

Theo B.J. Campmans (M.Sc)

Overview presentation

- Problem
- Low Frequency Noise
- Acoustic analysis
- Flow analysis
- Results of measures

Low frequency hum of boiler

- 220 ton/hr steam; 70 78 bar
- Complaints of nearby residents of noise around 30 Hz
- Strong movement of boiler parts
- Between 66 80 % boiler load

Possible causes of boiler hum

- flow around pipes in heat exchangers (excluded)
- fan
 - here not blade passing frequency
- fan inlet valves
- burner control valves (excluded)
- burners (excluded)
- flow in ducts

Acoustic analysis

- Expected source: fan
- Model of complete boiler
- Temperatures taken into account
 - ambient: 15 °C
 - furnace: 1000 °C
 - stack: 140 °C
- inlet and end conditions:
 - impedance acc. Levine&Schwinger
- Silencer:
 - reduction / m calculated in separate model
- Lp in furnace at given Q-ac.(fan)

Results acoustic study

- Sensitive behaviour boiler around 30 Hz shown
- No answers about cause of noise
- Further study for sources necessary

Flow analysis inlet air to fan

- air flow:
- 44 m³/s at 100%
- RANS
- k-ε model

Flow analysis fan outlet area

- air flow:
- 44 m³/s at 100%

Starting conditon velocity (outlet radial fan)

Results flow study

- Original inlet design causes vortice
- Redesign was made
- Fan outlet duct also causes vortices and unstable flow
- Redesign was made

LBP|S|GHT|

Additional acoustic measures

- absorption section on top:
- 1 m thick
- absorption at wall
- 0.5 m thick

Effect acoustic measures

Summary absorptive measure

- 5 dB at 30 Hz
- (reduction for one pass from fan to furnace)
 - effect to environment < 5 dB
- More reduction at other modes

Total effect of LBP SIGHT measures

Conclusions

- Comsol proved useful tool for:
 - acoustic study (understandig modes, etc.)
 - flow study
 - design of flow improvement
 - design of additional absorption
- Result: 8 dB improvement

LBP|SIGHT /

End

