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@ Introduction o Results

A MEMS torsional paddle (Figure 1) can be considered as (a)
a potential device for bio/chemical sensing [1]. The Quality
Factor (QF) Is inversely proportional to energy loss of the

resonator and can determine the sensitivity.
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device thickness) on air damping and Quality factor of the
torsional paddle are investigated using COMSOL
Multiphysics® 4.4.
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Figure 5. (a) phase difference between the Figure 6. (a) Damping coefficient

0 COmPUtatlonal methOd damping torque and angular velocity, (b) sine versus angular velocity, (b) damping

and cosine components of damping torque torque versus angular velocity

The Fluid-Structure Interaction interface was used. Lum) | t(nm) f (MHz) T(max) (N.m) D (N.m.s) OF

2-D model was developed. Angular displacement : 200 2.86 8.03E-16 4.47E-20 170

2.5 200 2.01 5.31E-16 4.21E-20 127

O(t) = 6,sin(wt) is applied on opposite sides to - 00 e 3 4BE16 3 7520 105

produce the moment (Figure 3). 1 500 6.33 2.36E-15 5.92E-20 712

S - - - g - 2.5 500 4.50 1.47E-15 5.19E-20 578
Fluid Is In continuum regime and classified as a laminar

5 500 3.34 9.57E-16 4.56E-20 488

and incompressible fluid.

Table 1. Summarized simulation results (L=anchors’ length, t=thickness, f=resonance
Time domain analysis was performed. frequency, T(max)=damping torque, D=damping ratio, Q=quality factor
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@ Conclusion

Figure 2. Steps to calculate the Figure 3. Applying angular
Quality factor displacement The effect of geometrical parameters on the behavior of

the MEMS torsional resonator was investigated. It was
shown that by changing these parameters the quality

o Refrence factor could be enhanced which consequently could have
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be the next step to verify these results.
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