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Abstract—Arcam AB has pioneered additive manufacturing
with the electron beam melting (EBM) technology that is used
for a cost efficient and novel ways of producing components in
titanium for the orthopaedic and the aerospace industries. The
electron beam is at the heart of the EBM technology, where
beam-quality is directly related to the performance of the EBM
machine. The beam is controlled with magnetic lenses, which are
known to cause aberrations. We present a modeling framework
which can be used to study aberrations, as described in the litera-
ture for electron microscopy, in an electron beam melting (EBM)
system. This is achieved by using the COMSOL Multiphysics R©
simulation software to solve for the magnetic fields and relativistic
charged particle trajectories with space charge of a model EBM
system in 3D. This involves formulating a model for the magnetic
lenses which performs the functions of focusing, deflecting and
correcting the electron beam using magnetic stigmator lenses. For
this purpose the combined capabilities of the AC/DC, Particle
Tracing and LiveLinkTM for MATLAB R© modules were used
running on a COMSOL ServerTM.

I. INTRODUCTION

The Arcam electron beam melting (EBM) system uses a
series of magnetic coil lenses to focus, deflect and correct
an electron beam which melts metal powder in a precisely
controlled pattern. A solid understanding of how perturbations
and non-ideal conditions effect a system’s reliability and
performance is essential. This is particularly true when the
system process involves non-linear interactions between the
different parts of the system. This paper describes how the
COMSOL Multiphysics R© software [1] can be used to model
the aberrations in an EBM system. There is also a description
of how the aberrations can be quantified and analyzed with the
purpose of mitigating the effect of the aberrations.

A. Electron Optics

The electron beam is focused, steered and corrected using
a series of electromagnetic coils. These coils are somewhat
analogous to optical elements that focus, steer and correct a
ray of light. A system that controls an electron beam in this
way is often referred to as an electron optical system. The
most important mechanism in any electron optical system is the
Lorentz force which is the force acting on a charged particle
moving in an electromagnetic field. The force acting on such
a charged particle is given by

F = q(v ×B + E). (1)

The electron optical system consists of one or a series of
electromagnetic fields which perform an optical function such

as focusing, deflection or correction. The force is proportional
to the cross-product of the velocity of the electron and the
magnetic field which means that a magnetic field can not
perform any work on the electron. The EBM system that is
being modeled used an electrostatic field for the extraction
and acceleration of the electron beam and magnetic fields for
focusing, deflecting and correction.

1) Focusing Solenoid: The magnetic field from a solenoid
with its magnetic axis aligned with the optical axis will focus
an electron beam due to the Lorentz force [2]. The focusing
coil will also have the secondary effect of rotating the beam in
a helical trajectory along the optical axis. It can be shown that
a simple focusing coil like this will introduce spherical and
chromatic aberrations [3]. The focusing power of a solenoid
is given by [4]

1/f =
π

16

e2

mE0
aB2

0 (2)

where E0 is the acceleration potential of the electrons and B0

is the magnetic field strength in the solenoid. This mean that
for f = 1 m and a coil height a = 10 cm a field strength
B0 = 4 µT is required.

2) Deflection Dipole Pair: A deflection coils operates by
inducing a magnetic field perpendicular to the optical axis.
This results in a Lorentz force that is perpendicular to both the
magnetic field and the velocity of the electron as illustrated in
figure (1:a). The figure shows how a quadrupole can be used
to induce the magnetic field required in a deflection coil. The
two dipole pairs are used to induce a deflecting magnetic field
with an arbitrary rotation in relation to the optical axis.

If the deflection field is completely homogeneous and the
incoming electrons travel along the optical axis, the deflection
will eventually make the electrons move in a circle with radius
[5]

r =
mv0

eB0
. (3)

This can be seen from solving the classical equations of motion
for an electron in a homogeneous magnetic field B = B0x̂

mv̇y(t) = B0qvz(t) (4)
mv̇z(t) = −B0qvy(t) (5)

Differentiating once with respect to time and substituting the
velocities we obtain a homogeneous Helmholtz equation. With
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Fig. 1: Cross section of (a) a deflection dipole and (b) a
quadrupole stigmator showing the magnetic field and resulting
forces on an electron moving out of the plane. The magnetic
fields are shown as dashed lines and the forces as solid arrows.

the initial conditions

vy(0) = 0 (6)
v̇y(0) = B0q

m v0 (7)
vz(0) = v0 (8)
v̇z(0) = 0 (9)

we obtain the solution

vy(t) = v0 sin
(

qB0

m t
)

(10)

vz(t) = v0 cos
(

qB0

m t
)
. (11)

The deflection angle is then simply

α = arctan
vy
vz

=
qB0

m
t. (12)

Now assuming that the field is zero for z > a such that
B0q/m � ta we may substitute t = z/v0 to approximate
the angle with

α =
B0q

m

a

v0
. (13)

As an example a 60 keV electron in a field that is 10 cm long
and 1 mT strong will be deflected 120 mrad.

3) Quadrupole Stigmator: A stigmator coil is a quadrupole
where the direction of the magnetic field alternates as shown in
figure (1:b). The resulting force field will deform the electron
beam in the shape of an ellipse. This is used to correct the
beam astigmatism induced by the electron optical system and
the geometry of a deflected beam. The quadrupole stigmator
can only correct aberration with a two-fold symmetry. Higher
order stigmators can both be used alone or in series to correct
higher order aberrations [6].

4) Aberrations: In order to know the performance of the
aberration correction, we need a formalism for describing the
aberrations.

Gaussian optics describes the concept of perfect focusing
lenses that maps plane waves propagating along an optical
axis ẑ to spherical waves converging at some focal point on
that same axis. This ideal lens is used as a reference and the
distance of the resulting wave front from the ideal wave front

TABLE I: Complex Wave Aberration basis functions with
names from [8]. The first 7 functions are written here. Note
that the basis is not normalized here.

Index Name Power Symmetry Expression
1 Shift 1 1 ω̄
2 Defocus 2 0 ωω̄
3 Twofold astigmatism 2 2 ω̄2

4 Second-order axial coma 3 1 ω2ω̄
5 Threefold astigmatism 3 3 ω̄3

6 Third-order spherical aberration 4 0 ωω̄2

7 Third-order star-aberration 4 2 ω3ω̄

is defined as the error. Typically the error W is a scalar field
in two dimensions that is converted to phase representation
called the wave aberration function χ = (2π/λ)W .

Moving on, we would also be interested in the resulting
image in the Gaussian focal plane given a wave aberration
function χ. We define the image aberration δ as the two
dimensional vector field in the Gaussian plane measuring the
displacements of our aberrated beams from the ideal beam.
The relation between wave and image aberrations is

δ(x, y) =
Mλ

π
∇χ(x, y) (14)

with M the magnification of the optical system. Using the
above relation we can avoid the problem of measuring phase,
instead comparing images to quantify aberrations.

A common way to express the wave aberration function in
electron optics is

χ(θ, φ) =
θN+1

N + 1

(
CNSa cos(Sφ) + CNSb sin(Sφ)

)
(15)

with θ inclination and φ azimuth in spherical coordinates [7].

In practice the wave aberration function can be hard to find
and manufacturers of adaptive electron optics have chosen to
measure the image aberration δ(x, y) instead. Now let

ω = x+ iy (16)

represent our position vectors with ·̄ denoting complex conju-
gation. Then we have the complex wave aberration function

W (ω, ω̄) = <
∑
N,M

cN,Mω
N ω̄M . (17)

Using some of the multiplication properties of complex num-
bers we note that the power is p = N +M and the symmetry
s = |N−M |. We further add implicit rules for N and M to get
uniqueness for our representation. This is done by requiring
p ≥ s and that p and s share the same parity. With these rules
we find ourselves with the basis described in table I.

The gradient in Euclidean space is equivalent to

2
∂W

∂ω̄
(18)

in the complex plane [8]. Using this formulation the gradient
lies in the complex plane as well, making calculations such as
least squares fitting rather convenient.
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B. Electromagnetic Fields

We have seen that through the Lorentz Force, electrons
are affected by both electric and magnetic fields. In EBM,
Electric fields emerge from the voltage between the cathode
and the ground plane as well as from the negatively charged
electrons themselves. The electron optics is the largest source
of magnetic fields while the magnetic fields of the moving
electrons has a negligible effect on their trajectories. Limiting
the scope of this paper to optics that generate only static
magnetic fields, we may use the following of Maxwell’s
equations:

∇×H = J (19)

∇ ·B = 0. (20)

Treating the electrons as point particles, the electric field
emerging from them is

E(r) =
N∑
i

q

4πε0

r− ri
|r− ri|3

(21)

where ri denotes the time dependent position of the electron
i. Clearly enumerating every electron of a beam in a volume
on the order of cubic centimeters is not a viable approach for
computation. A more suitable method is to reduce the positions
and combined charges of electrons to a space charge density,
and use that for calculating electric fields.

II. METHOD

Both the magnetic fields and the trajectories of the electrons
need to be solved for when analyzing the aberrations of an
electron optical system. COMSOL Multiphysics R© with the
AC/DC module solves the magnetic fields using a Finite
Element Method. The solution can then be used with the
COMSOL Particle Tracing Module to find the trajectories of
the electrons that pass through the lenses.

The models are solved in two separate solver steps. The
first step contains a stationary solver which solves the static
magnetic fields from the magnetic coils. This solution is
used as an input to the second step which is an iterative
Bidirectionally Coupled Particle Tracing study. This ensures
that the solver reaches a self-consistent solution in regards to
the particle trajectories and the beam space-charge.

Throughout the simulation, gigabytes of data are gener-
ated. For managing and post processing the data, controlling
the simulations and making advanced parametrization studies
possible, the scripting capabilities included in LiveLink for
MATLAB are used.

A. Modeling multipoles in COMSOL Multiphysics R©
One of the problems in modeling an electron optical

system is formulating an accurate description of the coils
that constitute the magnetic lenses. On one hand, there is a
need to include as much detail as possible in the coil-models
in order to capture the effects of geometrical asymmetries
and perturbations on the electrons’ trajectories. On the other
hand, the finite element method used to compute the magnetic
fields and electron trajectories imposes limits on the geometric

Fig. 2: Geometric model of a quadrupole coil. Each pole
consists of 3 coils that have an angular width of π/4 meaning
that the coil is split into 3 shells with different radii.

complexity of the models. These limits result from the fact that
the number of elements, and therefore number of degrees of
freedom, increase with the geometric complexity which in turn
increase both the memory requirement and the time needed to
solve the model.

Separate considerations also need to be taken in relation
to how the currents in the coils are modeled. In an ideal
model each wire in the coil would be modeled separately,
both in terms of geometry and current. This is not feasible
when the scale of a single wire is significantly smaller than the
surrounding geometry. COMSOL Multiphysics R© circumvents
this by modeling the wires in a multi-turn coil by defining
a vector-field describing the current directions in a geometric
domain. The deflection and astigmatism coils used in Arcam’s
EBM machines consist of 4 air-wound coil with a sinusoidal
turn distribution. This means that each coil must be modeled
using several COMSOL coils in order to describe the actual
wire distribution.

One simple way to model a quadrupole coil is to simplify
the sinusoidal distribution to only 3 circular coils place along
a cylinder as shown in figure 2. This type of coil model has
a simple geometry consisting of vertical bars and horizontal
circular segments. Each pole is composed of 3 coils that each
have an angular width of π/2. This means that the quadrupole
needs to consist of 3 separate layers(or shells) in order to fit
a quadrupole.

The technique used to generate the coil geometry shown
in figure 2 becomes very complicated if it is used to generate
coils with 12, 24 or 48 poles. This led to the development
of a new way to generate the geometry and define the coil
properties for coils with an arbitrary pole configuration.

We call this coil modeling technique ”the superposition
model” since it is based on the assumption that 2 neighboring
coil segments with the same current direction can be super-
imposed into one geometry. This assumption is valid if the
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Fig. 3: Geometric model of a multipole coil. The segments in
the model can be used to implement coils with arbitrary pole
configurations.

distance between the coil segments is much shorter than the
distance to the beam, i.e. the center of the coil. The geometric
model used for the superposition coils is shown in figure 3.

The modeling works by assigning a pre-calculated current
to each geometric domain the the model using a MATLAB
script. While it would be possible to define the coil properties
manually in the COMSOL Multiphysics R© GUI, it would be
both time consuming and error prone.

One advantage of the superposition model is that it is
possible to model a coil with many different multipole, each
with different currents, within the same geometry. This allows
the user to try different coil-, pole- or current-configurations
by only altering the individual currents accordingly.

B. Meshing the model

It would be possible to use the automatic meshing function
in COMSOL Multiphysics R© without any tuning and get
satisfactory results. However, in case of modeling charged
particle tracing and magnetostatic fields at the same time there
is room for manual improvement. This is due to the large
difference in scale between the magnetic lenses and the size
of the electron beam. This problem is even more prominent
since the models includes a space charge effect between the
electrons. The meshing process is therefore modified such that
the size of the mesh elements is much smaller in the regions
where the electron beam is expected to be, as shown in figure
4. This will minimize the error in the beam trajectory modeling
without needlessly increasing the number of mesh elements in
volumes only occupied by the magnetic fields.

C. Quantifying the aberrations

Finding the aberrated equivalent to a focal point was done
in the post processing step in MATLAB. The particle phase
space data was given by COMSOL Multiphysics R© at the
time steps solved for. In MATLAB linear interpolation was

Fig. 4: Cut through of the mesh used in the COMSOL model
where the color corresponds to the size of the mesh elements.
Note how the fine mesh structure follows the expected beam
path after the deflection coil.

used to trace the particles between the time steps of the
solution. Further on a routine for making Poincaré sections
was made so that the images at different distances along the
optical axis could be viewed. On these sections we could
then evaluate measures of confusion and then run one of
MATLAB’s optimization tools to find the plane of least of
least confusion.

First we simulated a reference beam, that was only focused
without any deflection or aberration correction. This beam took
the place of the Gaussian beam in optics and all aberrations
were measured using it as a reference.

These samples were then fit to the gradient of the truncated
series of the Wave Aberration Function with MATLAB’s
backslash routine. Since the coefficients in the gradient are
the very coefficients of the Wave Aberration Function the
aberration spectrum was then extracted.

III. RESULTS

Both fields and trajectories were studied. The fields of inter-
est were those of thick magnetic multipoles that were generated
using our parametrization. In particular the field around the z
axis must be investigated in order to be certain that spurious
solutions have not been found. For the trajectories, problems
with known solutions were chosen so that they may serve as a
verification of the model. Focal distance and deflection angles
are examples of such.

One of the major advantages of the superposition coil
model is the fact that many different order stigmator coils can
be modeled without altering the geometry of the coil. This is
shown in figure 5 where the magnetic field from stigmators
with the symmetry order 4, 6, 8, 12, 16 and 24 are plotted.

In figure 7 the relation between current times number of
turns and deflected distances at the wall is shown for an setup
with deflection and focus only. The beam entered the model
at the origin and traversed the focus lens at 220 mm and
the deflection lens at 310 mm until finally hitting the wall at
1000 mm.

In one experiment the deflection field originated from only
one dipole aligned at a right angle to the desired deflection
with current I . In the other experiment the field was solved
for two orthogonal dipoles at 45◦ from the direction of the
desired deflection with currents Ix and Iy respectively. In
the case with two dipoles the currents were normalized as√
I2
x + I2

y = I and the number of turns per coil the same as
in the single dipole model. The magnetic fields along the z-
axis are presented in figure 6 for a single setting for the single
dipole.
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Fig. 5: Plots of magnetic fields resulting from stigmators with
symmetry order 4, 6, 8, 12, 16 and 24. The field direction are
plotted as red streamlines and the field magnitude is shown as
the colored background where red corresponds to the largest
magnitude. Note that the magnitude approaches zero at the
center of the lens which results in an unstable estimate of
the direction of the magnetic field. This effect is particular
noticeable in the stigmators with a higher order of symmetry.

Fig. 6: Magnetic fields on the z-axis from a single dipole
deflection lens. The lens physically extends from the left
dashed vertical line to the right.

Fig. 7: Deflection angles depending on current and number
of turns for a single dipole and a double dipole. The slopes
of the single and double dipole curves are 1.2 mrad/At and
0.6 mrad/At respectively.

Fig. 8: Focusing power 1/f for 24 different settings of the
current and number of turns in the focus lens. Focal distance
f is measured in mm from the center of the focus lens. The
beam size used for finding focus was calculated as the standard
deviation of the particles in a cut plane.

A study was made varying the current to the focal lens
in a fully deflected system with space charge. The theory
presented earlier states that the focusing power should be linear
in B0 for a thins lens neglecting the effect of space charge.
In figure 8 the effect of space charge as well as size of the
lens can be investigated by observing how the behaviour of
the beam changes close as it is focused closer to the lens.
Another revelation is how the beam size converges for higher
magnetomotive forces.

Studies were made investigating which aberrations are
dominant in EBM. In figure 9 a Poincaré section of a beam
is shown at its disc of least confusion along with a beam
that has been defocused by 15 mm. The densities are shown
as the brightness of the color of each electron. One may
observe dense rings in the defocused beam and looking at
its aberration spectrum in figure 10 defocus and higher order
spherical aberration is dominant.
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Fig. 9: Cross section of focused beam of 5000 electrons (a)
along with beam that has been defocused by 15 mm (b). The
density is plotted as the brightness of the colors.

Fig. 10: Spectrum of aberrations for the beam in figure 9. The
aberration basis is defined in table I.

IV. CONCLUSION

We have shown how aberrations in an EBM system can
be studied and analyzed using COMSOL Multiphysics R©. We
have also shown how this model can be used to perform case
studies of an EBM system. However, the time constraints im-
posed by this project has left many of the possible applications
of the modeling framework for future studies. There has also
been a significant effort to understand the modeling errors and
thereby increase the confidence in the results.

Our model has laid a foundation for modeling and under-
stating aberrations in EBM system. However, there are many
problems that needs to be solved before the insights gained by
our model can be implemented in a physical EBM machine. It
has become clear throughout our project that it would be very
challenging to mitigate the aberrations without having access
to measurements of the actual beam profile in the EBM system.
This type of measurements would not only provide a way to
verify and improve the models but also function in a feedback
based corrections system.
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