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Abstract: The transient behavior of the thermal 
resistance of single and double U-tube BHEs is 
investigated numerically by means of COMSOL 
Multiphysics with reference to the 2D cross 
section of usually employed BHEs. The study is 
performed in a dimensionless parametrical form, 
the parameters being the ratio between the 
thermal conductivities of grout and ground, the 
ratio between the heat capacities per unit volume 
of grout and ground and the distance between the 
tubes. The results show that the pipe spacing and 
the heat capacity ratio play an important role in 
the transient behavior of the BHE internal 
resistance, whereas the pipe spacing and the 
conductivity ratio play an important role in the 
steady value of the BHE thermal resistance. 
 
Keywords: BHE thermal resistance, short-term 
analysis, g-functions. 
 
1. Introduction 
 

In order to study the thermal behavior of 
Borehole Heat Exchangers (BHEs), the most 
employed model is based on two thermal 
resistances, namely the BHE thermal resistance 
and the ground thermal resistance [1-4]. Usually, 
the first one is assumed to be uniform along the 
whole BHE and constant in time. However, 
when considering the short-term behavior of the 
BHE, this assumption is quite rough and can lead 
to relevant discrepancies with respect to the real 
BHE performance. Indeed, the heat capacity of 
the grout cannot be neglected in hourly 
simulations. In Ref.[5], the Authors proposed a 
new method for the hourly simulation of BHE 
fields, where the internal structure of the BHE is 
also taken into account. The present paper 
complements Ref.[5] being a transient 
parametrical study of the grout thermal 
resistance of the BHE, i.e., the resistance 
between the tubes and the ground. This 
resistance is determined in a dimensionless form 
by considering both single and double U-tube 
BHE configurations with different values of the 
shank-spacing between the tubes. The considered 

geometrical configurations are based on 
commercially available geothermal probes [6]. 
 
2. Governing Equations and Numerical 
Model 
 

As well known, in the short time period the 
BHE length does not affect the BHE thermal 
response and, thus, the g-functions can be 
determined by 2D numerical simulations 
performed on a cross section of the BHE. On the 
contrary, in the short time period the real internal 
structure of the BHE plays an important role and 
must be properly taken into account. 

Let us consider either a double U-tube BHE 
or a single U-tube BHE, and denote by D the 
diameter of the BHE, by Dt the external diameter 
of each tube and by d the distance between the 
axes of opposite tubes. The dimensionless 
parameters used to define the cross section of the 
BHE are * =t tD D D  and * =d d D . The values 
considered for the geometrical parameters are 
chosen with reference to widely employed 
double and single U-tube BHEs, and are 
summarized in Table 1. In detail, two double U-
tube BHEs are studied, which are characterized 
by Dt equal to 32 mm (case I) and 40 mm (case 
II), respectively. When the corresponding 
suggested spacer is used [6], the distance d is 83 
mm and 90 mm, respectively; accordingly, the 
needed perforation diameter D results equal to 
127 mm (5”) and 152 mm (6”), respectively. 
Moreover, three configurations of single U-tube 
BHE are considered, which have the same tube 
diameter, Dt = 40 mm, and differ only for the 
distance d, namely: d = 90 mm (case III); 
d = Dt = 40 mm (case IV, i.e., the tubes are in 
direct contact); d = D − Dt = 112 mm (case V, 
i.e., the tubes are adjacent to the BHE external 
boundary). 

Figure 1 presents a sketch of the cross 
sections considered for double U-tube BHEs 
(cases I and II), whereas figure 2 shows the three 
configurations of the single U-tube BHE (cases 
III, IV, V). 
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Table 1. Geometrical properties of the considered 
BHE configurations. 

 

 double U-tube 
BHE 

single U-tube 
BHE 

case I II III IV V 
Dt 

[mm] 32 40 40 40 40 

d  
[mm] 83 90 90 40 112  

D 
[mm] 

127 
(5”) 

152 
(6”) 

152 
(6”) 

152 
(6”) 

152 
(6”) 

d* = 
d/D 0.6535 0.5921 0.5921 0.2632 0.7368

Dt* = 
Dt/D 0.2520 0.2632 0.2632 0.2632 0.2632

 
 
 
 
 
 
 
 
 
 
Figure 1. Sketches of the considered cross sections of 
double U-tube BHEs. 
 
 
 
 
 
 
 
 
 
 
Figure 2. Sketches of the considered cross sections of 
single U-tube BHEs. 

 
 
The differential equations to be solved in 

grout and ground are, respectively: 
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where T is temperature, τ is time, kgt and  (ρc)gt 
are the thermal conductivity and the heat 
capacity per unit volume of the grout, while kg 

and (ρc)g are the thermal conductivity and the 
heat capacity per unit volume of the ground. 
The boundary condition at the surface between 
tubes and grout is 

( ) 0

4
− ∇ ⋅ =ngt S
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Q
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where Q0 is a constant reference heat load per 
unit length, which begins at the initial instant 
τ = 0; S is the surface between tubes and grout 
and n denotes the outward unit normal. 
The external boundary of the computational 
domain, which is a circle with radius rd, is 
considered isothermal 

= gT T            (4) 
where Tg is the undisturbed ground temperature. 
Continuity conditions hold at the interface grout-
ground, and the initial condition is T = Tg on the 
whole computational domain. 

Let us define the dimensionless temperature 
T* and the dimensionless time τ* = FoD as 
follows: 
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By introducing also the dimensionless operator   
*∇ = ∇D  and the dimensionless quantities 

( )
( )
( )

** ,  = =gt gt

g g

ck
k c

k c

ρ
ρ

ρ
     (6) 

one can rewrite Eqs. (1), (2), (3) and (4) in the 
following dimensionless form: 
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* 0=T            (10) 
where S* denotes the surface between tubes and 
grout in the dimensionless domain. The 
dimensionless initial condition is T* = 0 
everywhere in the domain. 

The dimensionless Eqs. (7)-(10), with the 
continuity conditions at the interface grout-
ground and the initial condition, are solved by 
means of COMSOL Multiphysics 4.3b. 

For all the geometrical configurations 
considered (cases I-V), a circular computational 
domain with dimensionless radius rd/D = 1000 is 

Dt 

d 

D 

case II 

Dt 

d 

D 

case I 

Dt 
d 

D 

case III 

Dt 

d 

D 

case IV 

Dt

d

D

case V



Excerpt from the Proceedings of the 2014 COMSOL Conference in Cambridge 

employed; an extensive check of the adequacy of 
this size of the computational domain has been 
already performed in Ref. [5], which we refer. 

A dimensionless time interval 
4 * 510 10− ≤ ≤τ  is considered, in the logarithmic 

scale *
104 log 5− ≤ ≤τ , which is divided into 

4500 uniform time steps (each dimensionless 
time interval is equal to 0.002). 

The dimensionless average temperature at the 
interface tubes-grout and that at the interface 
grout-ground, called g-functions at those 
surfaces are evaluated and denoted, respectively, 
by ggt and gb. Moreover, we denote the 
difference ggt − gb as gRgt: according to Eq.(5) 
and to the usual definition of thermal resistance, 
i.e., R = ΔT/Q, this difference is representative of 
the dimensionless grout thermal resistance per 
unit length. 

In order to account for the typical ranges of 
the physical properties of grout and ground, 
calculations have been performed by considering 
all the combinations of the following values: 
k* = 0.4, 0.7, 1.0; (ρc)* = 0.4, 0.7, 1.0. 

To check the mesh independence of results, 
the function gRgt has been evaluated by means of 
four unstructured triangular meshes, obtained 
with an element size “extremely fine” inside the 
BHE and “finer” in the ground, which differ for 
the number of uniformly spaced elements on 
each tube’s boundary and BHE’s boundary and, 
thus, for the overall elements number. For 
instance, with reference to case I, k* = 0.4 and 
(ρc)* = 0.4, the four considered meshes are 
characterized by the following increasing 
numbers of elements, respectively: 7, 25 and 
7624 elements (mesh1); 10, 30 and 8310 
elements (mesh2); 15, 50 and 12266 elements 
(mesh3); 20, 70 and 16858 elements (mesh4). By 
comparing two successive meshes by means of 
the following relative absolute error, 

 1  
+1, 

 1

%   =1,2,3+

+

−
= Rgt i Rgt i

i i
Rgt i

g g
i

g
ε   (11) 

we obtained the following percent values: 
ε2,1 = 0.215%; ε3,2 = 0.338%; ε4,3 = 0.197%. 
Therefore, as a compromise between accuracy 
and computational time, mesh3 was adopted for 
final computations. 
 
 
 
 

3. Discussion of the Results 
 

For every combination of values of the 
dimensionless parameters k* = 0.4, 0.7, 1.0 and 
(ρc)* = 0.4, 0.7, 1.0 and for each BHE 
considered, the dimensionless average 
temperature at the interface tubes-grout, namely 
the g-function ggt, and the dimensionless average 
temperature at the interface grout-ground, 
namely the g-function gb, have been determined 
as functions of the dimensionless time FoD. 

Figure 3 shows the plots of ggt for a double 
U-tube BHE with Dt

* = 0.2520 (case I): for a 
given value of k*, in the short-term period (i.e., 
for low values of FoD), as the value of 
(ρc)* increases the value of ggt decreases. On the 
other hand, as FoD increases, the curves 
approach and tend to a common value, which is a 
decreasing function of k*. 

Figure 4 shows the plots of gRgt = ggt − gb for 
the same BHE (case I): for given values of k*, 
there exists a threshold value of FoD such that 
the curves become independent of both (ρc)* and 
FoD, i.e., the steady-state regime is reached. 
Indeed, this constant value of gRgt  represents the 
dimensionless steady-state grout thermal 
resistance per unit length, which is a decreasing 
function of k*. 

Analogous considerations can be drawn for 
the other investigated BHEs (cases II-V), since 
the trends of ggt and gRgt are similar to those 
shown in Figures 3 and 4. 
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Figure 3. Plots of the g-function ggt as a function of 
FoD (case I). 
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Figure 4. Plots of the g-function gRgt as a function of 
FoD (case I). 
 
 

For each BHE and for given values of k* and 
(ρc)*, the threshold value of FoD has been 
determined as the first value of FoD from which 
the absolute relative difference εFoD between the 
values of gRgt evaluated in two successive 
dimensionless time instants (the considered time 
step is 0.002) becomes smaller than 0.001%, 
namely when:  

( ) ( )
( )
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%
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Rgt D Rgt D
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Rgt D

g Fo g Fo
g Fo
+ −
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Table 2 reports the threshold values of FoD 
and the corresponding values of the 
dimensionless steady-state grout thermal 
resistance per unit length (in italic), for all the 
geometrical configurations considered and for all 
the combinations of the parameters k* and (ρc)*.  

It is interesting now to compare the thermal 
response factors, i.e., the g-functions, of the two 
double U-tube BHEs examined in order to 
compare the corresponding thermal resistances 
per unit length. 

With reference to cases I and II, for k* = 0.7, 
Figures 5 and 6 present the plots of ggt and the 
plots of gRgt , respectively. Except for the very 
first dimensionless instants, i.e., for (about) 
FoD < 8∙10-3,  Figure 5 shows that the values of 
ggt and of gRgt for the BHE with the 40 mm tubes 
(case II) are bigger than those for the BHE with 
the 32 mm tubes (case I). 

 
 
 
 

Table 2. Threshold values of FoD and steady-state 
value of gRgt (in italic). 

 
Case I:     double U-tube BHE     32 mm 

 (ρc)* = 0.4 (ρc)* = 0.7 (ρc)* = 1 

k* = 0.4 7.62 11.3 16.3 
0.167 

k* = 0.7 6.49 12.0 17.5 
0.095 

k* = 1 6.58 12.2 17.9 
0.067 

Case II:     double U-tube BHE     40 mm 
 (ρc)* = 0.4 (ρc)* = 0.7 (ρc)* = 1 

k* = 0.4 5.20 10.3 16.7 
0.211 

k* = 0.7 5.08 9.73 19.9 
0.120 

k* = 1 5.22 9.86 14.1 
0.084 

Case III:     single U-tube BHE     40 mm 
(suggested shank-spacing) 

 (ρc)* = 0.4 (ρc)* = 0.7 (ρc)* = 1 

k* = 0.4 3.89 8.02 14.7 
0.235 

k* = 0.7 5.08 7.59 11.2 
0.137 

k* = 1 5.01 7.08 10.3 
0.097 

Case IV:     single U-tube BHE     40 mm 
(tubes in direct contact) 

 (ρc)* = 0.4 (ρc)* = 0.7 (ρc)* = 1 

k* = 0.4 2.37 3.91 6.85 
0.524 

k* = 0.7 2.82 4.39 7.31 
0.299 

k* = 1 3.12 4.79 6.98 
0.210 

Case V:     single U-tube BHE     40 mm 
(tubes adjacent to the BHE external boundary)

 (ρc)* = 0.4 (ρc)* = 0.7 (ρc)* = 1 

k* = 0.4 4.09 7.73 13.9 
0.176 

k* = 0.7 3.53 7.11 12.4 
0.107 

k* = 1 3.10 5.45 9.82 
0.078 

 
In particular, from Figure 6 one can infer that the 
ratio between the constant values reached by gRgt 
in the two cases is 
( )  / 1.266Rgt II Rgt I steady state
g g

−
=     (13) 
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According to the meaning of gRgt, i.e., 
gRgt = kg∙R′gt, this is also the value of the ratio 
between the corresponding grout thermal 
resistances per unit length: 
( )  / 1.266gt II gt I steady state
R R

−
′ ′ =      (14) 

The ratio is a slightly increasing function of k*, 
being 1.264 for k* = 0.4 and 1.269 for k* = 1. 

A comprehensive comparison of the BHE 
thermal resistances between case I and case II 
requires considering also the conductive 
contribution in the tubes and the convective 
contribution of the fluid flowing inside the tubes. 
The conductive thermal resistance per unit length 
of the tube wall can be evaluated as: 

1 ln
2

′ = t
cond

p ti

DR
k Dπ

       (15) 

where kp is the thermal conductivity of the tubes 
and Dti is the tube internal diameter. According 
to Ref. [6], we assume Dti equal to 26.2 mm for 
case I and equal to 32.6 mm for case II. Thus, by 
considering the same material for the tubes in the 
two cases, the ratio between the conductive 
thermal resistances per unit length depends on 
the geometrical parameters only (we assume 
temperature-independent properties), namely: 
( )  /

            ln ln 1.02

′ ′ =

   
= =   
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t t
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R R

D D
D D
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The convective thermal resistance per unit length 
can be evaluated as: 

1 1′ = = =ti
conv

ti f ti f

DR
h D Nu k D Nu kπ π π

   (17) 

where Nu is the Nusselt number and kf is the 
thermal conductivity of the fluid. 
By assuming that the flow regime is turbulent, 
one can evaluate the Nusselt number by means 
of the Dittus-Boelter correlation, namely: 

0.8 0.40.023Re Pr=Nu        (18) 

with Re = f ti

f

w D
ν

  Pr = f

f

ν
α

   (19) 

where ρf, νf, αf are the density, the kinematic 
viscosity and the thermal diffusivity of the fluid, 
respectively. The average fluid velocity wf  in the 
tubes is given by: 

2

4=


f
f ti

mw
Dπρ

         (20) 
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Figure 5. Comparison of the g-function ggt between 
case I and case II, for k* = 0.7. 
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Figure 6. Comparison of the g-function gRgt between 
case I and case II, for k* = 0.7. 
 
 
If one assumes the same value of the mass flow 
rate m  for both the BHE configurations (cases I 
and II), the ratio between the convective thermal 
resistances per unit length is a function of the 
ratio between tubes internal diameters: 

( )
0.8

 
  

 

/ 1.19
 ′ ′ = = 
 

ti II
conv II conv I

ti I

D
R R

D
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Since Eqs. (14), (16) and (21) show that the three 
contributions to the total BHE thermal resistance 
per unit length are bigger in case II, case I is 
recommendable in order to enhance the heat 
transfer from the BHE. However, for the sake of 
comparison, the previous thermal analysis should 
be complemented by a detailed analysis of the 
pressure drops in the fluid and the consequent 
energy consumptions for pumping. 
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Finally, for a single U-tube BHE let us study 
the effect of the distance d between the tubes on 
the BHE thermal response.  

Figures 7 and 8 present the plots of ggt and 
the plots of gRgt, respectively, for cases III, IV 
and V, when k* = 0.7. As expected, Figure 7 
shows that as the distance d increases (i.e., as the 
tubes approach to the BHE boundary, case V) the 
dimensionless average temperature at the 
interface tubes-grout decreases. Indeed, 
accordingly to Figure 8, case V presents the 
lower dimensionless grout thermal resistance per 
unit length. Similar results hold for k* = 0.4 and 
k* = 1.  
In order to evaluate the grout thermal resistance 
per unit length, R′gt, of a single U-tube BHE, 
Paul [7] introduced the following correlation, 
based on experimental data: 
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Figure 7. Comparison of the g-function ggt in cases 
III, IV and V, for k* = 0.7. 
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Figure 8. Comparison of the g-function gRgt in cases 
III, IV and V, for k* = 0.7. 
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where β0 and β1 are constants, whose value 
depends on the distance d. If Eq.(22) is adopted 
to express the dimensionless grout thermal 
resistance per unit length, gRgt, one has 

1
*

*0

1

1
Rgt gt g

t

g R k
k D

′= ⋅ =
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Different values of β0 and β1, based on the 
shank-spacing of the tubes in the borehole are 
proposed in Ref.[7]: for an intermediate position, 
similar to case III, β0 = 17.44 and β1 = −0.6052; 
for tubes in direct contact, case IV, β0 = 20.10 
and β1 = −0.9447; for tubes adjacent to the BHE 
boundary, case V, β0 = 21.91 and β1 = −0.3796. 
The values of gRgt obtained by means of Eq.(23) 
are presented in Table 3, with reference to the 
geometries and values of k* investigated. 
 
 

Table 3. Values of the dimensionless steady-state 
grout thermal resistance per unit length, gRgt, obtained 

by means of Paul’s correlation, Eq.(23). 
 

case III: intermediate shank-spacing 
k* 0.4 0.7 1 

gRgt 0.322 0.184 0.129 
case IV: tubes in direct contact 

k* 0.4 0.7 1 
gRgt 0.439 0.251 0.176 

case V: tubes adjacent to the BHE external boundary
k* 0.4 0.7 1 

gRgt 0.189 0.108 0.076 
 
 
To compare our results, obtained by means of 
2D transient numerical simulations and 
presented in Table 2 (denoted now by gRgt num ), 
with those of Table 3 (denoted now by 
gRgt Eq.(23) ), we define the following absolute 
relative difference, εP: 

  .(23)

 

%Rgt num Rgt Eq
P

Rgt num

g g
g

−
=ε      (24) 

Although the results are not in perfect 
agreement, the comparison is satisfactory, being 
εP between a minimum value of 0.9% and a 
maximum value of 37%, with a mean value of 
18.2%. 
 



Excerpt from the Proceedings of the 2014 COMSOL Conference in Cambridge 

4. Conclusions 
 

The dimensionless average temperatures at 
the interface tube/grout (i.e., the g-function ggt)  
and grout/ground (i.e., the g-function gb), and 
their difference gRgt = ggt − gb (representative of  
the dimensionless grout thermal resistance per 
unit length), have been determined by means of 
2D transient simulations of the BHE cross 
section performed through COMSOL 
Multiphysics 4.3b. Two double U-tube BHEs, 
which differ for tubes diameter, tubes spacing 
and borehole diameter, as well as three single U-
tube BHEs, different for tubes spacing, have 
been considered with reference to nine couples 
of values of the dimensionless parameters k* and 
(ρc)*.  

The following main results have been 
obtained: 
• for a given k*, in the short-term period, as 

(ρc)* increases ggt decreases, while in the 
long-term period ggt becomes independent of 
(ρc)* and is a decreasing function of k*; 

• the dimensionless grout thermal resistance 
per unit length gRgt is a function of both k* 
and (ρc)* but reaches a constant steady-state 
value for specific threshold values of FoD; 

• a comparison of the contributions to the 
overall BHE thermal resistance have been 
made for the two double U-tube BHEs 
considered; 

• the effect of the distance between the tubes 
on the grout thermal resistance in a single U-
tube BHE has been investigated and the 
results compared with a correlation available 
in the literature. 
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