Aston University

Engineering & Applied Science

Optimisation of Micro-Structured Waveguides in Lithium Niobate (z-cut) **H. Karakuzu , M. Dubov, and S. Boscolo** (**Z-CUT)**

S. Boscolo

Birmingham

k

med in a lithium

ith COMSOL

n_e

n

5%MgO:LiNbO₃ is

n_o), z-cut wafer, w

(n_{o,e} + δn)², δn n

(uniform, not polariz

atic Optical Wave

= 0, $\varepsilon_r = \begin{bmatrix} \varepsilon_o & 0 \\ 0 & \$ **box, and S. Boscolo**

box, and S. Boscolo

cologies, Birmingham B4 7ET, UK

aston.ac.uk

can be formed in a lithium niobate crystal by direct

un.
 rack separation

Track diameter

Finction with COMSOL Mulliphysics®

T **1 CONSECT ACTIVE CONSECT ACT**
 EXERCUTED ACTIVE CONSECT ACT
 EXERCUTED
 EXERCUTED

Aston Institute of Photonic Technologies, Birmingham B4 7ET, UK

**karakuzh@aston.ac.uk*

ABSTRACT: We describe how the guiding properties of buried, micro-structured waveguides that can be formed in a lithium niobate crystal by direct femtosecond laser writing can be optimized for low-loss operation in the mid-infrared region beyond 3.5 μ m.

- \circ The parameters measured were used in the simulations
- o Step-index RI profile is assumed
- o Both Radius and RI contrast of tracks are intra-dependent via Pulse Energy

3. Parameters for Simulation

 $2,$ δ n non-zero only in irradiated domain $\varepsilon_r = (n_{o,e} + \delta n)^2,$ (uniform, not polarization and wavelength dependent)

5%MgO:LiNbO₃ is negative uniaxial crystal (n_e < $n_{\rm o}$), z-cut wafer, with the diameters of up to 4"

x

D

Track separation

PML (Perfectly Matching Layer): MESH:

R in $\mathbf{r}_{i} \neq \mathbf{r}$ Hexagonal Geometry

6. Results

- \circ Simulations are realized between 0.3 to 3 μ m with 0.01 μ m steps
- o RI for congruently grown LiNbO3 taken from [Zelmon et al., JOSA B **14** 1997]
- o PML and Mesh optimization is required for correct results

 'Triangular' MESH Max Mesh Size (at periphery) \sim 1 μ m Min Mesh Size (at core) \sim 0.003 μ m Growth Rate $= 1.1$

CONCLUSIONS: We have numerically demonstrated that the guiding properties of depressed-cladding, buried WGs formed in a LiNbO3 crystal by fs laser writing can be controlled by the WG structural characteristics, even for the relatively moderate induced RI contrasts typical of the direct fs inscription. In |particular, the number of depressed-cladding layers has revealed to play a major role in the control of the WG properties. Importantly for practical applications, | we have shown that for an induced RI contrast of -0*.*013, the propagation losses can in principle be reduced by four orders of magnitude at telecom wavelengths by increasing the number of cladding layers from 2 to 7. Minimisation of the confinement loss at mid-infrared wavelengths is realised by varying the growth rate of track diameters.

and thickness of 0.5 or 1 mm.

$$
\nabla \times \nabla \times \mathbf{E} - \omega^2 \varepsilon_0 \varepsilon_r \mu_0 \mathbf{E} = 0, \qquad \varepsilon_r = \begin{pmatrix} \varepsilon_o & 0 & 0 \\ 0 & \varepsilon_e & 0 \\ 0 & 0 & \varepsilon_o \end{pmatrix}
$$

o Wave Equation for Monochromatic Optical Wave in micro-structured WG: