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J. Güdelhöfer, R. Gottkehaskamp and A. Möckel

Abstract—The proposed numerical model is used to study the
influence of inter-bar currents by investigating the three dimen-
sional field solution in COMSOL Multiphysics. Since the focus is
on the rotor, the whole stator geometry is replaced by surface
current densities in terms of Neumann boundary conditions. This
includes the winding heads. An alternative way of modelling the
rotor lamination is presented. All iron sheets are replaced by one
domain. The simplifications help to reduce the size and by this
also the effort to solve the model.

The results show that the motors operating behaviour changes
dramatically over the range of the inter-bar resistance. With the
chosen approach to respect the rotor stacking, it is possible to
investigate the behaviour of inter-bar currents for different rotor
laminations. According to the results, the stacking only has a small
influence on the inter-bar currents.

I. NOMENCLATURE

µ magnetic permeability
∇ nabla operator
~A magnetic vector potential
ϕ electric scalar potential
κ electric conductivity
~D electric displacement field
~E electric field
~J current density
~Je external current density
~j surface current density
rq inter-bar resistivity
U RMS value of the voltage over one phase
R1 Resistance of one phase
L1,1 Self inductance of one phase
I RMS value of the current in one phase
M2,1 Mutual inductance between stator and rotor
IR RMS value of the ring current
R2 Resistance of one rotor loop
L2,2 Self inductance of one rotor loop
f frequency
νmax maxmimum harmonic number
Φ Flux through one phase
Ψ Flux linkage of one phase
kw winding factor
w number of turns of one phase
Lσ,d1 leakage inductance of the airgap field
LN1 leakage inductance of the stator slot
LS1 leakage inductance of the winding heads in the stator
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II. INTRODUCTION

Induction motors combine robustness and simple rotor struc-
tures. As a result, they are the most spread motor topology world
wide. Raising energy costs and environmental awareness might
lead to a loss of this top position in the future. The reason
for this is that induction motors lack efficiency, compared to
other topologies, like permanent magnet synchronous motors or
synchronous reluctance motors at the same output power. Since
the topology exists for longer than 100 years, many ways to
optimise it have already been investigated. Despite the great
age of the topology, it is still a challenging task to calculate the
so called additional losses. These losses arise in real induction
motors and can’t be measured in a direct way. Their amount
can differ between 0.5% and 5% of the motors input power.

In skewed motors, a part of these losses is connected to the
phenomena of inter-bar currents. They flow between adjacent
bars inside the rotor lamination. On their way they stream
through a contact resistance between bar and iron, then through
the resistance of the iron and finally again through a contact
resistance between the iron and the neighboring bar. By this,
resistive losses are generated in the iron as well as in the transi-
tions between the bars and the iron. The theoretical background
can be studied for example in [1], [2], [3], [4] and others.

III. FEM MODEL

A. Partial Differential Equation

In order to recieve the distribution of the magnetic vector
potential as well as the electric scalar potential in an induction
motor, one has to solve an eddy current problem. For time
harmonic approaches and in case of fields which change slowly
over time, the partial differential equation to be solved is then
given with

~∇× µ̃−1
(
~∇× ~A

)
= −jωκ̃ ~A− κ̃~∇ϕ+ ~Je. (1)

For this case, the current density results in

~J = κ̃ ~E + ~Je (2)

with the electric field

~E = −jω ~A− ~∇ϕ. (3)

To solve the partial differential equation (1) in COMSOL, the
Magnetic and Electric Fields interface from the ACDC-module
can be used.
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B. Geometry

The model’s geometry consists of the induction motor’s
rotor, the airgap and the air regions in the end area of the
motor. Using the theory from [5], the stator is replaced by a
Neumann boundary condition and does not need to be modeled
geometrically. The rotor consists of 28 slots. Their shape is
shown in figure 2. The squirrel cage is made of almunium and
the rotor is skewed by 19.3 degrees.

Figure 1: Visualisation of the geometry. The motor’s rotor on
the right side is hidden within the surrounding air domains on
the left side.

Figure 2: The view of the cutted geometry on the left side shows
the slot shape while the skewing of the squirrel cage is indicated
on the right side.

C. Boundary Conditions

To be able to solve the equation system, which results from
(1), additional constraints for the solving variables need to be
used at the outer boundaries of the geometry. According to (1)
the solving variables are the magnetic vector potential and the
electric scalar potential. A Dirichlet condition is used on the face
boundaries in the end areas, which forces the value of both, the
magnetic vector potential and the scalar potential to zero.

~A = 0 (4)
ϕ = 0 (5)

The different coordinate systems are shown in figure 3. It
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Figure 3: different coordinate systems

shows the coordinate systems, that are fixed to the stator, as
well as the systems, that are fixed to the rotor. Since no stator
geometry is modeled, the influence of it’s magnetomotive force
is taken into account by the use of a Neumann boundary
condition with

~∇~A · ~n = µ~j
s
. (6)

Starting from a known stator winding and current, the surface
current density is derived from the magnetomotive force. The
derivations in [5] lead to a surface current density above the
rotor iron for |z| < lz/2 in figure 4 with

ν~j
s,fe

(x2) =

 0
0

−jν νc
√

2I1 exp j [νsωt− νx2]

 . (7)

νc I
√
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Figure 4: magnetomotive force in the y,z-plane

Since the current density is solenoidal, the surface current
density in the end area for lz/2 + h > |z| > lz/2 can be
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expressed by

ν~j
s,air

(x2, z) =


0

− sin [π/h(z − lz/2)] /2 · w νc
√

2I1
· exp j [νsωt− νx2]

−jν νc
√

2I1 · (cos [π/h(z − lz/2)] + 1) /2
· exp j [νsωt− νx2]

 . (8)

D. Transition Condition
To simulate a contact impedance as a transition boundary

condition, the expression for the current density in the boundary
can be written as

~n · ~J =

(
1

rq
+ jωCq

)
· (ϕ1 − ϕ2) (9)

with rq being the surface resistivity, Cs as the surface capacity
and ∆ϕ as the voltage drop between the inner and outer wall
of the boundary. To investigate the influence of the inter-bar

ϕ1

ϕ2

Figure 5: the surface resistance causes a potential difference
between the inner and the outer wall of the skewed slot.

resistance, the slot walls, which are shown in figure 5, are
defined as contact resistivity. The capacity of the inter-bar
impedance is neglected which leads to

Cq = 0. (10)

E. Material Properties
The material properties are taken from [5]. The rotor lamina-

tion is replaced by a single domain. The electric conductivity
of this domain is set to zero in axial direction, while it stays
untouched in every other direction.

κ̃iron =

κxx κxy κxz
κyx κyy κyz
κzx κzy κzz

 =

κfe 0 0
0 κfe 0
0 0 0

 (11)

The influence of the small air portions between the lamination
sheets on the magnetic conductivity is respected by a substitu-
tion permeability µ′. This leads to very low permeability values
in axial direction, depending on the stacking factor ks.

µ′ =
µ0

ks

(
1
µr
− 1
)

+ 1
(12)

Overall, the permeability matrix of the rotor domain looks like

µ̃iron =

µxx µxy µxz
µyx µyy µyz
µzx µzy µzz

 =

µfe 0 0
0 µfe 0
0 0 µ′

 . (13)

F. Voltage calculation

Starting from the general voltage equation of a coil

U = RI + jωΨ, (14)

the voltage equation of one stator phase can be derived with

U = R1I1 + jωΨ1. (15)

The flux linkage of one phase is made up out of the two parts

Ψ1 = Ψσ + Ψ δ. (16)

The first component describes the flux linkage, which is linked
to the leakage of the stator phase. It is composed out of three
parts with

Ψσ = Ψσ,d1 + ΨN1 + ΨS1. (17)

They describe the leakage of the airgap field, the stator slots and
the winding heads. Since the stator of this model is considered
analytical, while the rotor is modeled numerically, the flux
linkage Ψσ needs to be expressed as a multiplication of the
current and an inductance

Ψσ = Lσ,1I = (Lσ,d1 + LN1 + LS1) I1. (18)

The second flux linkage component in (16) derives from the
airgap field. In order to recieve this from the numerical model,
the flux of the first phase needs to be calculated with

Φpole =

¨

pole area

~Bδ d~a. (19)

To get the flux linkage, the flux has to be multiplied by the
number of turns per phase and the winding factor

Ψ δ = kww Φpole. (20)

Equation (15) can then be replaced by

U = (R1 + jωLσ,1) · I1 + jωΨ δ. (21)

G. Mesh

Since the change of the solving variables in axial direction
is rather small in the iron region, the use of a sweeped mesh
can be beneficial. Figure 6 shows the sweeped mesh in a cut
view. It is sweeped with respect to the skewing of the rotor.
The figure also shows that the mesh in the end areas is chosen
coarse and built without sweep. Overall, the mesh consists of
640000 elements.
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sweeped mesh

cut view

Figure 6: Mesh overview

IV. RESULTS

A. Verification

The first result is a presentation of the validation without
inter-bar currents. In this case, the inter-bar resistance as well
as the iron permeability are set to infinity. The 3D model should
then deliver the same motor behaviour as the fundamental
model from [6]. According to figure 7, analytical and numerical

U1,2 [V] 100
f [Hz] 50
νmax [1] 2
µr,Fe [1] ∞
ks [] 1

rq [Ω/m2] ∞

Table I: Simulation parameters of the verification

calculations of the torque match well. This means that the
additions to [5], which are the voltage equations, the flux
calculation, the introduction of the electric scalar potential, seem
to be done right.
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Figure 7: Verification of the 3D model with analytical results

B. Inter-bar currents and stacking

The next series of simulations is a two dimensional para-
metric study. The first parameter is the stacking factor ks with
the values 0.94, 0.96 and 0.98. The second parameter is the
inter-bar resisitivity rq, which varies between 10−1Ω/m2 and
10−12Ω/m2. The results show that the torque behaviour of all

U1,2 [V] 100
f [Hz] 50
νmax [1] 2
µr,Fe [1] 500
ks [] 0.94...0.98

rq [Ω/m2] 10−1...10−12

Table II: Simulation parameters of the stacking simulation

three different stacking factors is similar. Small differences can
be detected for rq = 1e − 6Ω/m2. The torque is higher for
low speed values in case of low stacking factors. The basic
torque-speed behaviour and the influence of different inter-
bar resistances is generally the same for all stacking factors.
The additional losses in the iron domain and in the transition
boundaries raise the torque. This effect is dominant at low speed
values. The solutions also show, that the torque for standstill
has a maximum at about rq,worst-case = 1e − 6 Ω/m2. Bigger
and smaller values of rq lead to a lower torque. This does not
only count for standstill, but also for lower speeds. As a result
of this, manufactured motors, with a rq close to rq,worst-case can
show inconstancies in their operational behaviour, because rq
strongly depends on the production process of the rotor.
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Figure 8: Torque vs speed curve for a stacking factor of ks=0.94
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Figure 9: Torque vs speed curve for a stacking factor of ks=0.96
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Figure 10: Torque vs speed curve for a stacking factor of
ks=0.98

V. CONCLUSIONS

The numerical model from [5] was extended by the con-
sideration of a voltage equation, the flux calculation and the
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Figure 11: Alternative visualisation of figure 8

implementation of the electric scalar potential. Latter was done
to consider the inter-bar resistance as a transition boundary
condition instead as a transition domain with a specific electric
conductivity. This helps to save some effort to solve the model,
since the thin transition domains needed a relatively fine mesh.
The validation of the new model compared to the analytical re-
sults show that the implementations were programmed correctly.
The chosen approach to include the rotor lamination shows that
different values of the stacking factor do only have a very small
influence on the inter-bar-current behavior. Other than in [5],
the investigations have been made at constant voltage instead
of impressed currents.
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