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Introduction

* Fischer-Tropsch synthesis (FTS) is a Gasification or | Fesdsock e be
highly exothermic  polymerization / oudaton or cod
reaction of syngas (CO+H,) in the P
presence of Fe/Co/Ru-based | ., Swe @ o . —_
catalysts to produce a wide range of o (via Olein)
paraffins, olefins and oxygenates,
often known as syncrude !

- F-T Processed Methanol
Hydrogen Synerudes (GTLs) (Oxygenates)
@ Paraffins l
CH CO + H, .|  Olefins v _V__
4 (Syn Gas) Oxygenates hydrogen oen Qualty ppag el
Etc. Ures Jet Fuels Formaldehyde
Fertilizers Diesel Dimethyl Ether
Chemicals Lubes Olefins
. Waxes Svu-LPG
— Standard large-scale gas conversion Water
= Isolated "Stranded gas” conversion I} l
Wide Spectrum of Transportztion Fuels and Chemicals
ﬂ CO + 2“ Hzﬁ -(CHZ)I'I- + n HZO Fﬁﬁiﬂﬂ-ﬁkfﬂf
k4
Power Generation and Fuel Cells
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Objectives

*  Model the Fischer-Tropsch (FT) reaction network
- Implement micro-kinetic rate expressions
- Assess the effect of process parameters on the FT product
distribution
i.  Catalyst particle shape
ii. Operating conditions (T, P)

* Incorporate Soave-Redlich-Kwong (SRK) equation of state (EOS)
intfo the particle-scale transport-kinetics model to more accurately
describe the vapor-liquid-equilibrium (VLE) behavior of the FT
product distribution within the porous catalyst particle.
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Key F-T Catalytic Reactions

BRI N onventional Names

1 Methane CO +3H, =» CH, + H,0 of F-T Products
2 Paraffins CETNEE SIS  nore | composition
4 WGS (only on Fe catalyst) CO + H,0 € CO, + H, C3-C4
5 Alcohols 2nH, +n CO =» C,Hypy O +n H,0 Naphtha Cs-Co2
. G
6 Boudouard Reaction 2CO =» C+CO,
Diesel/6Gasoil C,:-C
- Catalyst Modifications - SR
F-T Wax Conr.
7 Catalyst Oxidation/Reduction (@ MO, +yH, =>» yH0+xM 20
(b) MO, +y CO =Dy CO, + x M
8 Bulk Carbide Formation yC+xmM = MC,
David A. Wood, Chikezie Nwaoha, & Brian F. Towler, Journal of Natural Gas Science and Engineering (2012) @ TEXAS A&GM
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Fischer-Tropsch Micro-kinetic Rates

Fe-Based Olefin Readsorption Microkinetic Model
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Thermodynamics of F-T Reaction Mixtures

Soave-Redlich-Kwong (SRK) EOS Flash Calculations

RT a;a; Rachford-Rice Objective Function
~ (Vi—b) Vi(Vi+by

P;

Vapor-Liquid Equilibrium
72-727+17,4,-B,—B?)-AB,; -

A A
fi, =, ‘L i=1 to 43 with 43 distinct roots
a;P; R? Ticz T Only the positive roots
i = R2T?2 a; =0.42747 P. e less than 1 are used for
e VLE calculations
bP; ic
B; = RT b; = 0.08664 P. Catalyst Pore | Hydrocarbons in

e Vapor Phase Wilson’s Correlation

a; = (1 +m;(1 - \/T_”,))z

P; T.
Kiguess value _ §9Xp (5 37(1 + mi) (1 — i))

m; = 0.48508 + 1.55171w; — 0.1561w;? Liquid Wax with Dissolved

V
9,
Hydrocarbons EL

K, =— V

.

S

p_bi A (b 2 B,
ln¢i :m(zl_l)_ln(zl_B[)"'E E—aiaizyi(aiai)ij In 1+Z_l
j
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Catalyst Properties & Process Conditions

Dimensions of Cylinder and Ring for Ry = 1.5 mm

Cylinder Sphere Ring/Hollow Cylinder
<>
Ly ILp
<> R 1
R, p <>
R;
RO

Volume,,.. = Volume g = Volume,,,

(4/ 3) R?'spher'e = Lcylinder'Rchlinder'= Lr'ing(Rzo'RZi)

Cylinder

L=3mm&R=1mm

Ring

L=2mm, R=1.5 mm & Ri=0.3 mm

Dimensions of Cylinder and Ring for Ry, =

1 mm

Cylinder

L=3mm&R=0.7mm

Ring

L=2mm, R=1.5mm & R=1 mm
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Catalyst Properties

Density of pellet, p,

1.95 x 10¢ (gm/m3)

Porosity of pellet,e

0.51

Tortuosity, T

2.6

Operating

Conditions

Temperature, °K

493, 523 & 533

Pressure, bar

20, 25 & 30

H,/CO

2




Governing Multiphysics Model Equations

43 species and 43 reactions
General Species Balance: v.(-p_vc,) = ppZainij

j 10
Species Balance for Spherical Catalyst Particle: E_ZG_E( il )— Z
where, § = r /R,
: N . 10 BC
Species Balance for Cylindrical Catalyst Particle: Tot D, E Za,, ij
where, § = r/R,

) . ) 1 6
Species Balance for Ring Catalyst Particle: — — — _

where, £ = (r-R)) /(R,-R)) & & = R,-R;

eD;
Effective Diffusivity: D, = TEB (¢ = porosity and T = tortuosity)

_7 (—1786.29)

Dcop =5.584+10 e\ T Molecular Diffusivities of Hydrocarbons in Wax
0.6
~1624.63 1%4

Dy,p = 1.085 10-%e(—1 ) Dip =Dcop ( ;0)

_o (—1613.65) l
Dco,p =3.449+10 ‘e T V = molar volume TEXASA&M
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Model Assumptions & Boundary Conditions

,, Boundary Conditions

KINGSVILLE

At§=-land§=1,C,=C, .

Spherical Particle (CO, pux = €ps for convergence)

Cylindrical At§=-1land§=1,C;=C,; 5
Particle (CO, bui = €ps for convergence)

At§=0and §=1,C;=C;

Ring Particle (CO, 1uix = €ps for convergence)

Species Flux Key Assumptions
i.  Concentration is a function of only the

* Independent of composition C,

* Dependent on local temperature T radial coordinate, ie., C; = C(r)

* Future work: Use multicomponent ii.  Steady-state

flux transport models iii.  All catalyst particle shapes have the same

material properties (g, T, p, Kefs)
COMSOL Modules iv.  Isothermal conditions (since AT is small)
* Transport of Diluted Species v.  Bulk gas phase contains only H, and CO

* Coefficient Form PDE Solver (Reactor entrance conditions)
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Various Catalyst Shapes: n & C, Profiles
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Methane based Intra-particle
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Computational Issues

« To avoid convergence issues, the

radius of the particle was set to

— — a very small number and the

subsequent solution was stored to

be used as initial conditions for
higher radius.

— * Numerical instabilities were
co, - encountered in the region where
CO and CO, concentrations
approached zero leading to
convergence issues and unrealistic

i values.

- The convergence issues were
solved by not letting CO and CO,
concentrations approach zero by

Region with numerical instabilities

Once the convergence issue was solved using CO=if(CO<0,eps,CO) and
the mesh was refined to get smooth CO,=if(CO,<0,eps,CO).
curves.
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Conclusions

A 1-D catalyst pellet model can be used to analyze particle-level
performance. Catalyst performance on a reactor-scale can be studied by
coupling the pellet model to the tube & shell-side models for the MTFBR.

The CO conversion, effectiveness factor, intra-particle liquid to vapor
(L/V) fraction, catalyst strength and the diesel selectivity results suggest
that the cylindrical and spherical catalyst particle shapes are preferred
over hollow rings. The presence of more liquid in the spherical particle
creates an advantage for the cylindrical catalyst shape due to diffusional
limitations in the wax.

Micro kinetic rate equations, when coupled with intraparticle transport
effects and vapor-liquid equilibrium phenomena, captures the transport-
kinetic interactions and phase behavior for gas-phase FT catalysts.

Convergence can be a major issue in fast reaction-diffusion systems. This
can sometimes be easily resolved by using simple built-in operators, such
as '/f ()) and ‘eps’, to avoid negative and other unrealistic values of
dependent variables at the boundaries or interior and then refining the
mesh in accordance with computational time.
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Thank You
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Mole Fraction of Wax & Diesel in Liquid Phase
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