

Simulating Organogenesis in COMSOL: Comparison Of Methods For Simulating Branching Morphogenesis

Lucas D. Wittwer¹, Michael Peters^{1,2}, Sebastian Aland³, Dagmar Iber^{1,2}

¹ETH Zurich, Switzerland, ²Swiss Institute of Bioinformatics (SIB), ³Faculty of Informatics/Mathematics, HTW Dresden

Hzürich

Motivation: Lung Morphogenesis

- Lung Branching:
 - High Surface : Volume Ratio
 - Surface of half a tennis court
 - Highly stereotyped
- How is this achieved in vivo?

Affolter et al. Nature Reviews Molecular Cell Biology (2009)

Image-Based Simulations: Mathematical Model

Receptor-ligand based Turing Model

$$\frac{\partial R}{\partial t} = \Delta R + \gamma (a - R + R^2 L)$$
$$\frac{\partial L}{\partial t} = d \Delta L + \gamma (b - R^2 L)$$

- Receptor R on the lung epithelium
- Ligand L in the mesenchyme
- Growth velocity field depends on R²L

$$\vec{v} \approx R^2 L \cdot \vec{n}$$

 $\frac{\partial R}{\partial t} = \Delta R + \gamma (a - R + R^2 L)$ $\frac{\partial L}{\partial t} = d \Delta L + \gamma (b - R^2 L)$

 $\vec{v}\approx R^2L\,\cdot\vec{n}$

Image-Based Simulations: Pipeline

Menshykau et al. Development (2014)

Credit to Roberto Croce

 $\frac{\partial R}{\partial t} = \Delta R + \gamma (a - R + R^2 L)$ $\frac{\partial L}{\partial t} = d \Delta L + \gamma (b - R^2 L)$

 $\vec{v}\approx R^2L\,\cdot\vec{n}$

Mathematical Framework: Phase-Field

Phase-Field Receptor-Ligand Turing Mechanism

$$\delta_{epi} \frac{\partial R}{\partial t} = \nabla \cdot (\delta_{epi} \nabla R) + \gamma \delta_{epi} (a - R + R^2 L)$$
 in $\Omega_{bounding}$

$$\phi_L \frac{\partial L}{\partial t} = d \nabla \cdot (\phi_L \nabla L) + \gamma \phi_L (1 + l^2)^{-1} b - \gamma \delta_{epi} R^2 L$$
 in Ω_{bound}

$$\phi_L \frac{\partial I}{\partial t} = D \nabla \cdot (\phi_L \nabla I) - \phi_L k_d I$$
 in $\Omega_{bounding}$

$$D \vec{n} \cdot \nabla L = -\gamma R^2 L$$
 on Γ_{epi}

$$\frac{\partial I}{\partial t} = p_0$$
 $\delta R^2 L \cdot \delta \frac{\nabla \phi}{|\nabla \phi|}$
= Bulk reactions-terms: Multiply with ϕ
= Boundary reactions-terms: Multiply with $\delta \approx |\nabla \phi|$ $\phi_L = \phi_{epi} - \phi_{mes}$

$$\delta_{epi} \frac{\partial R}{\partial t} = \nabla \cdot (\phi_L \nabla I) - \phi_L k_d I$$
 $\vec{v} \approx R^2 L \cdot \delta \frac{\nabla \phi}{|\nabla \phi|}$
= Bulk reactions-terms: Multiply with $\delta \approx |\nabla \phi|$ $\phi_L = \phi_{epi} - \phi_{mes}$

$$\delta_{epi} \frac{\partial R}{\partial t} = \nabla \cdot (\phi_L \nabla I) + \gamma \delta_{epi} (a - R + R^2 L)$$
 $\vec{v} \approx R^2 L \cdot \delta \frac{\nabla \phi}{|\nabla \phi|}$ $\delta_L = \phi_{epi} - \phi_{mes}$

$$\phi_L \frac{\partial I}{\partial t} = D \nabla \cdot (\phi_L \nabla I) - \phi_L k_d I$$
D-BSSE
Cepartment of Biosystems
Science and Engineering

Lucas D. Wittwer | 19.10.2017 | 6

Results: Convergence Analysis (stationary)

$$\delta_{epi} \frac{\partial R}{\partial t} = \nabla \cdot (\delta_{epi} \nabla R) + \gamma \delta_{epi} (a - R + R^2 L) \qquad \vec{v} \approx R^2 L \cdot \delta \frac{\nabla \phi}{|\nabla \phi|} \qquad \frac{\partial \phi}{\partial t} + \vec{w} \cdot \nabla \phi = f$$

$$\phi_L \frac{\partial L}{\partial t} = d \nabla \cdot (\phi_L \nabla L) + \gamma \phi_L (1 + I^2)^{-1} b - \gamma \delta_{epi} R^2 L \qquad \phi_L = \phi_{epi} - \phi_{mes} \qquad f = \gamma \nabla \phi \cdot \left(\epsilon - \phi (1 - \phi) \frac{\nabla \phi}{|\nabla \phi|}\right)$$

$$\phi_L \frac{\partial I}{\partial t} = D \nabla \cdot (\phi_L \nabla I) - \phi_L k_d I$$
D-BSSE
Department of Biosystems
Science and Engineering
Lucas D. Wittwer | 19.10.2017 | 7

Results: Scaling Analysis (stationary)

Results: Mesenchymal Growth

20

Results: Mesenchymal Growth

Summary

- Flexible, easy to extend
- Static ALE result reproducible
- Growing ALE result not (yet) reproducible
- Is more stable
- Needs fine mesh on the interface

$$\delta_{epi} \frac{\partial R}{\partial t} = \nabla \cdot (\delta_{epi} \nabla R) + \gamma \delta_{epi} (a - R + R^2 L) \qquad \vec{v} \approx R^2 L \cdot \delta \frac{\nabla \phi}{|\nabla \phi|} \qquad \frac{\partial \phi}{\partial t} + \vec{w} \cdot \nabla \phi = f$$

$$\phi_L \frac{\partial L}{\partial t} = d \nabla \cdot (\phi_L \nabla L) + \gamma \phi_L (1 + l^2)^{-1} b - \gamma \delta_{epi} R^2 L \qquad \phi_L = \phi_{epi} - \phi_{mes} \qquad f = \gamma \nabla \phi \cdot \left(\epsilon - \phi (1 - \phi) \frac{\nabla \phi}{|\nabla \phi|}\right)$$

$$\phi_L \frac{\partial I}{\partial t} = D \nabla \cdot (\phi_L \nabla I) - \phi_L k_d I$$
D-BSSE
Department of Biosystems
Science and Engineering
Lucas D. Wittwer | 19.10.2017 | 11

Acknowledgment

CoBi group **Dagmar Iber Diana Barac** Marcelo Boareto Lisa Conrad Harold Gomez Zahra Karimaddini Christine Lang Odyssé Michos **Michael Peters** Anna Stopka Jannik Vollmer Marco Kokic Tomas Tomka

TU Dresden

Sebastian Aland

Past group members

Lada Georgieva Denis Menshykau Roberto Croce

COMSOL Support

Sven Friedel Zoran Vidakovic Thierry Luthy

Thank you for your attention!

