

Simulation Methods for Electrostatic MEMS Switches and Resonators

Peter Steeneken

Jaap Ruigrok, Shuo Kang, Joost van Beek, Hilco Suy, Martijn Goossens, JoepBontemps and Jan-Jaap Koning

NXP Semiconductors, The Netherlands

NXP Semiconductors

- Established in September 2006(formerly a division of Philips)
- ~38,000 employees
- ▶ Headquarters: Eindhoven, The Netherlands
- ▶ Main product: transistors on Silicon
- ▶ But also other electronic devices on Silicon...

Outline

MEMS: Micro Electrical Mechanical Systems

- ▶ RF MEMS switches
	- –Calculation of the C-V curve using Comsol
- ▶ MEMS resonators
	- –Equivalent parameters m, k and Q of a MEMS resonator using Comsol

RF MEMS capacitive switch

MEMS resonator

Electrical switches

Morse telegraph key (1844) Mechanical switch

Advantages

- Low loss/resistance
- High linearity
- High power handling

Transistor (1947) Semiconductor switch

- Advantages:
	- Very small size
	- High switching speed
	- Low cost

Radio Frequency MicroElectroMechanical Switch (RF MEMS)

Best of both worlds: Mechanical switch on semiconductor substrate.

- Low loss
- High linearity
- High RF power handling
- Intermediate size
- Intermediate switching speed

• Intermediate cost

RF MEMS switch physics

▶ Forces

Static

- –Spring forces
- –- Electrostatic force
- –Contact force
- **Dynamics**
	- –Gas damping force
	- –Inertial forces

MEMS switch under study

MEMS Capacitance-Voltage curve in Comsol

- ▶ Approximations:
	- –Electrostatic parallel plate approximation.
	- –Use Mindlin elements for mechanical domain.
	- –Hard contact.
- ▶ Simulation in Comsol structural mechanics domain
	- $-$ lmnlamant alactroctatic and contact forces as pros Implement electrostatic and contact forces as pressures on the structure.

Parametric solver

- \triangleright How to get $C(V)$?
- ▶ Problem with voltage control:
	- Multiple solutions for 1 voltage.
	- –Discontinuities in the shape at pull-in and release voltage.
	- Convergence problems.

- ▶ Solution:
	- –Position control of control node.
	- Determine C and V at each position.

Implementation of position control in Comsol

▶ Define point integration variable wcontrol1 on control node.

Parametric solver

- ▶ Parameter par goes from 0-100.
- wset=-g*par/100.

Define extra degree of freedom py

- ▶ ODE will vary py until: wcontrol1=wset (wset=-g*par/100)
-
- ▶ This will ensure that the control node is moved from open to closed position.

Apply adaptive electrostatic and contact force

- l In Comsol a pressure $P_e=py^*(q+a/\epsilon_r)^2/(q+w+a/\epsilon_r)^2=V^2/2\epsilon_0(q+w+a/\epsilon_r)^2$ is applied.
- Extra degree of freedom py∝V²
- The ODE finds V^2 such that wcontrol1=wset!
- \triangleright C is obtained from subdomain integration: C=∫ dAε₀/(g+w+a/ε_r).
- Contact pressure is modelled by a steep parabola if $(g+w<0)$.
- ▶ C(V) curve is obtained.

Calculated CV curve

Simulation and measurement

Outlook: dynamics

- Each second in the interferometric slow-motion movie is about 2 µs in reality
- If we would play a 1 hour movie recording of the switch at this slowmotion rate, we would not be able to see the end of the movie within our lifetime.
- Therefore I only show 50 µs.

More complicationsElectrostatic see-saw structure

MEMS resonators

- ▶ Application:
	- –Oscillator (clock)

MEMS resonator

Quartz resonator is large and expensive

Goal: replace Quartz crystal by Silicon crystal

J.T.M. van Beek, P.G. Steeneken and Ben Giesbers, '*A 10 MHz Piezoresistive MEMS Resonator with High-Q'.* ProceedingsInternational Frequency Control Symposium 2006 (Miami).

Simulating MEMS resonators

- ▶ Simplistic way to analyze MEMS resonators with Comsol:
	- –Put geometry and material parameters in Comsol.
	- –- Run eigenfrequency analysis.
	- –Select required mode shape by hand.
	- –Examine frequency.
- ▶ How can we get more information from this simulation?

Parameter extraction

Method to extract the 3 mechanical parameters by postprocessing of the eigenmode.

Equivalent circuit

- Assume everything islinear.
- ▶ Electrical admittance Y can be determined if $\mathsf{k}_{\mathsf{i}},\mathsf{m}_{\mathsf{i}}$ and b_{i} are known for all eigenmodes.

$$
Y = \frac{i_{ac}}{V_{ac}} = j\omega C_w + \eta^2 \sum_{i=1}^N \left(j\omega m_i + b_i + \frac{k_i}{j\omega}\right)
$$

Determining m and k by postprocessing of eigenmodes

$$
E_{tot} = E_{el, \text{max}} = \frac{1}{2} k_i |x_i|^2 = \left| \int_V W_s dV \right| \qquad \text{Max. elastic energy}
$$

$$
E_{tot} = E_{kin, \text{max}} = \frac{1}{2} m_i |\omega_i x_i|^2 = \frac{1}{2} \left| \int_V \rho \omega_i \mathbf{u}_i^2 dV \right| \qquad \text{Max. kinetic energy}
$$

Therefore:

$$
k_i = \frac{2}{|x_i|^2} \left| \int_V W_s dV \right|
$$

$$
m_i = \frac{k_i}{|\omega_i|^2} = \frac{1}{|x_i|^2} \left| \int_V \rho \mathbf{u}_i^2 dV \right|
$$

Determining the damping coefficient b

- ▶ Damping in our resonators seems to be dominated by support losses:
	- Energy in traveling waves disappears via the anchors to the substrate.
- ▶ Substrate is very large. How to model the traveling waves?
	- $-$ Abearb them using an artificial boundary layer in the substra Absorb them using an artificial boundary layer in the substrate.
	- Artificial material should have the following properties:
		- No reflection (matched layer).
		- •Energy of traveling waves needs to be absorbed to prevent wave from coming back.
- Comsol 3.3: Perfectly Matched Layer(PML) in Structural Mechanics Module
	- Only available in frequency response analysis mode.
	- $-$ PMLs will be implemented in eigenfrequency analysis in future Comsol version.
	- Eigenfrequency analysis mode is much faster.

Matched layer (artificial material E', ρ**',**ν**')**

Determining b

- ▶ Complex material parameters of Matched Layer
- Therefore: Complex eigenfrequencies ^ω.

$$
Q_i = \frac{\text{Re}\,\omega_i}{2\,\text{Im}\,\omega_i}
$$

Damping coefficient b_i is obtained using:

$$
b_i = \frac{\sqrt{k_i m_i}}{Q_i}
$$

Example: MEMS disk resonator

- ▶ Check method on diamond disk resonator
- J. Wang et al., 1.51-GHz Nanocrystalline Diamond \blacktriangleright Micromechanical Disk Resonator With Material-Mismatched Isolating Support, Proc. MEMS 2004, pp. 641-644.
- Analytically verified:
- ▶ Z. Hao and F. Ayazi, Support loss in the radial bulk-mode vibrations of center-supported micromechanical disk resonators, Sensors and Actuators A, **134**, p. 582-593 (2007)

Geometry (cylindrical symmetry)

Script to analyze all eigenmodes

- Analyze all eigenmodes up to 700 MHz.
- ▶ Select modes with Q>10.
- ▶ Dominant mode is selected using script.

1st Disk mode

Total displacement in the first radial bulkmode of the disk resonator at 489.27 MHz.

Acoustic waves traveling in the substrate

Acoustic waves traveling in the substrate

Measurementcomparison

COMSOL

Comparison with frequency response and PML

- Eigenfrequency analysis 60xfaster than frequencyresponse.
- ML in good agreement withPML result.

33

Conclusions

- ▶ Simulation methods for electrostatic MEMS devices:
	- – Static C-V curve of capacitive RF MEMS switches.
		- \bullet Position control efficiently implemented using Comsol ODE. Reference article: J. Bielen and J. Stulemeijer, Proc. Eurosime 2007.
	- – Admittance calculation of MEMS resonators
		- \bullet Support losses implemented using matched layer material model.
		- \bullet Equivalent parameter k,m and b extracted by postprocessing of eigenmodes.
		- \bullet Script to analyze all mode shapes.
		- \bullet See my Comsol 2007 proceedings article for more details.

