

Magdalena Puskarczyk, Radoslaw Jez, ABB Corporate Research Center, Krakow, Poland

The Design of a Multilayer Planar Transformer for a DC/DC Converter with a Resonant Inverter

The Design of a Multilayer Planar Transformer for a DC/DC Converter with a Resonant Inverter Agenda

- Introduction
- Design requirements for the planar transformer
- 3. Simulation models description
- 4. Steps of the analysis
- Constructed prototype and laboratory measurement results
- 6. Conclusions

Planar transformer Introduction

Magnetic inductors and transformers are the fundamental components for PE devices:

- potential applications: high frequency filters, EMC chokes, energy storages, galvanic insulations, etc.
- requirements of mass production: stability of fundamental and parasitic parameters (inductances, resistances, leakage inductances, stray capacitances)
- complicated design process of inductive elements due to the complexity of a magnetic circuit and high frequency interactions between windings

Planar transformer Design requirements

Fundamental parameters of the transformer

Item	Value	
pri./sec. voltage U ₁ /U ₂	750 V/600 V	
pri./sec. current I ₁ /I ₂	1.33 A/1.67 A	
output power S _{OUT}	1.00 kVA	
operation frequency f _n	500 kHz	
turns @ pri./sec. N ₁ /N ₂	14/20	
maximum flux density of a magnetic core B _{MAX}	0.49 T	
pri./sec. inductance L ₁ /L ₂	48.3 µH /93.0 µH	
coupling coefficient k	0.87	

The analysed planar transformer:

- application: DC/DC Converter with a Resonant Inverter,
- requirements of parameters: the leakage inductance strictly fitted to a load parameters.

Parameters of transformer windings:

- tracks made on a multilayer PCB,
- spiral shape of coils with precisely defined positions

Planar transformer Steps of the analysis

Planar transformer Models description

2D axis symmetry model - geometry

Mesh of the model domain

- All COMSOL models were prepared as a 2D axial symmetry
- AC/DC Module, Magnetic Field Interface, Electrical Circuit Interface, STCD
- Frequency Domain analysis (500 kHz)
- Geometry: parametrized dimensions
- Mesh: quads and triangulars

Planar transformer Steps of the analysis

Magnetic flux and current densities for different steps of the transformer geometry analysis:

Planar transformer Constucted prototype

Parameters of the prototype:

- ferrite P-core 3622; material: N49 (MnZn); B_{MAX} = 490 mT
- windings made of spiral tracks on PCBs
- PCBs stacked alternately with insulating spacers
- simple models allow the verification of the modelling methodology
- scale 1:1 (FEM model to prototype)

View of the prototype of the multilayer planar transformer and its components: a pot core and a planar coil

Planar transformer Laboratory test

Comparison of simulation and laboratory test results for four specific configurations of the windings (Electrical Circuit interface used in COMSOL):

Item	Measured	Simulation	Diff %
LSO	44.02 µH	48.42 µH	10.0
LSS	11.63 µH	13.20 µH	13.5
LPO	83.66 µH	90.02 μH	7.6
LPS	21.93 µH	24.55 µH	11.9

Windings' configurations for the impedance measurements.

Planar transformer Conclusions

- The comparison of the FEM model results and laboratory measurements shows the reliability of the COMSOL calculations.
- Changes of the transformer windings configurations impact the magnetic field distribution in the core.
- The FEM analyses allow to determine a magnetic core point of operation and predict possible magnetic saturation,
- The FEM calculation of a current density (with skin and proximity) effects) allows an optimal design of the cross-section of the transformer windings.

Thank you very much for your attention!

I also would like to invite you to see the poster: 23

The Design of a Multilayer Planar Transformer for a DC/DC Converter with a Resonant Inverter

Power and productivity for a better world™

