COMSOL CONFERENCE 2016 MUNICH

Modelling of Viscoelastic Phenomena in Concrete Structures

- A.A. Pomarico, G. Roselli (STMicroelectronics-Lecce)
- **D. Caltabiano** (STMicroelectronics-Agrate Brianza)

- Introduction
- Modelling sensors in concrete
- Viscoelastic modelling of concrete
- Shrinkage strain modelling of concrete
- Analysis of a sensor in concrete
- Conclusions

Introduction

Market demand:

Structural Health Monitoring (SHM):

Understand the health of the structure and the needs for maintenance intervention

Monitoring the pressure in various strategic points of the structure and its evolution over time

http://livesicilia.it/2014/07/07/crolla-il-ponte-fra-ravanusa-e-licata-auto-nel-vuoto-feriti 513263/

OUR OBJECTIVE:

Develop a method that allows us to model concrete mechanical properties and their variation over time, and to model the behaviour of a mechanical sensor embedded in it when external forces are applied to the concrete structure.

- Introduction
- Modelling sensors in concrete
- Viscoelastic modelling of concrete
- Shrinkage strain modelling of concrete
- Analysis of a sensor in concrete
- Conclusions

COMSOL for modelling sensors in concrete environments

For a reliable design of an electromechanical sensor in a concrete structure:

- Appropriate modelling of main concrete properties that can impact on an embedded sensor response
- Modelling of the sensor features
- Modelling of the total system and of the combined effect of an external force and of the concrete-induced effects on the sensor.

- Introduction
- Modelling sensors in concrete
- Viscoelastic modelling of concrete
- Shrinkage strain modelling of concrete
- Analysis of a sensor in concrete
- Conclusions

Concrete - Creep

- Creep is the property of materials by which they continue deforming over considerable length of time under sustained stress.
- Concrete under stress undergoes creep (gradual increase of strain with time)
- In concrete, creep deformations are generally larger than elastic deformation and thus creep represents an important factor affecting the deformation behavior.

Modelling viscoelasticity in concrete (1/2)

Concrete viscoelasticity is classically **described by means of the Creep Function**, <u>representing the stress dependent strain per unit stress</u>

Extract from **ModelCode2010**:

Unless special provisions are given the relations are valid for ordinary structural concrete (15 MPa $\leq f_{cm} \leq$ 130 MPa) subjected to a compressive stress $|\sigma_c| \leq 0.4 f_{cm}(t_0)$ at an age at loading t_0 and exposed to mean relative humidities in the range of 40 to 100 % at mean temperatures from 5 °C to 30 °C. The age at loading should be at least 1 day.

 f_{cm} is the mean compressive strength in [MPa] at an age of 28 days

The stress dependent strain at time t (in days) may be expressed as:

$$\varepsilon_{c\sigma}(t,t_0) = \sigma_c(t_0) \left[\frac{1}{E_{ci}(t_0)} + \frac{\varphi(t,t_0)}{E_{ci}} \right] = \sigma_c(t_0)J(t,t_0)$$

The Creep Function $J(t,t_0)$ of concrete can be calculated according to the concrete equation theory, for given concrete class, sample size and humidity conditions, and after specifying the concrete age at the loading instant.

Modelling viscoelasticity in concrete (2/2)

STRATEGY: creep in concrete can be more easily analysed modelling the material by means of a so-called **Kelvin chain**

an <u>elastic spring</u> to represent the instantaneous stiffness plus <u>n Kelvin-Voigt branches connected in</u> series

Kelvin chain parameters for Concrete Modelling can be obtained by means of appropriate fitting of the Creep curves.

"Creep function" for a loading instant
$$\tau$$
: $J(t-t_0) = \frac{1}{G_0} + \sum_{i=1}^n \frac{1}{G_i} \left| 1 - e^{-\frac{t-t_0}{\tau_i}} \right|$

$$\tau_i = \frac{\eta_i}{G_i}$$
 retardation time per branch (for each branch, estimates the time required for the creep process to approach completion)

We built a <u>new mathematical model for Viscoelasticity</u>, exploiting Equation-based Modelling capabilities of COMSOL.

Kelvin chain model of viscoelasticity in COMSOL (1/2)

We built in COMSOL a <u>new mathematical model for Viscoelasticity</u>, exploiting COMSOL <u>Equation-based Modelling</u> capabilities:

Implementation of Kelvin chain model by introducing differential equations in a "Linear Elastic Material" framework:

	Linear Elastic Material 1	Ť	→ Equ	uation						
	Axial Symmetry 1		Shov	v equation assum	ing:					
	€Free 1		Stud	ly 1, Time Depen	dent					
	Initial Values 1									
	Symmetry 1		$e_a \frac{\partial^2}{\partial x^2}$	$\frac{d^2 u}{dt^2} + d_a \frac{\partial u}{\partial t} = f$						
	─Boundary Load 1: load and relaxation				-1T					
	─Boundary Load 2: constant load		u =	[gall, ga22, ga3	3]′					
	¬ d/dt Domain ODEs and DAEs: First Kelvin-Voigt branch (dode)		▼ Source Term							
	Distributed ODE 1									
	Initial Values 1			solid.SdevR-2*G1	*gall					
	d Domain ODEs and DAEs 2: Second Kelvin-Voigt branch (dode2)									
	Domain ODEs and DAEs 3 Third Kelvin-Voigt branch (dode3) Output Description: De		f	solid.SdevPHI-2*0	G1*ga22					
	d Domain ODEs and DAEs 4 4th Kelvin-Voigt branch (dode4)									
	di Domain ODEs and DAEs 5 5th Kelvin-Voigt branch (dode5)			solid.SdevZ-2*G	l*ga33					
	dt Domain ODEs and DAEs 6 6th Kelvin-Voigt branch (dode6)									
dt Domain ODEs and DAEs 7 7th Kelvin-Voigt branch (dode7)				▼ Damping or Mass Coefficient						
	dt Domain ODEs and DAEs 8 8th Kelvin-Voigt branch (dode8)				_		_			
	▶ <u>Mesh 1</u>			2*G1*tau1	Pa-s	0	Pa-s	0		
	▶ Study 1				_		_			
	▼ le Results		də	0	Pa-s	2*G1*tau1	Pa-s	0		
	Data Sets				_		_			
	Views			0	Pa∙s	0	Pa-s	2*G1*tau1		
	Derived Values	Print.								

Kelvin chain model of viscoelasticity in COMSOL (2/2)

Viscoelastic material is described as a domain obeying a set of equations, and all the material parameters are manually introduced as "Variables":

Values used for Kelvin chain:

(Values had been obtained by fitting of the exact creep function calculated for a given creep sample, using Kelvin-chain parametric equation)

E0	21761[MPa]
E1	76164[MPa]
E2	108805[MPa]
E3	87044[MPa]
E4	54403[MPa]
E5	32642[MPa]
E6	43522[MPa]
E7	65283[MPa]
E8	65283[MPa]
tau1	5e2[s]
tau2	5e3[s]
tau3	5e4[s]
tau4	5e5[s]
tau5	5e6[s]
tau6	5e7[s]
tau7	5e8[s]
tau8	5e9[s]

COMSOL results vs excel calculations of the Kelvin model (1/2)

The model has been applied to a cylinder (with given concrete material parameters), L=20cm, R=5cm, with an applied load of 1MPa.

Additional notes

 The viscoelastic material can be only a portion of the modelled structure. Other domains, having no viscoelastic behaviour, can be built in the same COMSOL file.

EXAMPLE: model consisting of the same concrete cylinder, with an alumina (not viscoelastic) concentric cylinder inside. A constant 1MPa was applied on top of the concrete:

The time dependence of the strain in alumina is consistent with the time-variable stress on the top of alumina:

- Introduction
- Modelling sensors in concrete
- Viscoelastic modelling of concrete
- Shrinkage strain modelling of concrete
- Analysis of a sensor in concrete
- Conclusions

Concrete shrinkage theory in ModelCode

Total shrinkage in concrete structures:

$$\varepsilon_{cs}\left(t,t_{s}\right) = \varepsilon_{cas}\left(t\right) + \varepsilon_{cds}\left(t,t_{s}\right)$$

where shrinkage is subdivided into the autogenous shrinkage $\varepsilon_{cas}(t)$:

$$\varepsilon_{cas}(t) = \varepsilon_{cas0}(f_{cm}) \cdot \beta_{as}(t)$$

and the drying shrinkage $\varepsilon_{cds}(t,t_s)$:

$$\varepsilon_{cds}(t,t_s) = \varepsilon_{cds0}(f_{cm}) \cdot \beta_{RH}(RH) \cdot \beta_{ds}(t-t_s)$$

MAIN PARAMETERS INFLUENCING THE SHRINKAGE:

- t is the concrete age (in days)
- t_s is the <u>concrete age at the beginning of drying</u> (in days)
- (t-t_s) is the <u>duration of drying</u> (in days)
- the coefficient β_{RH}(RH) takes into account the effect of the <u>ambient relative humidity RH</u>
- the function $\beta_{ds}(t-t_s)$ describing the time-development, is a function of the <u>notional size h of the sample</u>

In COMSOL, shrinkage has been modelled as a thermal contraction, introducing an effective thermal variation ΔT .

Shrinkage strain in concrete

The model has been applied to a cylinder (with concrete material parameters), L=20cm, R=5cm.

No load applied.

ONLY SHRINKAGE STRAIN

maximum strain ~-7e-4

- Introduction
- Modelling sensors in concrete
- Viscoelastic modelling of concrete
- Shrinkage strain modelling of concrete
- Analysis of a sensor in concrete
- Conclusions

Analysis of a sensor in a concrete environment

Pressure Sensor structure (a Silicon membrane) in a concrete sample:

10 MPa load applied on top of the concrete sample

Radius: 2mm Height: 600µm

Thickness: 10µm Radius: 700µm Cavity depth: 50µm

Membrane:

Modelling results: creep effects (1/2)

370 days time span for the time-dependent simulation ONLY CREEP considered (no shrinkage strain) 10MPa CONSTANT EXTERNAL LOAD APPLIED

First observation: Modification in the membrane displacement at its centre over time (assuming the membrane edge as a reference)

Initial value: $\sim -0.42 \,\mu m$

Final value: \sim -0.87 μm

Membrane effective deformation has more than doubled its value

Correlation with a change in the stress state of the membrane?

Modelling results: creep effects (2/2) 20

Modifications in the membrane radial and angular stress distributions:

Time variations of the radial and angular stress components (taken along a radius)

0.0004

3D plots

RADIAL STRESS:

ANGULAR STRESS:

If piezoresistors are fabricated on the membrane:

0.0006

Creep-induced time dependence of the stress will be observed in piezoresistors.

(relative weight of the two components depending on the actual position of piezoresistors)

Modelling results: adding the shrinkage effect

Only a very small additional modification in the membrane displacement at its centre over time (from $-0.42 \ \mu m$ to $-0.9 \ \mu m$)

BUT: Relevant changes are also in this case observed in the stress distributions in the membrane:

RADIAL STRESS:

ANGULAR STRESS:

If piezoresistors are fabricated on the membrane:

Both creep-induced and shrinkage-induced time dependence of the stress will be observed in piezoresistors.

Time dependent output voltage of the sensor

- Introduction
- Modelling sensors in concrete
- Viscoelastic modelling of concrete
- Shrinkage strain modelling of concrete
- Analysis of a sensor in concrete
- Conclusions

Conclusions •

 Concrete creep was modelled by means of a Kelvin-chain model approach exploiting the Equation Based Modelling of COMSOL

 Shrinkage strain of concrete was modelled using an equivalent thermal contraction

 Both viscoelastic creep and shrinkage strain are <u>critical phenomena</u> to take into account for the design of reliable sensors for concrete.

Acknowledgments 24

STMicroelectronics

Prof. Gabriele Bertagnoli (Politecnico di Torino)

COMSOL

THANK YOU!!!

Anna Pomarico

