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Brief History

Fire Incidents and Accidents Fire Protection Methods

-

- Electricity Generators
- Fuel Tanks

- Mining Industry

- Chemical Facilities

- Transfer Fuel Areas



Foam Chamber Mixing Cycle
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Objectives

1. Generate 3D CAD representation and mesh of the Foam

Chamber Geometry.

2. Model and understand the physical interaction between the

multi-phase fluid Water-Foam Concentrate-Air mixture and the

process in the chamber.

3. Optimize the chamber geometry In order to produce a better

mixing process of the final mixture.



Chamber Geometry

Foam made here at chambers Foam chamber

(Taken From NFPA 11)



Fluid Mixing Process
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Research Methodology

1. Create & import the Foam Chamber CAD model to Comsol Multiphysicse.
2. Define material properties: Water, Foam Concentrate and Air.

3. Apply proper physics model for phase-to-phase fluid interactions, I.e., water-

foam concentrate-air.

4. Test meshing techniques to find a proper mesh and corresponding multi-

phase flow modeling.

5. Optimize chamber geometry Iin terms of foam-solution mixing rate and

volume.



Fluid Domain and Boundary Conditions

Mix Solution Outlet

Air Inlet 2

Air inlet 1

Fluid Inlet



Model Set-Up and Input Parameters

- Turbulent flow constitutive model: Algebraic yPlus.

- Fluid: Water.

. Tolerance error: 1 x 10~°

- Wall Boundary Condition: No Slip.
- Gravity Included

- Inlet velocity: 4.5 m/s

. Stationary Study

- With wall distance initialization.



Turbulent Flow-Algebraic Method
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artitioning Technique
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Final Mesh
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Results
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Error
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Convergence Plot

Segregated solver
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Conclusions

* Creating a accurate CAD model I1s extremely important (complex
geometry).

* Developing technigues of domain partitioning determines the mesh
guality.

e Creating the proper mesh using different elements and sizes
ensures the solution convergence.

« Taking In consideration the previous steps, we saved
computational resources and time.

* Using a Mac Pro (Processor with 2.7 GHz 12-Core Intel Xeon Eb5):

* It Is obtained a computational time of: 43 min 33 s.



What Is Next?

(Taken From Fraunhofer Institute for Industrial Mathematics ITWM)
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