

Electrokinetic Response of a Floating Bipolar Electrode in a Nanofluidic Channel

by Alex Eden, Karen Scida, Jan Eijkel, Sumita Pennathur, & Carl Meinhart 10/5/2017

- Electrically isolated electrode becomes polarized under external electric field
 - Negative charge accumulates at left side of electrode (cathode), attracting cations
 - Positive charge accumulates at right side of electrode (anode), attracting anions
 - Electrostatic potential floats to uniform value which ensures zero *net* charge on surface
 - If ΔV_{elec} is sufficiently large, Faradic reactions occur at surface and current passes through electrode

Cathodic Reaction:

Anodic Reaction:

Mechanical Engineering, UCSB

 $2H_{2}O = 0^{-1}O_{2} + 4H^{+} + 4e^{-1}O_{2}$

Electric Double Layers Form at Channel Walls & Electrode

- ⊕ Wall counter-ions: H⁺, Na⁺
- Wall co-ions: $H_2PO_4^{-1}$, HPO_4^{-2} , OH^{-1}

- Electrode surface charge comes from polarization under externally applied field

- Glass surface charge comes from protonation/deprotonation surface reactions:

Leads to acquired surface charge σ_0

Why use Bipolar Electrodes?

- Particle Trapping
 - Uses induced charge EOF and DEP
- Analyte Focusing/Separation
 - Leverages electric field gradients produced by nonuniform ion distributions
- Electrocatalysis
 - Driving redox reactions at **BPE** poles

Ren et al, Lab Chip, 2015, 15, 2181

- Surface patterning/Detection
 - Patterning surfaces with chemical gradients

Why use Bipolar Electrodes?

- Particle Trapping
 - Uses induced charge EOF + DEP

- Surface patterning/Detection
 - Patterning surfaces with chemical gradients

Hlushkou et al, Lab Chip 2009, 9,1903

Why use Bipolar Electrodes?

- **Particle Trapping**
 - Uses induced charge EOF + DEP
- Analyte Focusing/Separation
 - Leverages electric field gradients produced by nonuniform ion distributions
- Electrocatalysis
 - Driving redox reactions at BPE poles
- Surface patterning/Detection
 - Patterning surfaces with chemical gradients

Termebaf et al, Langmuir 2015, 31, 13238

Why use Bipolar Electrodes?

- Particle Trapping
 - Uses induced charge EOF + DEP
- **Analyte Focusing/Separation**
 - Leverages electric field gradients produced by nonuniform ion distributions
- Electrocatalysis
 - Driving redox reactions at **BPE** poles
- Surface patterning/Detection
 - Patterning surfaces with chemical gradients, electropolymerization

Koizumi et al, Nature Comms 2016, 7, 10404

2D COMSOL Multiphysics Model: Overview

 $H_2PO_4^- \longleftrightarrow HPO_4^{2-} + H^+$

 $H_2O \longleftrightarrow H^+ + OH^-$

- Approximately 238,000 mesh elements in model
- Simulated BGE is buffered phosphate solution (pH \sim 7)
- Simulated tracer is fluorescein

Mechanical Engineering, UCSB

Poisson's Equation: $-\varepsilon_0 \varepsilon_f \nabla^2 \psi = \sum_i^n F z_i c_i$ (Fluid electrostatic potential)

Equation:
$$\frac{\partial c_i}{\partial t} = -\nabla \cdot \left(\mathbf{u} c_i - D_i \nabla c_i - D_i \frac{e_0 z_i}{k_{\rm B} T} c_i \nabla \psi \right) + r_i$$

Equations:
$$\rho_{\rm f} \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = \mu \nabla^2 \mathbf{u} - \nabla P + \sum_i^n F z_i c_i \mathbf{E};$$

posmotic fluid flow) $\nabla \cdot \mathbf{u} = 0$

Equation:
$$\nabla^2 V = 0$$

(Electrode electrostatic potential)

Species Reaction Source Terms		
$H_2PO_4^-$	$-\mathbf{R}_{\mathbf{H}_{2}\mathbf{PO}_{4}^{-}}$	$\Rightarrow \mathbf{R}_{\mathrm{H_2PO_4}^{-}} = k_{\mathrm{H_2PO_4}} \left(K_a - \frac{C_{\mathrm{HPO_4}^{2^{-}}} C_{\mathrm{H^+}}}{C_{\mathrm{H_2PO_4}}} \right)$
$\operatorname{HPO}_{4}^{2-}$	$R_{H_2PO_4^-}$	
H^+	$\mathbf{R}_{\mathbf{H}_{2}\mathbf{PO}_{4}^{-}} + \mathbf{R}_{\mathbf{H}_{2}\mathbf{O}}$	
OH⁻	R_{H_2O}	→ $\mathbf{R}_{\mathrm{H_2O}} = k_{\mathrm{H_2O}} \left(K_{\mathrm{H_2O}} - \frac{c_{\mathrm{HPO_4}^{2^{-}}} c_{\mathrm{H^+}}}{c_{\mathrm{H_2PO_4}}} \right)$
Na ⁺	0	

Surface charge depends on potential *difference* in fluid near electrode

- Electrode potential changes with same response as applied field, as does fluid directly in contact w/ electrode

- Ion distribution and EDL potential responds more slowly than electrode potential due to ion accumulation/depletion

- Remaining anionic species accumulated at anode result in local negative potential, cationic species at cathode result in local positive potential

- Potential difference near electrode poles creates electric field which temporarily focuses tracer species at left side of electrode

Surface Charge and Potential: Temporal Response After Turning Voltage Off

Axial Potential & Electric Field Response

 $E_0 = 50 \, kV/m$

Profiles taken along channel centerline

Induced Charge EOF & Temporal Flux Evolution

Axial velocity profile before turning off voltage

Area-averaged fluxes to left and right of electrode

Net Flux & Temporal Concentration Rate of Change

4

 $\times 10^{-6}$ 5.5 Arc length

4.5

Summary:

- Floating electrode becomes polarized under external field
 - Left side (cathode) is negatively charged, right side (anode) is positively charged
- Transient response of electrode leads to temporary analyte focusing
 - EDL responds more slowly than electrode, leading to E field reversal in parts of channel
- Simulation results match general trend observed experimentally
 - Tracer molecules shift from anode towards cathode before diffusing away

Future Directions:

- Include Faradaic reactions from electrolysis of water molecules
 - Current passes through electrode due to electron transfer driven by interfacial potential difference between fluid & electrode
- Match faradaic reaction experiments to simulation results

Thank you for your time!

Questions?