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Outline

= |ntroduction
= Material model for MDPE

= Calibration to experimental data

= |mplementation of material model in COMSOL
Multiphysics
= Verification of developed material model




Introduction

= Medium-density polyethylene (MDPE) is a thermoplastic
commonly used in gas piping and fittings

— MDPE pipe is flexible and can
withstand deflection during
subterranean installation,
iIncluding full squeeze-off

— Employed in a wide range of
temperatures, from sub-
freezing up to 60°C

(Performance Pipe)



Introduction

= Physical Properties of MDPE:
= Density: 0.92 - 0.94 kg/m?3
= Tensile Strength: 12-19 MPa
= Young’'s Modulus: 170-600 MPa
= Elongation at break: >150%

= Mixture of stiff, strong high density polyethylene (HDPE)
and workable, flexible low density polyethylene (LDPE)

= Very good crack resistance



Veryst
' Engineering

End Use: Pipe Squeeze-Off
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For more details:
Lever E, Lever O, Assessment of Squeeze-off Location for Small Diameter Polyethylene (PE)
Pipe and Tubing, COMSOL Conference 2015, Newton MA.




Constitutive Modeling of MDPE

= MDPE behavior is nonlinear, strain rate and
temperature-dependent

= Cannot be accurately modeled with hyperelastic or
elastic-plastic material models

= We selected a two-network nonlinear rate-dependent
material model with exponential temperature
dependence

= More advanced material models suitable for MDPE
are available in the PolyUMod® library from Veryst
Engineering



Material Model

* Two parallel rheological networks with
exponential temperature dependence

Network B
Network A Mooney-Rivlin
Mooney-Rivlin Exponential Temperature
Exponential Temperature Dependence
Dependence Power-Law Flow
Exponential Temperature

Dependence




Material Model

= Deformation gradients
FA=F8 =F, F?=F,F,
= Cauchy stress tensor
6 =064 + oF

= Stiffness of both networks scale exponentially with
temperature

9—91

fo = exp [q* )




Material Model

= Network A
= Mooney-Rivlin hyperelastic element

= Network B
= Mooney-Rivlin hyperelastic element
= |n series with viscoplastic power law damper

D =Ydevio®] y=(—)"

Tphase

D3 is the rate of viscous deformation
T IS the effective shear stress
M, Tpase Are material constants



Material Model

e Parameters used in material calibration
= Mooney-Rivlin Network A: C&,, C{}y
= Mooney-Rivlin Network B: 5, CE,
= Viscous part of Network B: tp50 , M

= Three temperature scaling factors: g4, g%, g%¥

= Bulk modulus (k) set to a high value resulting in a nearly
Incompressible material



Experimental Data

= Gas Technology Institute (GTI) provided the
experimental data used in calibration
= Uniaxial tension tests at different
= Temperatures (-20°C, 20°C & 60°C)
= Strain rates (0.1 s, 0.01 s1 & 0.005 s1)

= Cyclic compression tests at different
= Temperatures (-20°C, 20°C & 60°C)




Experimental Data — Cyclic Compression
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Material Model Calibration

= We used MCalibration® to fit the material parameters to experimental data
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MCalibration® is a product of Veryst Engineering
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Material Model Calibration

= Fit to cyclic compression data
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Material Model Calibration

= Fit to cyclic compression data
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Material Model Calibration

= Relatively good fit also obtained for tension data at
different temperatures
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COMSOL Implementation

= The material equations are input directly to COMSOL
Multiphysics
= A weak form for the hyperelastic networks

= Domain level ordinary differential equations (ODES) for the
viscous terms

= The implementation does not involve C or FORTRAN
code linked to the FE program through pre-defined
subroutines
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COMSOL Implementation

= A different approach is now with the External Material
functionality introduced in version 5.2!

Model Builder Settings -
- ® v ETEl =~ External Materia
4 & Untitled.mph (root) . -
4 G_Iobal Definitions Label: External Material 1
4 (33 Materials .
- ¥ External Material Model
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4| C_ompo_m?thl (compl) Library: Browse... |
I = Definitions .
I Geometry 1 Interface type: None v|
% Materials Required input g None

" General stress-strain relation
Quantity Inelastic residual strain
General H(B) relation

4 72 Solid Mechanics (solid)
8 Linear Elastic Material 1

s Freel =
8 Initial Values 1 General B(H) relation I
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I & Results

Output quantities

L
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COMSOL Implementation

= COMSOL supports general user-defined ODEs of the
form

Flu,i,i) = 0

= where u is an independent variable coupled directly
and through its time derivatives to virtually any
other variable in the finite
element model

4 @ TryiscoElastic_ODE26_TemperatureDependence
4 (7)) Global Definitions
Fi Pararneters
= Materials
4 (W Model 1 (mod)
= Definitions
}‘a\ Geormetry 1
=% Materials
= Solid Mechanics (sofid)

) ¥ Distributed ODEs and DAEs (dode)

A Mesh 1
mol Btudy 1



COMSOL Implementation

= Network B implementation <

Dependent variable quantity

= We selected the components of ‘oo d

Source term quantity

the inverse of the inelastic (Dimensinies )

* Discretization

deformation gradient F; ! as the s

[ Gauss point data vl

Independent variables for the

i -

O D ES Yalue type wehen using splitting of complexvariables:

[ Complex v]

= Selected element order and e .
shape functions + Dependentvariabes

Field name: Fpi
Murnber of dependent variables: 19
Dependent variables: Fpill -
Fpil? H
Fpild
Fpi2l
Fpid2




COMSOL Implementation

= Network B implementation

= Implemented the following deviatoric strain energy
function

WDev(IIe' IZe) = ClO(IIe - 3) + COl(I;e - 3)

= where
C.=F;TCF;!

[, = trace(C,)
2
[1e =] 3lie
[e = %Ilez — trace(Cez)

o4
[0 =] 3l



m Veryst
Engineering

COMSOL Implementation

= Network B implementation
= Evolution equation for F; 1

¥ Egquation

Show equation assuming:

[ Study 1, Tirne Dependent v]

_ _ ML
V[Fv TU*ZFv 1] It at

u =[Fpill, Fpl 2, Fpil 3, Fpi2l, FRi22, Fpi23, Fpi3L, Fpi32, Fpias]
*
| |deV[Be] | | * Source Term

coeffll

d _ . ~_1 de
a[Fv 1] = _VFvl

coeffl2
coeffl3
coeff2l
f o coeff22
coeff2
coeffil
coeffi2

I R e = = A =

coeffild

I Damping or Mass Coefficient

I MWass Coefficient



Implementation Verification

= Predictions from COMSOL model and MCalibration
virtually identical for all experimental data

= We also performed numerous additional simulations
for code verification, including the following:

= Compressive loading/unloading at 3 temperatures
to 37.5% and 75% compressive strain

= Tensile loading/unloading at 3 temperatures up to
200% stretch

= Tensile loading/unloading at 3 strain rates at 20°C
up to 20% stretch
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Verification: Cyclic Compression

= Loading/unloading cycles to 37.5% and 75%
compressive engineering strain
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Verification: Cyclic Tension

= Tensile loading/unloading cycles up to 100%
and 200% stretch

Mcalibration [l
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Verification: Rate Dependence

= Tension at three strain rates at 20°C involving
two loading/unloading cycles to 10% and 20%
stretch
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Summary

= Selected a material model framework that captures the
nonlinear, strain rate and temperature dependent
behaviour of MDPE

= Calibrated the model calibrated to experimental tension
and compression data at different temperatures and
strain rates




Summary

= |mplemented the material model in COMSOL
Multiphysics as user-defined ordinary differential
equations

= Partially verified the material model implementation for
different loading modes

= COMSOL and MCalibration predictions for material
behavior are virtually identical, indicating successful
COMSOL implementation
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