 3 is  elastomeric in nature,  it 
changes form easily with stress. This in turn, is 
theorized  to  change  the  shape  of  the  caverns 
through  which  the  fluid  seeps.  Changing  the 
shape of these caverns will have an effect on the 
fluid flow. In general, the narrower a cavern, the 
more  it  will  “resist”  a  fluid  from  flowing,  as 

Figure 2: Fluid leakage paths in compression sealing.

Figure 3: Surface roughness of the seal and container 
surfaces creates a series of caverns through which 
fluid can creep.
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evidenced  by well  known idealizations such as 
Poiseuille  flow  [3].  A  previous  paper  by  the 
authors  [2],  investigated  how  the  cavern 
geometry  changes  with  respect  to  various 
parameters,  in  particular  with  respect  to  the 
mechanical  sealing  pressure  (intuitively,  the 
pressure that the seal and container are pressing 
on each other at), and the fluid flow. Under the 
assumption that the fluid flow will be creeping, 
i.e. the viscous drag on the cavern walls will be 
negligible in comparison to the fluid pressure, it 
was  computationally  shown that  the  following 
pressure  difference  hypotheses seems  to  be 
true:

“The microgeometry of sealing is dependent  
only on the difference  between the mechanical  
sealing  pressure  S  and  the  fluid  pressure  P.”  
(See Figure 4.)

4. Bulk Scale Fluid Flow

As shown in Figure 3, fluid is hypothesized 
to  flow  through  an  interconnected  system  of 
caverns  formed between the seal  and container 
surfaces due to imperfections in the surfaces. If 
we  knew  the  exact  imperfections  in  the  two 
surfaces, in principle, we may be able to simulate 
fluid  flow  in  the  channels  thus  formed,  and 
estimate  the  total  fluid  leakage  rate.  This 
simplistic methodology is thwarted due to three 
reasons.

First,  it  is  impossible  to  know  the  exact 
imperfections  on  the  surfaces.  Second,  the 
imperfection details will be different in different 
manufactured objects, even though imperfection 
statistics (such as surface roughness) may remain 
the  same.  Third,  it  would  be  practically 
impossible to simulate fluid flow in a geometry 
having millions of interconnected caverns.

We  thus  turn  to  attempting  a  bulk  scale 
model, with equations that govern bulk scale or 
averaged fluid flow fields. Similar techniques are 
applied  in  models  concerning  fluid  flow  in 
porous  media  [4],  since  the  problems 
encountered are similar.

In the bulk scale,  the interface between the 
seal and the container is best modeled as a 2D 
manifold  (Figure  5).  Thus,  even  though  the 
detailed  scale  fluid  flow is  3D,  the  bulk  scale 
model  will  essentially  be  a  2D model.  Mathe-
matical  models  of  flow  usually  comprise  two 
fields: one a scalar field, the other a vector field. 
The scalar field is some kind of a potential field, 
such as electrostatic potential, pressure etc. The 
vector  field  is  some  kind  of  flux,  such  as 
velocity, current etc.

For  the  purpose  of  modeling  the  manifold 
equations  for  seal  leakage,  the  following  two 
fields are proposed in this paper:

P is the pressure field. The bulk pressure P is 
posited  to  be  the  detailed  fluid  pressure  P 
averaged  over  the  cavern  regions  in  a 
representative  elementary  volume.  P has  the 
dimensions of pressure.

q is  linear  mass  flux. Usual  mass  flux, i.e. 
mass flow rate per unit  area of  orifice,  is  well 
known in fluid mechanics.  Linear  mass flux is 
mass  flow  rate  per  unit  length  of  orifice,  the 
dropping  of  a  dimension  caused  by  the  entire 
theory  being  posited  on  a  2D  manifold  rather 
than a 3D volume. q has the dimensions of mass 
per time per length, (exemplary units being kg / s 
m). Like all fluxes,  q is a vector field, with the 
direction of the vector showing the direction of 
maximum mass flux, and mass flux in any other 

Figure 5: A 2D manifold bulk-scale model of seal 
leakage fluid flow. The bulk scale pressure field P is 
shown as contours, and the linear mass flux q is shown 
by arrows.

Figure 4: Mechanical sealing pressure S and fluid 
pressure P. The microgeometry of the caverns changes 
according to S-P.
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direction computed by projecting the mass flux 
vector q on the direction in question.

Assuming  that  the  microgeometry  of  the 
sealing surface caverns,  whatever it  may be, is 
isotropic  in  the  bulk,  we build  the  expectation 
that the directions of q and the gradient of P will 
match. Furthermore, as in all flux based physics, 
we expect the flux to increase as the gradient of 
pressure  increases.  Thus,  a  relation  between  q 
and P may be expressed as follows:

q = a ∇P (1)

a does not have to be a constant, 
but  will  depend  in  some  as  yet 
unspecified  way  on  the  local 
situation.  The  local  situation 
consists  of  the  local 
microgeometry  (which,  as 
explained  in  Section  3,  has  been 
shown to depend on P–S), the pressure, 
and the gradient of pressure. Thus:

a = a (S – P, P, |∇P|) (2)

For a given fluid, and sealing surface pair, 
we may create  a  large table of values  for  the 
equation (2) by conducting lots of experiments. 
This table will then create a complete equation 
of fluid leakage (1). The question we tackle in 
this  paper  is,  can  the  function  in  (2)  be 
simplified  to  an  extent  that  a  very  few 
experiments  will  have  to  performed  to 
completely characterize a?

5. Microgeometric Fluid Flow

The central question of the present paper is to 
find  a  simpler  form  of  equation  (2).  The 
equations  (1)  and  (2)  themselves  were  created 

from  bulk  scale  considerations.  The  simplifi-
cation  of  equation (2)  can  be  undertaken  from 
microgeometric fluid flow considerations.

It  is  impossible  to  replicate  a  realistic  seal 
microgeometry.  We shall, instead, study a sim-
plified reference geometry (Figure 6).  The seal 
surface reference geometry is created by taking 
the tensor product of two undulations, one in the 
x and one in the y direction. Each undulation is a 
sinusoid  of  wavelength  2  μm.  The  container 
surface is taken to be perfectly smooth.

The simulation of  the mechanics  of  such a 
reference geometry has been reported in [2]. As 
described  in  Section  3,  each  value  of  S –  P 
corresponds  to  a  distinct  resultant  microgeo-
metry.  The voids in the microgeometry are the 
fluid  flow  domain.  The  idea  is  to  perform 
various fluid mechanical simulations in this fluid 
flow  domain  (parameterized  by  S –  P)  and 
extract  values  of  P,  ∇P and  q to  create  a 
tabulated function  a (corresponding to equation 
(2)). From the values of this function a, we will 
try  to  find  simplifications  to  equation  (2).  We 
hope  that  the  simplifications,  if  found  in  a 
general  form,  will  apply  not  only  to  this 
particular  reference  geometry  but  any  seal 
crevice flow situation.

Figure 6: Idealization of a rough sealing surface as a 
surface with sinusoidal crests and troughs.

Figure 7: A single 
cell of the seal geometry 
is simulated with a 
particular mechanical sealing 
pressure pressing down on it 
(colored). The void left by this simulation is repeated 
5 times (grey) for the fluid flow domain.
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6. Simulation

First  a  structural  mechanical  simulation  is 
performed using COMSOL® as described in [2], 
to  create  the  mechanical  deformation  in  the 
reference geometry. This deformation is indexed 
by  the  S –  P value  output  by  the  mechanical 
simulation. Thus there are many deformed geo-
metries corresponding to distinct values of S – P. 
As the seal geometry deforms, the void between 
the  seal  and  the  container  also  deforms.  This 
deformed  void  is  then  used  as  a  fluid  flow 
domain.

We want to understand the characteristics of 
a “developed” flow in such a domain, i.e. a flow 
that would be achieved very far away from any 
specific  boundary  conditions.  To  approximate 
such  a  developed  flow,  we  choose  to  simulate 
fluid flow in five units of the repeated structure 
in the void (see Figure 7). The values to create 
the table of equation (2) will be extracted from 
the  middle  of  the  five  units,  so  that  any 
peculiarities  caused  by  specific  boundary 
conditions are diminished.

COMSOL® is used to model the fluid flow 
in the geometry shown in Figure 7. One end of 
the five-unit train acts as an inlet, and the other 
end acts as the outlet. In this paper, we choose 

COMSOL's model for “Air” (air modeled as an 
ideal  gas)  as  the  fluid.  Various  fluid  flow 
conditions  are  modeled  by  choosing  various 
values  of  inlet  velocities  and  outlet  pressures. 
We are assuming that the fluid flow is oriented 
along  the  five-unit  train,  and  thus  symmetry 
boundary  conditions  can  be  imposed  on  the 
openings in the cross directions.

The bulk fluid pressure  P is estimated from 
the microgeometric fluid pressure by taking the 
average  fluid  pressure  over  the  central  com-
partment of the five compartments. The pressure 
gradient ∇P is estimated by taking the difference 
of average pressures at the inlet and outlet of the 
central  compartment,  and  dividing  by  the  dis-
tance between the inlet and the outlet (2 μm in 
our  case.  The linear  mass  flux  q is  calculated 
dividing the mass flow rate (at any cross section) 
by the original width of the geometry (2  μm in 
our case).

Figure 8: Fluid flow simulation through 5 units of the 
deformed void. Color represents pressure, and thick-
ness represents velocity.
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6. Results

Table 1 shows results for various fluid flow 
conditions for one particular microgeometry, i.e. 
for one value of P – S. We notice the following 
correlation in the values tabulated in Table 1:

q = 1.26 10⨉ -20 kg/s Pa‧ 2 P  |∇P| (3)

The  above  equation  is  exact  to  five 
significant digits! Comparing with equations (1) 
and (2), we get the following correlation:

a (10kPa,P,|∇P|) = (1.26 10⨉ -20kg/s Pa‧ 2)P (4)

When we perform the same experiment for 
various geometries, we get the following result

a (S – P, P, |∇P|) = σ (S – P)  P (5)

where the values of  σ are tabulated in Table 2 
and graphed in Figure 9. We may think of σ as a 
flow conductance parameter – a larger value of σ 
implies a larger mass flux. It is seen that as S – P 
increases,  i.e.  as  the  void  geometry  becomes 
more constrained,  the conductivity parameter  σ 
droops.

7. Conclusion

From equations (1),  and (5),  the bulk scale 
equation governing seal leakage is seen to be

q = σ (S – P)  P ∇P (6)

The above equation has been created based 
on  microgeometric  fluid  flow  studies  for  one 
particular  reference  microgeometry  and  one 
particular fluid. But looking at the generality of 
equation (6), it is hoped that the equation (6) will 
be  valid  for  various  (at  least  ideal  or  close  to 
ideal)  gases  for  various  sealing  surface 
microgeometries.

The similarity of equation (6) to Darcy's law 
is  worth  commenting  upon.  Darcy's  law states 
that  the  volume flux and  pressure  gradient  are 
related by a constant [5]. Now the volume flux 
and  mass  flux  are  related  by  the  gas  density, 
which,  in  the  case  of  ideal  gases,  is  directly 
dependent on the pressure  P. Thus, equation (6) 
may be thought of as a statement of Darcy's law, 
except  that  it  applies  to  a  2D manifold  rather 
than a bulk (3D) domain.

7. Discussion

In the larger  context  of  creating a program 
for seal analysis, the present work fits as follows. 
Fluid flowing through the interstices between the 
seal  and  the  container,  considered  to  be  the 
primary source of seal leakage, can be modeled 
using  partial  difference  equations.  A  previous 
paper [2] and this paper, together create such a 
partial  differential  equation  (equation  (6)),  by 
hypothesizing  –  using  simulation  studies  – 
various  simplifications  to  the  most  general 
differential equation posited.

The  simplified  partial  differential  equation 
(6)  has  a  flow  conductance  function  σ which 
needs to be tabulated for each  pair of surfaces 
and gas.  But this is  a huge simplification over 
possibly  a  three-dimensional  correlation  table 
that would have been required. Furthermore, as 
has  been  seen  in  various  flow through  porous 
media models, it is likely that the relation of σ to 
a change in the gas is likely to be a simple one, 
at least for close to ideal gases. It may also be 
possible to relate σ to some parameters of surface 
roughness.

In  a  third  paper  in  this  series,  the  authors 
intend to use the insights of this paper and [2] to 
present  a  complete  analytical  theory  of  seal 
performance.

P kPa 101.3 126.3 151.3 101.3 126.3 151.3 101.3 126.3 151.3

∇P kPa/m 708.8 708.8 708.8 354.5 354.5 354.4 638.2 638.2 638.1

q 10-10 kg/s m‧ 9.04 11.3 13.5 45.2 56.4 67.5 81.4 101 122

q / P |∇P| 10-20 kg/s Pa‧ 2 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26

Table 1: Various fluid flow conditions are simulated for the void geometry fixed by choosing S – P = 100.44 kPa. Over 
various simulated conditions, it is seen that the ratio q / P |∇P| remains a constant. This produces the correlation of 
equation (3) and (4). Changing the value of S – P changes this number. See Table 2 and Figure 9.
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S – P σ S – P σ

kPa
10-20

kg/s Pa‧ 2 kPa
10-20

kg/s Pa‧ 2

0.0
1.0
1.9
2.9
4.1
5.4
6.8
8.4

1.66
1.63
1.56
1.50
1.46
1.39
1.35
1.30

10.0
11.8
13.7
15.7
17.8
20.0
22.3
24.6
29.8

1.26
1.21
1.16
1.12
1.06
1.02
0.99
0.94
0.87

Table 2: Conductance parameter σ as a function of S – 
P, for the reference geometry of Figure 6. Even 
though this table will be different for different surface 
geometries, the general principal of the existence of 
such a table, embodied in equation (6), is surmised to 
continue to hold.

Figure 9: The conductance parameter σ plotted as a function of S – P. As S – P increases, the void geo-
metry becomes more constrained, and hence the conductance goes on decreasing. In other words, as the 
difference between the mechanical seal pressure and fluid pressure increases, lesser flow will occur for 
the same pressure and pressure gradient. As seen from the trend in the graph, this graph is expected to 
“level off”, as it becomes more and more difficult to constrain the void geometry by increasing 
mechanical pressure.
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