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Abstract: Damping is the limiting fac-
tor for the reachable maximum deflection.
Thus, it is a very important issue for res-
onant microsystems. In this paper, we
present a damping model for out-of-plane
comb driven resonant micromirrors. The ba-
sic concept of this model is to attribute vis-
cous damping in the comb gaps as the domi-
nant contributor of damping moments. The
model is extended by findings from a fluid-
mechanical FEM model of an electrode fin-
ger and the moving mirror plate with a cav-
ity underneath. It also considers effects from
pressure and temperature changes. The re-
sults are verified and discussed in the con-
text of experimental data. The primary goal
of damping analysis and optimization is to
minimize power consumption and to reduce
driving voltage. The presented methods and
models create the prerequisites for this task.

Keywords: MEMS, Micromirror, comb
drive, Damping, NAVIER-STOKES, FEM.
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1 Introduction

The resonant micromirrors developed at
Fraunhofer IPMS in Dresden are electrostat-
ically driven MEMS devices. The driving
moment is supplied by an out-of-plane comb
drive which is realized by structuring the
mirror plate along its edge (Fig. . The
micromirrors can be actuated using a pulse-
shaped voltage with a pulse frequency ap-
proximately twice the resonance frequency
of the mechanical system. The achievable
maximum deflection angle for a certain de-
vice is determined only by the ratio of the
energy feed-in and the energy feed-out. The
energy feed-in is determined by the driving
voltage, the driving scheme (e.g. frequency,
duty-cycle), and the change of the capaci-
tance of the comb drive during the oscilla-
tion. The energy feed-out is determined by
the damping of the system. Since the de-
vices are processed in monocrystalline sili-
con and are operated in ambient pressure,
fluidmechanical damping is considered to be
the only relevant.
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Figure 1: Micromachined scanning micromirror with out-of-plane comb drive actuation. a) Microscopic
photograph of a die, b) Detail view of the comb drive, ¢) REM image of the finger electrodes.
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Figure 2: Schematic configuration of the out-of-plane comb drive and its orientation in the model’s
coordinate system

For description of the oscillation prop-
erties damping effects have to be thor-
oughly understood. In this paper we
present a damping analysis of out-of-plane
comb driven resonant micromirrors. It is
based on parameterized fluidmechanical 3D
FEM models which are realized in COM-
SOL Multiphysics™ nutilizing the applica-
tion mode Incompressible Navier-Stokes.

The analysis includes slide-film damping
effects within the electrostatic comb drive as
well as squeeze and drag damping affecting
the mirror plate. Within the validity range
of theories of continuous flow, pressure and
temperature effects are considered by intro-
ducing an effective dynamic viscosity.

A dedicated damping structure is avail-
able for the verification of simulation results
and the extraction of empiric data. It is an
one-dimensional micromirror with a circular
mirror plate, with a diameter of 1.5 mm, and
an oscillation frequency of 1 kHz (Fig. .
To compare the properties and efficiencies of
different comb geometries, six different comb
designs, varying the dimensions of the elec-
trode fingers and the widths of the trenches
between the electrodes were realized [4]. The
reference damping structure shown in Fig.
has a finger length of L = 58.5 um, a finger
width of b = 1.5 ym and a trench width of
g = Sum. The height of the mirror plate
and the comb structure is h = 30 pm. Fig-
ure [2| shows the schematic configuration of
the out-of-plane comb drive. Furthermore it
implies the description of dimensions used in
this paper.

The transient behavior of resonant mi-
cromirrors can be described by an equilib-
rium of torques which results in a second or-
der ordinary differential equation:

J0 + Md(979) + k0 = Mel(ga U) (1)

with J as moment of inertia of the oscillat-
ing structure, 6 = f(t) as deflection angle,
Md(é,ﬂ) as damping torque, k as torsional
spring constant, and M (0,U) as electro-
static torque which is generated by the out-
of-plane comb drive. This driving torque de-
pends on the deflection angle and the driv-
ing voltage U. Since the terms Mq(6, ) and
M (0,U) are strongly nonlinear, the exact
solution for # can only be computed with nu-
merical methods. For oscillation amplitudes
which are in the range of several degrees ap-
plies

| 76] + |k 6] > [Ma(0,0)] + | Ma(6,U)]

Thus, the equilibrium solution of 6 can be
assumed to be sinusoidal:

0~ 0 sin(2rft + ) (2)

with f as oscillation frequency, ¢ as phase
shift and 6 as oscillation amplitude, which
still depends on My (6, 6) and M (0, U). Af-
terwards the phase shift ¢ is assumed to be
Zero.

To prove the damping model and its
range of validity it is necessary to com-
pare simulation results with experimental
data. Since the transient characteristics of
the damping moment can not be measured



directly, a mean damping coefficient is intro-
duced:

1 [T My(6,0) 1
D=— | =2 a4, T=- (3
T Jo 0 f )

This mean damping coefficient can be
measured[d]. Thus, it is possible to verify
simulation results with experimental data.

2 Governing equations

2.1 Flow properties

For determination of valid approaches and
models which can be applied to a given flu-
idmechanical problem there are several phys-
ical measures available.

The Knudsen-number measures the ra-
tio between mean free path length within the
fluid and a characteristic geometrical length
of the structure. It is used to determine
whether the continuum mechanics formula-
tion of fluid dynamics can be used. It is
defined to

Kn = p (4)
with £ as mean free path length and d as
characteristic structure length.

The continuum condition of NAVIER-
STOKES equations is considered to be ful-
filled if Kn < 0.1. With the definition of
mean free path length [I] the following con-
dition for temperature and pressure of the
fluid can be deduced:

D k
= > —=— )
T \/§7TKndO'2 Kn<0.1 ( )

With T as absolute temperature, p as am-
bient pressure, k£ as BOLTZMANN constant,
and o as molecule diameter of the fluid.

Assuming a characteristic length of d =
¢ = 5 pum, a maximum absolute temperature
of 333K (= 60°C), and a molecule diameter
of 0.35nm (nitrogen), the continuum condi-
tion is fulfilled for ambient pressures with
p > 1.7 -10* Pa.

NAVIER-STOKES equations with no-slip
boundary conditions are only valid if the ad-
ditional condition Kn < 1073 is fulfilled. For
larger KNUDSEN numbers a slip occurs at the
interface between structure and fluid which
has to be considered by the model. This can

be done by introducing a modified (effective)
dynamic viscosity [0]:

n

Teff = 1+ f(KIl) (6)
It should be noted that differently from the
dynamic viscosity n the effective dynamic
viscosity depends on the temperature as well
as the pressure of the fluid. Since the KNUD-
SEN number depends on the local geometri-
cal properties of the structure (characteristic
length) the effective dynamic viscosity is also
a function of location.

It was shown in earlier publications [4} 2]
that for micromechanical devices the empir-
ical approximation of KNUDSEN is a good
choice for the function f(Kn):

7 Kn Kn 4+ 2.507
FKn) = 2= Ka 4 3.0%

(7)

The Reynolds number of a flow is used
to determine whether it is laminar or turbu-
lent. It is defined to

Re = ™ yuq (8)
n
With p,, as density and u as characteris-
tic velocity of the fluid [I]. The maximum
REYNOLDS number is determining the prop-
erties of the flow. Is a critical value Re., ~
2000 exceeded, turbulences appear. Other-
wise the flow is laminar.

Considering the geometrical properties it
can be shown that the maximum REYNOLDS
number of a micromirror with out-of-plane
comb drive can be denoted as [2]:

maxRe = %ofDd 9)

With D as diameter of the mirror plate.
Even in worst case scenarios (large, fast
oscillating mirror) the REYNOLDS number
does not exceed a value of 100. Thus, theo-
ries of laminar flow can be applied without
limitations.

The Mach number indicates the ratio of
inertia forces and compression forces. This
corresponds to the quotient of flow velocity
and the speed of sound ¢ within the medium:

Ma = p (10)

Is the condition Ma < 0.3 fulfilled, compres-
sion effects can be neglected. Since the max-
imum MACH number which occurs within



a flow at typical micromirrors with out-of-
plane comb drive is in the range of < 0.1 [2]
the fluidmechanical problem can be solved
using simplified (incompressible) NAVIER-
STOKES equations.

2.2 General flow model

According to the findings in the prior section
the fluidmechanical damping of a micromir-
ror with out-of-plane comb drive can be de-
scribed by incompressible NAVIER-STOKES
equations with slip correction:

ou . . -
Pm <3t + (a- V)u> = —Vp+ neg AU
V-da = 0 (11)
dbc = 6bc

Thereby p = f(z,y,2) is the pressure and
U= f(z, y, z) is the velocity of the fluid; @,
and v}, are the flow velocity at the interface
between fluid and structure and the velocity
of the structure itself.

The obstruction of a moving structure in
a fluid can be determined from the results
of Eq. . The effective damping force re-
sults from integration of pressure p over the
interfaces (normal component) and the ve-
locity gradient in direction of the interface’s
normal %‘; (tangential component):

Fy = //pﬁodA+//neﬂa—3dA (12)
8n0
(A) (A)

Now the damping torque, effecting a tilting
mirror plate can be expressed by:

My = //Fx dFy (13)
(4)

With # as position vector which is always
orthogonal to the rotation axis of the tilting
mirror.

3 Theory

3.1 Damping of comb drive

It has been shown that damping of mi-
cromirrors with out-of-plane comb drive is
dominated by fluidmechanical interaction
within the comb structure [4]. To describe
these damping mechanisms it is useful to
distinguish three different states of the elec-
trodes [2]:
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Figure 3: Flow profiles between driving
electrodes. a) engaged, b) disengaged state

0 ~ 0 The comb structure is fully engaged.
Since the distance of the electrodes is
small in comparison to the length and
height, the flow between them can be
considered as COUETTE flow, indicated
by a linear velocity profile (Fig. , 3
1]). According to Eq. , the damping
force can be expressed by:

Fd ~ FCouette = —MNeft %6 (14)
With Ay =~ 2Lh as interacting surface
area and ¥ as velocity of the movable elec-
trodes.

|6] > 6. The comb structure is fully disen-
gaged. Since the distance between the
electrodes is still small in comparison
to the length and height, the resulting
flow between them can be considered as
HaceN-PoiseviLLE flow (Fig. [Bp, [2]),
indicated by a parabolic velocity pro-
file. According to Eq. , the resulting
damping force can be expressed by:

— = AS —
Fd ~ FPoiseuille = _4neﬁ‘av£ (15)

with
o A
=(1-— d dy, = 4=
e~ (1-7q) ma a -1
A = L(2g +b) is the hydraulic diameter,
U is the perimeter of the flow channel.

0 < |0] < 6. The comb structure is in tran-
sition between engaged and disengaged
state. COUETTE flows as well as HAGEN-
POISEUILLE flows are appearing between
the electrodes.

3.2 Damping of mirror plate

In terms of damping mechanisms at tilting
plates, two different effects have to be dis-
tinguished:



Drag damping is affecting every struc-
ture moving within a fluid. The damping
forces result according to Eq. from inte-
gration over pressure which can be described
by NAVIER-STOKES equations :

Fdrag = _|ZT| Cd Pm |17|2 % (16)
With A, as base area of the mirror plate
and cq as empirical factor which can be de-
termined by experiments or numerical anal-
yses. From Eq. we can derive the damp-
ing torque of a tilting plate caused by drag
effects:

Mdrag ~ 7Cdpm ) |‘Zj| //|F|3 dA (17)

2
(Ap)

With & = 0 as angular velocity of the mir-
ror plate (Fig. []). It should be noted that
the daming torque depends quadratically on
the angular velocity &. Since |&| « f6, a
growing influence of drag damping can be
expected for micromirrors with high frequen-
cies or deflection angles.

Squeeze film damping occurs when a
plate is moving nearby a immovable struc-
ture (e.g. according to Fig. . A chang-
ing distance results in a progression of pres-
sure and leads to a flow between the plate
and the structure. Since IPMS micromirrors
usually have a small cavity underneath the
mirror plate this effect can also be relevant
for a damping analysis. For small distances
between plate and immovable structure the
squeeze film effect can be described by an
analytical approximation [3] [B]:

2,/ 2,/
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In this PoissoN’s differential equation v, =
f(z,y) is the velocity of the plate in direc-
tion of its normal, p’ = p — pg is the differ-
ence between pressure and ambient pressure.
Analogical to Eq. the damping torque
resulting from the squeeze film effect can by
expressed by:

My, = //p'ydA (19)
(Ap)

Solutions of Eq. for simple geometries
and examples of resulting pressure regimes
can be found in [3].

vy, Phe =0 (18)
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Figure 4: Damping mechanisms of tilting plates

4 Numerical model

To verify analytical approaches and for de-
termination of flow parameters £ in Eq.
as well as ¢4 in Eq. numerical mod-
els are required. @ Two numerical mod-
els are created using the FEM tool COM-
SOL Multiphysics™  utilizing the applica-
tion mode Incompressible Navier-Stokes.

4.1 Comb drive

In order to perform damping analyses of ar-
bitrary IPMS microscanners, a parametrized
finite element model of the out-of-plane
comb is created. Comparisons of several
two- and three-dimensional approaches us-
ing a complex reference model with three
electrode fingers and their respective counter
electrodes (left-hand side of Fig. [5|) show
that the model has to be three-dimensional
to include all relevant effects. The final FEM
model consists of a half finger and a half
counter electrode (right-hand side of Fig. .
Using symmetrical boundary conditions, the
fluid state at an electrode which is contained
in a electrode comb with infinite number of
fingers, can be simulated. Since the count
of electrodes is usually very high, the error
caused by electrodes near the ends of the
comb is assumed to be small.

Symmetry

Electrode !

I
! z
I

Figure 5: Fluidmechanical FEM model with
symmetric boundary conditions
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Figure 6: Velocity slice plot along the middle of
a disengaged moving electrode

Figure [6] shows a typical slice plot of the ve-
locity field of the fluid. Barring changes of
the finger geometry and location, the FEM
model has only two degrees of freedom: the
finger velocity 7 = f(@) and the deflection of
the finger s = f(0). Therefore the damping
characteristic of a certain comb geometry at
variable mirror dimensions, frequencies, and
deflections can be completely investigated by
exclusively considering variable velocity and
deflection of the electrodes.

To prove the assumptions made in the
analytic model, the velocity profiles between
the electrodes are extracted. Thereby an in-
teresting effect can be observed. The Cou-
ETTE flow as well as the HAGEN-POISEUILLE
flow, both appear at the moving elec-
trodes as expected, but additionally a sec-
ond HAGEN-POISEUILLE flow develops be-
tween the counter electrodes (Fig. [7). This
is caused by the moving electrode which acts
like a piston, dragging the fluid. According
to the law of actio and reactio the appear-
ing shear forces at the counter electrode are
applied by the moving electrode. This re-
sults in an additional damping force while
the transition between engaged and disen-
gaged state. Since two different Poiseuille
flows have to be considered, two different
factors & and &> are required. Thereby, &
characterizes the flow between the counter
electrodes and & characterizes the flow be-
tween the moving electrodes. From simula-
tions with variable deflections, the charac-
teristics of & and & depending on s can be
derived. Using this, it is possible to utilize
Eq. and Eq. to realize a good ap-
proximation of the damping force of a mov-
ing electrode:

ﬁd ~ ﬁCouette + ZﬁPoiseuille (20)
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Figure 7: Simulated velocity profiles between
moving electrodes and its counter electrodes

4.2 Mirror plate with cavity

Damping properties of the mirror plate can
be investigated with a simplified 3D FEM
model (Fig. [§). To reduce complexity the
comb is not included. The tilting of the
plate is considered by a location-dependent
boundary condition: u, pe = v, be = Y |&].

The damping torque for a given angu-
lar velocity & = f(0, f) can be derived us-
ing the integration capabilities of COMSOL
Multiphysics™ according to Eq. and
Eq. respectively.
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Figure 8: Simulation results for a 3D FEM
model of a micromirror with standard cavity
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Figure 9: Damping torques for different cavities

Fig. [9] shows damping torques of a circular
mirror plate with a diameter of 1.5 mm and
two cavity heights. It is noticeable that the
resulting curves are superpositions of linear
and quadratic functions. By using nonlinear
curve fitting, the empirical factor ¢4 can be
derived as well as the linear damping coeffi-
cient caused by the squeeze film effect.

5 Experimental results

Utilizing Eq. 7 Eq. and the values for
the flow parameters &1, & and cq according
to section [d] it is possible to calculate the
mean damping coefficient for a given deflec-
tion amplitude. Fig. [I0] shows a compari-
son of simulated mean damping coefficients
and experimental data. Although the sim-
ulated damping coefficients are consistently
smaller, the characteristic is very similar.
The difference can be explained by the un-
avoidably non-ideal driving regime used in
the experimental setup [4]. Since the the-
oretical maximum amplitude can never be
reached in the real world the damping coef-
ficient is overestimated.
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Figure 10: Mean damping coefficients

6 Conclusion

In this paper we presented a damping model
for micromirrors with out-of-plane comb
drive. The model bases on NAVIER-STOKES
theory and includes the viscous gas damping
within the comb drive as well as the effects
caused by drag damping and squeeze film
damping affecting the mirror plate. The va-
lidity limits of this model were discussed in
terms of pressure and temperature changes
and were proven by experimental data. The
simulation results fit experimental results
very well.

With the presented models and methods
it is possible to predict the damping proper-
ties of arbitrary comb and mirror geometries.
This is very important for understanding the
behavior of available micromirrors. It is also
a requirement for the optimization of this
devices. Thereby the geometry of the comb
drive, the geometry of the mirror plate and
the cavity of the device can be varied in or-
der to find an improved design.
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