

Mechanical Engineering, UCSB

Electrokinetic Response of a Floating Bipolar Electrode in a Nanofluidic Channel

by Alex Eden, Karen Scida, Jan Eijkel, Sumita Pennathur, & Carl Meinhart 10/5/2017

Mechanical Engineering, UCSB

- Electrically isolated electrode becomes polarized under external electric field
	- Negative charge accumulates at left side of electrode (cathode), attracting cations
	- Positive charge accumulates at right side of electrode (anode), attracting anions
	- Electrostatic potential floats to uniform value which ensures zero *net* charge on surface
	- If ΔV_{elec} is sufficiently large, Faradic reactions occur at surface and current passes through electrode

Cathodic Reaction: Anodic Reaction: $2H_2O+2e^ \Box$ \Box \Box $H_2+2OH^ 2H_2O \Box$ \Box \Box $O_2 + 4H^+ + 4e^-$

Electric Double Layers Form at Channel Walls & Electrode

 \bigoplus Wall counter-ions: H⁺, Na⁺

 \supseteq Wall co-ions: ${\sf H_2PO_4}$ ⁻, HPO₄ ²⁻, OH⁻

- Glass surface charge comes from protonation/deprotonation surface reactions: Leads to acquired

surface charge

- Electrode surface charge comes from polarization under externally applied field

Mechanical Engineering, UCSB

Why use Bipolar Electrodes?

Ren *et al*, Lab Chip, 2015, 15, 2181

- Particle Trapping
	- Uses induced charge EOF and DEP
- Analyte Focusing/Separation
	- **Leverages electric field** gradients produced by nonuniform ion distributions
- **Electrocatalysis**
	- Driving redox reactions at BPE poles

- Surface patterning/Detection
	- Patterning surfaces with chemical gradients

Mechanical Engineering, UCSB

Hlushkou *et al*, *Lab Chip 2009, 9,1903*

- Particle Trapping
	- Uses induced charge EOF + DEP

Why use Bipolar Electrodes?

- Surface patterning/Detection
	- **Patterning surfaces with** chemical gradients

Mechanical Engineering, UCSB

Why use Bipolar Electrodes?

- Particle Trapping
	- Uses induced charge EOF + DEP
- Analyte Focusing/Separation
	- **Leverages electric field** gradients produced by nonuniform ion distributions
- Electrocatalysis
	- Driving redox reactions at BPE poles
- Surface patterning/Detection
	- **Patterning surfaces with** chemical gradients

Termebaf *et* al, Langmuir 2015, 31, 13238

Mechanical Engineering, UCSB

- Particle Trapping
	- Uses induced charge EOF + DEP
- Analyte Focusing/Separation
	- **Leverages electric field** gradients produced by nonuniform ion distributions
- Electrocatalysis
	- Driving redox reactions at BPE poles
- Surface patterning/Detection
	- Patterning surfaces with chemical gradients, electropolymerization

Koizumi *et al*, Nature Comms 2016, 7, 10404

Why use Bipolar Electrodes?

Mechanical Engineering, UCSB

2D COMSOL Multiphysics Model: Overview

 $H_2O \longleftrightarrow H^+ + OH^-$

Equation:
$$
\frac{\partial c_i}{\partial t} = -\nabla \cdot \left(\mathbf{u}c_i - D_i \nabla c_i - D_i \frac{e_0 z_i}{k_B T} c_i \nabla \psi \right) + r_i
$$
al species conservation)

 0 ^{\mathcal{C}_{f}} *n* Poisson's Equation: $-\varepsilon_{_{0}}\varepsilon_{_{\rm f}}\nabla^{2}\psi=\sum F_{\mathcal{Z}_{_{i}}}c_{_{i}}$ *i* (Fluid electrostatic potential)

- Approximately 238,000 mesh elements in model
- Simulated BGE is buffered phosphate solution ($pH \sim 7$)
-

Equation:
$$
\nabla^2 V = 0
$$

Equations:
$$
\rho_f \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = \mu \nabla^2 \mathbf{u} - \nabla P + \sum_i^n F_{z_i} c_i \mathbf{E};
$$

ismotic fluid flow) $\nabla \cdot \mathbf{u} = 0$

(Electrode electrostatic potential)

Mechanical Engineering, UCSB

Surface Charge and Potential: Temporal Response After Turning Voltage Off

Surface charge depends on potential *difference* **in fluid near electrode**

- Electrode potential changes with same response as applied field, as does fluid directly in contact w/ electrode

- Ion distribution and EDL potential responds more slowly than electrode potential due to ion accumulation/depletion

- Remaining anionic species accumulated at anode result in local negative potential, cationic species at cathode result in local positive potential

- Potential difference near electrode poles creates electric field which temporarily focuses tracer species at left side of electrode

Mechanical Engineering, UCSB

Mechanical Engineering, UCSB

Axial Potential & Electric Field Response

 $E_0 = 50$ kV/m

Profiles taken along channel centerline

Induced Charge EOF & Temporal Flux Evolution

Area-averaged fluxes to left and right of electrode

Axial velocity profile before turning off voltage

Mechanical Engineering, UCSB

Mechanical Engineering, UCSB

Summary:

- Include Faradaic reactions from electrolysis of water molecules
	- Current passes through electrode due to electron transfer driven by interfacial potential difference between fluid & electrode
- Match faradaic reaction experiments to simulation results
- Floating electrode becomes polarized under external field
	- Left side (cathode) is negatively charged, right side (anode) is positively charged
- Transient response of electrode leads to temporary analyte focusing
	- EDL responds more slowly than electrode, leading to E field reversal in parts of channel
- Simulation results match general trend observed experimentally
	- Tracer molecules shift from anode towards cathode before diffusing away

Future Directions:

Mechanical Engineering, UCSB

Thank you for your time!

Questions?