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Abstract: We use COMSOL Multiphysics
to solve time-dependent optimal control
problems for partial di�erential equations
whose optimality conditions can be formu-
lated as a PDE. For a class of linear-
quadratic model problems we summarize
known analytic results on existence of solu-
tions and �rst order optimality conditions
that exhibit the typical feature of time-
dependent control problems, namely the fact
that a part of the optimality system has to
be integrated backward in time. We present
a strategy that is based on the treatment of
the coupled optimality system in the space-
time cylinder. Numerical examples show ad-
vantages and limits of the usage of COM-
SOL Multiphysics and of our approach.

Keywords: Optimal control of
PDEs, �nite element method, COM-
SOL Multiphysics.

1 Introduction

Optimal control problems subject to time-
dependent partial di�erential equations are
challenging from the viewpoint of mathe-
matical theory and even more so from nu-
merical realization. Essentially, there are
two di�erent approaches to solve such prob-
lems. The �rst one is the so-called "Dis-
cretize then Optimize" strategy, where the
optimal control problem is transformed into
a nonlinear programming problem by dis-
cretization. The second one is the func-
tion space based "Optimize then Discretize"
strategy, that is based on developing opti-
mality conditions in function spaces that are
discretized and solved.

For certain classes of problems it is possi-
ble to derive optimality conditions in PDE
form, and the latter strategy then involves
solving systems of PDEs. It hence suggests
itself to apply specialized PDE software to
solve these systems. In this paper, we aim
at applying COMSOL Multiphysics for op-
timization, taking advantage of the built-in
routines to de�ne, discretize and solve sta-
tionary and time-dependent PDEs via the
�nite element method.

We consider simple model problems either
with distributed control consisting of the ob-
jective functional

JQ(y, u) =
1
2

∫
Q

(y − yd)2 + κu2 dxdt, (1)

and the parabolic PDE with distributed con-
trol

yt −∆y = u in Q
∂ny + αy = g on Σ
y(t = 0) = y0 in Ω

 , (2)

or boundary control problems with objective
functional

JΣ(y, u) =
κ

2

∫
Q

(y−yd)2 dxdt+
κ

2

∫
Σ

u2 dsdt

(3)
and the parabolic PDE with boundary con-
trol

yt −∆y = f in Q
∂ny + αy = u on Σ
y(t = 0) = y0 in Ω

 . (4)

Assumption 1. In this setting, Ω ⊂ RN ,
N = 1, 2, is a spatial domain with su�-
ciently smooth boundary ∂Ω, (0, T ) is a non-
empty time interval, Σ := ∂Ω × (0, T ), and
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Q := Ω×(0, T ). Moreover, we consider func-
tions g ∈ L2(Σ) and y0 ∈ L2(Ω) and controls
u ∈ L2(Q) or u ∈ L2(Σ), depending on the
underlying PDE.

Short formulations of the model problems
with control u and state y then read

minJQ(y, u) subject to (2) (PQ)

and

minJΣ(y, u) subject to (4), (PΣ)

respectively.

We now brie�y summarize well-established
results on existence and uniqueness of opti-
mal solutions to Problems (PQ) and (PΣ), as
well as �rst order necessary optimality con-
ditions that are the basis for the Optimize
then Discretize approach. We start with the
solvability of the state equation. A known
result by Wloka, [6], or Lions, [1] reads:

Theorem 1. For any triple (f, g, y0) ∈
L2(Q)×L2(Σ)×L2(Ω) the initial-boundary
value problem

yt −∆y = f in Q,
∂ny + αy = g on Σ,
y(t = 0) = y0 in Ω

admits a unique solution

y ∈ W (0, T ) := {y ∈L2(0, T ;H1(Ω))|
yt ∈ L2(0, T, H1(Ω)∗)}.

Here, H1(Ω)∗ denotes the dual space to
H1(Ω). Due to the fact that U = L2(Q)
or U = L2(Σ), respectively, are not empty,
the following theorem holds by standard ar-
guments.

Theorem 2. Under Assumption 1 and for
JQ and JΣ de�ned in (1), (3) and arbitrary
κ > 0, the optimal control problems de�ned
in (PQ) and (PΣ) admit unique optimal con-
trols u∗ ∈ U = L2(Q) or u∗ ∈ U = L2(Σ),
respectively.

Note that the associated optimal state y∗ is
uniquely determined by the optimal control
u∗ in either case by Theorem 1. In the fol-
lowing theorem we formulate the �rst order
necessary optimality conditions for the con-
trol problems .

Theorem 3. Let u∗ ∈ U = L2(Q) be the
optimal control of Problem (PQ) and let y∗

denote the associated optimal state. Then
there exists an adjoint state p ∈ W (0, T ) as
weak solution of

−pt −∆p = y∗ − yd in Q
∂np + αp = 0 on Σ
p(t = T ) = 0 in Ω

 , (5)

and the gradient equation

κ(u∗ − ud) + p = 0 (6)

is ful�lled for almost all (x, t) ∈ Q.

Analogously, let u∗ ∈ U = L2(Σ) be the op-
timal control of (PΣ) and let y∗ denote the
associated optimal state. Then there exists
an adjoint state p ∈ W (0, T ) satisfying (5),
and (6) is ful�lled for almost all (x, t) ∈ Σ.

For more details, we refer to [1] or [5].

We point out here that optimality condi-
tions can not easily be formulated for all
types of PDE-control problems. There is
well-established theory available for linear-
quadratic problems of the above types, as
well as for some nonlinear problems of sim-
ilar structure. Also, if additional bounds
on the controls are given, well-known results
can be applied. We refer for example to [1]
for the treatment of these problems.

Another challenging problem are additional
pointwise constraints on the state y. These
types of problems have been subject to in-
tensive research over the last years, and the
theory is far from being complete. An at-
tempt to handle certain state-constrained
problems in COMSOL Multiphysics based
on available theory has been undertaken in
[4]. We refer to this paper and the references
therein for further reading.

Theorem 3 reveals a typical feature of time-
dependent optimal control problems: While
the state equation (2) is an initial bound-
ary value problem and hence a "forward-
in-time" equation, the adjoint equation (5)
runs backward in time. Even though (5) can
by the time transformation τ = T − t be
transformed into an initial-boundary-value
problem

pτ −∆p = ỹ∗ − ỹd in Q
∂np + αp = 0 on Σ
p(τ = 0) = 0 in Ω

 (7)

where ỹ∗(x, τ) = y∗(x, T − τ), the reverse
time directions for state and adjoint state re-
main a di�culty that needs to be taken into



account when solving such problems numer-
ically.

A somewhat classical approach to deal with
this problem is to sequentially solve the state
and adjoint equation and to update the con-
trol in a gradient based optimization algo-
rithm. We considered this strategy in [3],
where our key objective has been to realize
the reverse time directions without any low
level data storage or copying.

A di�erent solution approach and the fo-
cus of this paper is to treat the coupled
optimality system in the whole space-time
cylinder by interpreting the time variable as
an additional space variable. We will ex-
plain this strategy and its implementation
in COMSOL Multiphysics, conduct numeri-
cal experiments, and comment on the appli-
cability as well as the limits of this approach.

2 Treating the Reverse Time
directions by Simultaneous
Space-Time Discretization

From the gradient equation (6), holding
in the whole space-time domain Q or the
boundary Σ depending on the type of prob-
lem, we obtain u∗ = ud − 1

κp, where ud and
p are evaluated in the whole domain or on
the boundary, respectively. We insert this
expression into the state equation (2) or (4).
If the time variable t is treated as an ad-
ditional space variable we obtain boundary-
value problems of the form

yt −∆y = ud − 1
κp

−pt −∆p = y − yd

}
in Q

∂ny + αy = g
∂np + αp = 0

}
on Σ

y = y0 in Ω× {0}
p = 0 in Ω× {T}.

for distributed control problems (PQ), as
well as

yt −∆y = f
−pt −∆p = y − yd

}
in Q

∂ny + αy = ud − 1
κp

∂np + αp = 0

}
on Σ

y = y0 in Ω× {0}
p = 0 in Ω× {T}.

for boundary control problems (PΣ), i.e.
we consider Q to be a purely spatial do-
main of dimension N + 1 with boundary
Σ ∪ Ω× {0} ∪ Ω× {T}.
The algebraic systems coming up from this
discretization can be solved by the imple-
mented solvers of COMSOL Multiphysics
without any further implementation e�ort,
as we will see in the next section. Naturally,
a main issue of this solution approach is the
dimension of the discretized system. The
fact that interpreting the time variable as
additional space variable leads to an (N +1)-
dimensional problem and limits the applica-
bility of this strategy to problems in at most
two space dimensions. On the other hand,
this implementation strategy o�ers the op-
portunity of applying space-time adaptiv-
ity together. Yet, one has to be aware of
the fact that by the above solution strat-
egy a parabolic system is treated by elliptic
solvers, which may induce instability issues.
In a �nite element discretization these may
be overcome by discontinuous ansatz func-
tions, as they are becoming an alternative
in the optimal control community, cf. for
instance [2].

3 Implementation and
Numerical Examples

3.1 Distributed control

We consider �rst an example problem of
form (PQ) with distributed control where the
data is given by Ω = (0, π), T = π, κ = 0.01,
α = 0, as well as g = − sin(t), and the de-
sired functions

yd(x, t) = sin(x) sin(t)− cos(x)(1 + π − t),
ud(x, t) = sin(x)(sin(t)+ cos(t))

+
1
κ

cos(x)(π − t).

One can easily check that

y∗ = sin(t) sin(x).
u∗ = sin(t) sin(x) + cos(t) sin(x),
p∗ = −κ(u∗ − ud)

solves the optimality system given in Theo-
rem 3.

We assume that the reader is familiar with
all steps involved in building the fem-struc-



ture for solving a single PDE and present
some details of the COMSOL Multiphysics
Script code that implements the described
approach in the following. For the full code,
we refer to [3].

First, we note that the time space domain
Ω× (0, T ) = (0, π)× (0, π) is de�ned as a
two dimensional spatial domain with two
"spatial" variables x and time:

fem.geom = rect2(0,pi,0,pi);

fem.sdim = {'x' 'time'}.

Assuming that all given data is de�ned in
the usual way we introduce a global
expression for the control u by

fem.globalexpr = {'u'...

'ud(x,time)-p/kappa'};

Moreover, we obtain for the de�nition of
the PDE and the boundary conditions:

fem.equ.ga = { { {'-yx' '0'};

{'-px' '0'} } };

fem.equ.f = { {'-ytime+u'...

'ptime+y-yd(x,time)'} };

% boundaries: 1:t=0,2:x=pi,

% 3:t=pi,4:x=0

fem.bnd.ind = [1 2 3 2];

% boundary conditions:

fem.bnd.r = { {'y-y0' 0};

{0 0};

{0 'p'} };

fem.bnd.g = { {0 0};

{'g(time)' '0'};

{0 0} };

Once the de�nition of the problem is com-
plete, the system can be solved by one of
COMSOL Multiphysics' implemented solu-
tion routines. For the example above, we
use the linear, nonadaptive elliptic solver
femlin. We solve the problem on di�erent
grids, speci�ed by the parameter hmax, us-
ing quadratic �nite element functions. In
the following table we show the L2-errors
‖u∗ − uh‖Q and ‖y∗ − yh‖Q between the
known optimal solution and the solution to
the discretized problem (uh, yh) computed
by COMSOL Multiphysics on the di�erent
grids. Figures 1�3 show the computed opti-
mal control uh, the computed optimal state
yh, as well as the associated adjoint state ph.

hmax ‖u∗ − uh‖Q ‖y∗ − yh‖Q

2−2 1.6417 · 10−2 3.2837 · 10−4

2−3 2.2293 · 10−3 3.0790 · 10−5

2−4 3.0615 · 10−4 5.0814 · 10−6

2−5 4.0305 · 10−5 4.9791 · 10−7

2−6 5.3730 · 10−6 5.9155 · 10−8

Tab. 1: Errors ‖u∗ − uh‖Q and ‖y∗ − yh‖Q.

Fig. 1: optimal control uh

Fig. 2: optimal state yh

Fig. 3: adjoint state ph

3.2 Boundary control

Now, we consider an example problem of
form (PΣ) with boundary control, very simi-



lar to the distributed control problem in the
last section. The data is given by Ω = (0, π),
T = π, κ = 0.01, α = 0, as well as

f = sin(x) cos(t) + sin(x) sin(t),
yd = sin(x) sin(t)− cos(x)(1 + π − t),

ud = − sin(t) +
1
κ

(π − t).

One can easily check that

y∗ = sin(t) sin(x),
u∗ = − sin(t),
p∗ = cos(x)(π − t)

solves the optimality system given in Theo-
rem 3.

The implementation in COMSOL Multi-
physics is very similar to the �rst example.
We only need to substitute f for u as a
source term of the state equation, as well
as u for g, since u enters the state equation
in the boundary conditions. This yields:

fem.equ.ga = { { {'-yx' '0'};

{'-px' '0'} } };

fem.equ.f = { {'-ytime+...

f(x,time)'...

'ptime+y-yd(x,time)'} };

% boundaries: 1:t=0,2:x=pi,

% 3:t=pi,4:x=0

fem.bnd.ind = [1 2 3 2];

% boundary conditions:

fem.bnd.r = { {'y-y0' 0};

{0 0};

{0 'p'} };

fem.bnd.g = { {0 0};

{'u' '0'};

{0 0} };

Similar to the distributed example, we use
the linear, nonadaptive elliptic solver femlin
on di�erent grids, speci�ed by the parameter
hmax. This time, we use linear �nite element
functions. The L2-errors ‖u∗ − uh‖Σ and
‖y∗ − yh‖Q on the di�erent grids are shown
in Table 2. Figure 4 shows the computed
optimal control uh. The example has been
constructed such that the optimal state y∗

and the associated adjoint state p∗ are the
same as for the distributed control problem.

hmax ‖u∗ − uh‖Q ‖y∗ − yh‖Q

2−2 2.1379 · 10−1 2.5347 · 10−2

2−3 1.0525 · 10−1 9.6450 · 10−3

2−4 4.3199 · 10−2 2.9205 · 10−3

2−5 1.7076 · 10−2 7.7394 · 10−4

2−6 5.7762 · 10−3 1.9415 · 10−4

Tab. 2: Errors for the boundary control
problem.

Fig. 4: Boundary control uh

3.3 An example in 2D

In this example we use the 3D capability
of COMSOL Multiphysics to solve a prob-
lem in two space dimensions. We consider
the optimal control problem (PQ) where
the space-time domain is de�ned by Q =
(0, π)2 × (0, π) ⊂ R3 and the functions yd,
ud, and g are given by

yd = sin(x1) sin(x2) sin(t)
− cos(x1) cos(x2)
− 2 cos(x1) cos(x2)(π − t),

ud = sin(x1) sin(x2) cos(t)
+ 2 sin(x1) sin(x2) sin(t)

+
1
κ

cos(x1) cos(x2)(π − t),

g = −~n sin(t)(sin(x1), sin(x2))T ,

respectively. The optimal solutions are

y∗(x1, x2, t) = sin(x1) sin(x2) sin(t)
u∗(x1, x2, t) = sin(x1) sin(x2)(cos(t)

+2 sin(t))
p∗(x1, x2, t) = cos(x1) cos(x2)(π − t),



which can easily be checked by inserting
them into the optimality conditions of The-
orem 3.

The di�erences in the implementation com-
pared to the �rst example are only due to
the higher space dimension of the problem.
We de�ne the 3D geometry by

% geometry and mesh:

fem.geom = block3(pi,pi,pi,...

'base','corner','pos',[0 0 0]);

and also account for the additional dimen-
sion in the de�nition of the PDE and the
boundary conditions:

fem.equ.ga = { { {'-yx1' '-yx2' '0'}

{'-px1' '-px2' '0'}

} };

fem.equ.f = { {'-ytime+u' 'ptime...

+y-yd(x1,x2,time)'} };

fem.bnd.r = { {'y-y0' 0};

{0 'p'};

{0 0};

{0 0} };

fem.bnd.g = { {0 0};

{0 0};

{'g1(x1,time)...

-alpha*y' '-alpha*p'}

{'g2(x2,time)...

-alpha*y' '-alpha*p'}};

This time, we test the adaptive solver
adaption with an initial grid determined by
hauto and ngen, the number of new grid
generations, set to two. In 3D, the space-
time grid consists of tetrahedrons and the
number of unknowns grows cubically when
re�ning the grid. For that reason, we restrict
our survey to three initial grids generated us-
ing meshinit where re�nement is controlled
by using the parameter hauto ranging from
7 to 5. We use again quadratic �nite ele-
ments. In Figures 5�7 we present time-slice
plots of uh, yh, and ph.

Fig. 5: uh

Fig. 6: yh

Fig. 7: ph

hauto ‖u∗ − uh‖Q ‖y∗ − yh‖Q

7 3.1710 · 10−1 4.7920 · 10−3

6 1.7107 · 10−1 2.3017 · 10−3

5 5.0385 · 10−2 5.4455 · 10−4

Tab. 3: Errors to the 2D example, adaptive
solver

4 Conclusion

We have successfully applied the �nite el-
ement package COMSOL Multiphysics to
simple time-dependent optimal control prob-
lems subject to PDE constraints by utilizing
an Optimize then Discretize strategy.

The introduced strategy has proven to work
reasonably well for our simple example prob-
lems. We take advantage of the fact that op-
timality conditions can be written in PDE
form, which allows to apply a specialized
PDE solver for optimization. The method
we focused on is easily implementable and
may well serve as a �rst step towards op-
timizing a given goal without the use of
specialized optimization routines. The pro-
posed approach does not substitute the use
of specialized optimization software. One
reason for that is that elliptic solvers are
used for time-dependent parabolic control
problems. This means in particular that
the special role of the time is ignored, es-
pecially the fact that the time derivative of
state and adjoint state is in general in a
weak space L2(0, T, H1(Ω)∗), cf. Theorem 1.
However, for cases with higher regularity our



approach seems more justi�ed. In Figure 8,
we show the error propagation through the
space-time domain for the one-dimensional
distributed control problem to illustrate this
behavior due to solving a singular elliptic
system.

Fig. 8: Error �ow through the space-time
domain

The applicability of this strategy to other
problems, even if optimality conditions can
be formulated in PDE form, has to be de-
cided on a case-to-case basis. Additional
limitations are given by the size of the prob-
lem.
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