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Abstract: The Cosserat models fall into
the group of the extended continuum me-
dia. The main idea of the Cosserat mod-
els was proposed by Cosserat brothers and
was simplified to the linear models by Erin-
gen et al. in the early 1960s. The Cosserat
model, called also micropolar theorem, can
be used to handle the microstructure prob-
lems like man-made grid structure, foam
or bone and the granular materials. The
Cosserat models are capable of treating the
size effects (characteristic length) in a nat-
ural manner using six material moduli for
the isotropic elastic cases instead of two (λ
and µ) for the classical continuum mechan-
ics. This model involves two constitutive
laws corresponding to two kinds of balance
equation. The first one handles the stress-
strain relation and the second treats the cou-
ple stress-curvature tensor relation. It is of
importance to note that neither stress tensor
nor strain tensor is symmetric and the strain
tensor contains the microrotation term. In
this study, Comsol Multiphysics enables us
to put into practice 3D Cosserat models for
the multi-scale modeling.

Keywords: linear isotropic Cosserat materi-
als, size effect, microrotation, characteristic
length

1 Introduction

We investigate the numerical response of
the isotropic linear Cosserat models by
means of Comsol Multiphysics. Compar-
ing to the classical linear elasticity or so
called Cauchy’s medium, there are three
microrotations besides three displacements.

As a result, six state variables should be
taken into account in the numerical simu-
lations. As pointed out earlier, the main
advantage of the additional parameters is
that they consider the size effect in an ex-
plicit manner. It is needed to be men-
tioned that the size effect could not be
described by the classical continuum me-
chanics. The finite element analysis of the
Cosserat models has been done by several
researchers for the 2D structural mechan-
ics problems, e.g., [1] and [2]. The finite
element analysis of the nonlinear Cosserat
models has been also recently achieved by
means of FEAP 1 which has its specific
restrictions [3]. Additionally, the elastic-
plastic Cosserat models have been devel-
oped using multigrid solvers for the Bound-
ary Value Problems (BVP) by another re-
search team in Germany (Wieners et al.) [4].
There are several attempts to perform elas-
tic and elastic-plastic Cosserat analyses us-
ing Abaqus 2 [5]. Due to the additional
unknowns (microrotations), lack of an ex-
perimental method for measuring up these
microrotations and difficulties which arise
from the numerical methods such as FEM,
nowadays the Cosserat models are being
hardly accepted in the structural mechanics
field. In spite of the fact that the Cosserat
models get more complicated particularly
for 3D cases, we have found out the very
good numerical results comparing to ones
which have been previously done by FEAP.
Moreover, none of these packages (FEAP,
Abaqus) is able to apply the implicit Dirich-
let boundary condition like Comsol Mul-
tiphysics for the Coupled Partial Differen-
tial Equations (CPDEs). The Comsol Mul-
tiphysics readily did this job in the cur-

1 FEAP is a general purpose finite element analysis program which is designed for research and educational
use. Source code of the full program is available for compilation using Windows (Compaq or Intel compiler),
LINUX or UNIX operating systems, and Mac OS X based Apple systems. Extracted from the following link:
”http://www.ce.berkeley.edu/ rlt/feap/”

2 Abaqus is a commercial software package for finite element analysis.
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rent paper. This comes from the fact that
Comsol Multiphysics is extremely flexible
for the Coupled Partial Differential Equa-
tions (CPDEs) system. It is important to
note that the BVP-based programmes are
also capable of treating this job [4]. Con-
sidering the same capacity of scientific com-
putation, Comsol Multiphysics speeds up
the computations because of its parallelized
direct solvers and it manages much better
the shared memory systems to do the indi-
vidual digital tasks. To our knowledge, the
isotropic linear Cosserat models for 3D case
are programmed for the first time in Com-
sol Multiphysics in this study. The authors
have also successfully computed isotropic
nonlinear 3D Cosserat models using Com-
sol Multiphysics (Some comparisons have
been done to evaluate the numerical experi-
ments [3]). In the next section, we scrutinize
the strong form of linear isotrpic Cosserat
models.

2 The linear elastic Cosserat
model in the variational form
and strong form

For the displacement u and the skew-
symmetric infinitesimal microrotation A
we consider the two-field minimization
problem:

I(u,A) =
∫

Ω

Wmp(ε) +Wcurv(∇ axl(A))

− < f, u > dx 7→ min . w.r.t. (u,A).
(1)

under the following constitutive require-
ments and boundary conditions

ε = ∇u−A, φ := axl(A),
u|Γ = ud. (2)

ε is First Cosserat stretch tensor and u|Γ
is displacement boundary conditions. The
strain energy is noted as:

Wmp(ε) = µ ‖sym ε‖2+ µc ‖skew ε‖2

+
λ

2
tr [sym ε]2. (3)

and the curvature energy is

Wcurv(∇φ) =
γ + β

2
‖sym∇φ‖2

+
γ − β

2
‖skew∇φ‖2 +

α

2
tr [∇φ]2.

(4)

The strain energy Wmp and the curva-
ture energy Wcurv are general isotropic
quadratic functions for the infinitesimal
non-symmetric first Cosserat strain tensor
and the micropolar curvature tensor. The
parameters µ and λ are the classical Lamé’s
moduli and α, β, γ are further micropolar
moduli in [N.m]. The additional parameter
µc in the strain energy density term is the
Cosserat couple modulus. For µc = 0 the
two fields of displacement u and A are de-
coupled and one is left formally with classi-
cal linear elasticity for the displacement.The
strong form can be obtained from the weak
form of this model and it is presented for
the balance of linear momentum as below:

Div σ = f,

σ = 2µ · sym ε+ 2µc · skew ε+ λ · tr [ε] · 11
(5)

and for the balance of angular momentum :

−Divm =4µc · axl(skew ε),
=2 · axl(skew σ)

m =γ∇φ+ β∇φT + α tr [∇φ] · 11
φ = axl(A), u|Γ = ud (6)

We run this Cosserat model based on the
curvature energy using the pointwise as-
sumption (µL

2
c

2 ‖∇φ‖
2). It is appropriate to

make the first choice among the available
assumptions for simplicity (there are three
different methods, i.e., pointwise case, sym-
metric case and conformal case [6]). The
other cases have been separately treated in
another study using Comsol Multiphysics
and the results display and confirm the
boundedness problem for the smaller spec-
imens as expected before [6]. This choice
leads to α = 0, β = 0, γ = µL2

c and then
the couple stress expression can be written
at once m = µL2

c∇φ 3. As pointed out pre-
viously, in this paper, we solely concentrate

3 For the symmetric case, α is still equal to zero but β = γ = 1
2
µL2

c (m = 1
2
µL2

c∇φ + 1
2
µL2

c∇φT ). The confor-
mal case [6] gets nonzero value for α (α = − 1

3
µL2

c and β = γ = 1
2
µL2

c ) and we obtain the most complete form
(m = − 1

3
µL2

c tr[∇φ] + 1
2
µL2

c∇φ+ 1
2
µL2

c∇φT ).



on the pointwise case and we solved the
CPDEs of isotropic linear Cosserat model
for a clamped circular bar under pure tor-
sion (one end is fixed and another is under
an applied torque).

3 Finite element analysis

3.1 preliminaries
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Figure 1: The geometry, data of the torsion
problem and Mesh density illustration for

considered circular bar.

All our computations have been achieved
by means of a user-written code within the
Comsol Multyphysics based on the weak
forms solution. According to discussed bal-
ance equation (Eq.5 and Eq.6) there are six
available state variables (three for the dis-
placement using quadratic Lagrange shape
function and three for microrotation us-
ing linear Lagrange shape function) whose
computations need to be done via the lin-
ear Coupled Partial Differential system of
equations using the momentum and angu-
lar momentum balance equations. For our
numerical computation, we consider a cir-
cular bar (Diameter =2mm, Height=10mm)
submitted to the torsion angle θ at the end
(Fig.1).

3.2 Numerical results
verification by the analytical
solutions for pure torsion

If the sample has circular section in the tor-
sion problem an analytical solution for the
linear Cauchy-elastic problem is available
which connects the rotation at the upper
face with the applied angle. For the numer-
ical computations, we applied a very small

exact angles θ = 2
◦

based on the Dirichelt
boundary condition, because in this case we
are as close as possible to the first phrase of
the Taylor series expansion for trigonomet-
ric functions. The comparison between the
analytical solution and FEM solution using
50000 DOFs and 200000 DOFs for a dis-
placement gradient components u1,2 versus
distance along longitudinal direction of the
cylindrical bar is presented in Fig. 2:
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Figure 2: The relative error between the
analytical solution and FEM-Comsol

Multiphysics solution for 50000 DOFs and
200000 DOFs on the cylindrical bar rotated

θ = 2
◦

at the top and fixed at the bottom of bar.

For given applied rotation angle θ at the up-
per face we have:

M exact
T =

∫
∂Ω+

(xσexact
32 − y σexact

31 ) dx dy .

(7)
here σexact

ij is obtained exact Cauchy stress
defined as bellow:

σexact(F ) =
1

detF
S1(F )FT . (8)

here S1 is the first Piola Kirchhoff stress
tensor in nonlinear elasticity, F = ∇ϕ =
11 +∇u is the deformation gradient and∇u
or ∇ ⊗ u is called the displacement gradi-
ent in the modern structural mechanics. It
is very important to remind that no artificial
boundary condition for microrotations was
considered in the prepared Comsol Multi-
physics models.

3.3 Limit case: Cauchy
elasticity in the linear
Cosserat elasticity

It is easy to see that one obtains the linear
elasticity displacement solution for µc = µ



and Lc = 0. Since the curvature energy is
absent, the balance of angular momentum
equation reduces to the skew∇u = A. Thus
the skew-symmetric parts in the balance of
force equation cancel and the displacement
u is again the Cauchy displacement. A sec-
ond alternative case is to take µc = 0 and
Lc=Large. In this situation, the system of
equation decouples. For very large Lc, the
microrotations approach a constant value
over the entire body if there are no bound-
ary condition imposed on the microrota-
tions. In this work, we evaluated these two
limit cases by considering Lc = 10E6 [mm]
for the second limit case and it is presented
in Fig.3 against the Cauchy solution previ-
ously calculated in the text.
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Figure 3: The comparison among Cauchy media
and two limit cases in Cosserat linear elasticity.

We used only 198618 DOFs to obtain 0.14
percent of error. Our numerical results sub-
stantiate that our implementation for the
Cosserat model perfectly matches the linear
elastic solution.

4 Linear Cosserat elasticity
implementation in Comsol
Multiphysics

We apply the exact angle θ, exact rotation
by the Dirichlet boundary condition (Eq.9),
at the top from 0 to 13π

180 (rad) for each value
of Lc which is varied from zero to 10E6
mm. The values of Cosserat couple mod-
ulus has been considered to be equal to µ
(µc = µ = E

2(1+ν) ). This make it possible
to apply large rotation angles without any
approximation. Hence, the finite rotation
computation is quite feasible by this type

of boundary condition. It is worth men-
tioning that the microrotations are always
considered as a displacement-independent
parameter in the Cosserat theory, due to
this fact, no artificial boundary condition
has been deemed for the microrotations and
they are computed implicitly by the applied
CPDEs. The computations have been pro-
vided by ”General Weak Form” option of
”Comsol Multiphysics 3.4 Hotfix 2”.

u1 =0, u2 = 0, u3 = 0, at the bottom
u1 =x cos θ + y sin θ − x,
u2 =− x sin θ + y cos θ − y,
u3 =0, at the top (9)

The numerical solution for linear
Cosserat elasticity with pointwise positive
curvature exhibits more stiffness for higher
values of Lc in an asymptotic manner.

Figure 1: Macro-rotation in longitudinal
direction for different Lc values Lc=0.

Figure 2: Macro-rotation in longitudinal
direction for different Lc values Lc=5 mm.



Figure 3: Macro-rotation in longitudinal
direction for different Lc values Lc=10E6 mm.
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Figure 4: Size effect appearance according to the
Lc value.
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Figure 5: Extended torque value between 0 to 25
N.m.

4.1 Size effect-Log diagram

According to the last results, it is possi-
ble to plot the torque magnitude at the top
of cylindrical bar versus ”Log(Lc)” for a
given torsion angle θ. Evidently, we find
the upper and lower bound for the stiffness
MT . In the diagram, we distinguish three
specific zones : Zone I rends toward lin-
ear Cauchy elasticity with no size effects,
Zone II is an intermediate zone in which
the size effect appears and we can clearly
distinguish the Cosserat effects for the nu-
merical models, Zone III describes a situ-
ation where the microrotation nearly con-
stant with the limit behavior [6].
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Figure 6: Torque versus Lc in a semi-logarithmic
diagram for the cylindrical bar.

5 Conclusions and perspectives

The isotropic linear Cosserat equations
have been successfully solved using Com-
sol Multiphysics 3.4 in this paper. The rel-
evant choice for the Lagrange shape func-
tions (quadratic Lagrange shape function
and linear Lagrange shape function for the
displacements and microrotations) makes it
possible to get the mesh-independent solu-
tions. In accordance with the huge number
of computations 4 for different shape func-
tions, the authors conclude that this An-
szat shape function is the best choice for
Cosseral models [3, 6]. As far as the au-
thors knowledge and some attempts, the
other FEM software packages are not as ef-
ficient as Comsol Multiphysics to apply the

4 The authors used a very modest PC configuration. To reduce the computation runtime the parallelized direct solver
”PARDISO” is used and it is recognized as the best and the most efficient solver for both linear and nonlinear Cosserat
models. Here an Intel-System with 8 GB memory, dual core 3.2 GHz processor and 83 GB hard disk has been used
using Linux64 (Commercial-free Linux ”UBUNBTU”). This Operating System enables us to use easily the dedicated
swap memory for very large problems. A computation with 550000 DOFs for the linear Cosserat would last about 4
days!!



geometrically exact Cosserat model same as
those applied in this study.
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and C. Wieners. A numerical solu-
tion method for an infinitesimal elastic-
plastic Cosserat model. Mathematical
Models and Methods in Applied Sciences
(M3AS), 17(8):1211–1239, 2007.

[5] P. Grammenoudis and Ch. Tsakmakis.
Finite element implementation of large
deformation micropolar plasticity ex-
hibiting isotropic and kinematic hard-
ening effects. International Journal
for Numerical Methods in Engineering,
62(12):1691–1720, 2005.

[6] J. Jeong, H. Ramezani, I. Münch,
and P. Neff. Simulation of linear
isotropic cosserat elasticity with con-
formally invariant curvature. ZAMM-
Zeitschrift fuer Angewandte Mathematik
und Mechanik, August 2008. Submitted
for publication.

Acknowledgements

The authors are grateful for continued
support of P. Neff, Technische Univer-
sität Darmstadt, FB Mathematik, AG 6 ,
Schloßgartenstr. 7, D-64289 Darmstadt,
Germany.

Appendix

Let Ω ⊂ R3 be a bounded domain with
Lipschitz boundary.∂Ω and let Γ be a
smooth subset of ∂Ω with non-vanishing 2-
dimensional Hausdorff measure. For a, b ∈
R3 we let 〈a, b〉R3 denote the scalar product
on R3 with associated vector norm ‖a‖2R3 =
〈a, a〉R3 . We denote by M3×3 the set of real
3 × 3 second order tensors, written with
capital letters and sym denotes symmetric
second orders tensors. The standard Eu-
clidean scalar product on M3×3 is given by
〈X,Y 〉M3×3 = trXY T , and thus the Frobe-
nius tensor norm is ‖X‖2 = 〈X,X〉M3×3 . In
the following we omit the index R3,M3×3.
The identity tensor on M3×3 will be de-
noted by 11, so that trX = 〈X, 11〉. We
set sym(X) = 1

2 (XT + X) and skew(X) =
1
2 (X − XT ) such that X = sym(X) +
skew(X). For X ∈ M3×3 we set for the devi-
atoric part devX = X − 1

3 trX 11 ∈ sl(3)
where sl(3) is the Lie-algebra of traceless
matrices. The set Sym(n) denotes all sym-
metric n× n-matrices.

The Lie-algebra of SO(3) := {X ∈
GL(3) |XTX = 11, detX = 1} is given by
the set so(3) := {X ∈ M3×3 |XT = −X}
of all skew symmetric tensors. The canoni-
cal identification of so(3) and R3 is denoted
by axlA ∈ R3 for A ∈ so(3). Note that
(axlA)× ξ = A.ξ for all ξ ∈ R3, such that

axl

 0 α β
−α 0 γ
−β −γ 0

 :=

−γβ
−α

 (1)

Aij =
3∑
k=1

−εijk · axlAk ,∥∥A∥∥2

M3×3 =2
∥∥axlA

∥∥2

R3

〈A,B〉M3×3 =2〈axlA, axlB〉R3 (2)

where εijk is the totally antisymmetric per-
mutation tensor. Here, A.ξ denotes the ap-
plication of the matrix A to the vector ξ and
a × b is the usual cross-product. Moreover,
the inverse of axl is denoted by anti and de-
fined by 0 α β

−α 0 γ
−β −γ 0

 := anti

−γβ
−α

 (3)

axl(skew(a⊗ b)) = −1
2
a× b (4)
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